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SOLVING EXPLICITLY F (x, y) = G(x, y) OVER FUNCTION
FIELDS

István Gaál1, Michael Pohst2

Abstract: Consider binary forms F (x, y), G(x, y) with coefficients in Q[t], assume that F is
irreducible. We give effective upper bounds for the heights of the solutions and an efficient
algorithm to solve

w · F (x, y) = z ·G(x, y)

in x, y ∈ Q[t], w, z ∈ Q[t] ∩ US , gcd(x, y) = 1, gcd(w, z) = 1,

where US denotes a group of S-units in Q(t). We derive that there are only finitely many solutions
up to constant factors. We also show that this is not true for global function fields. This is a
generalization of the well known Thue equations. Effective upper bounds for the solutions of this
general equation were given over number fields but it was not yet considered over function fields.
We illustrate our method with a detailed numerical example.
Keywords: Thue equations; function fields.

1. Introduction

Let F ∈ Z[x, y] be an irreducible binary form of degree > 3 and m a non-zero
integer. Following the classical result of Thue [17] several authors considered
equations of type

F (x, y) = m in x, y ∈ Z
as well as its extensions.

A typical generalization of Thue’s equation is the Diophantine equation of type

F (x, y) = G(x, y) in x, y ∈ Z

where G is also a polynomial or a binary form with coefficients in Z. In case G is
a form with deg G < deg F Shorey and Tijdeman [15] gave upper bounds for the
solutions. For various generalizations see Evertse, Győry, Shorey and Tijdeman [4].
Efficient algorithms for calculating explicitly "small" solutions of this equation
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were given by I.Gaál over Z [6], over imaginary quadratic fields [7] and over number
fields [8] under certain conditions.

Shorey and Tijdeman [15] also gave a far reaching generalization of this prob-
lem. They considered equations of type

w · F (x, y) = z ·G(x, y) in x, y, w, z ∈ Z, gcd(x, y) = 1, gcd(w, z) = 1

assuming that G is also a form and the variables w, z are only divisible by certain
fixed primes (they are S units).

The purpose of the present paper is to give a function field analogue of this
result over Q(t). In Section 5 we derive an effective upper bound for the heights of
the solutions. Moreover, in Section 6 we describe an efficient algorithm for solving
the equation explicitly. A detailed example is given in Section 7.

Note that in the function field case most results on Diophantine equations are
obtained over algebraically closed constant fields, cf. Schmidt [13], Mason [12].
Recently Gaál and Pohst [9], [10], [11] obtained results on Diophantine equations
over global function fields, i.e. a finite extension of F(t), for finite fields F.

2. The function field

Let K be a finite extension of Q(t). The degree and the genus of the function field
K will be denoted by d and g, respectively. The integral closure of Q[t] in K is
denoted by OK . The set of all (exponential) valuations of K (which are trivial
on Q) is denoted by V , the subset of infinite valuations by V∞. For a non-zero
element f ∈ K we denote by v(f) the valuation of f at v. For the normalized
valuations vN (f) = v(f) · deg v the product formula

∑

v∈V

vN (f) = 0, ∀f ∈ K \ {0}

holds. The height of a non-zero element f of K is defined as usual

H(f) :=
∑

v∈V

max{0, vN (f)} = −
∑

v∈V

min{0, vN (f)} .

In the following all valuations v will mean normalized valuations without sub-
script N .

3. Unit equations in two variables

Let S be a finite subset of V , containing the infinite valuations. Then the non-zero
elements γ ∈ K satisfying v(γ) = 0 for all v 6∈ S form a multiplicative group US

in K. These elements are called S-units. (For S = V∞ the S-units are just the
units of the ring OK .) We consider the unit equation

x + y = 1 in x, y ∈ US . (3.1)
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Lemma 3.1. For all solutions x, y ∈ US of equation (3.1) we have

max(H(x),H(y)) 6 2g − 2 +
∑

v∈S

deg v . (3.2)

Since x, y are S-units, this implies the finiteness of the number of solutions of
equation (3.1). The proof of this Lemma is analogous to the proof of Lemma 3.1
of [9]. The necessary premises are fulfilled since Q is perfect, cf. Stichenoth [16],
Artin and Whaples [1].

4. Formulating the equation

Let F (x, y), G(x, y) be binary forms with coefficients in Q[t]. We assume that F
is irreducible and that these forms split in K into linear factors

F (x, y) = (x− α1y) . . . (x− αny)

G(x, y) = (x− β1y) . . . (x− βmy)

where αi (1 6 i 6 n) and βj (1 6 j 6 m) are elements of OK . Since F is
irreducible, the conjugates α1, . . . , αn are obviously distinct. We also assume that
αi 6= βj (common factors can be eliminated).

Let V0 be the set of all valuations of Q(t) which are trivial on Q. Let S0 be
a finite subset of V0 containing the infinite (degree) valuation and denote by US0

the group of S0 units of Q(t). Our purpose is to consider the solutions of

w · F (x, y) = z ·G(x, y) (4.1)
in x, y ∈ Q[t], w, z ∈ Q[t] ∩ US0 , gcd(x, y) = 1, gcd(w, z) = 1.

Without loss of generality we can assume xy 6= 0. (The case x = 0 or y = 0 is
trivial.) This means that in addition to the binary forms the factors w, z appear
on both sides, divisible only by polynomials belonging to the valuations in the
finite set S0. The conditions gcd(x, y) = 1, gcd(w, z) = 1 are clearly necessary to
ensure the finiteness of the number of solutions up to rational factors.

5. Upper bounds for the heights of the solutions

In this section we give explicit upper bounds for the heights of the solutions x, y.
This implies upper bounds for the heights of w, z.

Let A be an upper bound for the heights (in K) of αi (1 6 i 6 n). Let S1

be the set of extensions of valuations in S0 to K. Denote by W the finite set
of valuations of K containing S1 and those finite valuations v for which any of
v(αi−βj) (1 6 i 6 n, 1 6 j 6 m) or v(αi−αj) (1 6 i < j 6 n) is positive. Denote
by h(.) the height in Q[t].
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Theorem 5.1. Equation (4.1) has only finitely many solutions up to common
constant factors. For all solutions x, y, w, z of equation (4.1) we have

max(h(x), h(y)) 6 1
d

(
14g − 14 + 7

∑

v∈W

deg v + 36A

)
.

Remark 5.2. The assertion is not valid if the constant field has prime charac-
teristic. In that case in [10] we showed an example for a Thue equation (that is
G(x, y) = 1) with infinitely many solutions.

Remark 5.3. Some ideas of Section 6 would enable to make the bound in (5.1)
somewhat smaller but would also make the formulation of the Theorem more
complicated.

Proof of Theorem 5.1. Assume that x, y, w, z is a solution of equation (4.1).
We apply some arguments used in [15] in the number field case.

We have

w · (x− α1y) . . . (x− αny) = z · (x− β1y) . . . (x− βmy). (5.1)

Assume that v is a finite valuation of K such that v(x − αiy) > 0 for some i.
Then either v ∈ S1 or there must be a j such that v(x − βjy) > 0. In the later
case

v(y) + v(αi − βj) = v((αi − βj)y) = v((x− βjy)− (x− αiy))
> min(v(x− αiy), v(x− βjy)) > 0.

We also have

v(x) + v(αi − βj) = v((αi − βj)x) = v(αi(x− βjy)− βj(x− αiy))
> min(v(αi(x− βjy), v(βj(x− αiy))
= min(v(αi) + v(x− βjy), v(βj) + v(x− αiy))
> min(v(x− βjy), v(x− αiy)) > 0,

where we used v(αi) > 0, v(βj) > 0 which follows from αi, βj ∈ OK . Because
of gcd(x, y) = 1 the values of x, y at v can not both be positive, hence the two
inequalities above together imply v(αi − βj) > 0.

Let
S2 = S1 ∪ {v ∈ V | v(αi − βj) > 0 for some i, j},

then
µ = (x− α1y) . . . (x− αny) (5.2)

is an S2-unit.
Next we use unit equations in two variables for solving equation (5.2), obviously

a Thue equation.
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Set γi = x − αiy for 1 6 i 6 n. For distinct i, j (1 6 i, j 6 n − 1) Siegel’s
identity implies

(αi − αj)γn + (αj − αn)γi + (αn − αi)γj = 0,

whence
(αj − αn)γi

(αj − αi)γn
+

(αn − αi)γj

(αj − αi)γn
= 1. (5.3)

Setting
W = S2 ∪ {v ∈ V | v(αi − αj) > 0 for some i, j}

both terms on the left hand side of equation (5.3) are W -units. Lemma 3.1 implies
that

(αj − αn)γi = νi(αj − αi)γn

where νi is a W -unit of height

H(νi) 6 2g − 2 +
∑

v∈W

deg v =: C. (5.4)

Therefore we obtain
γi = µi · γn (1 6 i 6 n− 1) (5.5)

with a W -unit
µi = νi · αj − αi

αj − αn
(5.6)

with
H(µi) 6 C + 4A. (5.7)

(We recall that H(αi) 6 A.) Let again v be a finite valuation and consider the
values of γn = x−αny. We have v(γn) > 0 by γn ∈ OK and positive values occur
at most for v ∈ S2 (since γn is an S2-unit). Assume that kv = v(γn) > 0. For an
i < n we have, firstly,

v(y) + v(αi − αn) = v((αi − αn)y) = v((x− αny)− (x− αiy))
> min(v(x− αiy), v(x− αny))
= min(v(µi) + kv, kv),

and secondly

v(x) + v(αi − αn) = v((αi − αn)x) = v(αi(x− αny)− αn(x− αiy))
> min(v(αi(x− αny), v(αn(x− αiy))
= min(v(αi) + v(x− αny), v(αn) + v(x− αiy))
> min(v(x− αny), v(x− αiy)) = min(kv, v(µi) + kv).

It follows again from gcd(x, y) = 1 that v(x), v(y) can not both be positive, hence

min(kv, v(µi) + kv) 6 v(αi − αn) (5.8)
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that is

kv 6 v(αi − αn) + max(0,−v(µi)) = v(αi − αn) + max(0, v(1/µi)). (5.9)

By
γ1 . . . γn−1γn = µ (5.10)

we have from (5.5) and the above estimate

v(µ) = v(γ1) + . . . + v(γn−1) + v(γn)
= v(µ1) + . . . + v(µn−1) + n · v(γn) (5.11)
6 v(µ1) + . . . + v(µn−1) + n · v(αi − αn) + n ·max(0, v(1/µi)).

Observe that µ ∈ Q[t], that is the values of µ are non-negative at all finite valua-
tions. Moreover all infinite valuations of K are extensions of the degree valuation
of Q[t] with equal values at µ, therefore µ has non-positive values at all infinite
valuations of K. Hence by (5.7) and (5.11) we conclude

H(µ) 6 (n− 1)(C + 4A) + n · 2A + n(C + 4A) 6 (2n− 1)C + (10n− 4)A. (5.12)

Further, (5.10) and (5.5) imply

γn
n =

µ

µ1 . . . µn−1
,

hence by (5.12) and (5.7) we get

H(γn) 6 3n− 2
n

C +
14n− 8

n
A 6 3C + 14A. (5.13)

From this we infer

H(γ1) 6 H(µ1) + H(γn) 6 4C + 18A.

Finally, by

x =
α1(x− αny)− αn(x− α1y)

α1 − αn
, y =

(x− αny)− (x− α1y)
α1 − αn

we get

max(H(x),H(y)) 6 A + H(γn) + A + H(γ1) + 2A 6 7C + 36A.

From this the assertion of Theorem 5.1 for the heights of the solutions is immediate.
Note that there are only finitely many γn, γi up to common constant factors,
therefore there are also only finitely many x, y up to common constant factors. ¥
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6. An efficient algorithm for solving the equation explicitly

The simplest way to attack our equation is to enumerate all S2 units γn satisfying
(5.13). These elements can be calculated up to a rational factor. Then use the
automorphism σ for which σ(αn) = α1 to calculate γ1 = σ(γn) and then solve the
system of equations

γ1 = x− α1y

γn = x− αny

to obtain x, y up to a rational factor.
However, as we shall explain in the following this procedure can be made much

more efficient by having a closer look at the equation.
The element µ in (5.2) is an S2-unit. Some of the valuations of S2 can very

often be eliminated. Consider a finite valuation v ∈ S2 which is the only extension
to K of a valuation of Q(t). Then v(x − αiy) is the same for all conjugates. By
gcd(x, y) = 1 the arguments leading to (5.8) show that

min(v(x− αny), v(x− αiy)) 6 v(αi − αn).

If v(αi − αn) < 1 for some i, then this implies that the values of x − αiy are all
zero, we have v(µ) = 0 in (5.2). Otherwise, if v(αi − αn) > 1 for all i, the value
v(µ) can be restricted by n ·min16i6n−1 v(αi − αn), (see (5.2)).

Denote by S∗2 the result of reducing the set S2 as described above. Then extend
S∗2 with the valuations occuring in any of the αi−αj , αi−αn, αj −αn, denote the
resulting set by W ∗.

Then determine all solutions νi of the W ∗-unit equation (5.3). This is done by
enumerating all W ∗-units νi of bounded height (smaller or equal than the bound
in (5.4)). The possible elements νi are determined up to constant factors. By (5.6)
we obtain the µi of (5.5).

Denote by S∗0 the set of valuations of Q(t) such that S∗2 is just the set of
extensions of the valuations of S∗0 to K. (As we have possibly reduced the set S2,
we get here a set with possibly fewer valuations than in S0.) We obtain

γn
n =

µ

µ1 . . . µn−1

where µ1, . . . , µn−1 are known and µ ∈ Q[t] is an S∗0 -unit. Assume that the finite
valuations of S∗0 correspond to irreducible polynomials P1, . . . , Ps ∈ Q[t]. Up to a
rational factor we have

µ =
s∏

i=1

Pi(t)ki

(ki ∈ Z>0). By division with remainder we get ki = qin + ri subject to 0 6 ri <
n (1 6 i 6 s). Setting

P (t) :=
s∏

i=1

Pi(t)qi
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we get

µ = P (t)n
s∏

i=1

Pi(t)ri

and therefore
γn

n =
P1(t)r1 . . . Ps(t)rs

µ1 . . . µn−1
· P (t)n.

Hence
γn = δn · P (t)

with an S∗2 -unit δn. Taking a conjugate of γn to obtain γ1 we can see, that the
factor P (t) ∈ Q[t] occurs in γ1, as well, and this is the case also with

x =
α1γn − αnγ1

α1 − αn
, y =

γn − γ1

α1 − αn
.

Therefore to obtain coprime solutions x, y we only have to calculate γn from

γn
n =

P1(t)r1 . . . Ps(t)rs

µ1 . . . µn−1

for all 0 6 r1, . . . , rs < n. Then we calculate the corresponding γ1 by taking
conjugates and x, y from the above formulas. We have to test if these possible
values x, y are indeed solutions.

7. Example

Let the set S0 consist of the infinite valuation (deg) and the valuations corre-
sponding to the irreducible polynomials t, t + 1, t + 2. Consider the Diophantine
equation

w · (x3 − tx2y − (t + 3)xy2 − y3
)

= z · (x + y) (7.1)

in x, y ∈ Q[t], w, z ∈ Q[t] ∩ US0 , gcd(x, y) = 1, gcd(w, z) = 1.

Assume that x, y are both nonzero. To solve this equation we consider the function
field K = Q(t)(α1) generated by a root α1 of the polynomial

f(x) = x3 − tx2 − (t + 3)x− 1.

(We call K simplest cubic field in correspondence to D.Shanks [14] in the number
field case.) The function field K = Q(t)(α1) is cyclic, its automorphism group is
generated by

σ(α1) =
−1

α1 + 1
and the other roots

α2 =
−1

α1 + 1
, α3 =

−1
α2 + 1

of f are also contained in K. The degree of K is d = 3 and the genus of K is
g = 0. There are three infinite valuations v∞,1, v∞,2, v∞,3 of degree 1 and there is
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only one valuation vt, vt+1, vt+2 of K of degree 3, corresponding to t, t + 1, t + 2,
respectively. Hence the set of extensions of valuations of S0 to K is

S1 = {v∞,1, v∞,2, v∞,3, vt, vt+1, vt+2}.
We have n = 3, m = 1 and β1 = −1. In αi−β1 = αi+1 only the infinite valuations
occur, hence the set S2 coincides with S1. Further, in αi−αj apart from the infinite
valuations also the valuation vt2+3t+9 corresponding to the polynomial t2 + 3t + 9
occurs (there is only one valuation on K extending the valuation corresponding to
t2 + 3t + 9 on Q(t)). Therefore

W = {v∞,1, v∞,2, v∞,3, vt, vt2+3t+9}.
By vt(αi − αj) = 0, vt+1(αi − αj) = 0, vt+2(αi − αj) = 0 we can eliminate

vt, vt+1, vt+2 from S2. By vt2+3t+9(αi − αj) = 1 the exponent of t2 + 3t + 9 in µ
is 0 or 1.

We have
S∗2 = {v∞,1, v∞,2, v∞,3}

and
W ∗ = {v∞,1, v∞,2, v∞,3, vt2+3t+9}.

We solve the W ∗-unit equation

ν1 + ν2 = 1.

Lemma 3.1 implies that H(νi) 6 3 (i = 1, 2). There are 73 such W ∗-units (up to
constant factors). For all possible ν1, ν2 we calculate the corresponding µ1, µ2 and
for each of them we calculate the possible values of γ3 from

γ3
3 =

(t2 + 3t + 9)r1 · tr2 · (t + 1)r3 · (t + 2)r4

µ1µ2

for all 0 6 r1 6 1, 0 6 r2, r3, r4 < 3. Carrying out the above calculations we find
that there are only the trivial solutions with x = 0 or y = 0.

8. Computational aspects

All calculations to solve the equation in the example were carried out by Kash [3]
which took just a few seconds on a PC.

References

[1] E. Artin and G. Whaples, Axiomatic characterization of fields by the product
formula for valuations, Bull. Am. Math. Soc. 51 (1945), 469-492.

[2] A. Baker, Transcendental number theory, Cambridge University Press, 1990.
[3] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger,

KANT V4 , J. Symbolic Comput. 24 (1997), 267–283. http://www.math.tu-
berlin.de/̃ kant/



88 István Gaál, Michael Pohst

[4] J. H. Evertse, K. Győry, T. N. Shorey, R. Tijdeman, Equal values of binary
forms at integral points, Acta Arith. 48 (1987), 379–396.

[5] C. Fieker, A. Jurk and M. Pohst, On solving relative norm euations in alge-
braic number fields, Math. Comput. 66 (1977), 399-410.

[6] I. Gaál, On the resolution of F (x, y) = G(x, y), J. Symbolic Comput. 16
(1993), 295–303.

[7] I. Gaál, A fast algorithm for finding "small" solutions of F(x,y)=G(x,y) over
imaginary quadratic fields, J. Symbolic Comput. 16 (1993), 321–328.

[8] I. Gaál, A fast algorithm for finding small solutions of F (X,Y ) = G(X, Y )
over number fields, Acta Math. Hungar. 106(1-2) (2005), 41–51.

[9] I. Gaál and M. Pohst, Diophantine equations over global function fields I: The
Thue equation, J. Number Theory 119 (2006), 49–65.

[10] I. Gaál and M. Pohst, Diophantine equations over global function fields II:
S-integral solutions of Thue equations, Experimental Math. 15 (2006), 1–6.

[11] I. Gaál and M. Pohst, Diophantine equations over global function fields IV: S-
unit equations in several variables with an application to norm form equations,
J. Number Theory 130 (2010), 493–506.

[12] R. C. Mason, Diophantine equations over function fields, Cambridge Univer-
sity Press, 1984.

[13] W. M. Schmidt, Thue’s equation over function fields, J. Austral Math. Soc.
Ser. A 25 (1978), 385–422.

[14] D. Shanks, The simplest cubic fields, Math. Comput. 28 (1974), 1137–1152.
[15] T. N. Shorey and R. Tijdeman, Exponential diophantine equations, Cambridge

University Press, 1986.
[16] H. Stichenoth, Algebraic function fields and codes, Springer Verlag, Berlin,

1993.
[17] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew.

Math. 135 (1909), 284–305.

Addresses: István Gaál: University of Debrecen, Mathematical Institute, H–4010 Debrecen
Pf.12., Hungary;
Michael Pohst: Technische Universtät Berlin, Institut für Mathematik, Straße des 17.
Juni 136, 10623 Berlin, Germany.

E-mail: igaal@math.klte.hu, pohst@math.tu-berlin.de
Received: 24 May 2010


