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ARITHMETIC FUNCTIONS AND THEIR COPRIMALITY

Jean-Marie De Koninck, Imre Kátai

Abstract: Let D > 3 be an odd integer and ` > −1 be a non zero integer such that gcd(`, D) = 1.
Let f, g : N→ N be multiplicative functions such that f(p) = D and g(p) = p+` for each prime p.
We estimate the number of positive integers n 6 x such that gcd(f(n), g(n)) = 1. If D is a prime
larger than 3, we also examine the size of the number of positive integers n 6 x for which
gcd(g(n), f(n− 1)) = 1.
Keywords: Arithmetic functions, number of divisors, sum of divisors, shifted primes.

1. Introduction

Given an arithmetical function f and a large number x, examining the number of
positive integers n 6 x for which gcd(n, f(n)) = 1, has been the focus of several
papers. For instance, Paul Erdős [4] established that

#{n 6 x : gcd(n, ϕ(n)) = 1} = (1 + o(1))
e−γx

log log log x
(x →∞),

where ϕ is the Euler function and γ is the Euler constant. A similar result can
be obtained if one replaces ϕ(n) by σ(n), the sum of the divisors of n. Similarly,
letting Ω(n) stand for the number of prime factors of n counting their multiplicity,
Alladi [1] proved that the probability that n and Ω(n) are relatively prime is equal
to 6/π2 by examining the size of {n 6 x : gcd(n,Ω(n)) = 1}. Let K(x) stand for
the number of positive integers n 6 x such that gcd(nτ(n), σ(n)) = 1, where τ(n)
stands for the number of divisors of n. Some fifty years ago, Kanold [5] showed
that there exist positive constants c1 < c2 and a positive number x0 such that

c1 < K(x)/
√

x/ log x < c2 (x > x0).

In 2007, the authors [2] proved that there exists a positive constant c3 such that

K(x) = c3(1 + o(1))
√

x

log x
(x →∞).
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The analogue problem for counting the number of positive integers n for which

gcd(nτ(n), ϕ(n)) = 1 (1.1)

is trivial. Clearly (1.1) holds for n = 1, 2. But these are the only solutions.
Indeed, assume that (1.1) holds for some n > 3. Then n is squarefree and it must
therefore have an odd prime divisor p, in which case 2|ϕ(n) and 2|τ(n), implying
that gcd(nτ(n), ϕ(n)) > 1, thereby proving our claim.

More recently, we obtained (see [3]) asymptotic estimates for the counting
functions

R(x) := #{n 6 x : gcd(ϕ(n), τ(n)) = gcd(σ(n), τ(n)) = 1}
and

N(x) := #{n 6 x : `(n) = 1},
where `(n) := gcd(τ(n), τ(n + 1)). In fact, we proved that, as x →∞,

R(x) = (c4 + o(1))
√

x

log x
and N(x) = (c5 + o(1))

√
x,

where c4 and c5 are positive constants.
Let D > 3 be an odd integer and let ` > −1 be a non zero integer such that

gcd(`,D) = 1. Let f, g : N → N be multiplicative functions such that f(p) = D
and g(p) = p + ` for each prime p. In this paper, we estimate the number E(x) of
positive integers n 6 x such that

gcd(f(n), g(n)) = 1. (1.2)

Our general result will apply in particular to the case g(n) = ϕ(n) (or σ(n)) and
f(n) = τk(n) with k odd, k > 3, where τk(n) stands for the number of ways one
can write n as the product of k positive integers taking into account the order in
which they are written. Another valid choice is f(n) = kω(n) with k odd, k > 3,
where ω(n) stands for the number of distinct prime factors of n with ω(1) = 0.

Moreover, in the case where D > 3 is a prime, we shall also examine the size
of the number S(x) of positive integers n 6 x for which

Z(n) := gcd(g(n), f(n− 1)) = 1.

From here on, gcd(a, b) will be written simply as (a, b). In what follows, we

shall denote the logarithmic integral of x by li(x), that is li(x) :=
∫ x

2

dt

log t
, while

Γ stands for the Gamma function. We say that a positive integer n is squarefull
if p2|n for all prime divisors p of n; we will denote by F the set of squarefull
numbers. Moreover, the letters c and C will stand for positive constants, while
the letters p and q will always stand for prime numbers. Finally, given any set of
positive integers B, the expression N (B) stands for the multiplicative semi-group
generated by B.

Finally, given D and ` as above, we let t1, t2, . . . , tT be all those reduced residue
classes modD for which (tj + `, D) = 1 for j = 1, 2, . . . , T .
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2. Main results

Theorem 2.1. There exists a positive constant c6 such that

E(x) = (c6 + o(1))x logτ−1 x (x →∞), (2.1)

where τ = T/ϕ(D).

Theorem 2.2. There exists a positive constant c7 such that

S(x) = (c7 + o(1))x logτ−1 x (x →∞), (2.2)

where, in this case, τ − 1 = −1/(D − 1).

3. Preliminary results

To prove our results we shall need the following results.

Theorem A (Wirsing). Let f be a non negative multiplicative function for which
there exist two positive constants a1 and a2 < 2 such that f(pα) 6 a1a

α
2 for each

integer α > 2. Assume also that there exists a positive constant C such that
∑

p6x

f(p) = (C + o(1))
x

log x
(x →∞).

Then
∑

n6x

f(n) =
(

e−γC

Γ(C)
+ o(1)

)
x

log x

∏

p6x

(
1 +

f(p)
p

+
f(p2)

p2
+ . . .

)
(x →∞).

Theorem B (Levin and Feinleib). Let f be a complex valued multiplicative
function satisfying the three conditions

∑

p6x

f(p) = (C + o(1))
x

log x
(x →∞),

∑

p6x

|f(p)| = O

(
x

log x

)
,

f(pr) = O((2p)c0r),

where C and c0 are positive constants with the additional restriction c0 < 1/2.
Then,

∑

n6x

f(n) =
e−Cτ

Γ(C)
x

log x

∏

p6x

(
1 +

f(p)
p

+
f(p2)

p2
+ . . .

)

+ o


 x

log x

∏

p6x

(
1 +

|f(p)|
p

+
|f(p2)|

p2
+ . . .

)
 (x →∞).

Proofs. The results of Theorems A and B can be found in Chapter 4 of the book
of Postnikov [6]. ¥
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4. The proof of Theorem 2.1

Let ℘`,D be the set of primes p for which p ≡ tj (mod D) for j = 1, . . . , T .
Furthermore, let H = {p : p|D} and set

℘`,D,H = ℘`,D ∪H.

It is well known that

#{n 6 x : n ∈ F} = O(
√

x) (x →∞). (4.1)

Hence, given a non squarefull integer n 6 x, let us write it as n = Km, where
K ∈ F and m > 1 is squarefree with (K,m) = 1, so that condition (1.2) can be
written as

(f(K)f(m), g(K)g(m)) = 1. (4.2)

So, for each K ∈ F , let us set

EK(x) := #{n = Km 6 x : m > 1 and (4.2) holds},

so that, in light of (4.1),

E(x) =
∑

K∈F
EK(x) + O(

√
x). (4.3)

By using the Brun-Selberg Sieve, we obtain that for 1 6 K 6 √
x,

EK(x) 6 E1

( x

K

)
¿ x

K

∏

p6√x
p 6∈℘`,D

(
1− 1

p

)
¿ x

K
(log x)τ−1, (4.4)

while we trivially have that EK(x) ¿ x/K if
√

x < K 6 x. Since
∑

K∈F

1
K

is

convergent, it follows from (4.3) and (4.4) that

E(x) =
∑

K∈F
K<Yx

EK(x) + o(x(log x)τ−1) (x →∞), (4.5)

where Yx is an arbitrary function tending to infinity as x →∞, which we can also
assume to satisfy maxn6Yx f(n) 6 log log log x, say.

Observe that a necessary condition for (4.2) to hold is that

(g(K), f(K)D) = 1. (4.6)

Now let K be the set of those K ∈ F for which (4.6) holds. Note that the set
K is non empty, since 1 ∈ K. Moreover, define

K0 = {K ∈ K : p|f(K) ⇒ p|D}.
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We shall prove that, for every fixed K ∈ F , as x →∞,

EK(x) = o(E1(x)) if K ∈ F \ K0, (4.7)

EK(x) = (1 + o(1))
∏

p|K
p∈℘`,D,H

(
1 +

1
p

)−1
E1(x)

K
if K ∈ K0, (4.8)

E1(x) = (c + o(1))x logτ−1 x, (4.9)

where c is a positive constant. Combining these three estimates with (4.4) and
(4.5), Theorem 2.1 will follow immediately.

For a given K ∈ K0, letting

E(y,K) := #{m ∈ [2, y] : m squarefree and (m,K) = 1},

it is clear that the number of positive integers n = Km 6 x, with m > 1, for
which (4.2) holds is equal to E(x/K,K).

Consider the multiplicative function hK defined on prime powers by hK(pα) =
0 if α > 2 or if p|K, and by

hK(p) =

{
1 if p 6 |K and p ∈ ℘`,D,H ,

0 otherwise.

With this definition of hK , we have that

E(y, K) =
∑

n6y

hK(n). (4.10)

To estimate this last sum, we shall consider the Dirichlet series

∞∑
n=1

hK(n)
ns

=
∏
p

(
1 +

hK(p)
p

+
hK(p2)

p2
+ . . .

)

=
∏

p|K
p∈℘`,D,H

(
1 +

1
ps

)−1 ∏
p∈℘`,D,H

(
1 +

1
ps

)
.

In light of the fact that
∑

p6x

hK(p) = (τ + o(1))
x

log x
(x →∞),

we may use Theorem A and obtain that, as x →∞,

EK(x) = (1 + o(1))
∏

p|K
p∈℘`,D,H

(
1 +

1
p

)−1
x

log x
exp{τ log log x + CD + o(1)},
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where CD is a suitable constant depending only on D. Estimates (4.8) and (4.9)
are thus established. It remains to prove (4.7). So, let K ∈ F \K0 be fixed. Then,
there exists a prime divisor q of f(K) such that (q, D) = 1. If (4.2) holds, then the
fact that p|m implies that (p + `, qD) = 1. Hence, from the Brun-Selberg Sieve, it
follows that

EK(x) ¿ x

K

∏

p6x
(p+`,qD)>1

(
1− 1

p

)

¿ x

K
exp





−
∑

p6x
(p+`,D)>1

1
p
−

∑

p6x
(p+`,D)=1

q|p+`

1
p





¿ x

K
exp

{
−

(
1− T

ϕ(D)

)
log log x− T

ϕ(D)
1

q − 1
log log x

}

¿ x

K
logτ−1 x · exp

(
− T

ϕ(D)(q − 1)
log log x

)
,

thereby implying that (4.7) holds and thus completing the proof of Theorem 2.1.

5. The proof of Theorem 2.2

First observe that the number of those integers n 6 x for which n or n − 1 is
a squarefull number is O(

√
x).

Let us write n = Km and n − 1 = Rν, where K and R are squarefull, while
m and ν are squarefree, with (K,m) = 1 and (R, ν) = 1. Then, for each pair of
coprime squarefull numbers K and R, define

SK,R(x) = #{n 6 x : n = Km, n− 1 = Rν, m > 1, ν > 1, Z(n) = 1}.
With these notations and the above observation, it is clear that

S(x) =
∑

K,R∈F
(K,R)=1

SK,R(x) + O(
√

x). (5.1)

Since in this case, H = D, it follows that if n = Km, n − 1 = Rν, m > 1,
ν > 1 and Z(n) = 1, then ν ∈ ℘`,D,D. Consequently, by using the Brun-Selberg
Sieve, we obtain that, for each squarefull number R,

∑

K∈F
SK,R(x) ¿

{
x
R logτ−1 x if R 6 √

x,
x
R if

√
x < R 6 x.

(5.2)

Fixing K ∈ F , we shall estimate the number of integers n 6 x such that K|n
and for which n− 1 = Rν with R ∈ F and ν ∈ N (℘`,D,D).
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Similarly as in (5.2), we have

∑

R∈F
SK,R(x) ¿

{
x
K logτ−1 x if K 6 √

x,
x
K if

√
x < K 6 x.

(5.3)

It follows from (5.2) and (5.3) that for an arbitrary function Yx →∞,
∑

max(K,R)>Yx

SK,R(x) = o
(
x logτ−1 x

)
(x →∞). (5.4)

So, let us assume that max(K, R) 6 Yx and define

R0 = {R ∈ F : q|f(R) ⇒ q = D} and R1 = F \ R0.

Fix R ∈ R1 and let q|f(R) with q 6= D. Then, n = Km implies that Rν + 1 ≡ 0
(mod K), while Z(n) = 1 implies that (g(m), Dq) = 1. Thus, by using the Brun-
Selberg Sieve, we have that

∑

K∈F
SK,R(x) = o

( x

R
logτ−1 x

)
(x →∞),

so that ∑

R∈R1

∑

K∈F
SK,R(x) = o

(
x logτ−1 x

)
(x →∞). (5.5)

We will say that K,R is an admissible pair if (g(K), Df(R)) = 1. Observe that
it is clear that SK,R(x) = 0 if K, R is not an admissible pair, and also that in the
case R ∈ R0, (g(K), Df(R)) = 1 is equivalent to (g(K), D) = 1. Finally, observe
that K = 1, R = 1 is an admissible pair.

From (5.4), (5.5) and (5.1), it therefore follows that

S(x) =
∑

R∈R0
K,R admissible pair

max(K,R)6Yx

SK,R(x) + o(x logτ−1 x). (5.6)

Let F be the multiplicative function defined by

F (p) =

{
1 if p + ` 6≡ 0 (mod D),
0 otherwise

and
F (pα) = 0 if α > 2,

and define the function m(x) =
∏

p6x

(
1 +

F (p)
p

)
.

It is clear that if 0 < εx → 0 as x →∞, then maxx1−εx 6y6x

∣∣∣m(y)
m(x) − 1

∣∣∣ → 0 as
x →∞.
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Given an integer B > 2, let χB be a character mod B and assume that
χB(nj) = 1 for the H distinct residue classes nj (mod B). It is clear that if
H > ϕ(B)/2, then χB = χ

(0)
B is the principal character mod B.

We now define the functions u and V as follows.
Set u(n) = χ

(0)
K (n)F (n), n = Km, n− 1 = Rν, so that u(m) = 1 if and only if

(m,K) = 1, m is squarefree and p|m implies that p + ` 6≡ 0 (mod D). Let V be
the multiplicative function defined by

V (p) =

{
0 if (p,R) = 1,

1 if p|R,

V (p2) =

{
−1 if (p,R) = 1,

0 if p|R

and V (pα) = 0 if α > 3.
Observe that if V (δ) 6= 0, then we may write δ = δ1δ

2
2 with δ1|R and (δ2, R) = 1,

so that V (δ) = µ(δ1)µ(δ2), where µ stands for the Moebius function. Therefore,

V (δ) =

{
µ(δ1)µ(δ2) if (δ1, R) = 1 and δ2|R,

0 otherwise.

It follows from this definition that

∑

δ|ν
V (δ) =

{
1 if (ν,R) = 1, ν squarefree,
0 otherwise.

Now, let m0, ν0 be the smallest non negative squarefree integers such that

Km0 −Rν0 = 1, (5.7)

so that all integer solutions of Km − Rν = 1 are given by m = m0 + tR and
ν = ν0 + tK for t ∈ Z.

With the above definitions, we have

SK,R(x) =
∑

δ6x/R

V (δ)
∑

t6(x−m0)/KR
ν0+tK≡0 (mod δ)

u(m0 + tR). (5.8)

If (δ,K) > 1, then (δ,K) = (δ2
1 , K) and δ2

1 and K are both squarefull. It follows
that if p|(δ2

1 ,K), then p2|δ2
1 and p2|K, so that p2|ν0 and consequently p2|ν0 + tK

for each t ∈ Z, implying that there each number ν0 + tK is squarefull. Hence it
follows that in this case, SK,R(x) = 0. Therefore, we can from now on assume
that (δ,K) = 1 (which holds if and only if (δ1,K) = 1).

Since (δ,K) = 1, it follows that the congruence ν0 + tK ≡ 0 (mod δ) has one
solution mod δ, represented by ν0 + t0K ≡ 0 (mod δ), say. This implies that all
solutions of the congruence ν0 + tK ≡ 0 (mod δ) are given by t = t0 + kδ, k ∈ Z.
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In light of these observations, (5.8) can be written as

SK,R(x) =
∑

δ6x/R
(δ,K)=1

V (δ)
∑

k6(x−(m0+t0R))/δR

u(m0 + t0R + δRk)

=
∑

δ6x/R
(δ,K)=1

V (δ)M(δ)

=
∑

δ6Ux

(δ,K)=1

V (δ)M(δ) +
∑

δ>Ux

(δ,K)=1

V (δ)M(δ) = Σ1 + Σ2, (5.9)

say, where U(x) is a function chosen so that U(x) → ∞ as x → ∞ and U(x) =
O(log log log x).

By the Brun-Selberg Sieve, we obtain that

Σ2 6
∑

(δ,K)=1
Ux<δ<

√
x

|V (δ)| x

δR

∏

p6x
p≡` (mod D)

(
1− 1

p

)
+

∑
√

x6δ6x/R

x

δR
|V (δ)|

6 c
x

R
(log x)−1/(D−1)

∑

δ>Ux

|V (δ)|
δ

+
x

R

∑
√

x6δ6x/R

|V (δ)|
δ

. (5.10)

Now, on the one hand,

∑

δ>Ux

|V (δ)|
δ

6
∑

δ2|R

|µ(δ2)|
δ2

∑

δ1>Ux/R

1
δ2
1

6
∏

p|R

(
1 +

1
p

)
· c
√

R√
Ux

, (5.11)

while on the other hand,

∑
√

x6δ6x/R

|V (δ)|
δ

<
∑

δ>√x

|V (δ)|
δ

6
∏

p|R

(
1 +

1
p

)
·
(

R√
x

)1/2

. (5.12)

Gathering (5.11) and (5.12) in (5.10), we obtain

Σ2 = o(x(log x)−1/(D−1)) (x →∞). (5.13)

We now consider an estimate for Mδ when δ 6 Ux. Recall that

Mδ =
∑

m0+t0R+δRk6x/K

u(m0 + t0R + δRk).

Let A = m0 + t0R and B = δR. One can see that (A,B) = 1. Indeed, first observe
that (A,R) = 1, since in light of (5.7), we have (m0, R) = 1. Now, it follows
from (5.7) that K(m0 + t0R) − R(ν0 + t0K) = 1. But δ|ν0 + t0K implies that
(m0 + t0R, δ) = 1. Therefore, it follows from these observations that (A, B) = 1.
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Thus, with the above notations, Mδ can be written as

Mδ =
∑

A+Bk6x/K

u(A + Bk) =
1

ϕ(B)

∑

χ (mod B)

χ(A) ·
∑

n6x/K

χ(n)u(n)

= M
(1)
δ + M

(2)
δ ,

say. These last two expressions can be written as

M
(1)
δ =

1
ϕ(B)

∑

n6x/K

χ
(0)
B (n)u(n), (5.14)

M
(2)
δ =

1
ϕ(B)

∑

χ 6=χ0

χ(A) ·
∑

n6x/K

χ(n)u(n). (5.15)

Let χB 6= χ
(0)
B . Then u(p)χB(p) 6= u(p) holds for at least one prime p = p∗.

But then u(p) = 1 for every prime p ≡ p∗ (mod B) and therefore

1
li(x)

∑

p6x

u(p)χB(p) → τ = τχB (x →∞),

with Re(τχB ) < τχ0 . Hence, it follows from Theorem B that

M
(2)
δ = o

(
x

log x
m(x)

)
(x →∞). (5.16)

On the other hand,

∑

n6x/K

u(n)χ(0)
B (n) =

e−γτ

Γ(τ)
x

K log(x/K)

∏

p6x/K

(
1 +

u(p)χ(0)
B (p)
p

)

+ o

(
x

log x
m(x)

)
,

(5.17)

while, for δ 6 U(x), we have log(x/K) = (1 + o(1)) log x as x →∞.
Now,

∏

p6x/K

(
1 +

u(p)χ(0)
B (p)
p

)
= (1 + o(1))

∏

p6x

(
1 +

F (p)
p

) ∏

p|KRδ

(
1 +

F (p)
p

)−1

.

(5.18)
Thus, in light of estimates (5.13) through (5.18), (5.9) becomes

SK,R(x) =
e−γτ

Γ(τ)
H(K, R)m(x) + o

(
x

log x
m(x)

)
, (5.19)
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where

H(K, R) =
∑

(δ,K)=1

V (δ)
Kϕ(Rδ)

∏

p|RKδ

(
1 +

F (p)
p

)−1

=
∏

p|RK

(
1 +

F (p)
p

)−1 ∑

δ2|R

µ(δ2)
δ2

1
Kϕ(R)

(5.20)

×
∑

(δ2,RK)=1

µ(δ2)
ϕ(δ2

2)

∏

p|δ2

(
1 +

F (p)
p

)−1

.

Since
∑

δ2|R

µ(δ2)
δ2

=
ϕ(R)

R
and

∑

(δ2,RK)=1

µ(δ2)
ϕ(δ2

2)
·
∏

p|δ2

(
1 +

F (p)
p

)−1

=
∏

p-RK

(
1− 1

p(p− 1)
· 1

1 + F (p)
p

)
,

it follows that (5.20) can be written as

H(K, R) =
1

KR

∏

p|RK

(
1 +

F (p)
p

)−1

·
∏

p-RK

(
1− 1

p(p− 1)
· 1

1 + F (p)
p

)
. (5.21)

Note that here we used the fact that

∑

δ6Ux

V (δ)
Kϕ(Rδ)

∏

p|RKδ

(
1 +

F (p)
p

)−1

→ H(K, R) as Ux →∞

Since it is clear from (5.21) that

0 <
∑

K,R∈F

∗
H(K, R) < +∞,

where the star in the sum is there to indicate that we have rightfully ignored
those pairs K, R for which either R ∈ R1 or K, R is a non admissible pair. The
statement of Theorem 2.2 then follows from relation (5.19).
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