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BOHR’S STRIPS FOR DIRICHLET SERIES IN BANACH SPACES
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Dedicated to the memory of Susanne Dierolf

Abstract: Each Dirichlet series D =
∑∞

n=1 an
1

ns , with variable s ∈ C and coefficients an ∈ C,
has a so called Bohr strip, the largest strip in C on which D converges absolutely but not
uniformly. The classical Bohr-Bohnenblust-Hille theorem states that the width of the largest
possible Bohr strip equals 1/2. Recently, this deep work of Bohr, Bohnenblust and Hille from
the beginning of the last century was revisited by various authors. New methods from different
fields of modern analysis (e.g. probability theory, number theory, functional and Fourier analysis)
allow to improve the Bohr-Bohnenblust-Hille cycle of ideas, and to extend it to new settings, in
particular to Dirichlet series which coefficients in Banach spaces. We survey on various aspects
of these new developments.
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1. The Bohr-Bohnenblust-Hille Theorem

One of the most famous functions ever is the Riemann zeta function given by

ζ(s) =
∞∑

n=1

1
ns

=
∞∏

j=1

(1− p−s
j )−1

where Re s > 1 and 2 = p1 < p2 < . . . < pj < . . . is the sequence of prime
numbers. To study this function it is natural, as H. Bohr did in 1913, to consider
a general setting including it: Dirichlet series. A Dirichlet series is a series of the
form

∑∞
n=1 an

1
ns with coefficients an in the complex plane C and s a complex

variable.
Dirichlet series can be seen as a particular case of a more general object: gener-

alized Dirichlet series, that is series of the form
∑∞

n=1 ane−λns, where the an’s are
complex numbers, the λn’s are positive numbers and s is a complex variable. The
theory of ordinary Dirichlet series and of power series in one variable can be seen as
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subtheories of the theory of general Dirichlet series. Clearly, letting λn = log n we
have ordinary Dirichlet series, but λn = n and the change of variable e−s = z leads
to power series

∑∞
n=1 anzn. It is well known that the maximal sets of convergence

of power series are disks in C and that there is essentially no difference between
convergence, uniform convergence and absolute convergence of power series.
The situation is rather different when we go to Dirichlet series. In this case we
have that if a Dirichlet series D =

∑∞
n=1 an

1
ns converges (absolutely) for some s0

then it converges (absolutely) for all s with Re s > Re s0, hence the maximal sets
of convergence are half–planes in C. This gives, for each Dirichlet series D, three
abscissas σc(D), σu(D) and σa(D) that define the biggest half-planes in which the
series converges, converges uniformly or converges absolutely. The limit function
f that a Dirichlet series D =

∑∞
n=1 an

1
ns defines on the half-plane Re s > σc(D)

turns out to be holomorphic, and Bohr’s aim was to determine the absolute and
the uniform convergence abscissas σa(D) and σu(D) in terms of analytic prop-
erties of f . In case of the uniform convergence abscissa Bohr succeeded, solving
the so called uniform convergence problem. He proved that σu(D) defines exactly
the biggest half-plane such that f is bounded on each strictly smaller half-plane
(in other terms, the uniform convergence abscissa coincides with the abscissa of
boundedness).

The absolute convergence problem leads to the question of determining the
value of

S := sup{σa(D)− σu(D)} ,

where the supremum is taken with respect to all possible Dirichlet series D =∑∞
n=1 an

1
ns . The letter S stands for strip. Clearly, S is the width of the largest

possible strip in C on which any given Dirichlet series
∑∞

n=1 an
1

ns converges uni-
formly but not absolutely (note that Bohr denotes the number S by T ).

The deep idea that Bohr had was to consider a simple one to one correspon-
dence between Dirichlet series and formal power series in infinitely many variables.
The correspondence is done in the following way: let p be the sequence of prime
numbers 2 = p1 < p2 < . . . < pk < . . .. By the fundamental theorem of arithmetic
any integer n > 1 has a unique decomposition

n = pα := pα1
1 · · · pαk

k p0
k+1 · · · ,

where α is a multi-index in N0 = N ∪ {0} (i.e. a sequence in N0 that eventually
becomes zero; the set of multi-indices is denoted by N(N)

0 ). In an ingenious fash-
ion Bohr associated to each Dirichlet series

∑∞
n=1 an

1
ns a formal power series in

infinitely many variables:
∞∑

n=1

an
1
ns

!
∑

α∈N(N)
0

cαzα, where an = cα whenever n = pα .

In that moment infinite dimensional holomorphy was giving its first steps and
it was not even clear what the proper definition for a holomorphic function in
infinitely many variables was. Hilbert suggested using monomial power series
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[29, page 64] and this is in fact the approach that Bohr took. Nevertheless, it
became clear later that this was not the right approach. If we denote by D the
open unit disk of C, it is well known that every holomorphic function f : Dn → C
in n complex variables has a monomial series expansion; more precisely, for every
f in H(Dn) we have f(z) =

∑
α∈Nn

0

∂αf(0)
α! zα for all z ∈ Dn. From this fact it

is easily deduced that for every C-valued holomorphic function f defined on the
open unit ball B`∞ of `∞ (by definition a complex-Fréchet differentiable function
f on B`∞ with values in C) there is a unique family (cα(f))

α∈N(N)
0

of scalars such
that for all finite sequences z in B`∞ we have

f(z) =
∑

α∈N(N)
0

cα(f)zα . (1.1)

This power series is called the monomial series expansion of f , and for every n
and every multi-index α ∈ Nn

0 we have

cα(f) =
∂αf(0)

α!
.

Now a question arises: For which other than finite sequences in B`∞ does this series
converge (i.e. converge absolutely as a net) for every holomorphic f on B`∞? In
order to deal with this question the following number is defined:

M = sup
{

1 6 p 6 ∞|
∑

α∈N(N)
0

|cα(f)zα| < ∞,

for all f ∈ H∞(B`∞) and all z ∈ `p ∩B`∞

}
,

where H∞(B`∞) stands for the Banach algebra of all bounded holomorphic func-
tions on the open unit ball of `∞ endowed with the supremum norm. Again we
are using a different notation than that used by Bohr and what is commonly used;
our M is what Bohr called S. The reason is to provide with a coherent notation
for all the aspects of the theory. Then M is a sort of measure for the set

domH∞(B`∞) =
⋂

f∈H∞(B`∞ )

{
z ∈ B`∞

∣∣ ∑

α∈N(N)
0

|cα(f)zα| < ∞
}

,

the so called set of monomial convergence of H∞(B`∞). Showing the connection
between Dirichlet series and power series in infinitely many variables Bohr proved
in [5, Satz IX] that

S =
1
M

(1.2)

and M > 2, and hence as a consequence that S 6 1
2 . But he was not able to

decide whether M = 2 or even∞. It was clear to him that a better understanding
of infinite dimensional holomorphy was needed: ‘um dies Problem zu erledigen, ist
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ein tieferes Eindringen in die Theorie der Potenzreihen unendlich vieler Variabeln
nötig, als es mir in §3 gelungen ist’ 1[5, page 446]. He then started to study power
series, beginning with power series in one variable. Working in this direction he
obtained his celebrated power series theorem, [7, Theorem]:

Theorem 1.1 (Bohr’s power series theorem). If
∣∣ ∑∞

k=0 ckzk
∣∣ 6 1 whenever

|z| 6 1, then
∑∞

k=0 |ckzk| 6 1 when z ∈ C and |z| 6 1/3. That is

sup
z∈ 1

3D

∞∑

k=0

|ckzk| 6 sup
z∈D

∣∣
∞∑

k=0

ckzk
∣∣.

Furthermore, the number 1
3 is the best possible.

On the other hand, an example given by Toeplitz in [39, page 622] showed
that M 6 4 and hence S > 1

4 . The final solution to this problem was given in an
ingenious article by Bohnenblust and Hille in 1931 [3, Section 5].

Theorem 1.2 (Bohr-Bohnenblust-Hille theorem).

S =
1
2
.

Bohr brought power series in infinitely many variables into complex analysis in
order to study Dirichlet series. Then his ideas were more or less forgotten, but it is
interesting to remark that a problem in infinite dimensional holomorphy renewed
interest in Bohr’s work: in the late seventies Boland and Dineen in [8, Corollary 12]
showed that the monomials on a nice nuclear space E form an absolute basis for
the space of holomorphic functions H(E), and they used an extension of Bohr’s
power series Theorem to several variables by Dineen and Timoney to answer the
question if the existence of an absolute monomial basis implies nuclearity.

2. Bohr’s strips, vector-valued

Our aim in this paper is to deal with vector valued Dirichlet series, that is, series∑∞
n=1 an

1
ns with coefficients an in a complex Banach space X. Dirichlet series,

power series and Fourier series are closely related via generalized Dirichlet series.
Since the mid 1970’s there is a fruitful study of vector valued Fourier analysis
begun by Kwapień, Bourgain, Burkholder, Pisier . . . This study gave birth, for
example, to the theory of type and cotype that is now in the core of modern
Banach space theory. Due to this symmetry we feel that it is worthy to perform
a study on vector valued Dirichlet series.

Again, like in the scalar valued case, Dirichlet series converge on half-planes,
hence for a given Dirichlet series D =

∑∞
n=1 an

1
ns with coefficients an in a complex
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Banach space X the following abscissas of convergence are defined

σc(D) := inf

{
σ

∣∣
∞∑

n=1

an
1
ns

is convergent on [Re s > σ]

}

σu(D) := inf

{
σ

∣∣
∞∑

n=1

an
1
ns

is uniformly convergent on [Re s > σ]

}

σa(D) := inf

{
σ

∣∣
∞∑

n=1

an
1
ns

is absolutely convergent on [Re s > σ]

}
,

where [Re s > σ] = {s ∈ C|Re s > σ} and σ ∈ R. When the Dirichlet series is
nowhere convergent these three abscissas will be +∞. Clearly, we have

σc(D) 6 σu(D) 6 σa(D).

As in the scalar case for all three abscissas the following Hadamard type formulas
can be proved. The formulas for σc(D) and σa(D) in the scalar case were proved
by Bohr in his PhD. thesis [4, Theorem VII and Theorem VIII, page 16]. In [27]
analog formulas for σc(D) (Theorem 7, page 6) and σa(D) (Theorem 8, page 8)
are given for generalized Dirichlet series and are presented as basic facts.

Proposition 2.1. Let D =
∑∞

n=1 an
1

ns be a Dirichlet series with coefficients in
a Banach space X such that

∑∞
n=1 an is divergent. Then

σc(D) = lim sup
N→∞

log
(∥∥ ∑N

n=1 an

∥∥
X

)

log N

σa(D) = lim sup
N→∞

log
(∑N

n=1 ‖an‖X

)

log N

σu(D) = lim sup
N→∞

log
(
supt∈R ‖

∑N
n=1 annit‖X

)

log N

As Bohr did in the scalar case, for each Dirichlet series D =
∑∞

n=1 an
1

ns with
coefficients in a Banach space X the uniform convergence problem is consi-
dered: To determine the uniform convergence abscissa σu(D) in terms of analytic
properties of the limit function

f : [Re s > σc(D)] → X

of D. The answer turns out to be the same as in the scalar case, in particular
it is independent of the specific geometry of the given Banach space X (see [17,
Lemma 6]).

Theorem 2.2. Let D =
∑∞

n=1 an
1

ns be a Dirichlet series with coefficients in
a Banach space X. Then the abscissa σu(D) of uniform convergence equals the
abscissa of boundedness, i.e.

σu(D) = inf σ ,
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where the infimum is taken over all σc(D) < σ ∈ R such that the holomorphic
function defined by D on the half-plane [Re s > σc(D)] is bounded on the smaller
half-plane [Re s > σ].

The proof is involved and needs a careful inspection of the arguments given for
the scalar case. The crucial step again is that by Bohr’s vision – now in the vector-
valued case – each Dirichlet series

∑∞
n=1 an

1
ns with coefficients in X corresponds

to a power series
∑

α∈N(N)
0

cαzα in infinitely many variables with coefficients in X,
and vice versa:

∞∑
n=1

an
1
ns

!
∑

α∈N(N)
0

cαzα with an = cα for n = pα .

The following lemma is less vage – in the scalar case sometimes quoted as Bohr’s
trick (see [36, page 44]); the more general vector valued case stated here is a simple
consequence of the Hahn-Banach Theorem.

Lemma 2.3. Let X be a Banach space and a1, . . . , aN ∈ X. Then

sup
t∈R

∥∥∥
N∑

n=1

annit
∥∥∥

X
= sup

x∈DN

∥∥∥
∑

α∈ΛN

apαxα
∥∥∥

X
,

where ΛN = {α ∈ N(N)
0 : 1 6 pα 6 N}.

This ‘trick’ has many nice implications in the theory of Dirichlet series. For
example it provides a very easy way of proving the following inequality.

Proposition 2.4. Let X be a Banach space, a1, . . . , aN ∈ X and two real numbers
σ0 6 σ, then

sup
Re s>σ

∥∥∥
N∑

n=1

an
1
ns

∥∥∥
X

6 sup
t∈R

∥∥∥
N∑

n=1

an
1

nσ0+it

∥∥∥
X

. (2.1)

Which in turn, together with Theorem 2.2, allows to prove that the study of
the uniform convergence of a Dirichlet series on a half-plane is equivalent to the
study of uniform convergence of such a Dirichlet series on a vertical line.

Corollary 2.5. Let
∑∞

n=1 an
1

ns be a Dirichlet series with values in a Banach
space X, such that the series converges uniformly on a vertical line of abscissa σ0.
Then the Dirichlet series converges uniformly on the half-plane [Re s > r] for all
r > σ0.

Given a complex Banach space X, we say that a mapping f : B`∞ → X is
holomorphic if it is complex-Fréchet differentiable. We will denote by H∞(B`∞ , X)
the Banach space of all bounded holomorphic mappings from the open unit ball
of `∞ into X. Next theorem is an important relative of Theorem 2.2 (see [17,
Corollary 2]) in terms of infinite dimensional holomorphy. More precisely, in terms
of monomial series representations of holomorphic mappings.
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Theorem 2.6. For each Dirichlet series D =
∑∞

n=1 an
1

ns in a Banach space X
we have

σu(D) = inf σ ,

where the infimum is taken over all σ ∈ R such that there is some f ∈ H∞(B`∞ , X)
which has

∑
α

apα

pσα zα as its monomial series representation.

The proof of the above theorem is obtained by using Theorem 2.2 and Bohr’s
local trick (Lemma 2.3) through the following lemma.

Lemma 2.7. Let D be a family of scalar Dirichlet series
∑∞

n=1 aj
n

1
ns , j ∈ J .

If σ0 ∈ R satisfies that

sup
j∈J

sup
N∈N

sup
t∈R

∣∣∣∣∣
N∑

n=1

aj
n

1
nσ0+it

∣∣∣∣∣ < ∞ ,

then
{ ∑

α∈N(N)
0

aj
pα

pσα zα | j ∈ J
}

are the monomial expansions of a bounded subset
of H∞(B`∞) for all σ > σ0.

Let us now consider the absolute convergence problem: To determine the
maximal width of the strip in C on which a Dirichlet series D converges uniformly
but not absolutely in X. More generally: Given a non-zero bounded operator
v : X → Y between Banach spaces, determine the maximal width of the strip in C
on which D converges uniformly in X but its image vD =

∑∞
n=1 v(an) 1

ns does not
converge absolutely in Y .

Definition 2.8. Let v : X → Y be a non-zero bounded operator between Banach
spaces. Then

S(v) := sup{σa(vD)− σu(D)} ,

where the supremum is taken over all Dirichlet series D =
∑∞

n=1 an
1

ns in X; if
v = idX , then we write S(X) for S(idX).

The operator point of view may at first glance seem artificial, but we will try to
convince the reader later that it is quite meaningful (see the comment given before
Theorem 5.6). We always have

1
2

6 S(v) 6 1,

where the lower estimate follows from the scalar case. A question we are concerned
with is to determine S(v) for concrete bounded operators v or classes of bounded
operators between Banach spaces.

In view of Bohr’s vision the following definition turns out to be a sort of the
counterpart of S(v) in terms of infinite dimensional holomorphy.

Definition 2.9. Let v : X → Y be a non-zero bounded operator between Banach
spaces. Then

M(v) := sup p ,
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where the supremum is taken over all 1 6 p 6 ∞ such that
∑

α∈N(N)
0

||v(cα(f))zα||Y < ∞ ,

for all f ∈ H∞(B`∞ , X) and all z ∈ `p ∩B`∞ .

Following Bohr’s techniques from the scalar case we obtain an operator ver-
sion of (1.2), namely that M(v) is the inverse of S(v). The proof follows closely
the proof of [17, Theorem 3] and uses as a particular feature the prime number
Theorem.

Theorem 2.10. For each non-zero bounded operator v : X → Y between Banach
spaces we have

S(v) =
1

M(v)
.

Then, estimates for M(v) always mean estimates for S(v) and vice versa; in
particular we have

1 6 M(v) 6 2 .

For each Banach space X the function space

H∞(X)

by definition consists of all bounded and holomorphic functions f : [Re s > 0] → X
which on some half plane [Re s > σ] with σ > 0 have a pointwise representation
as the limit function of a Dirichlet series

∑∞
n=1 an

1
ns . Following some of the

ideas in [6] that lead to the proof of Theorem 2.2, it is possible to see that in
this definition we can actually take σ = 0. Theorem 2.2 leads to the following
reformulation of the definition of S(v).

Theorem 2.11. Let v : X −→ Y be a non-zero bounded operator between Banach
spaces. Then for each f =

∑∞
n=1 an

1
ns ∈ H∞(X) and each ε > 0 we have

∞∑
n=1

‖v(an)‖Y
1

nS(v)+ε
< ∞ .

Moreover S(v) is the best exponent with this property.

3. Bohr’s strips, the Banach space case

When we go to the vector-valued setting the geometry of the space happens
to have an important role to play through the notion of cotype. Let us recall
the defintition, details and properties can be found in [25, Chapter 11] or [40].
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Let 2 6 q < ∞, a Banach space X has cotype q if there exists a constant κ > 0
such that for every choice of finitely many vectors x1, . . . , xn ∈ X,

(
n∑

k=1

‖xk‖q

) 1
q

6 κ

(∫ 1

0

‖
n∑

k=1

rk(t)xk‖2dt

) 1
2

,

where rk stands for the k-th Rademacher function on [0, 1]. As usual we write

Cot(X) := inf{2 6 q 6 ∞|X has cotype q} .

The following result and its consequences form the main results from [17].

Theorem 3.1 ([17], Theorem 1). For each Banach space X we have

S(X) = 1− 1
Cot(X)

.

From Theorem 2.11 we immediately deduce the following first consequence.

Corollary 3.2. Let X be Banach space. Then for each
∑∞

n=1 an
1

ns ∈ H∞(X)
and each ε > 0 we have

∞∑
n=1

‖an‖ 1
n1− 1

Cot X +ε
< ∞ ,

and 1− 1
Cot X is the best exponent with this property.

For concrete X the theorem leads to concrete formulas. To see an example
recall that

Cot(`q) =

{
2 if 1 6 q 6 2
q if 2 6 q 6 ∞,

hence we have

Corollary 3.3 ([17], Corollary 3). For each 1 6 q 6 ∞

S(`q) =

{
1/2, if 1 6 q 6 2
1− 1/q, if 2 6 q 6 ∞.

Note that the preceding corollary implies that for every t ∈ [ 12 , 1] there is
a Banach space X for which t = S(X) . We also mention a result which reflects
the two extreme cases S(X) = 1 and S(X) = 1/2.

Corollary 3.4 ([17], Corollary 5). Let X be an infinite dimensional Banach
space, then

(1) S(X) = 1 if and only if X contains all Banach spaces `n
∞ uniformly.

(2) S(X) = 1/2 if and only if X has cotype 2 + ε for every ε > 0 .
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Finally we see that as a consequence of Theorem 2.10 all results quoted in this
section can be formulated in terms of M(X), i.e. in terms of infinite dimensional
holomorphy. In particular we have that

M(X) =
Cot(X)

Cot(X)− 1
,

and more concretely

M(`p) =

{
2 if 1 6 p 6 2

p
p−1 if 2 6 p .

4. Bohnenblust–Hille inequalities, vector-valued

The starting point for Bohnenblust and Hille was the following result of Littlewood
[33, Theorem 1].

Theorem 4.1. Let L : `∞× `∞ → C be continuous and bilinear; then for every n




n∑

i,j=1

|L(ei, ej)|4/3




3/4

6
√

2 sup
x,y∈B`∞

|L(x, y)|.

Moreover, the exponent 4/3 is optimal.

Bohnenblust and Hille needed an m-linear version of this result to solve the
absolute convergence problem. They got it in [3, Theorem I].

Theorem 4.2. For each fixed m ∈ N there exists a constant Cm > 0 such that for
every continuous m-linear function L : `∞×· · ·× `∞ → C the following inequality
holds for every n

(
n∑

i1,...,im=1

|L(ei1 , . . . , eim)| 2m
m+1

)m+1
2m

6 Cm sup
x1,...,xm∈B`∞

|L(x1, . . . , xm)|.
(4.1)

Moreover, the exponent 2m
m+1 is optimal.

From the original proof of Bohnenblust and Hille one gets Cm 6 m
m+1
2m 2

m−1
2 .

This result was overlooked for long time and re-discovered in the totally different
frame of tensor products by Kaijser [30, Corollary 1.6] using techniques developed
by Davie [11]. The new proof, using tensor product techniques, improves the
constant and shows that Cm 6 2

m−1
2 .

As a matter of fact, what Bohnenblust and Hille needed to solve the absolute
convergence problem was an inequality of this kind for power series; this leads to m-
homogeneous polynomials. A (continuous) m-homogeneous polynomial between
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Banach spaces is a mapping P : X → Y such that there exists a (continuous)
m-linear mapping L : X × · · · ×X → Y satisfying

P (x) = L(x, . . . , x). (4.2)

Unless otherwise stated, all polynomials and multilinear mappings will be assumed
to be continuous. Given an m-homogeneous polynomial P , there exists a unique
symmetric m-linear mapping L satisfying (4.2). There are many expressions de-
scribing L in terms of P , but the most usual one called the polarization formula
is the following (see [26, Corollary 1.7]):

L(x1, . . . , xm) =
1

2nn!

∑
εj=±1

ε1 . . . εmP (ε1x1 + · · ·+ εmxm) .

Given an m-linear mapping L : `∞×· · ·×`∞ → C, it can be represented by a matrix(
L(ei1 , . . . , eim)

)
i1,...,im=1,...,∞. On the other hand, the associated polynomial P

is a holomorphic mapping and has a monomial expansion like (1.1) in which all
coefficients cα(P ) with |α| = α1 + · · · + αk 6= m are zero. The coefficients of the
polynomial and those of the associated symmetric m-linear mapping are closely
related. Following [13, Section 2] (see also [16, Section 3] or [22, Lemma 5]) we
consider the following three index sets

M(m,n) = {1, . . . , n}m

J (m,n) = {i = (i1, . . . , im) ∈M(m,n) : i1 6 . . . 6 im}
Λ(m,n) = {α ∈ Nn

0 : |α| = m}.
In M(m,n) we define the following equivalence relation: i ∼ j if there is a per-
mutation π ∈ Πm such that ik = jπ(k) for all k = 1, . . . , m. Clearly, the
equivalence class [i] of a given index has at most |Πm| = m! elements; also
M(m, n) =

⋃
i∈J (m,n)[i]. On the other hand there is a one-to-one correspon-

dence between J (m,n) and Λ(m,n) defined in the following terms. If i ∈ J (m,n)
there is an associated multi-index αi given by αr = |{k : ik = r}| (i.e. α1 is the
number of 1’s in i, α2 is the number of 2’s, and so on . . . ). If α ∈ Λ(m, n) then we
define iα = (1, α1. . ., 1, 2, α2. . ., 2, . . . , n αn. . ., n) ∈ J (m,n). Note that card[iα] = m!/α!.
Now, if we denote ai1,...,im = L(ei1 , . . . , eim) we have

cα(P ) = card[iα] aiα . (4.3)

Indeed,
∑

α∈Λ(m,n)

cαzα =
∑

i∈M(m,n)

ai1,...,imzi1 · · · zim

=
∑

i∈J (m,n)

∑

j∈[i]

ajzj =
∑

i∈J (m,n)

card[i]aizi .

The key point to go from Theorem 4.2 to an inequality on m-homogeneous poly-
nomials is the well known polarization inequality (see e.g. [26, Proposition 1.8]).



176 Andreas Defant, Domingo García, Manuel Maestre, Pablo Sevilla-Peris

Proposition 4.3. For each Banach space X and each m ∈ N there exists a con-
stant c(X, m) such that, for every m-linear mapping L defined on X with associated
m-homogeneous polynomial P , the following holds

sup
x∈BX

|P (x)| 6 sup
x1,...,xm∈BX

|L(x1, . . . , xm)| 6 c(X, m) sup
x∈BX

|P (x)|. (4.4)

Moreover, c(X,m) 6 mm

m! for every Banach space X. The best constant c(X, m)
is called the ‘polarization constant’.

The following polynomial version of the Bohnenblust-Hille inequality is easily de-
duced from Theorem 4.2 using (4.3) and (4.4).

Theorem 4.4. For each m there exists a constant κm > 0 such that for every
continuous m-homogeneous polynomial P : `∞ → C we have


 ∑

|α|=m

|cα(P )| 2m
m+1




m+1
2m

6 κm sup
x∈B`∞

|P (x)|. (4.5)

This is in fact a general situation: every time that we have an inequality like
(4.1) for m-linear mappings it is possible to obtain an inequality like (4.5) for
m-homogeneous polynomials. Furthermore [22, Lemma 5] shows that if the expo-
nent is optimal for m-linear mappings, then it is also optimal for m-homogeneous
polynomials.

The constant κm depends on the constant Cm in Theorem 4.2 and on the
polarization constant c(X, m). Then, clearly, a way to get better constants in
Theorem 4.4 is to find good constants in the other two inequalities. Bohnenblust
and Hille’s proof gives Cm 6 m

m+1
2m 2

m−1
2 , and their bound for κm is

κm 6 (m!)
m−1
2m m

m+1
2m 2

m−1
2

mm

m!
= 2

m−1
2

mm+ m+1
2m

(m!)
m+1
2m

.

As we already mentioned, the tensor proof of Kaijser gives a better bound for Cm.
This gives

κm 6 (m!)
m−1
2m 2

m−1
2

mm

m!
= 2

m−1
2

mm

(m!)
m+1
2m

.

This improvement comes from having a better bound for Cm; another way to
improve the bounds for κm is by finding better polarization constants. It is well
known (see [28]; see also [35, 41]) that c(`∞,m) 6 mm/2(m+1)(m+1)/2

2mm! . With this we
have a new improvement

κm 6 (m!)
m−1
2m 2

m−1
2

m
m
2 (m + 1)

m+1
2

2mm!
=

(√
2
)m−1 m

m
2 (m + 1)

m+1
2

2m(m!)
m+1
2m

.

The factor
√

2 comes from the constant in the Khintchine’s inequality (see [25,
Theorem 1.10] or [14, Section 8.5]) that plays a fundamental role in the proof
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of Theorem 4.2. Queffélec uses in [36, Theorem III-1] the Khintchine-type in-
equality for Steinhaus random variables due to Sawa [37, Theorem A]. He proves
Theorem 4.4 using the theory of p-Sidon sets and gets

κm 6
(

2√
π

)m−1
m

m
2 (m + 1)

m+1
2

2m(m!)
m+1
2m

.

This constant is better than the previous one since 2√
π

<
√

2.
A major breakthrough in this topic has been given by Defant, Frerick, Ortega-

Cerdà, Ounaïes and Seip in [15, Theorem 1]. Using a different approach they
show that the inequality in Theorem 4.4 is hypercontractive, that is, there exists
a universal constant κ > 0 such that

κm 6 κm.

Actually their result is the following theorem.

Theorem 4.5. Given an m-homogeneous polynomial P : CN −→ C defined as
P =

∑
|α|=m cαzα, then


 ∑

|α|=m

|cα|
2m

m+1




m+1
2m

6
(

1 +
1

m− 1

)m−1√
m(
√

2)m−1 sup
z∈DN

∣∣∣∣∣∣
∑

|α|=m

cαzα

∣∣∣∣∣∣
. (4.6)

Let us recall that a bounded operator between Banach spaces v : X → Y is
said to be (r, 1)-summing (see, e.g. [25, Chapter 10] or [40, § 11]) if there is a
constant C > 0 such that for any N and any choice x1, . . . , xN ∈ X we have

(
N∑

i=1

‖v(xi)‖r
Y

) 1
r

6 C sup
γ∈BX∗

N∑

i=1

|γ(xi)|

or, equivalently, such that for every N and every linear bounded operator L :
`N
∞ → X we have

(
N∑

i=1

‖v(L(ei))‖r
Y

) 1
r

6 C sup
z∈BN

`∞

‖L(z)‖X .

We compose now with m-linear mappings instead of linear bounded operators
and say that a bounded operator v : X → Y is called (ρ, 1)-summing of order m
if there is a constant Cm > 0 such that for every N and every m-linear mapping
L : `N

∞ × · · · × `N
∞ → X we have

(
N∑

i1,...,im=1

‖v(L(ei1 , . . . , eim))‖ρ
Y

)1/ρ

6 Cm sup
z1,...,zm∈BN

`∞

‖L(z1, . . . , zm)‖X .

(4.7)
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The m-th Bohnenblust-Hille index of v, BHm(v), is defined to be the infimum
over all ρ so that v is (ρ, 1)-summing of order m.

With this notation Theorem 4.2 says that idC is ( 2m
m+1 , 1)-summing of order m

and BHm(idC) = 2m
m+1 .

Again, using polarization, it is easy to prove that if a bounded operator v is
(ρ, 1)-summing of order m, then there exists a constant κm > 0 such that for every
m-homogeneous polynomial P : `N

∞ → X with coefficients cα the following holds:

 ∑

α∈Λ(m,N)

‖v(cα)‖ρ
Y




1/ρ

6 κm sup
z∈BN

`∞

‖P (z)‖X , (4.8)

Even more, by [22, Lemma 5] if the exponent in (4.7) is optimal, then so also is
the exponent in (4.8).

Dealing with the convergence problem for vector-valued Dirichlet series requires
inequalities like (4.8) and this leads to the problem of determining for which ρ an
(r, 1)-summing bounded operator is (ρ, 1)-summing of order m (or, in other words,
to compute BHm(v); see Theorem 5.4). It is not difficult to prove that if a Banach
space has cotype q, then idX is (q, 1)-summing (a deep result by Talagrand [38]
shows that in fact these two things are equivalent for q > 2). The following result
from [9, Theorem 3.2] that is used in the proof of [17, Lemma 4] shows that idX

is also (q, 1)-summing of order m for every m.

Theorem 4.6. For every Banach space X wiht cotype q and every m there exists
a constant C > 0 such that for every continuous m-linear mapping L : `∞ × · · · ×
`∞ → X the following holds:




∞∑

i1,...,im=1

‖L(ei1 , . . . , eim)‖q




1/q

6 C sup
z1,...,zm∈B`∞

‖L(z1, . . . , zm)‖.

Moreover, the exponent q is optimal.

We see that the exponent in (4.7) does not change for the identity of a cotype
q space when we move from order 1 to order m, however this is not the case in
general. The celebrated Bennett-Carl inequalities, obtained independently in [2]
and [10, Theorems 1 and 2] show that the optimal value of r for the inclusion
`p ↪→ `q to be (r, 1)-summing, is given by the formula 1

r = 1
2 + 1

p −max(1
q , 1

2 ). It is
natural to ask the same question for order m; in this case we are forced to change
the exponent.

Theorem 4.7 ([22], Theorem 1). Given m ∈ N and 1 6 p 6 q 6 ∞, define

ρ =

{
2m

m+2( 1
p−max{ 1

q , 1
2})

if p 6 2

p if p > 2
.

Then there exists a constant C > 0 such that for every continuous m-linear
mapping L : `∞ × · · · × `∞ −→ `p the following holds:
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


∞∑

i1,...,im=1

‖L(ei1 , . . . , eim
)‖ρ

q




1
ρ

6 C sup
z1,...,zm∈B`∞

‖L(z1, . . . , zm)‖p.

Moreover, ρ is the best possible.

A famous result by Kwapień shows that every bounded, linear operator v :
`1 → `q is (r, 1)-summing for 1

r = 1−| 1p − 1
2 | [32, (1.1)] (see also [25, p. 208]). The

corresponding result for order m is taken from [22, Corollary 9] and [19, Theorem
6.1], and gives some sort of Grothendiek-like result.

Theorem 4.8. For m and 1 6 q < ∞ define

ρ =





2m
m+2− 2

q

, 1 6 q 6 2

2m
2m
q +1

, 2 6 q 6 2m

m− 1
2,

2m

m− 1
6 q 6 ∞

.

Then there is a constant C > 0 (that depends only on m and q) such that for
every bounded operator v : `1 → `q and every continuous m-linear mapping L :
`∞ × · · · × `∞ → `1 we have




∞∑

i1,...,im=1

‖v(L(ei1 , . . . , eim))‖ρ
q




ρ

6 C sup
z1,...,zm∈B`∞

‖L(z1, . . . , zm)‖1.

The inequalities in the preceding three results are included as particular cases
of the following ([19, Theorem 5.1 and Corollary 5.2]), once one knows that the
identity of a cotype q space is (q, 1)-summing (for Theorem 4.6), the Bennett-Carl
inequalities and that `q has cotype max(2, q) (for Theorem 4.7) and Kwapień’s
result and the cotype of `p spaces for Theorem 4.8.

Theorem 4.9. Let m ∈ N, Y a Banach space with cotype q and v : X → Y an
(r, 1)-summing bounded operator (with 1 6 r 6 q). Define

ρ =
qrm

q + (m− 1)r
.

Then there is a constant Cm > 0 such that for every continuous m-linear mapping
L : `∞ × · · · × `∞ → X the following holds:




∞∑

i1,...,im=1

‖v(
L(ei1 , . . . , eim)

)‖ρ
Y




1/ρ

6 Cm sup
z1,...,zm∈B`∞

‖L(z1, . . . , zm)‖X .

Problem 1. Are the exponents in Theorem 4.8 and Theorem 4.9 optimal? This
would require to find examples of concrete m-linear mappings. By [22, Lemma 5],
this would also imply that the exponent is optimal for polynomial inequalities.
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Polynomial versions of these results, like Theorem 4.4, come as an immediate
consequence of them using the relation between the coefficients of the polynomials
and the associated m-linear mappings shown in (4.3) and the polarization inequal-
ity (4.4). This was proved in [22, Lemma 5], where the non-trivial part is to show
that if the exponent is optimal in the m-linear case, then it is also optimal for the
polynomial case.

Again, like in the scalar case, finding good constants in the inequalities becomes
an important issue. If ρ is the exponent in the inequalities, κm denotes the constant
in the polynomial inequality and Cm the constant in the m-linear case, then we
have in general that κm 6 (m!)1−1/rc(X,m)Cm. In certain cases we have that the
polynomial inequality is, like in the scalar case, hypercontractive [18, Theorem 4.3].

Theorem 4.10. Let Y be a q-concave Banach lattice, with 2 6 q < ∞, and
v : X → Y an (r, 1)-summing bounded operator with 1 6 r 6 q. Define

ρ :=
qrm

q + (m− 1)r
.

Then there is a constant κ > 0 such that for every m-homogeneous polynomial
P : `N

∞ → X the following holds

( ∑

α∈Λ(m,N)

‖v(cα)‖ρ
Y

)1/ρ

6 κm sup
z∈B`∞

‖P (z)‖X .

5. Bohr’s strips for polynomials, vector-valued

Bohr proved in [6, Satz XII] that if a Dirichlet series only ranges on the prime num-
bers, then the abscissas of uniform and absolute convergence coincide
(i.e. σu = σa whenever the series is of the form

∑
p prime ap

1
ps ). This was the

starting point of Bohnenblust and Hille that went on this idea, considering Dirich-
let series that range on natural numbers whose decomposition in prime numbers
has only a prefixed number of primes. More precisely, if n = pα1

1 · · · pαk

k is the de-
composition in prime factors, we write Ω(n) = α1 + · · ·+αk; note that Ω(n) = |α|
if n = pα. We now consider Dirichlet series of the form

∑
Ω(n)=m an

1
ns . We

will call such a Dirichlet series an m-homogeneous Dirichlet series. Then what
Bohnenblust and Hille did was to compute the maximal width of the strips when
only m-homogeneous Dirichlet series are considered. Although not explicitly they
consider for each fixed m

Sm := sup{σa(D)− σu(D)} ,

where the supremum is taken over all m-homogeneous Dirichlet series
D =

∑
Ω(n)=m an

1
ns , and show that

Sm =
m− 1
2m

.
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This immediately implies 1
2 6 S and completes the proof of the Bohr–Bohnenblust–

Hille theorem.

Definition 5.1. Let v : X → Y be a non-zero bounded operator between Banach
spaces and m ∈ N. Then

Sm(v) := inf{σa(vD)− σu(D)} ,

where the infimum is taken over all m-homogeneous Dirichlet series
D =

∑
Ω(n)=m an

1
ns in X and vD denotes the m-homogeneous Dirichlet series∑

Ω(n)=m v(an) 1
ns in Y .

Obviously, for each m we have Sm(v) 6 S(v).

Problem 2. Prove or disprove that S(v) = supm Sm(v).

Definition 5.2. Let v : X → Y be a non-zero bounded operator between Banach
spaces and m ∈ N. Then

Mm(v) := sup p ,

where the supremum is taken over all 1 6 p 6 ∞ such that
∑

|α|=m

||v(cα(P ))zα||Y < ∞ ,

for all P ∈ P(m`∞, X) and all z ∈ `p.

For each m we have M(v) 6 Mm(v). Toeplitz explicitly considered these Mm

(although he used An) and proved that M2 6 4 (see [39, page 420]).

Problem 3. Prove or disprove that M(v) = infm Mm(v).

The following homogeneous analog of Theorem 2.10 was obtained in [24, The-
orem 4.1] by reproducing the techniques of Bohr.

Theorem 5.3. For each non-zero bounded operator v : X → Y between Banach
spaces and each m we have

Sm(v) =
1

Mm(v)
.

In view of Theorem 5.3 and as it happens in the scalar case, in order to get
estimates for Sm(v) we will need Bohnenblust-Hille type inequalities like that
in Theorem 4.2. Usually the exponent in the inequality gives a lower bound for
Mm(v) (hence an upper bound for Sm(v)) whereas the upper bounds for Mm(v) are
obtained by the fact that the exponent is optimal. This leads to the Bohnenblust-
Hille index. We recall that given 1 6 p 6 ∞, the number p′ stands for the
conjugate of p i.e. 1

p + 1
p′ = 1.
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Theorem 5.4 ([23], Proposition 6.1). For each non-zero bounded operator
v : X → Y between Banach spaces and each m we have

1
BH1(v)′

= S1(v) 6 Sm(v) 6 1
BHm(v)′

.

It remains an interesting open problem whether we in fact have equality in the
second inequality.

Problem 4. Prove or disprove that Sm(v) =
1

BHm(v)′
for all m > 1.

The following counterpart of Theorem 3.1 is shown in [17, page 554].

Theorem 5.5.

Sm(X) =

{
m−1
2m , if dim X < ∞

1− 1
Cot(X) , if dim X = ∞.

The previous result can be viewed as a computation of Sm(v) for v = idX ,
and shows in particular that in infinite dimensions Bohr’s strips do not distin-
guish between arbitrary Dirichlet series and m-homogeneous Dirichlet polynomials.
A careful study of this phenomenon for `p-spaces motivates our operator point of
view. The next result from [23, Theorem 1.1] shows that if we look at inclusions
between different `p spaces, then we in fact “find the polynomials back”.

Theorem 5.6. For each m and 1 6 p 6 q 6 ∞

Sm(id : `p ↪→ `q) =





m− 2(1/p−max{1/q, 1/2})
2m

, if 1 6 p 6 2

1− 1
p
, if 2 6 p.

Moreover, for every 0 6 σ 6 Sm(id : `p ↪→ `q) there exists an m-homogeneous
Dirichlet D series in `p for which σ

`q
a (D) − σ

`p
u (D) = σ, where σ

`p
u (D) is the

abscissa of uniform convergence of D in `p and σ
`q
a (D) is the abscissa of absolute

convergence of D now considered as a Dirichlet series with coefficients in `q.

Again, since Sm(v) 6 S(v) we see immediately that

Corollary 5.7. For 1 6 p 6 q 6 ∞

S(id : `p ↪→ `q) =

{
1/2, if 1 6 p 6 2
1− 1/p, if 2 6 p 6 ∞.

Getting results for ‘any’ bounded operator is of course much more complicated
and can only be done in certain special circumstances. In [19, Theorem 6.1] and
[22, Corollary 9] we find the following analog to a famous result of Kwapień [32,
(1.1)] (see also [25, page 208]).



Bohr’s strips for Dirichlet series in Banach spaces 183

Theorem 5.8. Let v : `1 −→ `p be a non-zero bounded operator with 1 6 p < ∞
and m ∈ N. Then

Sm(v) 6





m−2(1− 1
p )

2m , if 1 6 p 6 2
2m(1− 1

p )−1

2m , if 2 6 p 6 2m

m− 1
1
2 , if

2m

m− 1
6 p 6 ∞.

Problem 5. Obtain lower bounds in Theorem 5.8. This would imply finding good
examples.

We trivially have

Corollary 5.9. For each v : `1 −→ `p a non-zero bounded operator with
1 6 p < ∞

S(v) =
1
2

As has already been remarked, we have 1
2 6 S(v). The fact that S(v) 6 1

2
follows from S(v) 6 S(id`1) = 1

2 (use that v maps absolutely convergent series
into absolutely convergent ones and Corollary 3.3).

6. Bohr’s strips, graduation of the vector-valued case

Maurizi and Queffélec [34, Theorem 2.4] observed that the maximal width S of
Bohr’s strip equals the infimum over all σ > 0 for which there exists a constant
Cσ > 1 such that for each choice of a1, . . . , aN ∈ C we have

N∑
n=1

|an| 6 Cσ Nσ sup
t∈R

∣∣∣∣∣
N∑

n=1

ann−it

∣∣∣∣∣ .

This motivates the following definition.

Definition 6.1. Let v : X → Y be a non-zero bounded operator. Given a natural
number N , the N -th Queffélec number QN (v) of v is the best constant C > 1 such
that for all choices of a1, . . . , aN ∈ X

N∑
n=1

‖v(an)‖Y 6 C sup
t∈R

∥∥∥∥∥
N∑

n=1

ann−it

∥∥∥∥∥
X

.

We abbreviate QN (X) = QN (idX) and QN = QN (C).

In these terms the above characterization of Maurizi and Queffélec has
a straightforward extension to the vector-valued case given in [20] which shows
that the Queffélec numbers QN (v) in a sense graduate Bohr’s strips.
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Proposition 6.2. Let v : X → Y be a non-zero bounded operator. Then

S(v) = inf{σ > 0 | there exists Cσ such that QN (v) 6 CσNσ for all N}.

If this result is combined with the Hadamard type formulas for the abscissas
of uniform and absolute convergence given in Proposition 2.1, then we obtain as
a corollary the following formula from [20] which once again reflects the fact that
the Queffélec numbers QN graduate S(v).

Corollary 6.3.

S(v) = lim sup
N→∞

log QN (v)
log N

.

In the scalar case the following theorem gives the asymptotically correct order
of QN , and it marks the endpoint of a long development started by Queffélec [36]
in the mid nineties, continued by Queffélec and Konyagin [31] in 2002 and by de
la Bretéche [12] in 2008. The final result was proved in 2009 by Defant, Frerick,
Ortega-Cerdà, Ounaïes and Seip [15, Theorem 3]; its proof uses the hypercontrac-
tivity of the Bohnenblust-Hille inequality.

Theorem 6.4. For the N -th Queffélec number we have

QN =
√

N

e

(
1√
2
+o(1)

)√
log N log log N

.

Let us indicate that results of this type have important consequences on Bohr’s
strips themselves. In view of the fact that for each Dirichlet series

∑∞
n=1 an

1
ns the

abscissa σu(D) of uniform convergence equals the abscissa of boundedness (i.e. the
infimum of those σ such that the analytic function represented by the Dirichlet
series is bounded in [Re s > σ]). The Bohr-Bohnenblust-Hille Theorem shows that
the Dirichlet series defining a function f ∈ H∞(C) converges absolutely on the
vertical line [Re s = 1/2 + ε] for every ε > 0, and that the number 1/2 here is
optimal. A deep result of Balasubramanian, Calado and Queffélec [1, Theorem 1.1]
shows that such a Dirichlet series even converges absolutely on the vertical line
[Re s = 1/2]. But the preceding theorem allows to say even more; it adds a level of
precision that enables us to extract more precise information about the absolute
values |an| than what is obtained from the solution of Bohr’s absolute convergence
problem.

Corollary 6.5 ([15], Corollary 2). The supremum of the set of real numbers c
such that for every Dirichlet series

∑∞
n=1 an

1
ns in H∞(C)

∞∑
n=1

|an| ec
√

log n log log n 1
n

1
2

< ∞ ,

equals 1/
√

2.
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What about the asymptotics of Queffélec number in the vector-valued case?
Note first that we may deduce from the preceding theorem that for each non-zero
bounded operator v : X → Y we have

√
N

e

(
1√
2
+o(1)

)√
log N log log N

6 QN (v) 6 N , (6.1)

where the left side is attained for the case v = idC and the right side for v = id`∞ .
The following result from [20] (see also [21, Theorem 6.6]) gives the asymptotic

growth of QN (X). It is a counterpart of Theorem 6.4, and shows that we have to
carefully distinguish between the finite dimensional case and infinite dimensional
case. The notation aN ≺ bN means that there exists a universal constant B > 0
such that aN 6 BbN for all N and aN ³ bN means aN ≺ bN and bN ≺ aN .

Theorem 6.6. Let X be a Banach space. Then with constants depending only
on X we have:

(1) For finite dimensional X

QN (X) =
√

N

e
( 1√

2
+o(1))

√
log N log log N

;

(2) For infinite dimensional X and any ε

N1− 1
Cot(X) ≺ QN (X) ≺ N1− 1

Cot(X)+ε .

Problem 6. Is it possible to take ε = 0 in Theorem 6.6 provided that Cot(X) is
attained?

For `p-spaces we have the following result from [20] (see also [21, Corollary 6.7]).

Corollary 6.7.

(1) N
1
2 ≺ QN (`p) ≺ N1− 1

2+ε if p < 2.
(2) N

1
p ³ QN (`p) if p > 2.

Problem 7. Does Corollary 6.7 hold for ε = 0 and 1 6 p < 2?

For the embedding id : `p ↪→ `q in [20] (see also [21, Theorem 6.8]) the following
upper estimates are proved.

Theorem 6.8. Let 1 6 p < q < ∞. Then with constants depending only on p, q
we have:

QN (id : `p ↪→ `q) ≺





√
N

e

(√
1
p− 1

q +o(1)
)√

log N log log N
, if p < 2

N1− 1
p , if p > 2.
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From (6.1) we conclude that this result for p = 1 and q = 2 is optimal.

Corollary 6.9.

QN (id : `1 ↪→ `2) =
√

N

e

(
1√
2
+o(1)

)√
log N log log N

.

Problem 8. Prove or disprove that the upper bounds in Theorem 6.8 are asymp-
totically optimal.

Again, like in Theorem 5.8, if we replace the embeddings id : `1 ↪→ `q by
arbitrary bounded operators v : `1 → `q we have

Theorem 6.10 ([20], also [21], Theorem 6.9). Let v : `1 → `q be a non-zero
bounded operator and 1 6 q 6 2. Then

QN (v) 6
√

N

e

(√
1− 1

q +o(1)
)√

log N log log N
.

Problem 9. Find lower bounds in Theorem 6.10.

In this same spirit, but working with m-homogeneous Dirichlet series, [1, The-
orem 1.4] and [34, Theorem 3.1] give

Theorem 6.11. For every m-homogeneous Dirichlet series
∑

Ω(n)=m an
1

ns ∈
H∞(C) we have ∑

Ω(n)=m

|an|(log n)
m−1

2
1

n
m−1
2m

< ∞ .

Moreover, the exponent m−1
2 in the log-term is optimal.

This motivates to introduce the m-homogeneous Queffélec number of a bounded
operator v : X → Y (denoted by QN,m(v)) as the best constant C > 1 such that
for every m-homogenous Dirichlet series

∑
Ω(n)=m an

1
ns we have that

N∑
n=1

‖v(an)‖Y 6 C sup
t∈R

∥∥∥∥∥
N∑

n=1

ann−it

∥∥∥∥∥
X

.

The study of such numbers in the vector-valued case is a work in progress; for
more information see [20].
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