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Chiara Boiti, Reinhold Meise

Dedicated to the memory of our friend
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Abstract: Let P ∈ C[τ, ζ1, . . . , ζn] be a quadratic polynomial for which the τ -variable is non-
characteristic. We characterize when the zero-variety V (P ) of P satisfies the Phragmén-Lindelöf
condition PL(ω) or equivalently when the pair (Rn

x ,Rτ × Rn
x) is of evolution in the class Eω for

the partial differential operator P (D) with symbol P .
Keywords: Phragmén-Lindelöf conditions, ultradifferentiable functions, differential equations
of evolution

1. Introduction

Let ω : Ck × Cn → [0,∞[ be a weight function like ω(τ, ζ) := |τ |α1 + |ζ|α2 for
0 < α1, α2 < 1. We say that an algebraic variety V in Ck × Cn satisfies the
Phragmén-Lindelöf condition PL(ω) of evolution if there exists A > 0 such that
each plurisubharmonic function u on V which satisfies the estimates

u(τ, ζ) 6 | Im τ |+ | Im ζ|+ ω(τ, ζ)
u(τ, ζ) 6 O(| Im ζ|+ ω(τ, ζ) + 1)

on V already satisfies

u(τ, ζ) 6 A(| Im ζ|+ ω(τ, ζ) + 1), (τ, ζ) ∈ V.

The significance of PL(ω) for linear partial differential operators was shown by
Boiti and Nacinovich in [4] and [5] and we refer to our paper [3] for a detailed
discussion. The algebraic curves in Cτ×Cn

ζ which satisfy PL(ω) were characterized
in [2] in terms of their Puiseux series expansion.

The main aim of the present paper is to characterize the algebraic hypersur-
faces V (P ) := {(τ, ζ) ∈ C × Cn : P (τ, ζ) = 0} in Cτ × Cn

ζ that satisfy PL(ω)
for quadratic polynomials P for which the τ -variable is non-characteristic. To
achieve this characterization we first show that for a homogeneous non-constant
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polynomial P ∈ C[τ, ζ1, . . . , ζn] for which the τ -variable is non-characteristic, its
zero-variety V (P ) satisfies PL(ω) if and only if P is hyperbolic for N = (1, 0, . . . , 0).
Moreover, we show that for P ∈ C[τ, ζ1, . . . , ζn] for which the τ -variable is non-
characteristic, V (P ) satisfies PL(ω) only if for the principal part Pm of P the
variety V (Pm) satisfies PL(ω). The latter condition implies that, up to a complex
constant factor, Pm has real coefficients. If P as above has degree 2 and satisfies
PL(ω) then it is therefore no restriction to assume that its principal part P2 has
real coefficients. This means that P has the form

P (τ, ζ) = τ2 + 2τ l(ζ) + Q(ζ) + 2aτ + L(ζ) + C,

where l is a real linear form, Q is a real quadratic form, L is a complex linear form,
and a,C are complex numbers. Using arguments from the proof of Meise, Taylor,
and Vogt [9], Lemma 3, we then show in Lemma 14 that there exist a real linear
form λ, 0 6 m 6 n, a complex linear form Λ0(z) =

∑n
j=m+1 ljzj , C0 ∈ C and, if

m 6= 0, a quadratic form D(z) :=
∑m

j=1 djz
2
j with dj 6= 0 for 1 6 j 6 m, such that

for
P0(τ, z) := (τ + λ(z))2 + D(z) + Λ0(z) + C0

the variety V (P ) satisfies PL(ω) if and only if V (P0) satisfies PL(ω). The desired
characterization is therefore contained in the following theorem.

Main Theorem 1. Assume that P0 is defined as above and let ω(τ, ζ) := σα1(|τ |)+
σα2(|ζ|) be a given weight function (see Definition 2 for σα). Then the following
assertions are equivalent:

(1) V (P0) satisfies PL(ω).
(2) V (P0) is hyperbolic for ω.
(3) D is negative semidefinite and one of the following conditions holds:

(3.a) Λ0 ≡ 0.
(3.b) Λ0 6≡ 0, there exists ξ ∈ {0}×Rn−m such that Λ0(ξ) 6= 0 and λ(ξ) = 0,

and α2 > 1/2.
(3.c) Λ0 6≡ 0, for each ξ ∈ {0} × Rn−m we have that λ(ξ) 6= 0 whenever

Λ0(ξ) 6= 0, and max{α1, α2} > 1/2.

2. Proof of the Main Theorem

Definition 2. For 0 6 α < 1, the weight function σα : R→ [0,+∞[ is defined by

σα(t) =

{
|t|α if 0 < α < 1
log(1 + |t|) if α = 0.

(1)

We split RN ' Rk
t × Rn

x, set θ = (τ, ζ) ∈ Ck × Cn for the dual coordinates of
z = (t, x) ∈ Rk × Rn, and denote by ω the plurisubharmonic function

ω(τ, ζ) = ω1(τ) + ω2(ζ) := σα1(|τ |) + σα2(|ζ|) for (τ, ζ) ∈ Ck × Cn, (2)

where αj ∈ [0, 1[ for j = 1, 2. Also ω will be called a weight function. Here and in
the following we shall assume that α2 = 0 implies α1 = 0.
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Definition 3. For a weight function ω as in (2) we define Eω(RN ) as E(RN ) if
α1 = α2 = 0, as

Eω(RN ) := {f ∈ E(RN ) : ∀K ⊂⊂ RN ∀ε > 0 ∀β ∈ Nk
0 ∃c > 0 ∀γ ∈ Nn

0 :

sup
K
|Dβ

t Dγ
xf(t, x)| 6 cε|γ|(γ!)1/α2}

if α1 = 0 and α2 6= 0, and as

Eω(RN ) := {f ∈ E(RN ) : ∀K ⊂⊂ RN ∀ε > 0 ∃c > 0 ∀β ∈ Nk
0 , γ ∈ Nn

0 :

sup
K
|Dβ

t Dγ
xf(t, x)| 6 cε|γ|+|β|(β!)1/α1(γ!)1/α2}

if α1 > 0 and α2 > 0. Endowed with their natural locally convex topologies, these
spaces are nuclear Fréchet spaces.

Definition 4. Let V be an algebraic variety in CN . A function u : V → [−∞,∞[
is called plurisubharmonic if it is locally bounded above, plurisubharmonic in the
usual sense on Vreg, the set of all regular points of V , and satisfies

u(z) = lim sup
ζ∈Vreg,ζ→z

u(ζ)

at the singular points of V . By PSH(V ) we denote the set of all functions that are
plurisubharmonic on V .

Definition 5. Let V be an algebraic variety in Ck
τ × Cn

ζ and let ω be a weight
function. We say that V satisfies PL(ω) if there exists A > 0 such that for each
u ∈ PSH(V ) which for some αu > 1 satisfies
(α) u(τ, ζ) 6 | Im τ |+ | Im ζ|+ ω1(τ) + ω2(ζ), (τ, ζ) ∈ V
(β) u(τ, ζ) 6 αu(| Im ζ|+ ω1(τ) + ω2(ζ) + 1), (τ, ζ) ∈ V

also satisfies
(γ) u(τ, ζ) 6 A(| Im ζ|+ ω1(τ) + ω2(ζ) + 1), (τ, ζ) ∈ V .

Definition 6. For V and ω as in Definition 5 we say that V is hyperbolic for ω
if there exists C > 0 such that

| Im τ | 6 C(| Im ζ|+ ω1(τ) + ω2(ζ) + 1), (τ, ζ) ∈ V.

Remark 7. If an algebraic variety V in Ck
τ × Cn

ζ is hyperbolic for some weight
function ω then V satisfies PL(ω). Note that the converse implication does not
hold as Example 8 below shows.

Example 8. Let
V = {(τ, ζ) ∈ C2 : τ2 = ζ3}.

Since ζ = τ2/3 we are in case (2) (iii) of Theorem 2 of [3] with p = 2, q = 3, and
Gq

2 = 1. Therefore, V satisfies PL(ω) for ω(τ, ζ) = σα1(|τ |) + σα2(|ζ|) if and only
if α1 > 2/3.
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However, V is not hyperbolic for any weight function ω. Indeed, from τ = ζ3/2

we get, for ζR = −R:

| Im τ(ζR)| = | Im
√
−R3| = R3/2.

If we assume that V is hyperbolic for ω then there exists C > 0 such that

R3/2 = | Im τ(ζR)| 6 C(| Im ζR|+ ω1(τ(ζR)) + ω2(ζR) + 1) = C(R
3
2 α1 + Rα2 + 1),

which gives a contradiction for large R since 0 6 α1, α2 < 1 and proves our claim.

Definition 9. Let P ∈ C[z1, . . . , zn] be of degree m > 1 and let Pm be its principal
part.

(a) P is said to be hyperbolic with respect to N ∈ Rn \ {0} if Pm(N) 6= 0 and if
there exists τ0 ∈ R such that

P (ξ + iτN) 6= 0 if ξ ∈ Rn and τ < τ0.

(b) P is said to be σα-hyperbolic with respect to N ∈ Rn \ {0} for 0 6 α < 1
if Pm(N) 6= 0 and if the differential operator P (D) := P ( 1

i
∂

∂x1
, . . . , 1

i
∂

∂xn
)

admits a fundamental solution E ∈ D′σα
(Rn) that has its support in the

closed half space {x ∈ Rn : 〈x,N〉 > 0}.
Note that by well-known results σ0-hyperbolicity is equivalent to hyperbolicity.

Proposition 10. Let P ∈ C[τ, ζ1, . . . , ζn] be homogeneous of degree m > 1 with
P (1, 0, . . . , 0) 6= 0. Then for

V := {(τ, ζ) ∈ C× Cn : P (τ, ζ) = 0}

the following are equivalent:

(a) V satisfies PL(ω) for some/all weight functions ω.
(b) For each ξ ∈ Rn the polynomial τ 7→ P (τ, ξ) has only real roots.
(c) There exists c > 0 such that | Im τ | 6 c| Im ζ| for all (τ, ζ) ∈ V .
(d) P is hyperbolic with respect to N = (1, 0, . . . , 0).

Proof. (a) ⇒ (b): Assume that V satisfies PL(ω) for ω(τ, ζ) = σα1(|τ |)+σα2(|ζ|).
If we assume that (b) does not hold, then there exists (τ0, ξ0) ∈ V ∩ (C×Rn) with
Im τ0 6= 0. Take ζR = Rξ0. By homogeneity θR = R(τ0, ξ0) = (Rτ0, ζR) ∈ V .
Then fix µ with max{α1, α2} < µ < 1, let WR denote the connected component
of V ∩ (C×B(ζR, Rµ)), and define u : V → R by

u(τ, ζ) =





max
{

Rµ

2
+ RµH

(
ζ − ζR

Rµ

)
, | Im ζ|

}
(τ, ζ) ∈ WR, |ζ − ζR| 6 Rµ

| Im ζ| otherwise,
(3)
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where H(θ) := (| Im θ|2−|Re θ|2)/2 is a harmonic function on Cn whose properties
are described in Lemma 2.9 of [8]. Next we claim that there exist δ > 0 and R0 > 1
such that for each (τ, ζ) ∈ WR we have

| Im τ | > δR > Rµ

2
for R > R0. (4)

To prove this claim, note first that there is a homogeneous algebraic variety B
in Cn such that the map π : (τ, ζ) 7→ ζ on V is unbranched over Cn \ B. Since
Rn \ B is open and dense in Rn, we may assume that we have chosen (τ0, ξ0) in
such a way that it is a regular point of V and that there is a holomorphic map
ϕ : B(ξ0, ε) → C such that {(ϕ(ζ), ζ) : ζ ∈ B(ξ0, ε)} parametrizes a neighborhood
of (τ0, ξ0). Moreoever, we may choose ε > 0 so small that | Imϕ(ζ)| > | Im τ0|/2
for ζ ∈ B(ξ0, ε).

Now note that for (τ, ζ) ∈ WR we have ζ = ζR + h, |h| < Rµ and

0 = P (τ, ζR + h) = RmP
( τ

R
, ξ0 +

h

R

)
.

Because of µ < 1 there exists R0 > 1 such that Rµ/R < ε for R > R0 and
hence ξ0 + h/R ∈ B(ξ0, ε). This implies τ/R = ϕ(ξ0 + h/R) and consequently
| Im τ/R| > | Im τ0|/2. Thus we proved the estimate (4) with δ := | Im τ0|/2.

Therefore, u satisfies (α) and (β) of PL(ω) and hence from (γ) at θR:

Rµ

2
6 u(θR) 6 A(ω1(Rτ0) + ω2(Rξ0) + 1)

= A(Rα1 |τ0|α1 + Rα2 |ξ0|α2 + 1)

which gives a contradiction for large R since µ > max{α1, α2}.
(b) ⇒ (c): Apply the classical Phragmén-Lindelöf theorem for Cn to

u(ζ) := max{| Im τ | : (τ, ζ) ∈ V }.

(c) ⇒ (a): Obvious.
(d) ⇔ (b): This holds by Hörmander [6], Theorem 5.5.3. ¥

The following corollary is an immediate consequence of Proposition 10 and
Hörmander [6], Corollary 5.5.1.

Corollary 11. Let P ∈ C[τ, ζ1, . . . , ζn] be homogeneous of degree m > 1 and
assume that P (1, 0, . . . , 0) ∈ R \ {0}. If V (P ) satisfies PL(ω) for some weight
function ω, then P has real coefficients.

Proposition 12. Let P ∈ C[τ, ζ1, . . . , ζn] be of degree m > 1, denote by Pm its
principal part and assume that Pm(1, 0, . . . , 0) 6= 0. If V (P ) satisfies PL(ω) for
some weight function ω then also V (Pm) satisfies PL(ω).
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Proof. To argue by contradiction, we assume that P satisfies PL(ω) for the weight
function ω(τ, ζ) = σα1(|τ |)+σα2(|ζ|) and that V (Pm) does not satisfy PL(ω). Then
Proposition 10 implies the existence of ξ ∈ Rm such that not all the zeros of the
polynomial τ 7→ Pm(τ, ξ) are real. As we indicated in the proof of Proposition 10
we can therefore assume the existence of a regular point (τ0, ξ0) in V (Pm) with
ξ0 ∈ Rm and τ0 6∈ R. Next let Γ(ξ0, δ) :=

⋃
t>0 t(ξ0 + B(0, δ)). Since Pm is

homogeneous and satisfies Pm(1, 0, . . . , 0) 6= 0 by hypothesis, we can choose δ > 0
and a holomorphic function ϕ : Γ(ξ0, δ) → C such that {(ϕ(ζ), ζ) : ζ ∈ Γ(ξ0, δ)} is
the connected component of V (Pm)∩{(τ, ζ) : ζ ∈ Γ(ξ0, δ)} which contains (τ0, ξ0).
Since Im τ0 6= 0, we can choose δ so small that

| Im ϕ(ξ0 + h)| > | Imϕ(ξ0)|/2 = | Im τ0|/2, h ∈ B(0, δ).

Then fix µ < 1 satisfying µ > max{α1, α2}. We claim that there exists R1 > 1, and
0 < ε < | Im τ0|

4 such that for R > R1 and h ∈ Cn with |h| < Rµ the polynomials

qR,h : τ 7→ Pm(τ,Rξ0 + h) and pR,h : τ 7→ P (τ, Rξ0 + h)

have the same number of zeros in the disk B1(ϕ(Rξ0 + h), εR).
To prove this claim, using the Theorem of Rouché, we note first that because of

µ < 1 there exists R0 > 1 such that Rξ0+h ∈ Γ(ξ0, δ) for R > R0 and each h ∈ Cn

satisfying |h| < Rµ. Next note that Pm(1, 0, . . . , 0) 6= 0 implies the existence of
C > 0 such that

|τ | 6 C|ζ| for (τ, ζ) ∈ V (Pm). (5)

From this estimate it follows that we can choose R0 even so large that for C1 :=
2R(C + 1)|ξ0| we have

|(ϕ(Rξ0 +h), Rξ0 +h)| = R|(ϕ(ξ0 +
h

R
), ξ0 +

h

R
)| 6 R(C +1)|ξ0 +

h

R
| 6 C1R. (6)

Next let P (τ, ζ) =
∑m

j=0 Pj(τ, ζ), where Pj is either homogeneous of degree j or
Pj ≡ 0. Hence there exists M > 1 such that for (τ, ζ) with |(τ, ζ)| > R0 we have

|P (τ, ζ)− Pm(τ, ζ)| 6
m−1∑

j=0

|Pj(τ, ζ)| 6 M |(τ, ζ)|m−1.

Now fix 0 < ε < 1 and λ ∈ C with |λ| = εR and note that this estimate together
with (6) implies

|pR,h(ϕ(Rξ0 + h) + λ)− qR,h(ϕ(Rξ0 + h) + λ)| 6 M(C1 + ε)m−1Rm−1. (7)

To derive an estimate for qR,h(ϕ(Rξ0 + h) + λ) from below, note that for (τ, ζ) ∈
V (Pm) we have the expansion

Pm(τ + λ, ζ) =
m∑

j=1

1
j!

∂jPm

∂τ j
(τ, ζ)λj .



The Phragmén Lindelöf condition for evolution for quadratic forms 117

Because of m > 1, there exists k with 1 6 k 6 m such that

∂jPm

∂τ j
(τ0, ξ0) = 0, 0 6 j < k and

∂kPm

∂τk
(τ0, ξ0) 6= 0.

Since ∂jPm

∂τj is homogeneous of degree m − j, this implies that for σ > 0, small
enough, there exists δ1 = δ1(σ) such that

∣∣∣∣
∂jPm

∂τ j
(τ, ζ)

∣∣∣∣ 6 σ|(τ, ζ)|m−j , (τ, ζ) ∈ Γ((τ0, ξ0), δ1), 0 6 j < k.

Next let η :=
∣∣∣∂kPm

∂τk (τ0, ξ0)
∣∣∣ /2. Then we can choose δ2 > 0 such that

∣∣∣∣
∂kPm

∂τk
(τ, ζ)

∣∣∣∣ > η|ζ|m−k, (τ, ζ) ∈ Γ((τ0, ξ0), δ2).

Then there exists D > 1, C2 > 0, and R1 > R0 such that for R > R1:

|qR,h(ϕ(Rξ0 + h) + λ)| = |Pm(ϕ(Rξ0 + h) + λ, Rξ0 + h)|

> 1
k!

∣∣∣∣
∂kPm

∂τk
(ϕ(Rξ0 + h) + λ, Rξ0 + h)λk

∣∣∣∣

−
m∑

j=1,j 6=k

1
j!

∣∣∣∣
∂jPk

∂τ j
(ϕ(Rξ0 + h) + λ, Rξ0 + h)

∣∣∣∣ |λ|j

> 1
k!

η|Rξ0 + h|m−kεkRk

−
k−1∑

j=1

1
j!

σ(C1R)m−jεjRj −DRmεk+1

> Rm
( η

2k!
|ξ0|m−kεk − σC2 −Dεk+1

)
.

Now we choose 0 < ε < min
(

η
8Dk! |ξ0|m−k, |Im τ0|

4

)
and σ < η

8C2k! |ξ0|m−kεk. Then
the estimate above implies that, if we choose R1 large enough, we get that for
R > R1

|qR,h(ϕ(Rξ0 + h) + λ)| > η

4k!
|ξ0|m−kεkRm > M(C1 + 1)m−1Rm−1.

From this estimate and (7) it follows that we can apply the Theorem of Rouché,
to see that our claim is true.

Next choose δ3 > 0 so small that for ζ ∈ Γ(ξ0, δ3) we have (ϕ(ζ), ζ) ∈
Γ((τ0, ξ0), min(δ1(σ), δ2)). After enlarging R1 if necessary, we now get that for
R > R1 and h ∈ Cn with |h| < Rµ each point (τ(Rξ0 +h), Rξ0 +h) in V (P ) which
is close to V (Pm)∩{(ϕ(ζ), ζ) : ζ ∈ Γ(ξ0, δ3)} satisfies |τ(Rξ0+h)−ϕ(Rξ0+h)| < εR,
provided that we have chosen ε > 0 so small that each zero (τ, ζ) of Pm which
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satisfies ζ ∈ Γ(ξ0, δ3) and τ 6= ϕ(ζ) already satisfies |τ − ϕ(ζ)| > 8ε|ζ|. Then our
choice of ε implies for R > R1 and |h| < Rµ:

|Im τ(Rξ0 + h)| > |Im ϕ(Rξ0 + h)| − |Im(τ(Rξ0 + h)− ϕ(Rξ0 + h))|

> |Im τ0|
2

R− εR > |Im τ0|
4

R.

Using this estimate we can now argue as in the proof of Proposition 10 to see that
V (P ) does not satisfy PL(ω). ¥

Remark 13. From now on we will concentrate on quadratic polynomials P ∈
C[τ, ζ1, . . . , ζn]. If the τ -variable is non-characteristic for such a polynomial, i.e.,
if P2(1, 0, . . . , 0) 6= 0 holds for the principal part P2 of P , then there exist complex
linear forms l and L in ζ, a quadratic form Q in ζ, and complex numbers a,C such
that, up to a complex constant factor, P has the following form

P (τ, ζ) = τ2 + 2τ l(ζ) + Q(ζ) + aτ + L(ζ) + C. (8)

If V (P ) satisfies PL(ω) then V (P2) satisfies PL(ω) by Proposition 12, where

P2(τ, ζ) = τ2 + 2τ l(ζ) + Q(ζ)

has real coefficients by Proposition 10 and Corollary 11. To characterize those P for
which V (P ) satisfies PL(ω) we can therefore restrict our attention to polynomials
P of the form (8) for which l is a real linear form and Q is a real quadratic form.

Note also that by Proposition 10 for each ξ ∈ R the polynomial pξ : τ 7→
P2(τ, ξ) has only real zeros. It is easy to check that pξ has the zeros τ± = −l(ξ)±
(l(ξ)2−Q(ξ))1/2. Since l and Q are real for real ξ, this implies that the quadratic
form Ql : ζ 7→ l(ζ)2 −Q(ζ) is positive semidefinite.

Lemma 14. Let P ∈ C[τ, ζ1, . . . , ζn] be of the form

P (τ, ζ) = τ2 + 2τ l(ζ) + Q(ζ) + 2aτ + L(ζ) + C,

where l is a real linear form, Q a real quadratic form, L a complex linear form,
and a,C are complex numbers. Then there exist a real linear form λ, 0 6 m 6 n, a
complex linear form Λ0(z) =

∑n
j=m+1 ljzj, C0 ∈ C and, if m 6= 0, a real quadratic

form D(z) =
∑m

j=1 djz
2
j with dj 6= 0 for 1 6 j 6 m, such that for

P0(τ, z) := (τ + λ(z))2 + D(z) + Λ0(z) + C0

the following holds: V (P ) satisfies PL(ω) for a weight function ω if and only if
V (P0) satisfies PL(ω).

Proof. If we let Ql(ζ) := Q(ζ) − l(ζ)2, Ll(ζ) := L(ζ)− 2al(ζ) and C1 := C − a2

then we have

P (τ, ζ) = (τ + l(ζ) + a)2 + Ql(ζ) + Ll(ζ) + C1.
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If the quadratic form Ql ≡ 0 then we let D := 0, m := 0 and A := idCn . Otherwise
we can choose A ∈ GL(Rn) and D as in the statement such that

Ql(ζ) = D(Aζ).

Note that m is the number of non-zero eigenvalues of the real symmetric matrix
which defines Ql. Next define λ(z) := l(A−1z), Λ1(z) := Ll(A−1z) and

P1(τ, z) := (τ + λ(z) + a)2 + D(z) + Λ1(z) + C1.

Then we have

P (τ, ζ) = (τ + λ(Aζ) + a)2 + D(Aζ) + Λ1(Aζ) + C1 = P1(τ, Aζ).

As in the proof of Meise, Taylor, and Vogt [9], Lemma 3, we can find b =
(b1, . . . , bn) with bj = 0 for m + 1 6 j 6 n, such that

D(z + b) + Λ1(z + b) + C1 = D(z) + Λ0(z) + C0,

where Λ0 is defined as in the assertion of the Lemma. Hence we have

P (τ, ζ + A−1b) = (τ + λ(Aζ + b) + a)2 + D(Aζ + b) + Λ1(Aζ + b) + C1

= (τ + λ(Aζ) + d)2 + D(Aζ) + Λ0(Aζ) + C0.

If we now define P0 as in the statement of the Lemma, then we have

P (τ − d, ζ + A−1(b)) = P0(τ,Aζ).

Next we note that PL(ω) is invariant under real linear changes of variables and
also under complex shifts in the variables. Hence the result follows from the last
equality. ¥

Proposition 15. Assume that P0 ∈ C[τ, ζ1, . . . , ζn] is given by

P0(τ, ζ) = (τ + λ(ζ))2 + D(ζ) + Λ0(ζ) + C0,

where λ is a real linear form, D(ζ) =
∑m

j=1 djζ
2
j for dj ∈ R \ {0} for 1 6 j 6 m

and 1 6 m 6 n, Λ0(ζ) =
∑n

j=m+1 ljζj is a complex linear form, and C0 ∈ C.
(a) If Λ0 ≡ 0 then the following assertions are equivalent:

(1) V (P0) satisfies PL(ω) for some/each weight function ω.

(2) V (P0) is hyperbolic for some/each weight function ω.

(3) D is negative semidefinite.

(b) If Λ0 6≡ 0 then V (P0) satisfies PL(ω) only if D is negative semidefinite and
if one of the following conditions is satisfied:

(1) α2 > 1/2 if there exists ξ ∈ {0} × Rn−m such that Λ0(ξ) 6= 0 and
λ(ξ) = 0.



120 Chiara Boiti, Reinhold Meise

(2) max{α1, α2} > 1/2 if for each ξ ∈ {0} × Rn−m we have λ(ξ) 6= 0
whenever Λ0(ξ) 6= 0.

Proof. (a) (1) ⇒ (3): If V (P0) satisfies PL(ω) for some weight function ω then
Proposition 12 shows that also V (P2) satisfies PL(ω), where P2 is the principal
part of P0. Since P2(τ, ζ) = (τ + λ(ζ))2 + D(ζ) in this case, it follows from
Proposition 10 and Remark 13 that the quadratic form D is negative semidefinite.
This is equivalent to dj < 0 for 1 6 j 6 m, because dj ∈ R \ {0}.

(3) ⇒ (2): Since Λ0 ≡ 0, we have (τ, ζ) ∈ V (P0) if and only if τ = −λ(ζ) ±√
−D(ζ)− C0. This implies the existence of C > 0 such that

| Im τ | 6 |τ | 6 C(|ζ|+ 1), (τ, ζ) ∈ V (P0).

Next we define v : Cn → R by

v(ζ) := max{| Im τ | : (τ, ζ) ∈ V (P0)}.
By Hörmander [7], Lemma 4.4, v is in PSH(Cn). Since λ is a real linear form and
since D is negative semidefinite by hypothesis, there exists C1 > 0 such that

v(ξ) 6 C1, ξ ∈ Rn.

Therefore, the function ϕ : Cn → R, ϕ(ζ) := 1
C (v(ζ)−C1) satisfies the hypotheses

of the classical Phragmén-Lindelöf Theorem for Cn. Hence ϕ satisfies

ϕ(ζ) 6 | Im ζ|, ζ ∈ Cn.

By the definition of v, this implies

| Im τ | 6 C| Im ζ|+ C1, (τ, ζ) ∈ V (P0).

Hence (2) holds.
(2) ⇒ (1): This implication holds by Remark 7.
(b) The arguments in part (a) show that the negative semidefinitness of D is

necessary also in this case. To show that also the other condition is necessary, note
first that after a real linear change of variables in (xm+1, . . . , xn), we may assume
that ξ in (1) is the canonical basis vector em+1, so that we have Λ0(em+1) = lm+1 6=
0. For R > 1 we then let ζR := ρem+1 where ρ = R or ρ = −R is chosen so that
Im(−lm+1ρ−C0)1/2 6= 0. We also let θR := (−λ(ζR) + (−lm+1ρ−C0)1/2, ζR) and
we fix 0 < µ < 1/2. Then let V := V (P0) and denote WR the connected component
of V ∩ (C × B(ζR, Rµ)) which contains θR and define u : V → R by formula (3).
If h ∈ Cn satisfies |h| < Rµ and τ(ζR + h) satisfies P (τ(ζR + h), ζR + h) = 0, then
it follows easily that there exist δ > 0 and R0 > 1 such that for R > R0 we have

| Im τ(ζR + h) + Im λ(ζR + h)| > δR1/2.

Since Im λ(ζR + h) = Im λ(h) and since |h| < Rµ, this estimate implies

| Im τ(ζR + h)| > Rµ

2
, R > R0. (9)
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Since u is plurisubharmonic on V and since the arguments that we used in the
proof of Proposition 10 show that u satisfies the conditions (α) and (β) of PL(ω),
u also satisfies the condition (γ) of PL(ω). Hence there exist A,A′ > 0 such that

Rµ

2
6 u(θR) 6 A(| Im ζR|+ ω1(τ(ζR)) + ω2(ζR) + 1)

6 A′
(
| Im ζR|+

∣∣∣−λ(ζR) +
√
−Λ0(ζR)− C0

∣∣∣
α1

+ Rα2 + 1
)

, R > R0.

(10)

If we are in case (1) then λ(ζR) = 0. Hence the inequality (10) implies the existence
of A1 > 0 such that

Rµ

2
6 A1

(
Rα1/2 + Rα2

)
, R > R0.

Since 0 < µ < 1/2 was chosen arbitrarily, it now follows that we must have
max{α1/2, α2} > 1/2. Since 0 6 α1 < 1, this implies α2 > 1/2.

If we are in case (2), then the inequality (10) implies that for each 0 < µ < 1/2
there exist A2 > 0 and R0 > 1 such that

Rµ

2
6 A2(Rα1 + Rα2), R > R0

and hence max{α1, α2} > 1/2. ¥

Remark 16. Note that Proposition 15 is still valid if m = 0 and hence D ≡ 0.

To show that the necessary conditions in Proposition 15 are in fact sufficient,
we need the following lemma.

Lemma 17. The following inequality holds for each (z1, z2) ∈ C2:

| Im√
z1 + z2| 6 | Im√

z1|+ | Im√
z2|. (11)

Proof. Note first that the inequality (11) is a consequence of the following one:

| Im
√

a2 + b2| 6
√
| Im a|2 + | Im b|2, (a, b) ∈ C2. (12)

To prove (12), define

ϕ : C2 → C, ϕ(a, b) := | Im
√

a2 + b2|.
It is easy to check that ϕ is plurisubharmonic on C2 and satisfies ϕ(a, b) = 0 for
each (a, b) ∈ R2.

Moreover,

ϕ(a, b) 6
√
|a|2 + |b|2 = |(a, b)|.

Hence the classical Theorem of Phragmén-Lindelöf for C2 implies that

ϕ(a, b) 6 | Im(a, b)| =
√
| Im a|2 + | Im b|2,

which is the estimate (12). ¥
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Proposition 18. Let P0 be as in Proposition 15, assume that the conditions in
Proposition 15 (b) (1) are fulfilled and let ω(τ, ζ) := σα1(|τ |) + σα2(|ζ|). Then the
following conditions are equivalent:
(1) V (P0) satisfies PL(ω).
(2) α2 > 1/2.
(3) P0 is σα2-hyperbolic with respect to N = (1, 0, . . . , 0) for σα2(τ, ζ) = |(τ, ζ)|α2 ,

(τ, ζ) ∈ C× Cn.
(4) V (P0) is hyperbolic for ω.

Proof. (1) ⇒ (2): This holds by Proposition 15 (b) (1).
(2) ⇒ (3): Since we can apply a real diagonal change of variables, it is no

restriction to assume that

D(ζ) = −
m∑

j=1

ζ2
j .

Then, for fixed (τ, ζ) ∈ V (P0), we have that

(τ + λ(ζ))2 =
m∑

j=1

ζ2
j − Λ0(ζ)− C0.

Applying Lemma 17 to z1 =
∑m

j=1 ζ2
j and z2 = −Λ0(ζ)− C0:

| Im(τ + λ(ζ))| =

∣∣∣∣∣∣∣
Im




m∑

j=1

ζ2
j − Λ0(ζ)− C0




1/2
∣∣∣∣∣∣∣

6
∣∣∣Im

( m∑

j=1

ζ2
j

)1/2∣∣∣ + | Im(−Λ0(ζ)− C0)1/2|. (13)

Since ∣∣∣Im
( m∑

j=1

ζ2
j

)1/2∣∣∣ 6 | Im ζ|, ζ ∈ Cm, (14)

since Λ0 is a linear form and since α2 > 1/2 there exists C3 > 0 such that we get
from (13)

| Im(τ + λ(ζ))| 6 | Im ζ|+ |Λ0(ζ) + C0|1/2

6 C3(| Im ζ|+ |ζ|1/2 + 1)
6 C3(| Im ζ|+ σα2(|ζ|) + 2).

Because λ is a real linear form this estimate implies the existence of C4 > 0 such
that

| Im τ | 6 C4(| Im ζ|+ σα2(|ζ|) + 1). (15)

Since N = (1, 0, . . . , 0) is non-characteristic for P0, this estimate implies by Meise,
Taylor and Vogt [10], Propositions 2.7 and 2.9, that P0 is σα2 -hyperbolic with
respect to N .
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(3) ⇒ (4): This holds by [1], Proposition 3.9.
(4) ⇒ (1): This holds by Remark 7. ¥

Remark 19. Note that in Proposition 18 the implications (2) ⇒ (3) ⇒ (4) ⇒ (1)
hold, whenever D is negative semidefinite (if D ≡ 0 we have only case 1 in the
implication (2) ⇒ (3)).

Lemma 20. Let (λ1, . . . , λm) ∈ Rm \ {0}, set

λ̃j =

{
λj , if λj 6= 0
1, if λj = 0

(16)

for 1 6 j 6 m, Λ := max16j6m λ̃2
j and take 0 < ε < 1/(mΛ). There exists then a

constant c > 0 such that each ζ = (ζ1, . . . , ζm) ∈ Cm which satisfies
∣∣∣∣∣∣

m∑

j=1

ζ2
j

∣∣∣∣∣∣
6 ε

∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣

2

, (17)

also satisfies
∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣
6 c

m∑

j=1

| Im λ̃jζj | = c

m∑

j=1

|λ̃j | · | Im ζj |. (18)

Proof. Let us first remark that if Im λ̃jζj = 0 for all j = 1, . . . , m, i.e. ζ1, . . . , ζm ∈
R, then by Cauchy-Schwarz inequality and (17) we have that

∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣

2

6

∣∣∣∣∣∣

m∑

j=1

λ2
j

∣∣∣∣∣∣
·
∣∣∣∣∣∣

m∑

j=1

ζ2
j

∣∣∣∣∣∣
6 mΛε

∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣

2

which gives
∑m

j=1 λjζj = 0 since εmΛ < 1 by assumption. In this case (18) holds
trivially.

Let us then assume that
∑m

j=1 | Im λ̃jζj | > 0. By homogeneity it is then suffi-
cient to prove that (17) implies the existence of c > 0 such that

m∑

j=1

| Im λ̃jζj | = 1 =⇒
∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣
6 c. (19)

To argue by contradiction, assume that this does not hold. Then we can find
a sequence (ζ(k))k∈N in Cm such that the inequality (17) holds for each ζ(k) while

m∑

j=1

| Im λ̃jζ
(k)
j | = 1, and lim

k→∞

∣∣∣∣∣∣

m∑

j=1

λjζ
(k)
j

∣∣∣∣∣∣
= ∞. (20)
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Next we choose a
(k)
j , b

(k)
j ∈ R for j ∈ {1, . . . , m} and k ∈ N such that λ̃jζ

(k)
j =

a
(k)
j + ib

(k)
j . Then (20) implies

1 =
m∑

j=1

|b(k)
j | =

m∑

j=1

| Im λ̃jζ
(k)
j | >

m∑

j=1

| Im λjζ
(k)
j |

and hence limk→∞
∑m

j=1 |Reλjζ
(k)
j | = ∞. Consequently we get

m∑

j=1

|b(k)
j | = 1 and lim

k→∞

m∑

j=1

|a(k)
j | = ∞. (21)

Now fix ζ = (ζ1, . . . , ζm) with λ̃jζj = aj + ibj and let λ := min16j6m λ̃2
j . Then

the Cauchy-Schwarz inequality implies
∣∣∣∣∣∣

m∑

j=1

ζ2
j

∣∣∣∣∣∣
=

∣∣∣∣∣∣

m∑

j=1

1
λ̃2

j

(a2
j + 2iajbj − b2

j )

∣∣∣∣∣∣

> 1
Λ

∣∣∣∣∣∣

m∑

j=1

a2
j

∣∣∣∣∣∣
− 2

λ

∣∣∣∣∣∣

m∑

j=1

a2
j

∣∣∣∣∣∣

1/2 ∣∣∣∣∣∣

m∑

j=1

b2
j

∣∣∣∣∣∣

1/2

− 1
λ

∣∣∣∣∣∣

m∑

j=1

b2
j

∣∣∣∣∣∣

> 1
Λ

m∑

j=1

a2
j −

2
λ




m∑

j=1

a2
j




1/2 


m∑

j=1

|bj |

− 1

λ




m∑

j=1

|bj |



2

=
1
Λ

m∑

j=1

a2
j −

2
λ




m∑

j=1

a2
j




1/2

− 1
λ

.

On the other side,
∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣
6

m∑

j=1

|aj |+
m∑

j=1

|bj | 6
√

m




m∑

j=1

a2
j




1/2

+ 1.

Since ζ(k) satisfies the inequality (17), the two estimates above imply

1
Λ




m∑

j=1

(a(k)
j )2


− 2

λ




m∑

j=1

(a(k)
j )2




1/2

− 1
λ

6 ε





m

m∑

j=1

(a(k)
j )2




1/2

+ 1




2

and hence

(1− εmΛ)
m∑

j=1

(a(k)
j )2 − Λ(

2
λ

+ 2ε
√

m)




m∑

j=1

(a(k)
j )2




1/2

− Λ(
1
λ

+ ε) 6 0.
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This is a contradiction for large k ∈ N, since 1− εmΛ > 0 and

lim
k→∞

m∑

j=1

(a(k)
j )2 = ∞. ¥

Proposition 21. Let P0 be as in Proposition 15, assume that the conditions in
Proposition 15 (b) (2) are fulfilled, and let ω(τ, ζ) := σα1(|τ |)+σα2(|ζ|). Then the
following assertions are equivalent:
(1) V (P0) satisfies PL(ω).
(2) max{α1, α2} > 1/2.
(3) V (P0) is hyperbolic for ω.

Proof. (1) ⇒ (2): This holds by Proposition 15 (b) (2).
(2) ⇒ (3): As in the proof of Proposition 18 it is no restriction to assume that

D(ζ) = −∑m
j=1 ζ2

j . Since λ is a real linear form, there exist λ1, . . . , λn ∈ R such
that λ(ζ) =

∑n
j=1 λjζj . Obviously, condition 15 (b) (2) implies that

ker(λ|{0}×Rn−m) ⊂ ker(Λ0|{0}×Rn−m),

where we consider both restrictions as R-linear maps into the R-vector space C.
Since Λ0 6≡ 0, it follows that λ|{0}×Rn−m 6≡ 0. As λ has real coefficients by
hypothesis, λ|{0}×Rn−m is linear and λ({0} × Rn−m) = R ⊂ C. Consequently,
dimR(ker(λ|{0}×Rn−m)) = n − m − 1. This implies that the two kernels are in
fact equal and that dimR Λ0({0} × Rn−m) = 1. Because of the special form of
Λ0 this shows that we can find µ̃ ∈ C \ {0} such that Λ0|{0}×Rn−m = µ̃λ0, where
λ0 = λ ◦ πn−m for πn−m(ζ) := (0, . . . , 0, ζm+1, . . . , ζn). Hence we can choose
µ ∈ C \ {0} and C0 ∈ C such that (τ, ζ) ∈ V (P0) if and only if

(τ + λ(ζ))2 = (τ +
n∑

j=1

λjζj)2 =
m∑

j=1

ζ2
j + µ

n∑

j=m+1

λjζj + C0 = Q(ζ) + µλ0(ζ) + C0.

Note that Λ0 6≡ 0 implies (λm+1, . . . , λn) ∈ Rn−m \ {0} and that Q(ζ) =
∑m

j=1 ζ2
j .

If α2 > 1/2 then Remark 19 shows that V (P0) is hyperbolic for ω. Hence it
suffices to show that this also holds if α1 > 1/2. To do this consider λ̃j as in (16),
set Λ := max16j6m λ̃2

j and consider the following cases for (τ, ζ) ∈ V (P0):

Case (1):
∣∣∣∑m

j=1 λjζj

∣∣∣ 6 2
√

mΛ |Q(ζ)|1/2.

Subcase (1.1): |Q(ζ)| 6 2|µλ0(ζ) + C0|.
Then the hypothesis of the subcase gives

|τ + λ(ζ)| = |Q(ζ) + µλ0(ζ) + C0|1/2 6
√

3(|µλ0(ζ)|1/2 + |C0|1/2).

On the other side, the present hypotheses imply

|τ + λ(ζ)| > |λ0(ζ)| −
∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣
− |τ | > |λ0(ζ)| − 2

√
mΛ|Q(ζ)|1/2 − |τ |

> |λ0(ζ)| − 2
√

2mΛ(|µλ0(ζ)|1/2 + |C0|1/2)− |τ |.
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Therefore,

|λ0(ζ)| − (2
√

2mΛ|µ|+
√

3|µ|) |λ0(ζ)|1/2 − 2
√

2mΛ|C0| −
√

3|C0| − |τ | 6 0

and hence

|λ0(ζ)|1/2 6 1
2

(
2
√

2mΛ|µ|+
√

3|µ|

+
√

(2
√

2mΛ|µ|+
√

3|µ|)2 + 8
√

2mΛ|C0|+ 4
√

3|C0|+ 4|τ |
)

6 |τ |1/2 + c

for c = 2
√

2mΛ|µ|+
√

3|µ|+ 4
√

8mΛ|C0|+ 4
√

3|C0|.
It thus follows that there exist A,A′ > 0 such that

| Im τ | =
∣∣∣−

n∑

j=1

Im(λjζj)± Im
√

Q(ζ) + µλ0(ζ) + C0

∣∣∣

6
∣∣∣

n∑

j=1

λj Im ζj

∣∣∣ +
∣∣Q(ζ) + µλ0(ζ) + C0

∣∣1/2

6 A
(
| Im ζ|+

√
3|µ| |λ0(ζ)|1/2 +

√
3|C0|

)

6 A′(| Im ζ|+ |τ |1/2 + 1)
6 A′(| Im ζ|+ σα1(|τ |) + 2)

since λj ∈ R and α1 > 1/2.
Subcase (1.2): |Q(ζ)| > 2 |µλ0(ζ) + C0|.
In this case we can write

µλ0(ζ) + C0 = αQ(ζ)

for some α ∈ C with |α| 6 1/2. Then

τ = −
m∑

j=1

λjζj − λ0(ζ)± (Q(ζ) + µλ0(ζ) + C0)1/2

= −
m∑

j=1

λjζj − α

µ
Q(ζ) +

C0

µ
±Q(ζ)1/2

√
1 + α

and hence by the hypothesis in case (1):

∣∣∣∣
α

µ
Q(ζ)∓Q(ζ)1/2

√
1 + α + τ

∣∣∣∣ =

∣∣∣∣∣∣
−

m∑

j=1

λjζj +
C0

µ

∣∣∣∣∣∣
6 2

√
mΛ |Q(ζ)|1/2 +

∣∣∣∣
C0

µ

∣∣∣∣ .
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On the other side,
∣∣∣∣
α

µ
Q(ζ)∓Q(ζ)1/2

√
1 + α + τ

∣∣∣∣ >
∣∣∣∣
α

µ
Q(ζ)

∣∣∣∣− |Q(ζ)|1/2
√
|1 + α| − |τ |.

Therefore,
∣∣∣∣
α

µ
Q(ζ)

∣∣∣∣− (2
√

mΛ +
√
|1 + α|) |Q(ζ)|1/2 −

∣∣∣∣
C0

µ

∣∣∣∣− |τ | 6 0,

which implies

|Q(ζ)|1/2 6
(

2
√

mΛ +
√
|1 + α|

+

√
(2
√

mΛ +
√
|1 + α|)2 + 4

∣∣∣∣
αC0

µ2

∣∣∣∣ + 4
∣∣∣∣
α

µ

∣∣∣∣ · |τ |
)
· |µ|
2|α| ,

i.e.
∣∣∣αQ(ζ)1/2

∣∣∣ 6 c′(|τ |1/2 + 1)

for some c′ > 0. From these estimates and the identity

√
1 + α−

√
1 =

∫ α

0

1
2
√

1 + z
dz

we now get the existence of A, A′, A′′ > 0 such that the following estimates hold:

| Im τ | =
∣∣∣∣∣∣
−

n∑

j=1

Im(λjζj)± Im(Q(ζ) + µλ0(ζ) + C0)1/2

∣∣∣∣∣∣

6 A| Im ζ|+
∣∣∣Im

(
Q(ζ)1/2

√
1 + α

)∣∣∣

6 A| Im ζ|+
∣∣∣ImQ(ζ)1/2

∣∣∣ · |Re
√

1 + α|+
∣∣∣Re Q(ζ)1/2

∣∣∣ · | Im(
√

1 + α−
√

1)|

6 A| Im ζ|+
√
|1 + α|| Im ζ|+

∣∣∣Q(ζ)1/2
∣∣∣ sup
|z|61/2

∣∣∣∣
1

2
√

1 + z

∣∣∣∣ · |α|

6 A′| Im ζ|+
∣∣∣αQ(ζ)1/2

∣∣∣ sup
|z|61/2

1
2
√

1− |z|

6 A′| Im ζ|+
√

2
2

c′(|τ |1/2 + 1)

6 A′′(| Im ζ|+ σα1(|τ |) + 1).

Case (2): |Q(ζ)|1/2 6 1
2
√

mΛ

∣∣∣∑m
j=1 λjζj

∣∣∣.
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Subcase (2.1): |Q(ζ)| 6 2 |µλ0(ζ) + C0|.

Subcase (2.1)(a): |λ0(ζ)| > 2
∣∣∣∑m

j=1 λjζj

∣∣∣.
Then

|τ | > |λ0(ζ)| −
∣∣∣

m∑

j=1

λjζj

∣∣∣− |Q(ζ) + µλ0(ζ) + C0|1/2

> |λ0(ζ)| − 1
2
|λ0(ζ)| −

√
3|µ| |λ0(ζ)|1/2 −

√
3|C0|

> δ |λ0(ζ)| − δ′

for some δ, δ′ > 0. Therefore,

| Im τ | 6
∣∣∣

n∑

j=1

λj Im ζj

∣∣∣ + |Q(ζ) + µλ0(ζ) + C0|1/2

6 A
(
| Im ζ|+ |λ0(ζ)|1/2 + 1

)

6 A′(| Im ζ|+ |τ |1/2 + 1)
6 A′(| Im ζ|+ σα1(|τ |) + 2).

Subcase (2.1)(b): |λ0(ζ)| 6 2
∣∣∣∑m

j=1 λjζj

∣∣∣.
Then

| Im τ | 6
∣∣∣

n∑

j=1

λj Im ζj

∣∣∣ + |Q(ζ) + µλ0(ζ) + C0|1/2

6 A
(
| Im ζ|+ |λ0(ζ)|1/2 + 1

)
6 A (| Im ζ|+ |λ0(ζ)|+ 2)

6 A


| Im ζ|+ 2

∣∣∣
m∑

j=1

λjζj

∣∣∣ + 2


 6 A′


| Im ζ|+

m∑

j=1

| Im λ̃jζj |+ 1




6 A′′(| Im ζ|+ 1)

for some A,A′, A′′ > 0, because of Lemma 20.

Subcase (2.2): |Q(ζ)| > 2 |µλ0(ζ) + C0|.
In this case we can write

µλ0(ζ) + C0 = αQ(ζ)
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for some α ∈ C with |α| 6 1/2. Then

| Im τ | 6
∣∣∣∣∣∣

n∑

j=1

λj Im ζj

∣∣∣∣∣∣
+ |Q(ζ) + µλ0(ζ) + C0|1/2

6 A| Im ζ|+ |Q(ζ)|1/2
√
|1 + α|

6 A| Im ζ|+ 1
2
√

mΛ

∣∣∣∣∣∣

m∑

j=1

λjζj

∣∣∣∣∣∣
√
|1 + α|

6 A′


| Im ζ|+

m∑

j=1

| Im λ̃jζj |



6 A′′| Im ζ|

for some A,A′, A′′ > 0, because of Lemma 20.
(3) ⇒ (1): This holds by Remark 7. ¥

Remark 22. Note that Proposition 21 holds also if D ≡ 0 (i.e. Q ≡ 0 in the
proof).

Proof of the Main Theorem 1. This proof follows from the Propositions 15,
18 and 21 and from the Remarks 16, 19 and 22. ¥

Let us now consider an example of an algebraic variety defined by a polynomial
of order m > 2:

Example 23. Let (a1, . . . , an) ∈ Cn \ {0} and

V = {(τ, ζ) ∈ C× Cn : τm +
n∑

j=1

ajζ
m
j = 0}.

We claim that V satisfies PL(ω) if and only if m = 2 and aj 6 0 for 1 6 j 6 n.
Indeed, if m > 3 then, taking ζR = (R, 0) ∈ R × Rn−1, max{α1, α2} < µ < 1

and h ∈ Cn with |h| 6 Rµ, we have that

τm = −a1(R + h1)m −
n∑

j=2

ajh
m
j .

Hence we can choose an m-th root of −a1R
m such that

| Im τ(ζR + h)| > δR > Rµ

2
, R À 1.

For such a choice of the m-th root, taking θR = (τ(ζR), ζR) and u ∈ PSH(V )
as in (3), we have that u satisfies (α) and (β) of PL(ω) and hence, if V satisfies
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PL(ω), from (γ):

Rµ

2
6 u(θR) 6 A(ω1(τ(ζR)) + ω2(ζR) + 1)

6 A′(Rα1 + Rα2 + 1)

for some A,A′ > 0, obtaining a contradiction for large R since 0 6 α1, α2 < µ.
The case m = 2, i.e.

τ2 =
n∑

j=1

(−aj)ζ2
j ,

follows from Proposition 15.

Acknowledgement. The authors thank the referee for improving the statement
of Lemma 17 and they thank B.A. Taylor for providing two proofs of it.
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