ON CERTAIN GENERALIZED MODULAR FORMS

Winfried Kohnen

Abstract

The main result of this note is a characterization of those generalized modular functions of weight zero on $\Gamma_{0}(N)$ that have empty divisor, in terms of the growth of the exponents in their q-product expansion.

Keywords: Generalized modular function, q-product expansion, divisor

1. Introduction and statement of results

For $N \in \mathbf{N}$ let $\Gamma_{0}(N)$ be the usual Hecke congruence subgroup of level N consisting of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}:=S L_{2}(\mathbf{Z})$ with $N \mid c$.

Let f be a generalized modular form (GMF) of integral weight k on $\Gamma_{0}(N)$, i.e., f is a holomorphic function on the complex upper half-plane \mathcal{H} which satisfies

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(c z+d)^{k} f(z) \quad\left(\forall\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N)\right)
$$

for some (not necessarily unitary) character $\chi: \Gamma_{0}(N) \rightarrow \mathbf{C}^{*}$, and which is meromorphic at the cusps. We will also require that $\chi(\gamma)=1$ for every parabolic $\gamma \in \Gamma_{0}(N)$ of trace 2.

For more details we refer to [3], where a general study of GMF's was initiated and where a GMF in the above sense was called a PGMF (P for parabolic).

We note that at the cusp infinity such an f has an expansion

$$
f(z)=\sum_{n \geqslant h} a(n) q^{n} \quad(0<|q|<\epsilon)
$$

where $q=e^{2 \pi i z}(z \in \mathcal{H}), h \in \mathbf{Z}$ and $\epsilon>0$.
Contrary to the classical situation where χ is unitary, there exist non-constant GMF's f of weight zero with $\operatorname{div}(f)=\emptyset$ whenever the genus of $\Gamma_{0}(N)$ is at least

[^0]one. Indeed, according to a fundamental result of [3] such f correspond to cusp forms of weight 2 and trivial character, by taking logarithmic derivatives.

Like any complex valued meromorphic function on \mathcal{H} which has period 1 , is meromorphic at infinity and does not vanish identically, f has an infinite product expansion

$$
\begin{equation*}
f(z)=c q^{h} \prod_{n \geqslant 1}\left(1-q^{n}\right)^{c(n)} . \tag{1}
\end{equation*}
$$

Here c is a non-zero constant, h is the order of f at infinity and the q-exponents $c(n)(n \in \mathbf{N})$ are uniquely determined complex numbers. The infinite product in (1) is convergent in a small neighborhood of $q=0[1,2]$. As usual we understand that complex powers are determined by the principal branch of the complex logarithm.

The main result of this note is a characterization of those GMF's of weight zero on $\Gamma_{0}(N)$ that have empty divisors, in terms of the growth of the exponents $c(n)$.

Theorem. Let $f \neq 0$ be a GMF of weight zero on $\Gamma_{0}(N)$. Then $\operatorname{div}(f)=\emptyset$ if and only if

$$
c(n) \ll_{\epsilon} n^{-\frac{1}{2}+\epsilon} \quad(\epsilon>0)
$$

As a straightforward consequence we obtain
Corollary 1. Let f be a non-constant GMF of weight zero on $\Gamma_{0}(N)$ with $\operatorname{div}(f)=\emptyset$. Then the $c(n)(n \in \mathbf{N})$ take infinitely many different values.

The result of Corollary 1 generalizes the main result of [5] where for $N \geqslant 11$ squarefree examples of GMF's f of weight zero on $\Gamma_{0}(N)$ with empty divisors were constructed such that the $c(n)$ take infinitely many different values. Note that in the Theorem in [5] it is merely stated that $\operatorname{div}(f) \subset \mathbf{P}^{1}(\mathbf{Q})$ for those f, but the proof together with [3, Thm. 2 and Supplement] indeed reveals that $\operatorname{div}(f)=\emptyset$.

If f has algebraic Fourier coefficients, then in fact one can sharpen the result of Corollary 1 and prove that the $c(p)$ where p runs over primes only already take infinitely many different values, cf. [7].

Recall that the cusps of $\Gamma_{0}(N)$ are represented by the numbers $\frac{a}{c}$ where c runs over positive divisors of N, and for given c, a runs through integers with $1 \leqslant a \leqslant N,(a, N)=1$ that are inequivalent modulo $\left(c, \frac{N}{c}\right)$.

According to [6], we say that a non-zero GMF f of weight k on $\Gamma_{0}(N)$ satisfies condition (C) if for each $c \mid N$, the order ord $\frac{a}{c} f$ is independent of a. For example, if N is squarefree condition (C) is always satisfied.

If

$$
\Delta(z)=q \prod_{n \geqslant 1}\left(1-q^{n}\right)^{24} \quad(z \in \mathcal{H})
$$

is the discriminant function of weight 12 on Γ_{1}, then a meromorphic modular form of type

$$
\prod_{\ell N} \Delta(t)^{n t}
$$

with integers n_{t} will be called a Δ-product. (Thus a Δ-product is the 24 th power of what usually is called an η-product.) Note that the exponents of a Δ-product take only finitely many different values.

Corollary 2. Let $f \neq 0$ be a GMF of integral weight k on $\Gamma_{0}(N)$ and suppose that f satisfies condition (C). Then $\operatorname{div}(f) \subset \mathbf{P}^{1}(\mathbf{Q})$ if and only if

$$
c(n)=\frac{1}{M} d(n)+\mathcal{O}_{\epsilon}\left(n^{-\frac{1}{2}+\epsilon}\right) \quad(\epsilon>0)
$$

where M is a non-zero integer and the $d(n)(n \in \mathbf{N})$ are the exponents of $a \Delta$-product of weight $k M$ on $\Gamma_{0}(N)$.

2. Proof of Theorem

We let

$$
\theta=\frac{1}{2 \pi i} \frac{d}{d z}=q \frac{d}{d q}
$$

be Ramanujan's θ-operator and set

$$
g:=\frac{\theta f}{f} .
$$

Then g is a meromorphic modular form of weight 2 on $\Gamma_{0}(N)$ with trivial character, holomorphic at the cusps, and g is a cusp form if and only if f has empty divisor [3]. If $b(n)(n \in \mathbf{N})$ are the Fourier coefficients of g, then the identity

$$
b(n)= \begin{cases}h, & \text { if } n=0 \tag{2}\\ -\sum_{d \mid n} d c(d), & \text { if } n \geqslant 1\end{cases}
$$

holds $[1,2]$. Now suppose that $\operatorname{div}(f)=\emptyset$. Then by Deligne's estimate

$$
b(n) \ll_{\epsilon} n^{\frac{1}{2}+\epsilon} \quad(\epsilon>0) .
$$

Inverting the second formula in (2) we find

$$
c(n)=-\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) b(d) \quad(n \geqslant 1)
$$

and hence

$$
c(n) \lll \epsilon \frac{1}{n} \sum_{d \mid n} d^{\frac{1}{2}+\epsilon}<_{\epsilon} \frac{1}{n} \cdot n^{\frac{1}{2}+\epsilon} \sigma_{0}(n) \ll_{\epsilon} n^{-\frac{1}{2}+2 \epsilon} .
$$

Now we give the proof in the other direction which is a bit more involved. Suppose that

$$
\begin{equation*}
c(n) \ll_{\epsilon} n^{-\frac{1}{2}+\epsilon} \quad(\epsilon>0) . \tag{3}
\end{equation*}
$$

Then from (2) we see that the Fourier series of g converges on \mathcal{H}, so g is holomorphic on \mathcal{H}. Also from (2) and (3) we infer as above that

$$
b(n) \lll \epsilon \sum_{d \mid n} d^{\frac{1}{2}+\epsilon}<_{\epsilon} n^{\frac{1}{2}+2 \epsilon} \quad(\epsilon>0)
$$

Therefore it will be sufficient to show the following
Proposition. Let g be a holomorphic modular form of weight 2 on $\Gamma_{0}(N)$ with trivial character and suppose that its Fourier coefficients $b(n)(n \geqslant 1)$ satisfy

$$
\begin{equation*}
b(n) \ll_{\epsilon} n^{\frac{1}{2}+\epsilon} \quad(\epsilon>0) . \tag{4}
\end{equation*}
$$

Then g is a cusp form.
Proof. The space $\mathcal{M}_{2}(N)$ of holomorphic modular forms of weight 2 on $\Gamma_{0}(N)$ splits up into a direct sum

$$
\mathcal{M}_{2}(N)=\mathcal{E}_{2}(N) \oplus S_{2}(N)
$$

where $\mathcal{E}_{2}(N)$ is the subspace generated by Eisenstein series and $S_{2}(N)$ is the subspace of cusp forms. Since by Deligne's estimate the Fourier coefficients of cusp forms satisfy (4), we only have to show that if g is in $\mathcal{E}_{2}(N)$ and g satisfies (4), then $g=0$.

We let

$$
E_{2}(z)=1-24 \sum_{n \geqslant 1} \sigma_{1}(n) q^{n} \quad(z \in \mathcal{H})
$$

be the nearly holomorphic Eisenstein series of weight 2 on Γ_{1}. For each $t \mid N$, we define

$$
\begin{equation*}
E_{2, t}:=E_{2}-t E_{2} \mid V_{t}, \tag{5}
\end{equation*}
$$

where V_{t} is the operator given on functions $h: \mathcal{H} \rightarrow \mathbf{C}$ by $\left(h \mid V_{t}\right)(z):=h(t z)$. Then $E_{2, t}$ is in $M_{2}(t)$.

If N is squarefree, our claim is easy to see, since in this case as is well-known a basis for $\mathcal{E}_{2}(N)$ is given by

$$
\left\{E_{2, t}|t| N, t>1\right\}
$$

and one can use induction on the number of prime factors of N, together with $\sigma_{1}(n) \gg n$ and choosing n in an appropriate and obvious way.

Now let N be arbitrary. One has

$$
\operatorname{dim} \mathcal{E}_{2}(N)=\sigma_{\infty}(N)-1
$$

where

$$
\sigma_{\infty}(N)=\sum_{t \mid N} \phi\left(\left(t, \frac{N}{t}\right)\right)
$$

is the number of cusps of $\Gamma_{0}(N)$. A basis for $\mathcal{E}_{2}(N)$ can be constructed as follows, for details we (partly) refer to [8, sect. 4.7].

If χ is a primitive Dirichlet character modulo M with $M>1$, we put

$$
\begin{equation*}
E_{2, \chi}(z):=\sum_{n \geqslant 1}\left(\sum_{d \mid n} \chi\left(\frac{n}{d}\right) \bar{\chi}(d) d\right) q^{n} . \tag{6}
\end{equation*}
$$

Then $E_{2, \chi}$ is in $\mathcal{M}_{2}\left(M^{2}\right)$. Note that the Hecke L-function attached to $E_{2, \chi}$ is

$$
L(s, \chi) L(s-1, \bar{\chi})
$$

where $L(s, \chi)$ is the Dirichlet L-function attached to χ.
We have

$$
\begin{equation*}
\mathcal{E}_{2}(N)=\left(\bigoplus_{\chi \text { primitive }}^{\bmod M, M^{2} \mid N, M>1} \mid \mathcal{E}_{2}^{\chi}(N)\right) \oplus \mathcal{E}_{2}^{\chi_{0}}(N) \tag{7}
\end{equation*}
$$

where χ runs over all primitive Dirichlet characters modulo M with $M^{2} \mid N, M>1$ and where

$$
\begin{aligned}
\mathcal{E}_{2}^{\chi}(N) & : \left.=\bigoplus_{t \left\lvert\, \frac{N}{M^{2}}\right.} \mathbf{C} E_{2, \chi} \right\rvert\, V_{t}, \\
\mathcal{E}_{2}^{\chi_{0}}(N) & :=\bigoplus_{t \mid N, t>1} \mathbf{C} E_{2, t}
\end{aligned}
$$

and $E_{2, t}$ is defined by (5).
If \mathcal{H}_{N} is the Hecke algebra generated by all Hecke operators T_{m} with $m \geqslant 1$, $(m, N)=1$, then each direct summand on the right-hand side of (7) is an eigenspace of \mathcal{H}_{N}, and different eigenspaces have different Hecke characters. Hence for each of these eigenspaces we can find $T \in \mathcal{H}_{N}$ that acts on this eigenspace by multiplication with a non-zero scalar and annihilates all the other eigenspaces.

Now observe that if g satisfies (4), so does $g \mid T$ for any $T \in \mathcal{H}_{N}$, as immediately follows form the well-known action of the T_{m} on Fourier coefficients.

Hence it is sufficient to take any g satisfying (4) in one of the eigenspaces and to show that $g=0$.

If a function $g \in \mathcal{E}_{2}^{\chi_{0}}(N)$ satisfies (4), then one can argue in a similar way as above to deduce that $g=0$.

Now let χ be a primitive Dirichlet character modulo M, where $M>1$ and $M^{2} \mid N$ and suppose that the Fourier coefficients of

$$
g=\sum_{t \mid K} \lambda_{t} E_{2, \chi} \mid V_{t} \quad\left(\lambda_{t} \in \mathbf{C}\right)
$$

satisfy (4), where we have abbreviated $K:=\frac{N}{M^{2}}$. The arguing is similar as above, but for the reader's convenience we give the details here. By (6) we have

$$
\begin{equation*}
\sum_{t \mid K} \lambda_{t}\left(\sum_{d \left\lvert\, \frac{n}{t}\right.} \chi\left(\frac{n}{t d}\right) \bar{\chi}(d) d\right)<_{\epsilon} n^{\frac{1}{2}+\epsilon} \quad(\epsilon>0) \tag{8}
\end{equation*}
$$

To prove that $\lambda_{t}=0$ for all $t \mid K$ we use induction on the number $r \geqslant 0$ of prime factors of t, counted with multiplicities. At the r-th step we will show that $\lambda_{t}=0$ for all $t \mid K$ where t has r prime factors.

If $r=0$, i.e. $t=1$ we choose $n=p$ a prime with $p \equiv 1(\bmod N)$. Then from (8) we obtain immediately

$$
\lambda_{t}(1+p)<_{\epsilon} p^{\frac{1}{2}+\epsilon} \quad(\epsilon>0) .
$$

Invoking Dirichlet's Prime Number Theorem and letting p going to infinity, we obtain $\lambda_{1}=0$.

Now suppose that $r \geqslant 1$ and $\lambda_{\tilde{t}}=0$ had already been shown for all divisors \tilde{t} of K with at most $r-1$ prime factors. Suppose that $t=p_{1} \ldots p_{r}$ and take n of the form $n=p_{1} \ldots p_{r} \cdot p$, where p is a prime with $p \equiv 1(\bmod N)$. Then by the induction hypothesis the left-hand side of (8) is equal to

$$
\lambda_{t}(1+p) \ll_{\epsilon} p^{\frac{1}{2}+\epsilon} \quad(\epsilon>0)
$$

hence with p going to infinity we obtain $\lambda_{t}=0$.

3. Proof of Corollaries

The proof of Corollary 1 is immediate. Indeed, if f is a GMF of weight zero on $\Gamma_{0}(N)$ with $\operatorname{div}(f)=\emptyset$ and the $c(n)$ take only finitely many values, then by the Theorem we must have $c(n)=0$ for $n \gg 1$. By (2) therefore the $b(n)$ are bounded, hence the Rankin-Selberg zeta function attached to g converges for $\operatorname{Re}(s)>1$. However, the latter has a pole at $s=2$ with residue (up to a universal constant) equal to the Petersson scalar product $\langle g, g\rangle$. Hence $g=0$ and so f is constant, a contradiction.

To prove Corollary 2, we proceed as in [4] for N squarefree resp. as in [6] for arbitrary N. Suppose that $\operatorname{div}(f) \subset \mathbf{P}^{1}(\mathbf{Q})$. Then under the condition (C) there exists a non-zero integer M and a Δ-product F of weight $k M$ on $\Gamma_{0}(N)$ such that $\frac{f^{M}}{F}$ is a GMF of weight zero on $\Gamma_{0}(N)$ with empty divisor. Hence our assertion follows from the Theorem.

Conversely, suppose that

$$
c(n)=\frac{1}{M} d(n)+\mathcal{O}_{\epsilon}\left(n^{-\frac{1}{2}+\epsilon}\right) \quad(\epsilon>0)
$$

where the $d(n)$ are the exponents of a Δ-product F of weight $k M$ on $\Gamma_{0}(N)$. Then

$$
G:=\frac{f^{M}}{F}
$$

is a GMF of weight zero on $\Gamma_{0}(N)$ with n-th q-exponents bounded by $n^{-\frac{1}{2}+\epsilon}$ $(\epsilon>0)$, hence by the Theorem $\operatorname{div}(G)=\emptyset$. Since the divisor of F is supported at the cusps, the same must be true for f.

References

[1] J.H. Bruinier, W. Kohnen and K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), 552566.
[2] W. Eholzer and N.-P. Skoruppa, Product expansions of conformal characters, Phys. Lett. B. 388 (1996), 82-89.
[3] M. Knopp and G. Mason, Generalized modular forms, J. of Number Theory 99 (2003), 1-28.
[4] W. Kohnen, On a certain class of modular functions, Proc. Amer. Math. Soc. 133 (2005) no. 1, 65-70.
[5] W. Kohnen and Y. Martin, On product expansions of generalized modular forms, Ramanujan J. 15 (2008), 103-107.
[6] W. Kohnen and G. Mason, On generalized modular forms and their applications, Nagoya Math. J. 192 (2008), 119-136.
[7] W. Kohnen and J. Meher, Some remarks on generalized modular forms, to appear in Ramanujan Journal.
[8] T. Miyake, Modular Forms, Springer Berlin Heidelberg New York, 1989.

Address: Mathematisches Institut der Universität Heidelberg, INF 288, D-69120 Heidelberg, German.
E-mail: winfried@mathi.uni-heidelberg.de
Received: 7 January 2010; revised: 21 January 2010

[^0]: Mathematics Subject Classification: primary: 11F30

