ON CERTAIN GENERALIZED MODULAR FORMS

WINFRIED KOHNEN

Abstract: The main result of this note is a characterization of those generalized modular functions of weight zero on $\Gamma_0(N)$ that have empty divisor, in terms of the growth of the exponents in their *q*-product expansion.

Keywords: Generalized modular function, q-product expansion, divisor

1. Introduction and statement of results

For $N \in \mathbf{N}$ let $\Gamma_0(N)$ be the usual Hecke congruence subgroup of level N consisting of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1 := SL_2(\mathbf{Z})$ with N|c.

Let f be a generalized modular form (GMF) of integral weight k on $\Gamma_0(N)$, i.e., f is a holomorphic function on the complex upper half-plane \mathcal{H} which satisfies

$$f\left(\frac{az+b}{cz+d}\right) = \chi \begin{pmatrix} a & b \\ c & d \end{pmatrix} (cz+d)^k f(z) \qquad (\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N))$$

for some (not necessarily unitary) character $\chi : \Gamma_0(N) \to \mathbf{C}^*$, and which is meromorphic at the cusps. We will also require that $\chi(\gamma) = 1$ for every parabolic $\gamma \in \Gamma_0(N)$ of trace 2.

For more details we refer to [3], where a general study of GMF's was initiated and where a GMF in the above sense was called a PGMF (P for parabolic).

We note that at the cusp infinity such an f has an expansion

$$f(z) = \sum_{n \ge h} a(n)q^n \qquad (0 < |q| < \epsilon)$$

where $q = e^{2\pi i z} (z \in \mathcal{H}), h \in \mathbb{Z}$ and $\epsilon > 0$.

Contrary to the classical situation where χ is unitary, there exist non-constant GMF's f of weight zero with $div(f) = \emptyset$ whenever the genus of $\Gamma_0(N)$ is at least

Mathematics Subject Classification: primary: 11F30

24 Winfried Kohnen

one. Indeed, according to a fundamental result of [3] such f correspond to cusp forms of weight 2 and trivial character, by taking logarithmic derivatives.

Like any complex valued meromorphic function on \mathcal{H} which has period 1, is meromorphic at infinity and does not vanish identically, f has an infinite product expansion

$$f(z) = cq^{h} \prod_{n \ge 1} (1 - q^{n})^{c(n)}.$$
 (1)

Here c is a non-zero constant, h is the order of f at infinity and the q-exponents $c(n) (n \in \mathbf{N})$ are uniquely determined complex numbers. The infinite product in (1) is convergent in a small neighborhood of q = 0 [1,2]. As usual we understand that complex powers are determined by the principal branch of the complex logarithm.

The main result of this note is a characterization of those GMF's of weight zero on $\Gamma_0(N)$ that have empty divisors, in terms of the growth of the exponents c(n).

Theorem. Let $f \neq 0$ be a GMF of weight zero on $\Gamma_0(N)$. Then $div(f) = \emptyset$ if and only if

$$c(n) \ll_{\epsilon} n^{-\frac{1}{2}+\epsilon} \qquad (\epsilon > 0).$$

As a straightforward consequence we obtain

Corollary 1. Let f be a non-constant GMF of weight zero on $\Gamma_0(N)$ with $div(f) = \emptyset$. Then the $c(n)(n \in \mathbf{N})$ take infinitely many different values.

The result of Corollary 1 generalizes the main result of [5] where for $N \ge 11$ squarefree examples of GMF's f of weight zero on $\Gamma_0(N)$ with empty divisors were constructed such that the c(n) take infinitely many different values. Note that in the Theorem in [5] it is merely stated that $div(f) \subset \mathbf{P}^1(\mathbf{Q})$ for those f, but the proof together with [3, Thm. 2 and Supplement] indeed reveals that $div(f) = \emptyset$.

If f has algebraic Fourier coefficients, then in fact one can sharpen the result of Corollary 1 and prove that the c(p) where p runs over primes only already take infinitely many different values, cf. [7].

Recall that the cusps of $\Gamma_0(N)$ are represented by the numbers $\frac{a}{c}$ where c runs over positive divisors of N, and for given c, a runs through integers with $1 \leq a \leq N$, (a, N) = 1 that are inequivalent modulo $(c, \frac{N}{c})$.

According to [6], we say that a non-zero GMF f of weight k on $\Gamma_0(N)$ satisfies condition (C) if for each c|N, the order $ord_{\frac{a}{c}}f$ is independent of a. For example, if N is squarefree condition (C) is always satisfied.

If

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} \qquad (z \in \mathcal{H})$$

is the discriminant function of weight 12 on Γ_1 , then a meromorphic modular form of type

$$\prod_{t|N} \Delta(tz)^{n_t}$$

with integers n_t will be called a Δ -product. (Thus a Δ -product is the 24th power of what usually is called an η -product.) Note that the exponents of a Δ -product take only finitely many different values.

Corollary 2. Let $f \neq 0$ be a GMF of integral weight k on $\Gamma_0(N)$ and suppose that f satisfies condition (C). Then $div(f) \subset \mathbf{P}^1(\mathbf{Q})$ if and only if

$$c(n) = \frac{1}{M}d(n) + \mathcal{O}_{\epsilon}(n^{-\frac{1}{2}+\epsilon}) \qquad (\epsilon > 0)$$

where M is a non-zero integer and the $d(n)(n \in \mathbf{N})$ are the exponents of a Δ -product of weight kM on $\Gamma_0(N)$.

2. Proof of Theorem

We let

$$\theta = \frac{1}{2\pi i} \frac{d}{dz} = q \frac{d}{dq}$$

be Ramanujan's θ -operator and set

$$g := \frac{\theta f}{f}.$$

Then g is a meromorphic modular form of weight 2 on $\Gamma_0(N)$ with trivial character, holomorphic at the cusps, and g is a cusp form if and only if f has empty divisor [3]. If $b(n)(n \in \mathbf{N})$ are the Fourier coefficients of g, then the identity

$$b(n) = \begin{cases} h, & \text{if } n = 0\\ -\sum_{d|n} dc(d), & \text{if } n \ge 1 \end{cases}$$

$$(2)$$

holds [1,2]. Now suppose that $div(f) = \emptyset$. Then by Deligne's estimate

$$b(n) \ll_{\epsilon} n^{\frac{1}{2}+\epsilon} \qquad (\epsilon > 0).$$

Inverting the second formula in (2) we find

$$c(n) = -\frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) b(d) \qquad (n \ge 1)$$

and hence

$$c(n) \ll_{\epsilon} \frac{1}{n} \sum_{d|n} d^{\frac{1}{2}+\epsilon} \ll_{\epsilon} \frac{1}{n} \cdot n^{\frac{1}{2}+\epsilon} \sigma_0(n) \ll_{\epsilon} n^{-\frac{1}{2}+2\epsilon}$$

Now we give the proof in the other direction which is a bit more involved. Suppose that

$$c(n) \ll_{\epsilon} n^{-\frac{1}{2}+\epsilon} \qquad (\epsilon > 0). \tag{3}$$

Then from (2) we see that the Fourier series of g converges on \mathcal{H} , so g is holomorphic on \mathcal{H} . Also from (2) and (3) we infer as above that

$$b(n) \ll_{\epsilon} \sum_{d|n} d^{\frac{1}{2}+\epsilon} \ll_{\epsilon} n^{\frac{1}{2}+2\epsilon} \qquad (\epsilon > 0).$$

Therefore it will be sufficient to show the following

Proposition. Let g be a holomorphic modular form of weight 2 on $\Gamma_0(N)$ with trivial character and suppose that its Fourier coefficients $b(n)(n \ge 1)$ satisfy

$$b(n) \ll_{\epsilon} n^{\frac{1}{2} + \epsilon} \qquad (\epsilon > 0). \tag{4}$$

Then g is a cusp form.

Proof. The space $\mathcal{M}_2(N)$ of holomorphic modular forms of weight 2 on $\Gamma_0(N)$ splits up into a direct sum

$$\mathcal{M}_2(N) = \mathcal{E}_2(N) \oplus S_2(N)$$

where $\mathcal{E}_2(N)$ is the subspace generated by Eisenstein series and $S_2(N)$ is the subspace of cusp forms. Since by Deligne's estimate the Fourier coefficients of cusp forms satisfy (4), we only have to show that if g is in $\mathcal{E}_2(N)$ and g satisfies (4), then g = 0.

We let

$$E_2(z) = 1 - 24 \sum_{n \ge 1} \sigma_1(n) q^n \qquad (z \in \mathcal{H})$$

be the nearly holomorphic Eisenstein series of weight 2 on Γ_1 . For each t|N, we define

$$E_{2,t} := E_2 - tE_2 | V_t, \tag{5}$$

where V_t is the operator given on functions $h : \mathcal{H} \to \mathbf{C}$ by $(h|V_t)(z) := h(tz)$. Then $E_{2,t}$ is in $M_2(t)$.

If N is squarefree, our claim is easy to see, since in this case as is well-known a basis for $\mathcal{E}_2(N)$ is given by

$$\{E_{2,t} \mid t \mid N, t > 1\},\$$

and one can use induction on the number of prime factors of N, together with $\sigma_1(n) \gg n$ and choosing n in an appropriate and obvious way.

Now let N be arbitrary. One has

$$\dim \mathcal{E}_2(N) = \sigma_\infty(N) - 1$$

where

$$\sigma_{\infty}(N) = \sum_{t|N} \phi((t, \frac{N}{t}))$$

is the number of cusps of $\Gamma_0(N)$. A basis for $\mathcal{E}_2(N)$ can be constructed as follows, for details we (partly) refer to [8, sect. 4.7].

If χ is a primitive Dirichlet character modulo M with M > 1, we put

$$E_{2,\chi}(z) := \sum_{n \ge 1} \left(\sum_{d|n} \chi\left(\frac{n}{d}\right) \overline{\chi}(d) d \right) q^n.$$
(6)

Then $E_{2,\chi}$ is in $\mathcal{M}_2(M^2)$. Note that the Hecke *L*-function attached to $E_{2,\chi}$ is

$$L(s,\chi)L(s-1,\overline{\chi}),$$

where $L(s, \chi)$ is the Dirichlet L-function attached to χ .

We have

$$\mathcal{E}_2(N) = \left(\bigoplus_{\chi \text{ primitive } modM, M^2 | N, M > 1} \mathcal{E}_2^{\chi}(N)\right) \oplus \mathcal{E}_2^{\chi_0}(N)$$
(7)

where χ runs over all primitive Dirichlet characters modulo M with $M^2|N,M>1$ and where

$$\mathcal{E}_{2}^{\chi}(N) := \bigoplus_{\substack{t \mid \frac{N}{M^{2}}}} \mathbf{C} E_{2,\chi} | V_{t},$$
$$\mathcal{E}_{2}^{\chi_{0}}(N) := \bigoplus_{\substack{t \mid N, t > 1}} \mathbf{C} E_{2,t}$$

and $E_{2,t}$ is defined by (5).

If \mathcal{H}_N is the Hecke algebra generated by all Hecke operators T_m with $m \ge 1$, (m, N) = 1, then each direct summand on the right-hand side of (7) is an eigenspace of \mathcal{H}_N , and different eigenspaces have different Hecke characters. Hence for each of these eigenspaces we can find $T \in \mathcal{H}_N$ that acts on this eigenspace by multiplication with a non-zero scalar and annihilates all the other eigenspaces.

Now observe that if g satisfies (4), so does g|T for any $T \in \mathcal{H}_N$, as immediately follows form the well-known action of the T_m on Fourier coefficients.

Hence it is sufficient to take any g satisfying (4) in one of the eigenspaces and to show that g = 0.

If a function $g \in \mathcal{E}_2^{\chi_0}(N)$ satisfies (4), then one can argue in a similar way as above to deduce that g = 0.

Now let χ be a primitive Dirichlet character modulo M, where M > 1 and $M^2|N$ and suppose that the Fourier coefficients of

$$g = \sum_{t|K} \lambda_t E_{2,\chi} | V_t \qquad (\lambda_t \in \mathbf{C})$$

satisfy (4), where we have abbreviated $K := \frac{N}{M^2}$. The arguing is similar as above, but for the reader's convenience we give the details here. By (6) we have

$$\sum_{t|K} \lambda_t \left(\sum_{d|\frac{n}{t}} \chi\left(\frac{n}{td}\right) \overline{\chi}(d) d \right) \ll_{\epsilon} n^{\frac{1}{2} + \epsilon} \qquad (\epsilon > 0).$$
(8)

28 Winfried Kohnen

To prove that $\lambda_t = 0$ for all t | K we use induction on the number $r \ge 0$ of prime factors of t, counted with multiplicities. At the r-th step we will show that $\lambda_t = 0$ for all t | K where t has r prime factors.

If r = 0, i.e. t = 1 we choose n = p a prime with $p \equiv 1 \pmod{N}$. Then from (8) we obtain immediately

$$\lambda_t (1+p) \ll_{\epsilon} p^{\frac{1}{2}+\epsilon} \qquad (\epsilon > 0).$$

Invoking Dirichlet's Prime Number Theorem and letting p going to infinity, we obtain $\lambda_1 = 0$.

Now suppose that $r \ge 1$ and $\lambda_{\tilde{t}} = 0$ had already been shown for all divisors \tilde{t} of K with at most r-1 prime factors. Suppose that $t = p_1 \dots p_r$ and take n of the form $n = p_1 \dots p_r \cdot p$, where p is a prime with $p \equiv 1 \pmod{N}$. Then by the induction hypothesis the left-hand side of (8) is equal to

$$\lambda_t (1+p) \ll_{\epsilon} p^{\frac{1}{2}+\epsilon} \qquad (\epsilon > 0),$$

hence with p going to infinity we obtain $\lambda_t = 0$.

3. Proof of Corollaries

The proof of Corollary 1 is immediate. Indeed, if f is a GMF of weight zero on $\Gamma_0(N)$ with $div(f) = \emptyset$ and the c(n) take only finitely many values, then by the Theorem we must have c(n) = 0 for $n \gg 1$. By (2) therefore the b(n) are bounded, hence the Rankin-Selberg zeta function attached to g converges for Re(s) > 1. However, the latter has a pole at s = 2 with residue (up to a universal constant) equal to the Petersson scalar product $\langle g, g \rangle$. Hence g = 0 and so f is constant, a contradiction.

To prove Corollary 2, we proceed as in [4] for N squarefree resp. as in [6] for arbitrary N. Suppose that $div(f) \subset \mathbf{P}^1(\mathbf{Q})$. Then under the condition (C) there exists a non-zero integer M and a Δ -product F of weight kM on $\Gamma_0(N)$ such that $\frac{f^M}{F}$ is a GMF of weight zero on $\Gamma_0(N)$ with empty divisor. Hence our assertion follows from the Theorem.

Conversely, suppose that

$$c(n) = \frac{1}{M}d(n) + \mathcal{O}_{\epsilon}(n^{-\frac{1}{2}+\epsilon}) \qquad (\epsilon > 0)$$

where the d(n) are the exponents of a Δ -product F of weight kM on $\Gamma_0(N)$. Then

$$G := \frac{f^M}{F}$$

is a GMF of weight zero on $\Gamma_0(N)$ with *n*-th *q*-exponents bounded by $n^{-\frac{1}{2}+\epsilon}$ $(\epsilon > 0)$, hence by the Theorem $div(G) = \emptyset$. Since the divisor of *F* is supported at the cusps, the same must be true for *f*.

References

- J.H. Bruinier, W. Kohnen and K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), 552– 566.
- [2] W. Eholzer and N.-P. Skoruppa, Product expansions of conformal characters, Phys. Lett. B. 388 (1996), 82–89.
- [3] M. Knopp and G. Mason, *Generalized modular forms*, J. of Number Theory 99 (2003), 1–28.
- [4] W. Kohnen, On a certain class of modular functions, Proc. Amer. Math. Soc. 133 (2005) no. 1, 65–70.
- [5] W. Kohnen and Y. Martin, On product expansions of generalized modular forms, Ramanujan J. 15 (2008), 103–107.
- [6] W. Kohnen and G. Mason, On generalized modular forms and their applications, Nagoya Math. J. 192 (2008), 119–136.
- [7] W. Kohnen and J. Meher, *Some remarks on generalized modular forms*, to appear in Ramanujan Journal.
- [8] T. Miyake, Modular Forms, Springer Berlin Heidelberg New York, 1989.

Address: Mathematisches Institut der Universität Heidelberg, INF 288, D-69120 Heidelberg, German.

E-mail: winfried@mathi.uni-heidelberg.de

Received: 7 January 2010; revised: 21 January 2010