COINCIDENCE POINT RESULTS IN NONCONVEX DOMAINS OF q-NORMED SPACES

HEMANT KUMAR NASHINE, MOHAMMAD SAEED KHAN[†]

Abstract: Coincidence points results for families of four relatively nonexpansive mappings on nonconvex domains in *q*-normed spaces have been obtained in the present work. As applications, best approximation results have been given. These results extend and generalize previously known results to a more general class of non commuting relatively nonexpansive mappings in a space which is not necessarily locally convex.

Keywords: Best approximant, common fixed point, compatible maps, contractive jointly continuous family, *q*-normed space, relatively nonexpansive mappings.

1. Introduction

The concept of relatively nonexpansive maps for pair of maps was given by Park [14]. It was extended by Jungck [8] for families of four self maps (non-continuous). By using this concept he proved the coincidence and fixed points results for starshaped domain and generalized the results of Dotson [2].

Fixed point theorems have been applied in the field of invariant approximation theory for last four decades and several interesting and valuable results have been studied.

Meinardus [10] was the first to employ a fixed-point theorem of Schauder to establish the existence of an invariant approximation. Further, Brosowski [1] obtained a celebrated result and generalized the Meinardus's result. Later, several results [5, 15] have been proved in the direction of Brosowski [1]. In the year 1988, Sahab et al. [13] extended the result of Hicks and Humpheries [5] and Singh [15] by considering one linear and the other nonexpansive mappings.

In this context, it may be mentioned that Dotson [2] proved the existence of fixed point for nonexpansive mapping. He further extended his result without starshapedness under non-convex condition [3]. Mukherjee and Som [11] used it to prove existence of fixed point and further applied it for proving existence of best

¹⁹⁹¹ Mathematics Subject Classification: 41A50, 47H10, 54H25.

[†] corrosponding author

8 Hemant Kumar Nashine, Mohammad Saeed Khan

approximant. This result was an extension of Singh [15] without starshapedness condition.

In this paper, coincidence point results of four relatively nonexpansive self mappings on nonconvex domains in *q*-normed spaces have been obtained. These results extend and improve the results of Jungck [8]. As applications, best approximation results have also been established. These results extend and generalize various existing known results in the literature to a more general class of non commuting relatively nonexpansive mappings in a space which is not necessarily locally convex space

2. Preliminaries

Let \mathcal{X} be a linear space. A *q*-norm on \mathcal{X} is a real-valued function $\|.\|_q$ on \mathcal{X} with $0 < q \leq 1$, satisfying the following conditions:

(a) $||x||_q \ge 0$ and $||x||_q = 0$ iff x = 0,

(b)
$$\|\lambda x\|_q = |\lambda|^q \|x\|_q$$
,

(c) $||x+y||_q \leq ||x||_q + ||y||_q$,

for all $x, y \in \mathcal{X}$ and all scalars λ . The pair $(\mathcal{X}, \|.\|_q)$ is called a *q*-normed spaces. It is a metric space with $d_q(x, y) = \|x - y\|_q$ for all $x, y \in \mathcal{X}$, defining a translation invariant metric d_q on \mathcal{X} . If q = 1, we obtain the concept of a normed linear space. It is well-known that the topology of every Hausdorff locally bounded topological linear space is given by some *q*-norm, $0 < q \leq 1$. The spaces l_q and $\mathcal{L}_q[0, 1]$, $0 < q \leq 1$ are *q*-normed spaces. A *q*-normed space is not necessarily a locally convex space. Recall that, if \mathcal{X} is a topological linear space, then its continuous dual space \mathcal{X}^* is said to separate the points of \mathcal{X} , if for each $x \neq 0$ in \mathcal{X} , there exists an $\mathcal{I} \in \mathcal{X}^*$ such that $\mathcal{I}x \neq 0$. In this case the weak topology on \mathcal{X} is well-defined. We mention that, if \mathcal{X} is not locally convex, then \mathcal{X}^* need not separate the points of \mathcal{X} . For example, if $\mathcal{X} = \mathcal{L}_q[0,1]$, 0 < q < 1, then $\mathcal{X}^* = \{0\}$ [12, pp. 36–37]. However, there are some non-locally convex spaces (such as the *q*-normed space $l_q, 0 < q < 1$) whose dual separates the points [6].

Let \mathcal{X} be a metric space and let \mathcal{C} be a nonempty subset of \mathcal{X} . Let $x \in \mathcal{X}$. An element $y \in \mathcal{C}$ is called a best \mathcal{C} -approximant to $x \in \mathcal{X}$ if

$$d(x,y) = dist(x,\mathcal{C}) = \inf\{d(x,z) : z \in \mathcal{C}\}.$$

The set of best C-approximants to x is denoted by $\mathcal{P}_{\mathcal{C}}(x_0)$ and is defined as $\mathcal{P}_{\mathcal{C}}(x_0) = \{y \in \mathcal{C} : d(x, y) = dist(x, \mathcal{C})\}$. Let $\mathcal{I}, \mathcal{T} : \mathcal{C} \to \mathcal{C}$ be two mappings. A mapping $\mathcal{A} : \mathcal{C} \to \mathcal{C}$ is called an $(\mathcal{I}, \mathcal{T})$ -contraction if there exists $0 \leq k < 1$ such that $d(\mathcal{A}x, \mathcal{A}y) \leq kd(\mathcal{I}x, \mathcal{T}y)$ for any $x, y \in \mathcal{C}$. If k = 1, then \mathcal{A} is called $(\mathcal{I}, \mathcal{T})$ nonexpansive. Also if $\mathcal{T} = \mathcal{I}$, we say that \mathcal{A} is called \mathcal{I} -nonexpansive. Let $\mathcal{A}, \mathcal{B}, \mathcal{I}$ and \mathcal{T} be self maps of \mathcal{C} . Mappings \mathcal{A} and \mathcal{B} are nonexpansive relatively [8] to \mathcal{I} and \mathcal{T} iff $d(\mathcal{A}x, \mathcal{B}y) \leq d(\mathcal{I}x, \mathcal{T}y)$ for all $x, y \in \mathcal{C}$. If $\mathcal{B} = \mathcal{A}$ and $\mathcal{T} = \mathcal{I}$, we say that \mathcal{A} is \mathcal{I} -nonexpansive. A point $x \in \mathcal{C}$ is a common fixed point(coincidence point) of \mathcal{I} and \mathcal{T} if $x = \mathcal{I}x = \mathcal{T}x(\mathcal{I}x = \mathcal{T}x)$. The set of coincidence points of \mathcal{I} and \mathcal{T} is denoted by $\Upsilon(\mathcal{I}, \mathcal{T})$. The pair $(\mathcal{I}, \mathcal{T})$ is called (1) commuting if $\mathcal{IT}x = \mathcal{TI}x$ for all $x \in \mathcal{C}$; (2) compatible [7, 8] if $\lim_n d(\mathcal{TI}x_n, \mathcal{IT}x_n) = 0$ when $\{x_n\}$ is a sequence such that $\lim_n \mathcal{T}x_n = \lim_n \mathcal{I}x_n = t$ for some t in \mathcal{C} . Every commuting pair of mappings is compatible but the converse is not true in general [7, 8]. The set of fixed points of $\mathcal{T}(\text{resp. }\mathcal{I})$ is denoted by $\mathcal{F}(\mathcal{T})$ (resp. $\mathcal{F}(\mathcal{I})$). A subset \mathcal{C} of a linear space \mathcal{X} is said to be starshaped, if there exists at least one point $p \in \mathcal{C}$ such that $\lambda x + (1 - \lambda)p \in \mathcal{C}$, for all $x \in \mathcal{C}$ and $0 \leq \lambda \leq 1$. In this case p is called the starcenter of \mathcal{C} . Each convex set is starshaped with respect to each of its points, but not conversely.

Further, definition providing the notion of contractive jointly continuous family introduced by Dotson [3] may be written as:

Let \mathcal{C} be a subset of metric space \mathcal{X} and $\Gamma = \{f_{\alpha}\}_{\alpha \in \mathcal{C}}$ a family of functions from [0,1] into \mathcal{C} such that $f_{\alpha}(1) = \alpha$ for each $\alpha \in \mathcal{C}$.

The family Γ is said to be contractive, if there exists a function $\phi : (0,1) \to (0,1)$ such that for all $\alpha, \beta \in \mathcal{C}$ and all $t \in (0,1)$, we have

$$d(f_{\alpha}(t), f_{\beta}(t)) \leq \phi(t)d(\alpha, \beta)$$

The family Γ is said to be jointly continuous if $t \to t_0$ in [0, 1] and $\alpha \to \alpha_0$ in C, then $f_{\alpha}(t) \to f_{\alpha_0}(t_0)$.

Remark 2.1. In the light of the comment given by Dotson [3] and Khan et al. [9] that if \mathcal{X} is a *q*-normed space, $\mathcal{C} \subseteq \mathcal{X}$ is *p*-starshaped and $f_{\alpha}(t) = (1-t)p + t\alpha$, $(\alpha \in \mathcal{C}, t \in [0, 1])$, then $\{f_{\alpha}\}_{\alpha \in \mathcal{C}}$ is a contractive jointly continuous family with $\phi(t) = t^q$. Thus, the class of subsets of \mathcal{C} with the property of contractiveness and jointly continuity contains the class of starshaped sets which in turns contains the class of convex sets. If \mathcal{C} is a subset of \mathcal{X} , there exists a contractive jointly continuous family $\Gamma = \{f_{\alpha}\}_{\alpha \in \mathcal{C}}$ such that \mathcal{C} has the property of contractiveness and joint continuity.

To prove our results, we also use the following result due to Jungck [8]:

Theorem 2.2 ([8]). Let \mathcal{A} , \mathcal{B} , \mathcal{I} and \mathcal{T} be self maps of a complete metric space (\mathcal{X}, d) , and suppose that \mathcal{I} and \mathcal{T} are surjective. If there exists $r \in (0, 1)$ such that for $x, y \in \mathcal{X}$;

$$d(\mathcal{A}x, \mathcal{B}y) \leqslant rd(\mathcal{I}x, \mathcal{T}y),$$

then there exist $z, t \in \mathcal{X}$ such that $\mathcal{A}t = \mathcal{I}t = \mathcal{B}z = \mathcal{T}z$. If moreover, the pairs $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{B}, \mathcal{T})$ are each compatible, then $\mathcal{A}, \mathcal{B}, \mathcal{I}$ and \mathcal{T} have a unique common fixed point.

3. Main results

One may now prove the following coincidence point theorem for nonconvex domain in a q-normed space.

10 Hemant Kumar Nashine, Mohammad Saeed Khan

Theorem 3.1. Let C be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma = \{f_x\}_{x \in C}$. Let \mathcal{A} , \mathcal{B} , \mathcal{I} and \mathcal{T} be self mappings of C. If \mathcal{I} and \mathcal{T} are surjective and if for all $x, y \in C$;

$$\|\mathcal{A}x - \mathcal{B}y\|_q \leqslant \|\mathcal{I}x - \mathcal{T}y\|_q,$$

then $\Upsilon(\mathcal{A},\mathcal{B}) \cap \Upsilon(\mathcal{I},\mathcal{T}) \neq \emptyset$. If, in addition, the pairs $(\mathcal{A},\mathcal{I})$ and $(\mathcal{B},\mathcal{T})$ are compatible, then $\mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap \mathcal{F}(\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \emptyset$.

Proof. Choose $k_n \in (0, 1)$ such that $\{k_n\} \to 1$. Then define sequences $\{\mathcal{A}_n\}$ and $\{\mathcal{B}_n\}$ as

$$\mathcal{A}_n(x) = f_{\mathcal{A}x}(k_n), \ \mathcal{B}_n(x) = f_{\mathcal{B}x}(k_n),$$

for all $x \in C$ and for each n. $\{A_n\}$ and $\{B_n\}$ are well-defined maps from C into C for each n. Also, for each n, and for all $x, y \in C$, we have

$$\begin{aligned} \|\mathcal{A}_n(x) - \mathcal{B}_n(y)\|_q &= \|f_{\mathcal{A}x}(k_n) - f_{\mathcal{B}y}(k_n)\|_q \\ &\leqslant [\phi(k_n)]^q \|\mathcal{A}x - \mathcal{B}y\|_q \\ &\leqslant [\phi(k_n)]^q \|\mathcal{I}x - \mathcal{T}y\|_q \end{aligned}$$

i.e.,

$$\|\mathcal{A}_n(x) - \mathcal{B}_n(y)\|_q \leq [\phi(k_n)]^q \|\mathcal{I}x - \mathcal{T}y\|_q$$

for all $x, y \in \mathcal{C}$.

Also, C = I(C) = T(C) is compact and therefore complete. It follows from Theorem 2.2, there exist $x_n, y_n, p_n \in C$ such that

$$\mathcal{A}_n x_n = \mathcal{I} x_n = p_n = \mathcal{B}_n y_n = \mathcal{T} y_n, \text{ for all } n.$$

Also, since C is compact, there exists a subsequence of $\{x_n\}$, denoted by $\{x_m\}$, such that $\{Ax_m\}$ converging to a point $p \in C$. Then by jointly continuity of Γ , $\{f_{Ax_m}(k_m)\}$ tends to p, too. Moreover,

$$\|\mathcal{A}x_m - \mathcal{I}x_m\|_q = \|\mathcal{A}x_m - \mathcal{A}_m x_m\|_q = \|\mathcal{A}x_m - f_{\mathcal{A}x_m}(k_m)\|_q$$

so $\mathcal{I}x_m \to p \ as \ m \to \infty$.

Now, since $\mathcal{C} = \mathcal{T}(\mathcal{C})$, $\mathcal{T}z = p$ for some $z \in \mathcal{C}$. We also have

$$\|\mathcal{B}z - p\|_q \leq \|\mathcal{B}z - \mathcal{A}x_m\|_q + \|\mathcal{A}x_m - p\|_q \leq \|\mathcal{T}z - \mathcal{I}x_m\|_q + \|\mathcal{A}x_m - p\|_q.$$

It follows that $p = \mathcal{B}z = \mathcal{T}z$. By a similar argument there exists $t \in \mathcal{C}$ such that $\mathcal{A}t = \mathcal{I}t = p$. Hence $\Upsilon(\mathcal{A}, \mathcal{I}) \cap \Upsilon(\mathcal{B}, \mathcal{T}) \neq \phi$.

If moreover, \mathcal{A} and \mathcal{I} are compatible, $\mathcal{A}t = \mathcal{I}t = p$ implies that $\mathcal{I}\mathcal{A}t = \mathcal{AI}t$; i.e., $\mathcal{I}p = \mathcal{A}p$. In the same fashion, if \mathcal{B} and \mathcal{T} are compatible, $\mathcal{T}p = \mathcal{B}p$. Hence $\mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap \mathcal{F}(\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \phi$. This completes the proof.

If $\mathcal{B} = \mathcal{A}$ in the Theorem 3.1 and \mathcal{A} is also injective, then $\mathcal{B}z = \mathcal{A}t$ implies that t = z, and we have $\mathcal{A}z = \mathcal{I}z = \mathcal{T}z$. Thus, as a consequence one obtains the following:

Corollary 3.2. Let C be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma = \{f_x\}_{x \in C}$. Let \mathcal{A} , \mathcal{I} and \mathcal{T} be a self mappings of C. If \mathcal{I} and \mathcal{T} are surjective and if for all $x, y \in C$;

$$\|\mathcal{A}x - \mathcal{A}y\|_q \leqslant \|\mathcal{I}x - \mathcal{T}y\|_q,$$

then $\Upsilon(\mathcal{A}, \mathcal{I}, \mathcal{T}) \neq \emptyset$ provided one of the following conditions hold:

(i) \mathcal{A} is one-to-one;

(ii) $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{A}, \mathcal{T})$ are compatible pairs.

If $\mathcal{I} = \mathcal{T}$ in the Corollary 3.2, one obtains the following:

Corollary 3.3. Let C be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma = \{f_x\}_{x \in C}$. Let \mathcal{A} and \mathcal{I} be compatible self mappings of C. If \mathcal{I} is surjective and if for all $x, y \in C$;

$$\|\mathcal{A}x - \mathcal{A}y\|_q \leqslant \|\mathcal{I}x - \mathcal{I}y\|_q,$$

then $\Upsilon(\mathcal{A}, \mathcal{I}) \neq \emptyset$.

If $\mathcal{A} = Id$ in the Corollary 3.3, one obtains the following:

Corollary 3.4. Let C be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma = \{f_x\}_{x \in C}$. If \mathcal{T} and \mathcal{I} be surjective self mappings of C and for all $x, y \in C$;

$$\|x - y\|_q \leq \|\mathcal{I}x - \mathcal{T}y\|_q$$

then $\mathcal{C} \cap \mathcal{F}(\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \emptyset$.

As applications of Theorem 3.1, we have the following results in invariant approximation:

Theorem 3.5. Let \mathcal{X} be a q-normed space and $\mathcal{A}, \mathcal{B}, \mathcal{T}, \mathcal{I} : \mathcal{X} \to \mathcal{X}$. Let \mathcal{C} be a subset of \mathcal{X} such that $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$ and $x_0 \in \mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap \mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathcal{I})$ for some $x_0 \in \mathcal{X}$. Suppose that $\mathcal{P}_{\mathcal{C}}(x_0)$ is compact, has a contractive jointly continuous family $\Gamma = \{f_\alpha\}_{\alpha \in \mathcal{P}_{\mathcal{C}}(x_0)}, \mathcal{I}(\mathcal{P}_{\mathcal{C}}(x_0)) = \mathcal{P}_{\mathcal{C}}(x_0) = \mathcal{T}(\mathcal{P}_{\mathcal{C}}(x_0))$ and the pair $(\mathcal{T}, \mathcal{I})$ is surjective. If the pair $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{B}, \mathcal{T})$ satisfy, for all $x, y \in \mathcal{P}_{\mathcal{C}}(x_0) \cup \{x_0\}$

$$\|\mathcal{A}x - \mathcal{B}y\|_q \leqslant \|\mathcal{I}x - \mathcal{T}y\|_q, \tag{3.1}$$

then $\mathcal{P}_{\mathcal{C}}(x_0) \cap \Upsilon(\mathcal{A}, \mathcal{I}, \mathcal{B}, \mathcal{T}) \neq \emptyset$. If, in addition, the pairs $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{B}, \mathcal{T})$ are compatible, then $\mathcal{P}_{\mathcal{C}}(x_0) \cap \mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap (\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \emptyset$.

Proof. Let $x \in \mathcal{P}_{\mathcal{C}}(x_0)$. Then, $x \in \mathcal{P}_{\mathcal{C}}(x_0)$. Then $||x - x_0||_q = dist(x_0, \mathcal{C})$. Note that for any $k \in (0, 1)$,

$$||kx_0 + (1-k)x - x_0||_q = (1-k)^q ||x - x_0||_q < dist(x_0, \mathcal{C}).$$

12 Hemant Kumar Nashine, Mohammad Saeed Khan

It follows that the line segment $\{kx_0 + (1-k)x : 0 < k < 1\}$ and the set \mathcal{C} are disjoint. Thus x is not in the interior of \mathcal{C} and so $x \in \partial \mathcal{C} \cap \mathcal{C}$. Since $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$, $\mathcal{T}x$ must be in \mathcal{C} . Also since $\mathcal{I}x \in \mathcal{P}_{\mathcal{C}}(x_0)$, $x_0 = \mathcal{T}x_0 = \mathcal{I}x_0$ and \mathcal{T} and \mathcal{I} satisfy (3.1), we have

$$\|\mathcal{A}x - x_0\|_q = \|\mathcal{A}x - \mathcal{B}x_0\|_q \leqslant \|\mathcal{I}x - \mathcal{T}x_0\|_q = \|\mathcal{I}x - x_0\|_q = dist(x_0, C).$$

Thus, $\mathcal{A}x \in \mathcal{P}_{\mathcal{C}}(x_0)$. Consequently, $\mathcal{A}(\mathcal{P}_{\mathcal{C}}(x_0)) \subset \mathcal{P}_{\mathcal{C}}(x_0) = \mathcal{I}(\mathcal{P}_{\mathcal{C}}(x_0)) = \mathcal{I}(\mathcal{P}_{\mathcal{C}}(x_0))$. Similarly, we may show that $\mathcal{B}(\mathcal{P}_{\mathcal{C}}(x_0)) \subset \mathcal{P}_{\mathcal{C}}(x_0) = \mathcal{I}(\mathcal{P}_{\mathcal{C}}(x_0)) = \mathcal{I}(\mathcal{P}_{\mathcal{C}}(x_0))$. The result now follows from Theorem 3.1.

If $\mathcal{B} = \mathcal{A}$ and \mathcal{A} is injective in the Theorem 3.5, one obtains the following:

Corollary 3.6. Let \mathcal{X} be a q-normed space and $\mathcal{A}, \mathcal{T}, \mathcal{I} : \mathcal{X} \to \mathcal{X}$. Let \mathcal{C} be a subset of \mathcal{X} such that $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$ and $x_0 \in \mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathcal{I})$ for some $x_0 \in \mathcal{X}$. Suppose that $\mathcal{P}_{\mathcal{C}}(x_0)$ is compact, has a contractive jointly continuous family $\Gamma = \{f_\alpha\}_{\alpha \in \mathcal{P}_{\mathcal{C}}(x_0)}, \mathcal{I}(\mathcal{P}_{\mathcal{C}}(x_0)) = \mathcal{P}_{\mathcal{C}}(x_0) = \mathcal{T}(\mathcal{P}_{\mathcal{C}}(x_0))$ and the pair $(\mathcal{T}, \mathcal{I})$ is surjective. If \mathcal{A}, \mathcal{I} and \mathcal{T} satisfy, for all $x, y \in \mathcal{P}_{\mathcal{C}}(x_0) \cup \{x_0\}$

$$\|\mathcal{A}x - \mathcal{A}y\|_q \leqslant \|\mathcal{I}x - \mathcal{T}y\|_q, \tag{3.2}$$

then $\mathcal{P}_{\mathcal{C}}(x_0) \cap \Upsilon(\mathcal{A}, \mathcal{I}, \mathcal{T}) \neq \emptyset$ provided one of the following conditions hold:

- (i) \mathcal{A} is one-to-one;
- (ii) \mathcal{A}, \mathcal{I} and \mathcal{A}, \mathcal{T} are compatible pairs.

If $\mathcal{T} = \mathcal{I}$ in the Corollary 3.6, one obtains the following:

Corollary 3.7. Let \mathcal{X} be a q-normed space and $\mathcal{A}, \mathcal{T} : \mathcal{X} \to \mathcal{X}$. Let \mathcal{C} be a subset of \mathcal{X} such that $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$ and $x_0 \in \mathcal{F}(\mathcal{A})$ for some $x_0 \in \mathcal{X}$. Suppose that $\mathcal{P}_{\mathcal{C}}(x_0)$ is compact, has a contractive jointly continuous family $\Gamma = \{f_{\alpha}\}_{\alpha \in \mathcal{P}_{\mathcal{C}}(x_0)},$ $\mathcal{P}_{\mathcal{C}}(x_0)$ and \mathcal{I} is surjective. If the pair $(\mathcal{A}, \mathcal{I})$ satisfies, for all $x, y \in \mathcal{P}_{\mathcal{C}}(x_0) \cup \{x_0\}$

$$\|\mathcal{A}x - \mathcal{A}y\|_q \leqslant \|\mathcal{I}x - \mathcal{I}y\|_q, \tag{3.3}$$

then $\mathcal{P}_{\mathcal{C}}(x_0) \cap \Upsilon(\mathcal{A}, \mathcal{I}) \neq \emptyset$ provided one of the following conditions hold:

- (i) \mathcal{A} is one-to-one;
- (ii) $(\mathcal{A}, \mathcal{I})$ is compatible pair.

Remark 3.8. From Remark 2.1, our results generalize the results of Jungck [8] to *q*-normed space and consequently Dotson's [2].

Acknowledgments. The authors thank the referee for his helpful corrections, comments and valuable suggestions in preparation of the paper.

References

- B. Brosowski, Fixpunktsätze in der Approximationstheorie, Mathematica(Cluj) 11 (1969), 165–220.
- [2] W.G. Dotson, Fixed point theorems for nonexpasive mappings on starshaped subsets of Banach space, J. London Math. Soc. 4(2) (1972), 408–410.
- W.G. Dotson, Jr, On fixed point of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38(1) (1973), 155–156.
- [4] L. Habiniak, Fixed point theorems and invariant approximations, J. Approx. Theory 56 (1989), 241–244.
- [5] T.L. Hicks, M.D. Humpheries, A note on fixed point theorems, J. Approx. Theory 34 (1982), 221–225.
- [6] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, 1969.
- [7] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9(4) (1986), 771–779.
- [8] G. Jungck, Coincidence and fixed points for compatible and relatively nonexpansive maps, Int. J. Math. Math. Sci. 16(1) (1993), 95–100.
- [9] A.R. Khan, A. Latif, A. Bano, N. Hussain, Some results on common fixed points and best approximation, Tamkang J. Math. 36(1) (2005), 33–38.
- [10] G. Meinardus, Invarianze bei Linearen Approximationen, Arch. Rational Mech. Anal. 14 (1963), 301–303.
- [11] R.N. Mukherjee, T. Som, A note on an application of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math. 16(3) (1985), 243–244.
- [12] W. Rudin, *Functional Analysis*, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.
- S.A. Sahab, M.S. Khan, S. Sessa, A result in best approximation theory, J. Approx. Theory 55 (1988), 349–351.
- [14] S. Park, Fixed points of f-contractive maps, Rocky Mountain J. Math. 8(4) (1978), 743–750.
- S.P. Singh, An application of a fixed point theorem to approximation theory, J. Approx. Theory 25 (1979), 89–90.
- [16] S.P. Singh, Application of fixed point theorems to approximation theory, in: V. Lakshmikantam(Ed.), Applied nonlinear Analysis, Academic Press, New York, 1979.
- Addresses: Hemant Kumar Nashine: Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg (Baloda Bazar Road), Mandir Hasaud, Raipur-492101(Chhattisgarh), India; Mohammad Saeed Khan: Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, PCode 123 Al-Khod, Muscat, Sultanate of Oman.

 ${\bf E}\text{-}{\bf mail: hemantnashine@rediffmail.com, mohammad@squ.edu.om}$

Received: 18 June 2007; revised: 16 July 2008