COINCIDENCE POINT RESULTS IN NONCONVEX DOMAINS OF q-NORMED SPACES

Hemant Kumar Nashine, Mohammad Saeed Khan ${ }^{\dagger}$

Abstract

Coincidence points results for families of four relatively nonexpansive mappings on nonconvex domains in q-normed spaces have been obtained in the present work. As applications, best approximation results have been given. These results extend and generalize previously known results to a more general class of non commuting relatively nonexpansive mappings in a space which is not necessarily locally convex.

Keywords: Best approximant, common fixed point, compatible maps, contractive jointly continuous family, q-normed space, relatively nonexpansive mappings.

1. Introduction

The concept of relatively nonexpansive maps for pair of maps was given by Park [14]. It was extended by Jungck [8] for families of four self maps (noncontinuous). By using this concept he proved the coincidence and fixed points results for starshaped domain and generalized the results of Dotson [2].

Fixed point theorems have been applied in the field of invariant approximation theory for last four decades and several interesting and valuable results have been studied.

Meinardus [10] was the first to employ a fixed-point theorem of Schauder to establish the existence of an invariant approximation. Further, Brosowski [1] obtained a celebrated result and generalized the Meinardus's result. Later, several results [5, 15] have been proved in the direction of Brosowski [1]. In the year 1988, Sahab et al. [13] extended the result of Hicks and Humpheries [5] and Singh [15] by considering one linear and the other nonexpansive mappings.

In this context, it may be mentioned that Dotson [2] proved the existence of fixed point for nonexpansive mapping. He further extended his result without starshapedness under non-convex condition [3]. Mukherjee and Som [11] used it to prove existence of fixed point and further applied it for proving existence of best

[^0]\dagger corrosponding author
approximant. This result was an extension of Singh [15] without starshapedness condition.

In this paper, coincidence point results of four relatively nonexpansive self mappings on nonconvex domains in q-normed spaces have been obtained. These results extend and improve the results of Jungck [8]. As applications, best approximation results have also been established. These results extend and generalize various existing known results in the literature to a more general class of non commuting relatively nonexpansive mappings in a space which is not necessarily locally convex space

2. Preliminaries

Let \mathcal{X} be a linear space. A q-norm on \mathcal{X} is a real-valued function $\|.\|_{q}$ on \mathcal{X} with $0<q \leqslant 1$, satisfying the following conditions:
(a) $\|x\|_{q} \geqslant 0$ and $\|x\|_{q}=0$ iff $x=0$,
(b) $\|\lambda x\|_{q}=|\lambda|^{q}\|x\|_{q}$,
(c) $\|x+y\|_{q} \leqslant\|x\|_{q}+\|y\|_{q}$,
for all $x, y \in \mathcal{X}$ and all scalars λ. The pair $\left(\mathcal{X},\|\cdot\|_{q}\right)$ is called a q-normed spaces. It is a metric space with $d_{q}(x, y)=\|x-y\|_{q}$ for all $x, y \in \mathcal{X}$, defining a translation invariant metric d_{q} on \mathcal{X}. If $q=1$, we obtain the concept of a normed linear space. It is well-known that the topology of every Hausdorff locally bounded topological linear space is given by some q-norm, $0<q \leqslant 1$. The spaces l_{q} and $\mathcal{L}_{q}[0,1]$, $0<q \leqslant 1$ are q-normed spaces. A q-normed space is not necessarily a locally convex space. Recall that, if \mathcal{X} is a topological linear space, then its continuous dual space \mathcal{X}^{*} is said to separate the points of \mathcal{X}, if for each $x \neq 0$ in \mathcal{X}, there exists an $\mathcal{I} \in \mathcal{X}^{*}$ such that $\mathcal{I} x \neq 0$. In this case the weak topology on \mathcal{X} is well-defined. We mention that, if \mathcal{X} is not locally convex, then \mathcal{X}^{*} need not separate the points of \mathcal{X}. For example, if $\mathcal{X}=\mathcal{L}_{q}[0,1], 0<q<1$, then $\mathcal{X}^{*}=\{0\}[12$, pp. 36-37]. However, there are some non-locally convex spaces (such as the q-normed space $l_{q}, 0<q<1$) whose dual separates the points [6].

Let \mathcal{X} be a metric space and let \mathcal{C} be a nonempty subset of \mathcal{X}. Let $x \in \mathcal{X}$. An element $y \in \mathcal{C}$ is called a best \mathcal{C}-approximant to $x \in \mathcal{X}$ if

$$
d(x, y)=\operatorname{dist}(x, \mathcal{C})=\inf \{d(x, z): z \in \mathcal{C}\}
$$

The set of best \mathcal{C}-approximants to x is denoted by $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$ and is defined as $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)=\{y \in \mathcal{C}: d(x, y)=\operatorname{dist}(x, \mathcal{C})\}$. Let $\mathcal{I}, \mathcal{T}: \mathcal{C} \rightarrow \mathcal{C}$ be two mappings. A mapping $\mathcal{A}: \mathcal{C} \rightarrow \mathcal{C}$ is called an $(\mathcal{I}, \mathcal{T})$-contraction if there exists $0 \leqslant k<1$ such that $d(\mathcal{A} x, \mathcal{A} y) \leqslant k d(\mathcal{I} x, \mathcal{T} y)$ for any $x, y \in \mathcal{C}$. If $k=1$, then \mathcal{A} is called $(\mathcal{I}, \mathcal{T})$ nonexpansive. Also if $\mathcal{T}=\mathcal{I}$, we say that \mathcal{A} is called \mathcal{I}-nonexpansive. Let $\mathcal{A}, \mathcal{B}, \mathcal{I}$ and \mathcal{T} be self maps of \mathcal{C}. Mappings \mathcal{A} and \mathcal{B} are nonexpansive relatively [8] to \mathcal{I} and \mathcal{T} iff $d(\mathcal{A} x, \mathcal{B} y) \leqslant d(\mathcal{I} x, \mathcal{T} y)$ for all $x, y \in \mathcal{C}$. If $\mathcal{B}=\mathcal{A}$ and $\mathcal{T}=\mathcal{I}$, we say that \mathcal{A} is \mathcal{I}-nonexpansive. A point $x \in \mathcal{C}$ is a common fixed point(coincidence point) of \mathcal{I} and \mathcal{T} if $x=\mathcal{I} x=\mathcal{T} x(\mathcal{I} x=\mathcal{T} x)$. The set of coincidence points of \mathcal{I} and \mathcal{T} is
denoted by $\Upsilon(\mathcal{I}, \mathcal{T})$. The pair $(\mathcal{I}, \mathcal{T})$ is called (1) commuting if $\mathcal{I T} x=\mathcal{T} \mathcal{I} x$ for all $x \in \mathcal{C} ;(2)$ compatible $[7,8]$ if $\lim _{n} d\left(\mathcal{T} \mathcal{I} x_{n}, \mathcal{I} \mathcal{T} x_{n}\right)=0$ when $\left\{x_{n}\right\}$ is a sequence such that $\lim _{n} \mathcal{T} x_{n}=\lim _{n} \mathcal{I} x_{n}=t$ for some t in \mathcal{C}. Every commuting pair of mappings is compatible but the converse is not true in general [7, 8]. The set of fixed points of \mathcal{T} (resp. \mathcal{I}) is denoted by $\mathcal{F}(\mathcal{T})$ (resp. $\mathcal{F}(\mathcal{I})$). A subset \mathcal{C} of a linear space \mathcal{X} is said to be starshaped, if there exists at least one point $p \in \mathcal{C}$ such that $\lambda x+(1-\lambda) p \in \mathcal{C}$, for all $x \in \mathcal{C}$ and $0 \leqslant \lambda \leqslant 1$. In this case p is called the starcenter of \mathcal{C}. Each convex set is starshaped with respect to each of its points, but not conversely.

Further, definition providing the notion of contractive jointly continuous family introduced by Dotson [3] may be written as:

Let \mathcal{C} be a subset of metric space \mathcal{X} and $\Gamma=\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{C}}$ a family of functions from $[0,1]$ into \mathcal{C} such that $f_{\alpha}(1)=\alpha$ for each $\alpha \in \mathcal{C}$.
The family Γ is said to be contractive, if there exists a function $\phi:(0,1) \rightarrow(0,1)$ such that for all $\alpha, \beta \in \mathcal{C}$ and all $t \in(0,1)$, we have

$$
d\left(f_{\alpha}(t), f_{\beta}(t)\right) \leqslant \phi(t) d(\alpha, \beta)
$$

The family Γ is said to be jointly continuous if $t \rightarrow t_{0}$ in $[0,1]$ and $\alpha \rightarrow \alpha_{0}$ in \mathcal{C}, then $f_{\alpha}(t) \rightarrow f_{\alpha_{0}}\left(t_{0}\right)$.

Remark 2.1. In the light of the comment given by Dotson [3] and Khan et al. [9] that if \mathcal{X} is a q-normed space, $\mathcal{C} \subseteq \mathcal{X}$ is p-starshaped and $f_{\alpha}(t)=(1-t) p+t \alpha$, $(\alpha \in \mathcal{C}, t \in[0,1])$, then $\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{C}}$ is a contractive jointly continuous family with $\phi(t)=t^{q}$. Thus, the class of subsets of \mathcal{C} with the property of contractiveness and jointly continuity contains the class of starshaped sets which in turns contains the class of convex sets. If \mathcal{C} is a subset of \mathcal{X}, there exists a contractive jointly continuous family $\Gamma=\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{C}}$ such that \mathcal{C} has the property of contractiveness and joint continuity.

To prove our results, we also use the following result due to Jungck [8]:

Theorem 2.2 ([8]). Let $\mathcal{A}, \mathcal{B}, \mathcal{I}$ and \mathcal{T} be self maps of a complete metric space (\mathcal{X}, d), and suppose that \mathcal{I} and \mathcal{T} are surjective. If there exists $r \in(0,1)$ such that for $x, y \in \mathcal{X}$;

$$
d(\mathcal{A} x, \mathcal{B} y) \leqslant r d(\mathcal{I} x, \mathcal{T} y)
$$

then there exist $z, t \in \mathcal{X}$ such that $\mathcal{A} t=\mathcal{I} t=\mathcal{B} z=\mathcal{T} z$. If moreover, the pairs $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{B}, \mathcal{T})$ are each compatible, then $\mathcal{A}, \mathcal{B}, \mathcal{I}$ and \mathcal{T} have a unique common fixed point.

3. Main results

One may now prove the following coincidence point theorem for nonconvex domain in a q-normed space.

Theorem 3.1. Let \mathcal{C} be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma=\left\{f_{x}\right\}_{x \in \mathcal{C}}$. Let $\mathcal{A}, \mathcal{B}, \mathcal{I}$ and \mathcal{T} be self mappings of \mathcal{C}. If \mathcal{I} and \mathcal{T} are surjective and if for all $x, y \in \mathcal{C}$;

$$
\|\mathcal{A} x-\mathcal{B} y\|_{q} \leqslant\|\mathcal{I} x-\mathcal{T} y\|_{q},
$$

then $\Upsilon(\mathcal{A}, \mathcal{B}) \cap \Upsilon(\mathcal{I}, \mathcal{T}) \neq \emptyset$. If, in addition, the pairs $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{B}, \mathcal{T})$ are compatible, then $\mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap \mathcal{F}(\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \emptyset$.

Proof. Choose $k_{n} \in(0,1)$ such that $\left\{k_{n}\right\} \rightarrow 1$. Then define sequences $\left\{\mathcal{A}_{n}\right\}$ and $\left\{\mathcal{B}_{n}\right\}$ as

$$
\mathcal{A}_{n}(x)=f_{\mathcal{A} x}\left(k_{n}\right), \quad \mathcal{B}_{n}(x)=f_{\mathcal{B} x}\left(k_{n}\right)
$$

for all $x \in \mathcal{C}$ and for each n. $\left\{\mathcal{A}_{n}\right\}$ and $\left\{\mathcal{B}_{n}\right\}$ are well-defined maps from \mathcal{C} into \mathcal{C} for each n. Also, for each n , and for all $x, y \in \mathcal{C}$, we have

$$
\begin{aligned}
\left\|\mathcal{A}_{n}(x)-\mathcal{B}_{n}(y)\right\|_{q} & =\left\|f_{\mathcal{A} x}\left(k_{n}\right)-f_{\mathcal{B} y}\left(k_{n}\right)\right\|_{q} \\
& \leqslant\left[\phi\left(k_{n}\right)\right]^{q}\|\mathcal{A} x-\mathcal{B} y\|_{q} \\
& \leqslant\left[\phi\left(k_{n}\right)\right]^{q}\|\mathcal{I} x-\mathcal{T} y\|_{q}
\end{aligned}
$$

i.e.,

$$
\left\|\mathcal{A}_{n}(x)-\mathcal{B}_{n}(y)\right\|_{q} \leqslant\left[\phi\left(k_{n}\right)\right]^{q}\|\mathcal{I} x-\mathcal{T} y\|_{q}
$$

for all $x, y \in \mathcal{C}$.
Also, $\mathcal{C}=\mathcal{I}(\mathcal{C})=\mathcal{T}(\mathcal{C})$ is compact and therefore complete. It follows from Theorem 2.2, there exist $x_{n}, y_{n}, p_{n} \in \mathcal{C}$ such that

$$
\mathcal{A}_{n} x_{n}=\mathcal{I} x_{n}=p_{n}=\mathcal{B}_{n} y_{n}=\mathcal{T} y_{n}, \text { for all } n
$$

Also, since \mathcal{C} is compact, there exists a subsequence of $\left\{x_{n}\right\}$, denoted by $\left\{x_{m}\right\}$, such that $\left\{\mathcal{A} x_{m}\right\}$ converging to a point $p \in \mathcal{C}$. Then by jointly continuity of Γ, $\left\{f_{\mathcal{A} x_{m}}\left(k_{m}\right)\right\}$ tends to p, too. Moreover,

$$
\left\|\mathcal{A} x_{m}-\mathcal{I} x_{m}\right\|_{q}=\left\|\mathcal{A} x_{m}-\mathcal{A}_{m} x_{m}\right\|_{q}=\left\|\mathcal{A} x_{m}-f_{\mathcal{A} x_{m}}\left(k_{m}\right)\right\|_{q}
$$

so $\mathcal{I} x_{m} \rightarrow p$ as $m \rightarrow \infty$.
Now, since $\mathcal{C}=\mathcal{T}(\mathcal{C}), \mathcal{T} z=p$ for some $z \in \mathcal{C}$. We also have

$$
\|\mathcal{B} z-p\|_{q} \leqslant\left\|\mathcal{B} z-\mathcal{A} x_{m}\right\|_{q}+\left\|\mathcal{A} x_{m}-p\right\|_{q} \leqslant\left\|\mathcal{T} z-\mathcal{I} x_{m}\right\|_{q}+\left\|\mathcal{A} x_{m}-p\right\|_{q} .
$$

It follows that $p=\mathcal{B} z=\mathcal{T} z$. By a similar argument there exists $t \in \mathcal{C}$ such that $\mathcal{A} t=\mathcal{I} t=p$. Hence $\Upsilon(\mathcal{A}, \mathcal{I}) \cap \Upsilon(\mathcal{B}, \mathcal{T}) \neq \phi$.

If moreover, \mathcal{A} and \mathcal{I} are compatible, $\mathcal{A} t=\mathcal{I} t=p$ implies that $\mathcal{I} \mathcal{A} t=\mathcal{A I} t$; i.e., $\mathcal{I} p=\mathcal{A} p$. In the same fashion, if \mathcal{B} and \mathcal{T} are compatible, $\mathcal{T} p=\mathcal{B} p$. Hence $\mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap \mathcal{F}(\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \phi$. This completes the proof.

If $\mathcal{B}=\mathcal{A}$ in the Theorem 3.1 and \mathcal{A} is also injective, then $\mathcal{B} z=\mathcal{A} t$ implies that $t=z$, and we have $\mathcal{A} z=\mathcal{I} z=\mathcal{T} z$. Thus, as a consequence one obtains the following:

Corollary 3.2. Let \mathcal{C} be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma=\left\{f_{x}\right\}_{x \in \mathcal{C}}$. Let \mathcal{A}, \mathcal{I} and \mathcal{T} be a self mappings of \mathcal{C}. If \mathcal{I} and \mathcal{T} are surjective and if for all $x, y \in \mathcal{C}$;

$$
\|\mathcal{A} x-\mathcal{A} y\|_{q} \leqslant\|\mathcal{I} x-\mathcal{T} y\|_{q},
$$

then $\Upsilon(\mathcal{A}, \mathcal{I}, \mathcal{T}) \neq \emptyset$ provided one of the following conditions hold:
(i) \mathcal{A} is one-to-one;
(ii) $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{A}, \mathcal{T})$ are compatible pairs.

If $\mathcal{I}=\mathcal{T}$ in the Corollary 3.2, one obtains the following:
Corollary 3.3. Let \mathcal{C} be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma=\left\{f_{x}\right\}_{x \in \mathcal{C}}$. Let \mathcal{A} and \mathcal{I} be compatible self mappings of \mathcal{C}. If \mathcal{I} is surjective and if for all $x, y \in \mathcal{C}$;

$$
\|\mathcal{A} x-\mathcal{A} y\|_{q} \leqslant\|\mathcal{I} x-\mathcal{I} y\|_{q},
$$

then $\Upsilon(\mathcal{A}, \mathcal{I}) \neq \emptyset$.
If $\mathcal{A}=I d$ in the Corollary 3.3, one obtains the following:
Corollary 3.4. Let \mathcal{C} be a nonempty compact subset of a q-normed space \mathcal{X} which has a contractive jointly continuous family $\Gamma=\left\{f_{x}\right\}_{x \in C}$. If \mathcal{T} and \mathcal{I} be surjective self mappings of \mathcal{C} and for all $x, y \in \mathcal{C}$;

$$
\|x-y\|_{q} \leqslant\|\mathcal{I} x-\mathcal{T} y\|_{q}
$$

then $\mathcal{C} \cap \mathcal{F}(\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \emptyset$.

As applications of Theorem 3.1, we have the following results in invariant approximation:

Theorem 3.5. Let \mathcal{X} be a q-normed space and $\mathcal{A}, \mathcal{B}, \mathcal{T}, \mathcal{I}: \mathcal{X} \rightarrow \mathcal{X}$. Let \mathcal{C} be a subset of \mathcal{X} such that $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$ and $x_{0} \in \mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap \mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathcal{I})$ for some $x_{0} \in \mathcal{X}$. Suppose that $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$ is compact, has a contractive jointly continuous family $\Gamma=\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)}, \mathcal{I}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)=\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)=\mathcal{T}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)$ and the pair $(\mathcal{T}, \mathcal{I})$ is surjective. If the pair $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{B}, \mathcal{T})$ satisfy, for all $x, y \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right) \cup\left\{x_{0}\right\}$

$$
\begin{equation*}
\|\mathcal{A} x-\mathcal{B} y\|_{q} \leqslant\|\mathcal{I} x-\mathcal{T} y\|_{q}, \tag{3.1}
\end{equation*}
$$

then $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right) \cap \Upsilon(\mathcal{A}, \mathcal{I}, \mathcal{B}, \mathcal{T}) \neq \emptyset$. If, in addition, the pairs $(\mathcal{A}, \mathcal{I})$ and $(\mathcal{B}, \mathcal{T})$ are compatible, then $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right) \cap \mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{B}) \cap(\mathcal{I}) \cap \mathcal{F}(\mathcal{T}) \neq \emptyset$.

Proof. Let $x \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$. Then, $x \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$. Then $\left\|x-x_{0}\right\|_{q}=\operatorname{dist}\left(x_{0}, \mathcal{C}\right)$. Note that for any $k \in(0,1)$,

$$
\left\|k x_{0}+(1-k) x-x_{0}\right\|_{q}=(1-k)^{q}\left\|x-x_{0}\right\|_{q}<\operatorname{dist}\left(x_{0}, \mathcal{C}\right) .
$$

It follows that the line segment $\left\{k x_{0}+(1-k) x: 0<k<1\right\}$ and the set \mathcal{C} are disjoint. Thus x is not in the interior of \mathcal{C} and so $x \in \partial \mathcal{C} \cap \mathcal{C}$. Since $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$, $\mathcal{T} x$ must be in \mathcal{C}. Also since $\mathcal{I} x \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right), x_{0}=\mathcal{T} x_{0}=\mathcal{I} x_{0}$ and \mathcal{T} and \mathcal{I} satisfy (3.1), we have

$$
\left\|\mathcal{A} x-x_{0}\right\|_{q}=\left\|\mathcal{A} x-\mathcal{B} x_{0}\right\|_{q} \leqslant\left\|\mathcal{I} x-\mathcal{T} x_{0}\right\|_{q}=\left\|\mathcal{I} x-x_{0}\right\|_{q}=\operatorname{dist}\left(x_{0}, C\right) .
$$

Thus, $\mathcal{A} x \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$. Consequently, $\mathcal{A}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right) \subset \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)=\mathcal{I}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)=$ $\mathcal{T}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)$. Similarly, we may show that $\mathcal{B}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right) \subset \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)=\mathcal{I}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)=$ $\mathcal{T}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)$. The result now follows from Theorem 3.1.

If $\mathcal{B}=\mathcal{A}$ and \mathcal{A} is injective in the Theorem 3.5, one obtains the following:
Corollary 3.6. Let \mathcal{X} be a q-normed space and $\mathcal{A}, \mathcal{T}, \mathcal{I}: \mathcal{X} \rightarrow \mathcal{X}$. Let \mathcal{C} be a subset of \mathcal{X} such that $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$ and $x_{0} \in \mathcal{F}(\mathcal{A}) \cap \mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathcal{I})$ for some $x_{0} \in \mathcal{X}$. Suppose that $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$ is compact, has a contractive jointly continuous family $\Gamma=\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)}, \mathcal{I}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)=\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)=\mathcal{T}\left(\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)\right)$ and the pair $(\mathcal{T}, \mathcal{I})$ is surjective. If \mathcal{A}, \mathcal{I} and \mathcal{I} satisfy, for all $x, y \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right) \cup\left\{x_{0}\right\}$

$$
\begin{equation*}
\|\mathcal{A} x-\mathcal{A} y\|_{q} \leqslant\|\mathcal{I} x-\mathcal{T} y\|_{q}, \tag{3.2}
\end{equation*}
$$

then $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right) \cap \Upsilon(\mathcal{A}, \mathcal{I}, \mathcal{T}) \neq \emptyset$ provided one of the following conditions hold:
(i) \mathcal{A} is one-to-one;
(ii) \mathcal{A}, \mathcal{I} and \mathcal{A}, \mathcal{T} are compatible pairs.

If $\mathcal{T}=\mathcal{I}$ in the Corollary 3.6, one obtains the following:
Corollary 3.7. Let \mathcal{X} be a q-normed space and $\mathcal{A}, \mathcal{T}: \mathcal{X} \rightarrow \mathcal{X}$. Let \mathcal{C} be a subset of \mathcal{X} such that $\mathcal{T}(\partial \mathcal{C} \cap \mathcal{C}) \subset \mathcal{C}$ and $x_{0} \in \mathcal{F}(\mathcal{A})$ for some $x_{0} \in \mathcal{X}$. Suppose that $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$ is compact, has a contractive jointly continuous family $\Gamma=\left\{f_{\alpha}\right\}_{\alpha \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right)}$, $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right)$ and \mathcal{I} is surjective. If the pair $(\mathcal{A}, \mathcal{I})$ satisfies, for all $x, y \in \mathcal{P}_{\mathcal{C}}\left(x_{0}\right) \cup\left\{x_{0}\right\}$

$$
\begin{equation*}
\|\mathcal{A} x-\mathcal{A} y\|_{q} \leqslant\|\mathcal{I} x-\mathcal{I} y\|_{q}, \tag{3.3}
\end{equation*}
$$

then $\mathcal{P}_{\mathcal{C}}\left(x_{0}\right) \cap \Upsilon(\mathcal{A}, \mathcal{I}) \neq \emptyset$ provided one of the following conditions hold:
(i) \mathcal{A} is one-to-one;
(ii) $(\mathcal{A}, \mathcal{I})$ is compatible pair.

Remark 3.8. From Remark 2.1, our results generalize the results of Jungck [8] to q-normed space and consequently Dotson's [2].

Acknowledgments. The authors thank the referee for his helpful corrections, comments and valuable suggestions in preparation of the paper.

References

[1] B. Brosowski, Fixpunktsätze in der Approximationstheorie, Mathematica(Cluj) 11 (1969), 165-220.
[2] W.G. Dotson, Fixed point theorems for nonexpasive mappings on starshaped subsets of Banach space, J. London Math. Soc. 4(2) (1972), 408-410.
[3] W.G. Dotson, Jr, On fixed point of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38(1) (1973), 155-156.
[4] L. Habiniak, Fixed point theorems and invariant approximations, J. Approx. Theory 56 (1989), 241-244.
[5] T.L. Hicks, M.D. Humpheries, A note on fixed point theorems, J. Approx. Theory 34 (1982), 221-225.
[6] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, 1969.
[7] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9(4) (1986), 771-779.
[8] G. Jungck, Coincidence and fixed points for compatible and relatively nonexpansive maps, Int. J. Math. Math. Sci. 16(1) (1993), 95-100.
[9] A.R. Khan, A. Latif, A. Bano, N. Hussain, Some results on common fixed points and best approximation, Tamkang J. Math. 36(1) (2005), 33-38.
[10] G. Meinardus, Invarianze bei Linearen Approximationen, Arch. Rational Mech. Anal. 14 (1963), 301-303.
[11] R.N. Mukherjee, T. Som, A note on an application of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math. 16(3) (1985), 243-244.
[12] W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.
[13] S.A. Sahab, M.S. Khan, S. Sessa, A result in best approximation theory, J. Approx. Theory 55 (1988), 349-351.
[14] S. Park, Fixed points of f-contractive maps, Rocky Mountain J. Math. 8(4) (1978), 743-750.
[15] S.P. Singh, An application of a fixed point theorem to approximation theory, J. Approx. Theory 25 (1979), 89-90.
[16] S.P. Singh, Application of fixed point theorems to approximation theory, in: V. Lakshmikantam(Ed.), Applied nonlinear Analysis, Academic Press, New York, 1979.

Addresses: Hemant Kumar Nashine: Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg (Baloda Bazar Road), Mandir Hasaud, Raipur-492101(Chhattisgarh), India; Mohammad Saeed Khan: Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, PCode 123 Al-Khod, Muscat, Sultanate of Oman.

E-mail: hemantnashine@rediffmail.com, mohammad@squ.edu.om
Received: 18 June 2007; revised: 16 July 2008

[^0]: 1991 Mathematics Subject Classification: 41A50, 47H10, 54H25.

