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REGULARITY OF MAPPINGS OF FINITE DISTORTION
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Abstract: We study the degree of regularity of the Jacobian determinant of a mapping of finite
distortion K, under suitable integrability assumptions on K.
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1. Introduction

In this paper we consider mappings of finite distortion. Let Ω be a domain of
Rn. A mapping f ∈ W 1,1

loc (Ω,Rn) is said to be of finite distortion if its Jacobian
determinant Jf = det Df is locally integrable in Ω and there exists a measurable
function K > 1 finite a.e. such that

|Df(x)|n 6 K(x) Jf (x) , (1.1)

for a.e. x ∈ Ω. In the left hand side |Df | is the operator norm of the differential
matrix. Inequality (1.1) is termed distortion inequality and the smallest function
K > 1 for which it holds is called the distortion function of f . If the distortion is
bounded, f is called a quasiregular mapping. Clearly, in this case f ∈ W 1,n

loc (Ω,Rn).
Quasiregular homeomorphisms are called quasiconformal mappings.

In his celebrated paper [11], Gehring proved that the derivatives of a qua-
siconformal mapping are actually in Lp

loc(Ω) for some p > n. This result was
already proved in the plane by Bojarski in [5]. This was subsequently extended to
quasiregular mappings by Elcrat and Meyers [9], see also [27]. The above result is a
cornerstone in the theory of multidimensional quasiregular mappings, but perhaps
more importantly in [11] Gehring invented what is nowadays universally known
as Gehring’s lemma, showing that the reverse Hölder inequalities imply higher
integrability. The extremely high number of generalizations and applications of
Gehring’s lemma testify for its character of fundamental tool in real analysis. We
refer the reader to [12], [17], [18], [21] and the references therein.
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In many circumstances the assumption of boundedness of the distortion is re-
strictive and it is natural to ask how much this condition can be relaxed so as
to still allow for a satisfactory theory. Starting with [8], the class of mappings
with exponentially integrable distortion emerged. More recent developments may
be found e.g. in the monograph [21] and references therein. Here, we are mainly
interested in the integrability properties of the Jacobian determinant and the dif-
ferential matrix. For this, we refer to [28], [3], [19], [20]. In [28] it was shown that,
if exp(Kγ) ∈ L1

loc for some γ > 1, then |Df | ∈ Ln logα Lloc for all α > 0. In [19],
[20], it was noticed that, if exp(β K) ∈ L1

loc for some β > 0, then Jf ∈ L1
loc implies

by the distortion inequality (1.1) that

|Df | ∈ Ln log−1 Lloc . (1.2)

On the other hand, it is known [23] that, for a general map f ∈ W 1,1
loc with Jf > 0,

the condition (1.2) implies local integrability of the Jacobian. Therefore, (1.2) is
a natural condition for mappings with exponentially integrable distortion.

In [22], [3], [19], [20], it is shown that, for each α > 0 there exists β > 1 such
that, if exp(β K) ∈ L1

loc, then |Df | ∈ Ln logα Lloc. In the recent paper [10] it
is proved that, if exp(β K) ∈ L1

loc for some β > 0, then Jf ∈ L logα Lloc with
α = c(n)β > 0. Very recently in [2] the authors obtained the optimal regularity in
the plane showing that Jf ∈ L logα Lloc for every α < β.

There are also developments under the assumption of subexponential integra-
bility for K, namely, exp(P (K)) ∈ L1

loc, where P is a nonnegative increasing
function verifying the so-called divergence condition

∫ ∞

1

P (t)
t2

dt = ∞ , (1.3)

see [4], [25]. Typical examples are

P (t) =
t

log(e+t)
, P (t) =

t

log(e +t) log log(9 + t)
.

The divergence condition (1.3) turned out to be essential in many circumstances,
see e.g. [21].

Our route to the study of mappings of finite distortion will take place through
some precise estimates concerning the integrability of the Jacobian determinant,
see Sections 2 and 3. At the present level, the study of integrability properties of
the Jacobian originates with the works of Müller [30] and of Iwaniec-Sbordone [23].
The estimates we shall present have independent interest, not only in view of
applications to the case of mappings of finite distortion, and extend and generalize
many known results, besides [30] and [23], see [6], [15], [29], [16], [13].

Even though we consider the case of nonnegative Jacobian, it is appropriate
to mention that it is of interest to know under which conditions one can conclude
that the Jacobian belongs to a Hardy space. The systematic study of this problem
was initiated in the paper [7].
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2. The integrability of the Jacobian

For a map h ∈ W 1,1(Rn;Rn), we shall denote by Dh the differential matrix and by
Jh = det Dh its Jacobian determinant. For the sake of simplicity, we shall consider
mappings h with compact support. Actually, we shall be mainly concerned with
the case h = ϕf , where f is a Sobolev mapping on a domain Ω of Rn, whose
Jacobian Jf is nonnegative, and ϕ ∈ C∞0 (Ω), ϕ > 0. Of course, we set h(x) = 0,
for all x 6∈ Ω. Clearly,

Dh = ϕDf + f ⊗∇ϕ , Jh = ϕnJf + F, (2.1)

where ϕnJf > 0 and F has better integrability properties than |Df |n. See Sec-
tion 3 for more details.

Let A ∈ C1([0,+∞[) be a given increasing nonnegative function. We then
define the function B ∈ C1([0, +∞[) by the rule

B(t) =
1
t

∫ 2t

0

τ A ′(τ) dτ. (2.2)

For future reference, we note two inequalities.

Lemma 2.1. For each t > 0, we have

A (2t)−A (t) 6 B(t) 6 2 A (2t). (2.3)

Proof. Both inequalities are straightforward consequences of (2.2). For the first,
we have

A (2t)−A (t) =
∫ 2t

t
A ′(τ) dτ 6 1

t

∫ 2t

t

τ A ′(τ) dτ 6 B(t).

For the second,

B(t) = 2
1
2t

∫ 2t

0

τ A ′(τ) dτ 6 2
∫ 2t

0
A ′(τ) dτ 6 2 A (2t). ¥

To present a statement in a simple form, we shall assume that A satisfies the
condition

lim
t→∞A (t) = ∞. (2.4)

However, we shall also consider the case A bounded, as the need will arise.
Our main result in this section is the following.

Theorem 2.2. Let A ∈ C1([0, +∞[) be an increasing nonnegative function sat-
isfying (2.4) and B be defined by (2.2).
There exists a constant C = C(n) > 0 such that

∣∣∣∣
∫

Rn

Jh A (|Dh|) dx

∣∣∣∣ 6 C(n)
∫

Rn

|Dh|n B(|Dh|) dx, (2.5)

provided the integral in the left hand side is absolutely converging.
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We stress that the constant C in (2.5) will be found independent of the func-
tion A .

Remark 2.3. Estimate (2.5) in some sense may be thought of as a higher integra-
bility result for the Jacobian determinant. For the purpose of showing this more
evidently, we consider the case of A satisfying the ∆2-condition, namely,

A (2t) 6 C A (t) , ∀t > 0,

for a suitable constant C > 1. Then, by the second inequality in (2.3), the inte-
grand in the right hand side of (2.5) is controlled by

|Dh|n A (|Dh|)

and this dominates also the integrand Jh A (|Dh|) in the left hand side in view
of Hadamard inequality. On the other hand, the function B can be essentially
smaller than A .

To prove Theorem 2.2, we shall follow the approach of [14], which is based
on the well-known approximation result by Lipschitz function of Acerbi-Fusco [1]
stated in the next lemma, and an argument due to Lewis [26].

Lemma 2.4. There exists a constant C = C(n) with the following property. For
every t > 0, we can find a C t-Lipschitz map g = gt : Rn → Rn which coincides
with h a.e. on the set

{x ∈ Rn : M|Dh|(x) 6 t}.
Hereafter, M denotes the familiar Hardy-Littlewood maximal operator. We

need to recall ([31]) the following well-known weak-type estimate:

|{M f(x) > t}| 6 C(n)
t

∫

f(x)>t/2

f(x) dx, (2.6)

for a nonnegative function f on Rn.

Proof of Theorem 2.2. Clearly, we can assume that the right hand side in (2.5)
is finite. Moreover, as interchanging two components of h turns the Jacobian
determinant to the opposite, while |Dh| is not affected, we can also assume without
loss of generality that the integral in the left hand side is positive and drop the
absolute value.

We first show that ∫

Rn

Jh dx = 0. (2.7)

To this effect, we follow an idea of [14], see also [21]. To shorten notation, in the
sequel we set

D = |Dh| , M = MD = M|Dh|.
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For t > 0, let g be a Lipschitz mapping given by Lemma 2.4. It is easily seen that
also g has compact support and thus

∫

Rn

Jg dx = 0, (2.8)

that is, by the properties of g, using also (2.6)
∫

M6t

Jh dx = −
∫

M>t

Jg dx 6 C t

∫

2D>t

Dn−1 dx. (2.9)

Now we want to pass to the limit in (2.9) as t → ∞. To this aim, we notice that
Jh A (D) ∈ L1(Rn) implies Jh ∈ L1(Rn) and hence

∫

Rn

Jh dx = lim
t→∞

∫

M6t

Jh dx. (2.10)

On the other hand, if we multiply last term in (2.9) by A ′(t) > 0 and integrate
over (0,∞) with respect to t, then by the Fubini theorem and recalling the defini-
tion (2.2) of B, we see that the integral

∫ ∞

0

t A ′(t) dt

∫

2D>t

Dn−1 dx =
∫

Rn

Dn B(D) dx (2.11)

is finite, that is, the function

t 7→ t A ′(t)
∫

2D>t

Dn−1 dx

is integrable. As by (2.4) clearly A ′ is not integrable, we have

lim inf
t→∞

t

∫

2D>t

Dn−1 dx = 0 (2.12)

and (2.7) follows.
Once we have established (2.7), using it in conjunction with (2.8), we find

∫

D>t

Jh dx = −
∫

D6t

Jh dx = −
∫

M6t

Jh dx−
∫

D6t<M

Jh dx

=
∫

M>t

Jg dx−
∫

D6t<M

Jh dx .

(2.13)

and hence ∫

D>t

Jh dx 6 C tn |{M > t}| . (2.14)

Using also (2.6), therefore we find that
∫

D>t

Jh dx 6 C t

∫

2D>t

Dn−1 dx . (2.15)



96 Flavia Giannetti, Luigi Greco, Antonia Passarelli di Napoli

Now we argue as above: we multiply both sides of (2.15) by A ′(t) and then
integrate over (0,∞) with respect to t. Concerning the left hand side, by the
Fubini theorem, we get

∫ ∞

0
A ′(t) dt

∫

M>t

Jh dx =
∫

Rn

Jh[A (M)−A (0)] dx

and using again (2.7)
∫ ∞

0
A ′(t) dt

∫

M>t

Jh dx =
∫

Rn

Jh A (M) dx . (2.16)

For the right hand side, we have (2.11). Therefore, we end up with estimate (2.5).
¥

Remark 2.5. In Theorem 2.2 we assumed Jh A (|Dh|) ∈ L1(Rn), but as it is
readily seen, the arguments proving (2.5) extend to handle the case where merely
the negative part of Jh A (|Dh|) is assumed to be integrable. This seemingly trivial
observation will be very useful when considering a map h = ϕf , with Jf > 0, as
mentioned at the beginning of this section.

Remark 2.6. We can dispense with condition (2.4), that is, consider A bounded,
if we know that (2.7) holds. In fact, then the proof runs with no further modifica-
tions. Condition (2.7) in turn follows if Jh ∈ L1(Rn) and (2.12) holds. Notice that,
for A bounded (and A 6≡ 0), Jh ∈ L1(Rn) is equivalent to Jh A (|Dh|) ∈ L1(Rn).
A sufficient condition for (2.12) is |Dh| ∈ Ln log−1 L(Rn), or more generally
P (|Df |n) ∈ L1(Rn), for a function P ∈ C1([0,∞[) verifying the divergence condi-
tion (1.3). Indeed, (1.3) implies (actually, it is equivalent to)

∫ ∞

1

(
P (2−ntn)

tn−1

)′ 1
t

dt = ∞, (2.17)

and then (2.12) can be proved as above, multiplying the last term in (2.9) by(
P (2−ntn)/tn−1)′/t and integrating over (1,∞).

To illustrate better our estimate (2.5), we shall make now several applications
of it choosing the function A .

Example 2.7. Here we consider the case A (t) = tp−n, for p > n. Then (2.2)
gives

B(t) =
p− n

t

∫ 2t

0

τ1+p−n−1 dτ 6 n 2p−n+1

(
1− n

p

)
tp−n.

Hence, assuming also p 6 2n, (2.5) yields
∣∣∣∣
∫

Rn

|Dh|p−n Jh dx

∣∣∣∣ 6 C(n)
(

1− n

p

) ∫

Rn

|Dh|p dx, (2.18)

compare with inequality (7.98) of [21], pg. 164. Notice that (2.18) trivially holds
with constant 1 for each p, by the Hadamard inequality. Therefore, the essence of
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this estimate is in the constant appearing in front of the integral in the right hand
side, for p close to n; this in turn depends on identity (2.7). Also, we can easily
dispense with the condition that h has compact support.

Example 2.8. Now, for α > 0, we take

A (t) = logα(e +t).

We then immediately estimate

B(t) 6 α

t
logα(e+2t)

∫ 2t

0

log−1(e+τ) dτ.

Moreover, it can be shown that, ∀T > 0,
∫ T

0

log−1(e+τ) dτ 6 C T log−1(e+T ), (2.19)

with C > 0. Indeed, the continuous function

T 7→ 1
T

∫ T

0

log(e+T )
log(e+τ)

dτ

converges both as T → 0 and as T →∞ and so it is bounded. Hence we have

B(t) 6 C α logα−1(e+2t)

and (2.5) gives
∫

Rn

Jh logα(e+|Dh|) dx 6 C(n)α

∫

Rn

|Dh|n logα−1(e+2|Dh|) dx. (2.20)

Estimate (2.20) is qualitatively well-known; local variants of it for a mapping f
with Jf > 0 may be used to prove the Müller theorem [30] (α = 1), the Iwaniec
and Sbordone theorem [23] (α = 0), a result by Brezis, Fusco and Sbordone [6]
(0 < α < 1), a result by Greco and Iwaniec [15] (α = 2) and by Greco, Iwaniec
and Moscariello [16] (α > 0).

The novelty in (2.20) is the presence of the factor α in front of the integral in
the right hand side, which again is a consequence of (2.7). In this form, (2.20)
may be suggested by the considerations of [10].

Example 2.9. This example will correspond to the case considered in [28]. We
set

A (t) = exp(α logϑ(e+t)),

with α > 0 and 0 < ϑ < 1. By the definition (2.2) we find

B(t) 6 αϑ exp
(
α logϑ(e+2t)

)
logϑ(e +2t)

1
t

∫ 2t

0

log−1(e+τ) dτ
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and hence, using also (2.19), we see that

B(t) 6 Cαϑ exp
(
α logϑ(e+2t)

)
logϑ−1(e+2t),

where C is a universal constant (independent of α and ϑ). Therefore,
∫

Rn

Jh exp(α logϑ(e+|Dh|)) dx

6 C(n)αϑ

∫

Rn

|Dh|n exp(α logϑ(e+2|Dh|)) logϑ−1(e+2|Dh|) dx.

(2.21)

Remark 2.10. It is interesting to examine (2.5) when A is of the form

Aα(t) = (A1(t))α, (2.22)

where A1 is a fixed nonnegative increasing function, and α > 0. This was the case
in all the examples we considered. Then (2.2) gives

B(t) = Bα(t) =
α

t

∫ 2t

0

τ(A1(τ))α−1 A ′
1(τ) dτ. (2.23)

Moreover, we have

B(t) 6 α Aα(2t)
(

1
t

∫ 2t

0

τ
A ′

1(τ)
A1(τ)

dτ

)
. (2.24)

3. The case of nonnegative Jacobian

In this section we derive some consequences of (2.5) for the case alluded to at the
beginning of Section 2, concerning a mapping of the form

h = ϕf,

with f a Sobolev mapping on a domain Ω of Rn, having nonnegative Jacobian Jf ,
and ϕ ∈ C∞0 (Ω), ϕ > 0. All the expressions containing ϕ or its derivatives as a
factor are extended to the entire space Rn to be 0, ∀x 6∈ Ω. We have formulas (2.1)
relating the differential matrices and the Jacobian determinants of the two maps
f and h, where we recall that ϕnJf > 0 and F has better integrability properties
than |Df |n. Indeed, we have

|F | 6 C(n) |ϕDf |n−1 |f ⊗∇ϕ|. (3.1)

Remark 3.1. As an illustration, if we can prove (2.7), then essentially taking ϕ
a cut-off function, we get

∫

Q

J dx 6 C(n)
(∫

2Q

|Df | n2
n+1 dx

)n+1
n

(3.2)

for every cube Q such that 2Q ⊂ Ω. More details are in [21]. Inequality (3.2)
was crucial in many results on the Jacobian. It is standard for example under the
natural assumption f ∈ W 1,n

loc . It seems to be proven under some conditions below
the natural one for the first time in [13].
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In order to estimate ϕnJf A (|ϕDf |) in terms of Jh A (|Dh|), we shall note
some point-wise inequalities relating these quantities. We start with the trivial
estimate

ϕnJf A (|ϕDf |) 6 Jh A (|Dh|) + |F |A (|Dh|)
+ ϕnJf

[
A (|ϕDf |)−A (|Dh|)]. (3.3)

Using (3.1) and the monotonicity of A , we have easily

|F |A (|Dh|) 6 C(n) |ϕDf |n−1 |f ⊗∇ϕ| A (|ϕDf |+ |f ⊗∇ϕ|). (3.4)

To estimate the last term in the right hand side of (3.3) we only need to consider
the case |ϕDf | > |Dh|. If |Dh| 6 |ϕDf |/2, then

|ϕDf | 6 2|f ⊗∇ϕ|

and by the Hadamard inequality we can estimate again by the right hand side
in (3.4):

ϕnJf

[
A (|ϕDf |)−A (|Dh|)]

6 C(n) |ϕDf |n−1 |f ⊗∇ϕ| A (|ϕDf |+ |f ⊗∇ϕ|). (3.5)

For the case |ϕDf | > |Dh| > |ϕDf |/2, we use (2.3) with t = |ϕDf |/2 and obtain

ϕnJf

[
A (|ϕDf |)−A (|Dh|)] 6 |ϕDf |n B(|ϕDf |/2). (3.6)

In the right hand side of (2.5) we use the monotonicity of the function t 7→ tn B(t):

|Dh|n B(|Dh|) 6 (|ϕDf |+ |f ⊗∇ϕ|)n B(|ϕDf |+ |f ⊗∇ϕ|)
6 2n

[|ϕDf |n B(2|ϕDf |) + |f ⊗∇ϕ|n B(2|f ⊗∇ϕ|)]. (3.7)

Moreover, using the second inequality in (2.3) we find

B(2|f ⊗∇ϕ|) 6 2 A (4|f ⊗∇ϕ|).

We are now in a position to state a Corollary of Theorem 2.2.

Corollary 3.2. Under the above assumptions, we have
∫

Rn

ϕnJf A (|ϕDf |) dx 6 C

∫

Rn

|ϕDf |n B(2|ϕDf |) dx

+ C

∫

Rn

|ϕDf |n−1 |f ⊗∇ϕ| A (|ϕDf |+ |f ⊗∇ϕ|) dx

+ C

∫

Rn

|f ⊗∇ϕ|n A (4|f ⊗∇ϕ|) dx. (3.8)
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4. Mappings of finite distortion

The aim of this section is to show that the estimate (3.8) implies regularity results
for mappings of finite distortion, when coupled with a suitable Young type inequal-
ity. The following theorem may be seen as an interpolation between Gehring’s
result and the result of Theorem 1.1 of [10]. It improves the conclusion of [28].

Theorem 4.1. Let f be a mapping of finite distortion K such that exp(βKγ) ∈
L1

loc(Ω), for some β > 0 and γ > 1. Then there exists α > 0 such that

Jf exp
(
α log1−1/γ(e+Jf )

) ∈ L1
loc(Ω),

|Df |n exp
(
α log1−1/γ(e +|Df |)) log−1/γ(e +|Df |) ∈ L1

loc(Ω).
(4.1)

We shall need the following

Lemma 4.2 (Young inequality). Let 0 < α 6 1, β > 0, γ > 1 and set
ϑ = 1− 1/γ. Then, for any K > 0, J > 0, D > 0 with J 6 Dn, we have

KJ exp
(
α logϑ(e+D)

)
logϑ−1(e +D)

6 2
n + 1
β1/γ

{
exp(βKγ) + J exp

(
α logϑ(e+D)

)} (4.2)

Proof. Actually, we shall prove the following

KDn exp
(
α logϑ(e+D)

)
logϑ−1(e+D)

6 2
n + 1
β1/γ

{
exp(βKγ) + Dn exp

(
α logϑ(e+D)

)} (4.3)

which implies (4.2) as J/Dn 6 1. We use the elementary inequality

ab 6 exp(aγ) + 2b log1/γ(e +b), a > 0, b > 0,

with a = β1/γK and b = Dn exp
(
α logϑ(e +D)

)
logϑ−1(e+D). Inequality (4.3)

follows, as then b log1/γ(e+b) is easily bounded by

Dn exp
(
α logϑ(e+D)

)
logϑ−1(e+D) log1/γ

(
e+Dn exp

(
logϑ(e+D)

))

6 Dn exp
(
α logϑ(e+D)

)
logϑ−1(e+D) log1/γ

(
(e +D)n+1

)

6 (n + 1)Dn exp
(
α logϑ(e+D)

)
. ¥

Proof of Theorem 4.1. We choose ϕ ∈ C∞0 (Ω), ϕ > 0, and apply Corollary 3.2
with the function

A (t) = exp
(
α logϑ(e+t)

)

considered in Example 2.9. Accordingly,
∫

Rn

J exp
(
α logϑ(e +D)

)
dx

6
∫

Rn

H dx + C(n)α
∫

Rn

Dn exp
(
α logϑ(e +D)

)
logϑ−1(e+D) dx,

(4.4)
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where for simplicity we wrote J = ϕnJf = det(ϕDf), D = |ϕDf |, and H ∈ L1(Rn)
is supported in suppϕ. We also used that A (4t) 6 4 A (t), ∀t > 0. In the last
integral of (4.4) we use the distortion inequality Dn 6 KJ and then Young in-
equality (4.2):

∫

Rn

J exp
(
α logϑ(e+D)

)
dx 6

∫

Rn

H dx + C

∫

supp ϕ

exp(βKγ) dx

+
C(n)α
β1/γ

∫

Rn

J exp
(
α logϑ(e +D)

)
dx.

(4.5)

Choosing α small enough so that C(n)αβ−1/γ 6 1/2, in (4.5) last integral can be
absorbed in the left hand side to give

∫

Rn

J exp
(
α logϑ(e+D)

)
dx 6 2

∫

Rn

H dx + C

∫

supp ϕ

exp(βKγ) dx, (4.6)

provided we known a priori that J exp
(
α logϑ(e+D)

)
is integrable. To get rid

of this condition, we apply the above argument with a truncated version of the
function A :

AT (t) = min{A (t), A (T )} =

{
A (t), for 0 6 t 6 T

A (T ), for t > T

where T > 0; that is, A ′
T (t) = 0, ∀t > T . We can use Remark 2.6, as f is a map of

exponentially integrable distortion. All the estimates hold uniformly with respect
to T and we get again (4.6) letting T →∞. ¥

Remark 4.3. Examinating how the above estimates depend on γ and β will reveal
that the case of bounded distortion follows from Theorem 4.1 letting γ → ∞.
Indeed, it suffices to take β = ‖K‖−γ

∞ for fixed γ > 1, and then pass to the limit.
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