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Abstract: A recent development of the Davenport-Heilbronn method for diophantine inequali-
ties is reexamined, and then applied to a class of problems in diophantine approximation. Among
other things, an asymptotic formula is obtained for the number of solutions of the simultaneous
inequalities |nj − λjn0| < ε with square-free nj ∈ [1, N ], whenever the positive real numbers
λ1, . . . , λr and 1 are linearly independent over the rationals.
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1. An illustrative example

The most classical problem in diophantine approximation concerns rational num-
bers near a given set of positive real numbers, say λ1, . . . , λr. One intends to solve
the inequalities

|nj − λjn0| < ε (1 ≤ j ≤ r) (1.1)

in natural numbers ni. A prominent example is Dirichlet’s theorem: If ε = N−1/r,
then (1.1) has a solution with 1 ≤ ni ≤ N . Many variants of Dirichlet’s theorem
have been considered, with the variables nj restricted to special sets, and ε a func-
tion of the “denominator” n0, tending to zero as n0 increases. The focus in these
researches has mostly been on the existence of solutions, with ε as small as possi-
ble. We mention a recent result of Dietmann [9]: For θ < 2

3 and subject to a mild
condition on λ1, . . . , λr, there are infinitely many square-free numbers n0 such that
the inequalities |nj − λjn0| < n

−θ/r
0 have a solution in integers n1, . . . , nr. When

r = 1, Heath-Brown [14] preceded this with the stronger conclusion that for irra-
tional λ > 0 and any θ < 2

3 there are infinitely many pairs n0, n1 of square-free
numbers with |n1 − λn0| < n−θ

0 . Heath-Brown’s work is among the few examples
where not only the denominator n0 but also the numerators nj with 1 ≤ j ≤ r in
(1.1) fall into specified sets.

Mathematics Subject Classification: 11J13, 11D75



238 Jörg Brüdern

In the present communication we address the problem of counting solutions
of (1.1), with the variables nj ∈ [1, N ] restricted to a fairly general class of sets.
When specialized to the set of square-free numbers, our result reads as follows.

Theorem 1. Let λ1, . . . , λr denote positive real numbers such that 1, λ1, . . . , λr

are linearly independent over Q. Let Zε(N) denote the number of solutions of
(1.1) in square-free numbers nj with 1 ≤ nj ≤ N . Then there exists a positive real
number C and a function T (N) that increases to infinity as N tends to infinity,
such that

Zε(N) = CNεr +O(NT (N)−1)

holds uniformly in 0 < ε ≤ 1.

Note that T (N) depends on λ1, . . . , λr . This is necessarily so, see §8.
Some of the tools in this paper are easier to describe in the simplest case

r = 1. Even then Theorem 1 seems to be new but may well be part of the folklore.
Traditionally one would search for small values of n1−λn0, with n0 in some special
set N0, with the aid of exponential sums. Methods of Weyl and Vinogradov are
standard nowadays in this family of problems, but are set up in a way that deny
access to the numerators n1. Thus we are forced to use more subtle methods
originally invented by Davenport and Heilbronn [8]. This amounts to a treatment
of the inequality |n1 − λn0| < ε, with nj restricted to a special set Nj ⊂ [1, N ],
very much like a binary additive problem. One writes Υ(α) = max(0, 1 − |α|/ε)
as a Fourier transform of a function K(α) (see (5.2)), and takes the formula∑

n0∈N0
n1∈N1

Υ(n1 − λn0) =
∫ ∞

−∞
F1(α)F0(−λα)K(α) dα (1.2)

with

Fj(α) =
∑

nj∈Nj

e(αn)

as the starting point. A suitable neighbourhood of the origin contributes a term of
size εN−1#N0#N1 to (1.2) whereas large α make a negligible contribution due to
the decay of K(α). Only very recently Bentkus and Götze [2] developed a method
that shows

F1(α)F0(−λα) = o(#N0#N1) (1.3)

uniformly for a rather large range of α, provided λ is irrational and one has some
Weyl type bounds for Fj(α) at hand. Freeman [11] reworked their ideas in a context
closer to ours, and we refer to the underlying idea as the Bentkus-Götze-Freeman
device. No existing version of it seems to suit our needs. Therefore, in §3, we
again review the basic principles and demonstrate in Theorem 3 that the essence of
the Bentkus-Götze-Freeman device can be freed from any reference to exponential
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sums. In the new form, the device is ready for immediate adaption to any concrete
situation of the shape (1.3), and multi-dimensional variants thereof.

As is familiar to practioneers in the additive theory of numbers, inequalities
like (1.3) alone are insufficient to extract an asymptotic formula from the inte-
gral (1.2). In fact one needs to break square root cancellation for an individual
exponential sum Fj(α), at least in mean square over suitable minor arcs. In [5]
we classified the sets Nj where this is feasible. It turns out that multiplicative
sequences like the square-free numbers featured in Theorem 1, form only a sub-
class of those sequences where mean square estimates of the required strength are
indeed available. We summarize the consequences of [5] in §4, and use this and our
version of the Bentkus-Götze-Freeman device to derive an asymptotic formula for
a multidimensional analogue of (1.2) in §§5 and 6. The main theorem is formulated
in §7, and contains Theorem 1 as a special case. In a sense, §§5–7 may be viewed
as a variation on the work in [5], for diophantine approximations rather than equa-
tions. However, the convolution integral treatment in §6 is a major digression from
the iterative approach in [5] that should also prove useful elsewhere.

The notation used in this paper is mostly standard and otherwise introduced
when appropriate. Frequently vector notation is used, and printed in bold. The
dimension is often, but not always r. For α = (α1, . . . , αr) ∈ Rr we write ‖α‖ =
max |αj |, and αβ = α1β1 + . . .+ αrβr is the usual scalar product.

2. Normalized matrices

The Fourier transform method of Davenport and Heilbronn has been used exten-
sively to study linear systems

|λi1x1 + λi2x2 + . . .+ λisxs − μi| < ε (1 ≤ i ≤ r), (2.1)

where ε is a (small) positive real number, Λ = (λij) 1≤i≤r
1≤j≤s

is a real matrix of rank r,

the μi are real numbers, and the variables xj vary over some specific set of integers
(typically, the k-th powers, the primes, or as in our Theorem 1, the square-free
numbers). If for some i all λij are integers, then for small ε the corresponding
inequality reduces to an equation. It may also be that equations are “hidden” in
the system (2.1), in that an inequality has integral coefficients only after suitable
linear combinations of the forms in (2.1) have replaced the original ones. Freeman
[12], section 2, has discussed this theme in detail, and we briefly describe his ideas
here. Let z(Λ) denote the number of rows of Λ that have integer entries only, and
let

R = R(Λ) = max
A∈GLr(R)

z(AΛ) .

We call R the integral rank of Λ; this is the number of “hidden equations” in (2.1),
and we proceed to make them “visible”. There is then a non-singular matrix A
such that AΛ has the first R rows integral. This partially motivates the following
definition.
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A real matrix Λ = (λij) 1≤i≤r
1≤j≤s

of rank r and integral rank R is called normalized

if the first R rows are integral, and the submatrices (λij)1≤i,j≤r and (λij)1≤i,j≤R

are non-singular.

Note that a matrix of rank r has an r×r-submatrix that is non-singular. Hence,
a renumbering of the columns of Λ suffices to make (λij)1≤i,j≤r non-singular.
This corresponds to a renumbering of variables in (2.1), and does not significantly
alter the original problem. Now consider the first R rows of the first columns,
(λij)1≤i≤R

1≤j≤r
. This matrix must contain an R × R-submatrix that is non-singular,

so another renumbering of the first r columns guarantees that (λij)1≤i,j≤r is non-
singular. Thus, we have proved the following lemma.

Lemma 2. Let Λ = (λij) 1≤i≤r
1≤j≤s

be a real matrix of rank r and integral rank

R. Then, after a suitable reordering of the columns of Λ, there is a non-singular
r × r-matrix A such that AΛ is normalized.

Let Λ be a normalized matrix with rows c1, . . . , cr, and suppose that α1, . . .,
αr ∈ R are chosen such that

α1c1 + . . .+ αrcr ∈ Qs .

Then

αR+1 = . . . = αr = 0 ,

for otherwise the integral rank would be at least R + 1. We shall use this fact
below, in the proof of Theorem 3.

We end this section by considering briefly the special case where s = r + 1. It
is that case that is relevant later. Following [1], a real r× (r+1)-matrix Λ is called
highly non-singular if any r×r-submatrix is non-singular. For such a matrix there
exists A ∈ GLr(R) such that

AΛ =

⎛⎜⎝ −λ1 1 0
...

. . .
−λr 0 1

⎞⎟⎠ (2.2)

with non-zero real numbers λ1, . . . , λr. Note R(Λ) = R(AΛ), and that we may
still apply row operations to the right hand side of (2.2) to determine the integral
rank of Λ. In particular, it is immediate that R = 0 if and only if the numbers
1, λ1, λ2, . . . , λr are linearly independent over Q. This will be needed in §6.

The matrix Λ is positive if the system of equations Λx = 0 has a solution with
all xi > 0. A matrix is positive if and only if all λi in (2.2) are positive.
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3. A technical estimate

In this section we set the scene for our version of the Bentkus–Götze–Freeman
device. Some notation is required before we can formulate the result. Let N
denote the main parameter, and suppose that

1 ≤ Q ≤ 1
2

√
N. (3.1)

Then, the intervals

Mq,a = {α ∈ R : |qα− a| ≤ Q/N}
with 1 ≤ q ≤ Q, a ∈ Z and (a; q) = 1 are pairwise disjoint, and we denote
their union by M(Q). Choose a function H : [1,∞) → (0,∞) that decreases
monotonically to zero as its argument tends to ∞. Define a function Ξ : R → [0,∞)
by

Ξ(α) =
{

0 for α �∈ M(Q),
H(q +N |qα− a|) for α ∈ Mq,a ∩ M(Q).

We call Ξ the weight on M(Q) associated with H .

Now let Λ = (λij) 1≤i≤r
1≤j≤s

be a matrix with real entries, of rank r and of integral

rank R ≤ r. Suppose that Λ is normalized in the sense of section 2. Fix a function
U(N) with U(N) → ∞ as N → inf, and define

M = {α ∈ Rr : αi ∈ M(U) (1 ≤ i ≤ R), |αi| ≤ U/N (R < i ≤ r)} .
The minor arcs in our set-up are then defined by

m(T ) = {α ∈ Rr : U(N)/N ≤ ‖α‖ ≤ T }\M .

We are now in a position to announce the main result of this section.

Theorem 3. Let Q be a function of N satisfying (3.1). Let Ξ be a weight on
M(Q) associated with a decreasing function H, as above. Let U(N) be a function
with U(N) → ∞ as N → ∞. Let Λ be a normalized r × s-matrix with columns
λ1, . . . ,λs. Then, there exists a function T (N) → ∞ with N → ∞ and T (N) ≤
U(N), and such that

sup
α∈m(T (N))

Ξ(αλ1)Ξ(αλ2) . . .Ξ(αλs) � T (N)−1. (3.2)

This is the promised version of the Bentkus–Götze–Freeman device, freed from
explicit references to exponential sums. It may be useful to compare it with the
earlier versions by Freeman [10, 11] and Wooley [18] or Parsell [15]. These authors
study Weyl sums for k-th powers, or for primes, defined by

f(α) =
∑

x≤N1/k

e(αxk), g(α) =
∑
p≤N

(log p)e(αp) .
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It is then shown that for irrational λ ∈ R and some suitable functions U(N) and
T (N) as above, one has

sup
U(N)/N<|α|≤T (N)

|f(α)f(λα)| = o(N2/k), (3.3)

sup
U(N)/N<|α|≤T (N)

|g(α)g(λα)| = o(N2). (3.4)

These bounds are also available from Theorem 3, combined with some version of
Weyl’s inequality. In fact, one readily finds that for α ∈ M(N1/k) one has

f(α) � N1/k(q +N |qα− a|)−1/k

(see Vaughan [17], Theorem 4.1 and Lemma 4.6, for example), and when α /∈
M(N1/k) Weyl’s inequality ([17], Lemma 2.4) gives f(α) � N

1
k −δ for some δ > 0;

the actual value of δ is of no relevance here. We take H(t) = t−1/k to define the
weight Ξ on M(N1/k). The two bounds for f(α) now combine to

N−1/kf(α) � Ξ(α) +N−δ ,

and (3.3) follows from Theorem 3 with r = 1, s = 2 and Λ = (1, λ). A very similar
argument can be used to establish (3.4). Multi-dimensional versions of (3.3) for
smooth Weyl sums occur in work of Freeman. His important Lemma 5.5 of [12]
can also be deduced from our Theorem 3 in the way indicated above. It is hoped
that Theorem 3 serves as an easy-to-use reference in any future application of
the Bentkus–Götze–Freeman device. In delicate uses of the circle method, ordi-
nary and smooth Weyl sums often occur simultaneously, and in such situations,
Theorem 3 is still easily applicable.

One might ask for a further generalization of Theorem 3, with different weights
Ξ1, . . . ,Ξs on the linear forms αλ1, . . . ,αλs. It will be clear from the proof below
that such a generalization is indeed possible. However, as we shall see later,
Theorem 3 is sufficiently flexible as it stands.

In this paper Theorem 3 is used only with R = 0. In this case the sets M and
m(T ) take the simple shape ‖α‖ ≤ U and U < ‖α‖ ≤ T , respectively, and the
proof considerably simplifies. However, in most applications the full strength of
Theorem 3 is required. For an example and further comments on the matter we
refer to our recent work with Wooley [7].

Proof of Theorem 3. As a first step, we show that for any fixed T ≥ 1, one has

lim
N→∞

sup
α∈m(T )

Ξ(αλ1) . . .Ξ(αλs) = 0. (3.5)

We prove (3.5) by contradiction. If (3.5) is false, then there exist a real number
ε with 0 < ε < 1, an increasing sequence of real numbers Nν with Nν → ∞ as
ν → ∞, and αν ∈ m(T ) with

Ξ(ανλ1)Ξ(ανλ2) . . .Ξ(ανλs) > ε .
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But Ξ(α) ≤ 1 whence Ξ(ανλj) > ε for 1 ≤ j ≤ s. In particular, ανλj ∈ M(Q),
so that there are unique coprime integers qνj , aνj with ανλj ∈ Mqνj ,aνj . Then

H(qνj +Nν |qνjανλj − aνj |) > ε .

Since H is decreasing, we write E = H−1(ε) and conclude that

1 ≤ qνj ≤ E, |qνjανλj − aνj | ≤ EN−1
ν

hold for all ν ∈ N, all 1 ≤ j ≤ s. From the second inequality, one has

|aνj | ≤ EN−1
ν + rET max |λij | .

In particular, the 2s-tuples (qν1, . . . , qνs, aν1, . . . , aνs) can take only finitely many
values, so at least one of these, say (q1, . . . , qs, a1, . . . , as), occurs infinitely often
as ν varies. Choosing a subsequence of the Nν if necessary, we can suppose (after
renumbering if necessary) that qνj = qj , aνj = aj hold for all ν, and we then have

1 ≤ qj ≤ E, |qjανλj − aj | ≤ EN−1
ν . (3.6)

Since αν ∈ [−T, T ]r, and [−T, T ]r is compact, there is a subsequence that
converges to a limit α ∈ [−T, T ]r. As before, we may then suppose that the Nν

have been chosen such that αν itself already converges to α. With ν → ∞ in (3.6)
it follows that

αλj =
aj

qj
(1 ≤ j ≤ s), (3.7)

and since Λ is normalized, this is only possible if αR+1 = . . . = αr = 0. By (3.6)
and (3.7),

|(αν − α)λj | =
∣∣∣∣(ανλj − aj

qj

)
+
(aj

qj
− αλj

)∣∣∣∣ ≤ EN−1
ν .

We use this with 1 ≤ j ≤ r. Since Λ is normalized, (λ1, . . . ,λr) is non-singular.
Hence, there is a constant C > 0, depending only on λ1, . . . ,λr, such that

‖αν − α‖ ≤ CEN−1
ν .

For R < j ≤ r, this yields
|ανj | ≤ CEN−1

ν . (3.8)

When R = 0, this contradicts αν ∈ m(T ) when ν is large. This confirms (3.5)
when R = 0.

Now suppose that 0 < R ≤ r. For any x ∈ Rr write x̃ = (x1, . . . , xR). Then,
by (3.6) and (3.8),∣∣∣α̃νλ̃j − aj

qj

∣∣∣ ≤ EN−1
ν +

∣∣∣ r∑
i=R+1

λijανi

∣∣∣ ≤ rCEN−1
ν max |λij | .
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Since Λ is normalized, the R × R-matrix A = (λ̃1, . . . , λ̃R) is non-singular. The
previous display with 1 ≤ j ≤ R then yields

α̃νA =
(a1

q1
, . . . ,

aR

qR

)
+ β̃ν (3.9)

with

‖β̃ν‖ ≤ C1EN
−1
ν ;

here C1 = rC max |λij | depends only on Λ. There is exactly one b̃ ∈ RR, one
γ̃ν ∈ RR with

b̃A =
(a1

q1
, . . . ,

aR

qR

)
, γ̃νA = β̃ν . (3.10)

By (3.9), we then get
α̃ν = b̃ + γ̃. (3.11)

By Cramer’s rule, applied to the second equation in (3.10), the upper bounds on
β̃ν imply that ‖γ̃ν‖ ≤ C2EN

−1
ν where C2 again only depends on Λ. Since A

is an integral matrix (because Λ is normalized), Cramer’s rule also shows that
b̃ = (d1/q, . . . , dr/q) with di ∈ Z, q ∈ N, (d1; . . . , dr; q) = 1 and q|q1q2 . . . qr detA.
In particular, q ≤ | detA|ER. By (3.11), it follows that ανi ∈ M(C3E+| detA|ER)
for 1 ≤ i ≤ R, and in particular that ανi ∈ M(U(Nν)) when ν is large. But then
αν ∈ M, a contradiction. This establishes (3.5).

This far, we have followed Freeman’s argument [12], pp. 2688–2691, with
very few details that had to be adjusted to the slightly different context. We
now proceed to derive Theorem 3 from (3.5) by an argument that closely follows
Wooley [18]. In fact, by (3.5), for any t ∈ N there exists a number Nt ∈ N such
that for all N ≥ Nt one has

sup
α∈m(t)

Ξ(αλ1)Ξ(αλ2) . . .Ξ(αλs) ≤ 1
t
. (3.12)

Once Nt is determined, it may be replaced by any larger integer. Hence, we may
choose Nt such that Nt < Nt+1 for all t, and that U(Nt) > t. Then Nt → ∞
as t → ∞. We define T by T (N) = t for Nt ≤ N < Nt+1. Then T satisfies
T (N) ≤ U(N), is increasing, unbounded, and (3.2) follows from (3.12).

4. Extremal sequences and their exponential sums

This section is devoted to a class of sequences that have been investigated exten-
sively in our recent memoir [5]. We begin by collecting the principal concepts and
conclusions of that work, as this is fundamental for our later analysis.

Let S ⊂ N be any subset of the natural numbers, and write

S(N, q, a) = {s ∈ S : s ≤ N, s ≡ a mod q} .
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Suppose that for any a ∈ Z, q ∈ N there is a real number s(q, a) such that the
asymptotic formula

#S(N, q, a) = s(q, a)N + o(N) (N → ∞) (4.1)

holds; sequences S with this property are called distributed, and �(S) = s(1, 0) is
the density of S. If a distributed sequence satisfies �(S) > 0 and the relation

∞∑
q=1

q∑
a=1

(a,q)=1

∣∣∣ q∑
b=1

s(q, b)e
(ab
q

)∣∣∣2 = �(S) (4.2)

holds, then S is an extremal sequence in the language of [5]. The series in (4.2)
converges for any distributed sequence, and is bounded above by �(S) (this is [5],
Lemma 1.1). Moreover, S is extremal if and only if the function

s(n) =
{

1 s ∈ S
0 s /∈ S (4.3)

is the limit of periodic functions in the space of functions f : N → R equipped
with the semi-norm

‖f‖2 = lim supN−1
∑
n≤N

|f(n)|2 ;

for this compare Puchta [16] or this author [4]. Many examples of extremal se-
quences may be found in [5]: any sequence that has positive density and a multi-
plicative indicator (4.3) is extremal ([5], Theorem 1.4). In particular, the square-
free numbers and more generally the k-free numbers form extremal sequences.
Also, sequences that result from a convergent sieve process are extremal. More
precisely, for any prime p let k(p) ∈ N0, let Ωp ⊂ (− 1

2p
k, 1

2p
k] with #Ωp < pk, and

suppose that
∑

p p
−k(p)#Ωp converges. If there exists a constant C > 0 such that

Ωp ⊂ [−C,C] for all primes p, then the sifted set

{s ∈ N : s /∈ Ωp mod pk}

has density
∏

p(1 − #Ωp

pk(p) ), and is extremal ([5], Theorem 1.10). In particular, if
h1 < h2 < . . . < hr are natural numbers with #{hj mod pk} < pk for all primes
p, then the r-tuples of k-free numbers

{s ∈ N : s+ hj k-free for 1 ≤ j ≤ r}
are extremal. For further examples and other properties of extremal sequences,
see Brüdern [4], [5] and Puchta [16].

Let S denote a distributed sequence, and put

S(α) =
∑
s∈S
s≤N

e(αs). (4.4)
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By Parseval’s identity and (4.1), one has∫ 1

0

|S(α)|2 dα = �(S)N + o(N). (4.5)

Recall the definition of M(Q) (below (3.1)), let N(Q) = M(Q) ∩ [0, 1], and put
n(Q) = [0, 1]\N(Q). For extremal sequences S, Theorem 1.6 of Brüdern [5] asserts
that for any function Q = Q(N) with Q(N) → ∞ as N → ∞ one has∫

N(Q)

|S(α)|2 dα = �(S)N + o(N) (4.6)

and ∫
n(Q)

|S(α)|2 dα = o(N). (4.7)

The properties (4.6) and (4.7) are equivalent, in view of (4.5), and actually char-
acterize extremal sequences among the distributed ones, but this is not needed
here. In the later sections of this paper, we shall make crucial use of (4.7) along
with the following upper bound that in contrast to (4.7), is valid for distributed
sequences.

Lemma 4. Let S denote a distributed sequence. Then there exists an increasing
function Q = Q(N) with Q(N) → ∞ as N → ∞, and a decreasing function H
with H(t) → 0 as t → ∞ such that the inequality |S(α)| � NΞ(α) holds for all
α ∈ M(Q); here S is the exponential sum (4.4), and Ξ is the weight on M(Q)
associated with H.

Proof. For any distributed sequence S, there exists a function T (N) such that
T (N) and N/T (N) are increasing, and T (N) → ∞ as N → ∞, with the property
that

|#S(N, q, b) − s(q, b)N | ≤ N/T (N)

holds uniformly in N ≥ 1, q ∈ N, b ∈ Z (this is [5], Lemma 2.2). Hence, by (4.4),
whenever (a; q) = 1,

S
(a
q

)
=

q∑
b=1

∑
n∈S(N,q,b)

e
(ab
q

)
= NG(q, a) + E(N, q) (4.8)

where

G(q, a) =
q∑

b=1

s(q, b)e
(ab
q

)
,

and where |E(N, q)| ≤ qN/T (N). By partial summation and (4.8),

S
(a
q

+ β
)

= e(Nβ)S
(a
q

)
− 2πiβ

∫ N

1

e(βγ)
∑
n≤γ
n∈S

e
(an
q

)
dγ

= G(q, a)I(β) + e(Nβ)E(N, q) − 2πiβ
∫ N

1

e(βγ)E(γ, q) dγ
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where

I(β) =
∫ N

0

e(βγ) dγ. (4.9)

Since N/T (N) is increasing, we have |E(γ, q)| ≤ qN/T (N) for 1 ≤ γ ≤ N . It
follows that ∣∣∣S(a

q
+ β

)
−G(q, a)I(β)

∣∣∣ ≤ qN

T (N)
(1 + 2πN |β|). (4.10)

As we have remarked earlier, the sum in (4.2) converges. Hence, there is a function
h(q) that decreases to 0 as q → ∞, and such that

q∑
a=1

(a,q)=1

|G(q, a)|2 ≤ h(q)2

holds for all q. In particular, this yields |G(q, a)| ≤ h(q) for all (a, q) = 1. By
partial integration, applied to (4.9), we infer from (4.10) the inequality∣∣∣S(a

q
+ β

)∣∣∣ ≤ 2Nh(q)
1 +N |β| +

qN

T (N)
(1 + 2πN |β|) .

We may suppose that h(q) ≥ 1/q for all q ∈ N, for otherwise we replace h(q)
by max(h(q), 1/q) without affecting the previous argument. We now extend the
definition of h to [1,∞) by h(γ) = h([γ]). Then h is still a non-increasing function,
and ∣∣∣S(a

q
+ β

)∣∣∣ ≤ 2Nh(q)h(1 +N |β|) +
qN

T (N)
(1 + 2πN |β|) .

Since h is non-increasing, the inequality h(u)h(v) ≤ h(1)h(
√
uv) holds for any

u ≥ 1, v ≥ 1. Hence, H(t) = h(
√
t) is non-increasing, satisfies H(t) → 0 as

t → ∞, and one has∣∣∣S(a
q

+ β
)∣∣∣ ≤ 2h(1)NH(q(1 +N |β|)) +

N

T (N)
q(1 + 2πN |β|). (4.11)

Now choose a function Q(N) with Q(N) → ∞ as N → ∞, and such that
H(2Q(N)) ≥ 1/

√
T (N); this is always possible sinceH and 1/T are non-increasing

and tend to zero as N → ∞. We may now replace Q(N) with min(Q(N),
√
T (N))

if necessary to ensure thatQ(N) ≤√
T (N); the inequalityH(2Q(N)) ≥ 1/

√
T (N)

then still holds. By (4.11), it follows that for a
q + β ∈ M(Q), one has∣∣∣S(a

q
+ β

)∣∣∣ ≤ 2h(1)NH(q(1 +N |β)) + 8NQ(N)T (N)−1

≤ 2h(1)NH(q(1 +N |β)) + 8NT (N)−1/2

≤ (2h(1) + 8)H(q(1 +N |β|)).
This establishes Lemma 4. �
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5. An auxiliary asymptotic formula

In this section we launch our attack on simultaneous diophantine approximations.
The approach is based on the Fourier transform method of Davenport and Heil-
bronn. We work with the kernel functions

Kη(α) = η
( sinπηα

πηα

)2

, Υη(α) = max
(
0, 1 − |α|

η

)
(5.1)

where η > 0 is a real parameter. Note that Kη and Υη are Fourier transforms of
each other; we only require the classical formula

Υη(α) =
∫ ∞

−∞
Kη(β)e(−αβ) dβ. (5.2)

Higher-dimensional analogues arise from Fubini’s theorem. For any function
f : R → C we define f : Rr → C by

f(α) = f(α1)f(α2) . . . f(αr); (5.3)

confusion should not arise from the ambiguous use of f as the number of variables
is usually clear from the context.

Fix the following notation for the rest of this section and the next. Let
S0,S1, . . . ,Sr denote extremal sequences, of densities �j = �(Sj). Let λ =
(λ1, . . . , λr) ∈ Rr and suppose that 1, λ1, . . . , λr are linearly independent over
Q. Put

� = �0�1 . . . �r, κ = max(1, λ1, . . . , λr). (5.4)

Implicit constants, as well as several constructions below, depend on λ as well as
the Sj , but not on N or η.

For any β ∈ Rr, we count solutions of the inhomogenous system

|xi − λix0 − βi| < η (1 ≤ i ≤ r)

with a certain weight attached to the variables xj ∈ Sj . Let

Pη(N,β) =
∑

1≤xj≤N
xj∈Sj

j=0,1,...,r

r∏
i=1

Υη(xi − λix0 − βi). (5.5)

Our goal is to establish an asymptotic formula for Pη(N,β). By (5.2) and (5.3),
if Sj(α) is the sum (4.4) for Sj ,

Pη(N,β) =
∫

Rr

S1(α1) . . . Sr(αr)S0(−λα)e(−αβ)Kη(α) dα. (5.6)

This Fourier integral is the traditional point of departure for the Davenport–
Heilbronn method. One splits the integral into three parts: a small neighbourhood
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of the origin (the major arc) contributes a prospective main term, and the part
where ‖α‖ is large (the trivial region) contributes very little, due to the decay
of Kη(α). In the intermediate region (the minor arc), one uses inequalities of
Weyl’s type and some argument of the type discussed in section 3 for an upper
bound. There are two points where we have to digress from this well trodden path.
Unlike earlier versions of the method, in our case the dissection will depend not
only on the sets S0, . . . ,Sr, but also on λ. This seems to be an intrinsic feature of
the Bentkus–Götze–Freeman device, and apparently is unavoidable (compare the
discussion in §8). Moreover, in our description of the method, there is no trivial
region. Instead, we use ideas from our paper [3] that are based on the Poisson
summation formula. It seems that some sort of refinement on the trivial region
is actually necessary when the number of variables is too low for a direct use of
mean value estimates of Hua’s type; this is the case here.

We begin by constructing the major arc. By (4.10), applied to Sj , with q = 1
and a = 0, there exists a function Vj(N) with Vj(N) → ∞ as N → ∞, and such
that whenever |α| ≤ Vj(N)/N one has

|Sj(α) − �jI(α)| ≤ N/Vj(N). (5.7)

Let V = min(V0, . . . , Vr) and U∗ = V 1/(r+1). Then U∗(N) → ∞ as N → ∞. For
1 ≤ U ≤ U∗(N) we define

K = {α : ‖α‖ ≤ U/N}, k = Rr/K = {α ∈ Rr : ‖α‖ > U/N}. (5.8)

For ‖α‖ ≤ U∗/N , one has |λα| ≤ r‖λ‖U∗(N)/N ≤ V (N)/N for large N , whence
by (5.7), for these α,

S1(α1) . . . Sr(αr)S0(−λα) = �I(α)I(−λα) +O(N r+1/V (N)) (5.9)

where � is given by (5.4) and I(α) is defined via (4.9) and (5.3). We multiply with
the bounded function K(α)e(−αβ) and integrate over K to infer that∫

K

S1(α1) . . . Sr(αr)S0(−λα)e(−αβ)Kη(α) dα

= �

∫
K

I(α)I(−λα)e(−αβ)Kη(α) dα +O(NU rV −1).

We now complete the integral on the right hand side to the singular integral

P ∗
η (N,β) =

∫
Rr

I(α)I(−λα)e(−αβ)Kη(α) dα, (5.10)

and then proceed to evaluate (5.10) asymptotically. The arguments are largely
standard, but some care is required because only very few variables are present.
By (5.8) we have∫

K

S1(α1) . . . Sr(αr)S0(−λα)e(−αβ)Kη(α) dα

= �P ∗
η (N,β) −

∫
k

I(α)I(−λα)e(−αβ)Kη(α) dα +O(NU−1). (5.11)
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For simplicity, write α0 = −λα (as a function of α1, . . . , αr) and put

Jl(α) =
∏

0≤j≤r
j �=l

I(αj) .

Then, by Hölder’s inequality,∫
k

|I(α)I(−λα)| dα ≤
r∏

l=0

(∫
k

|Jl(α)| r+1
r dα

) 1
r+1

. (5.12)

But J0(α) = I(α), and I(α) � N(1+N |α|)−1, as one finds by partial integration.
Consequently,∫

k

|J0(α)| r+1
r dα � N r+1

∫
k

r∏
j=0

(1 +N |αj |)− r+1
r dα � NU−1/r .

A cruder argument suffices for 1 ≤ l ≤ r. When l = r, substitute α0 for αr to
infer that∫

k

|Jr(α)| r+1
r dα ≤

∫
Rr

|Jr(α)| r+1
r dα

= λ−1
r

∫
Rr

|I(α0)I(α1) . . . I(αr−1)| r+1
r dα0 . . . dαr−1

= λ−1
r

(∫ ∞

−∞
|I(α)| r+1

r dα
)r

� N ;

here the implicit constant depends on λ. By symmetry, the same bound holds
with Jl in place of Jr, and we infer from (5.12) that∫

k

|I(α)I(−λα)| dα � NU− 1
r(r+1) . (5.13)

Since e(−αβ)Kη(α) � 1 for 0 < η ≤ 1, we can use (5.13) to simplify (5.11) to∫
K

S1(α1) . . . Sr(αr)S0(−λα)e(−αβ)Kη(α) dα = �P ∗
η (N,β) +O(NU− 1

r(r+1) )

(5.14)
It remains to evaluate P ∗

η (N,β), as defined in (5.10). Use the definition of I(α)
in (4.9) to write I(α)I(−λα) as an r + 1-fold integral. Then, by (5.10) and 5.2,

P ∗
η (N,β) =

∫ N

0

∫
[0,N ]r

Υη(β1 − t1 + λ1t0, . . . , βr − tr + λrt0) dt dt0 .

Note the formal similarity with the definition of Pη(N,β) in (5.5), P ∗(N,β) is
a continuous analogue that is easy to compute. We substitute uj = tj − βj − λjt0
in the inner integral and write t for t0. Then, since Υη(−u) = Υη(u),

P ∗
η (N,β) =

∫ N

0

∫
B(t)

Υη(u) du dt (5.15)

where B(t) is the set of u ∈ Rr with 0 ≤ uj + λjt+ βj ≤ N for all j = 1, . . . , r.
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So far, all estimates have been uniform with respect to β. It is now necessary
to assume that β is small, whence we suppose that ‖β‖ ≤ √

N . Then, for N2/3 ≤
t ≤ κ−1N −N2/3, we have λjN

2/3 −N1/2 ≤ λjt+ βj ≤ N − λjN
2/3 +N1/2, and

hence, for large N , the box ‖u‖ ≤ 1 is contained in B(t). Hence, for these t, and
for 0 < η ≤ 1, one has∫

B(t)

Υη(u) du =
(∫ 1

−1

Υη(u)du
)r

= ηr .

Similarly, when t ≥ κ−1N +N2/3 and N is large, there is at least one j for which
the intersection of the intervals 0 ≤ uj+λjt+βj ≤ N and |uj| ≤ 1 is empty. Hence,
in this case, the inner integral in (5.15) vanishes. In the regions 0 ≤ t ≤ N2/3 and
|t− κ−1N | ≤ N2/3 it suffices to use the upper bound∫

B(t)

Υη(u) du ≤
∫

Rr

Υη(u) du = ηr

that is actually valid for all t ∈ R. Now split the outer integral into the regions
0 ≤ t ≤ N2/3, N2/3 < t ≤ κ−1N−N2/3, κ−1N−N2/3 < t ≤ min(N, κ−1N+N2/3),
larger t ≤ N (if any) do not contribute by the above observations. Then, on
collecting together,

P ∗
η (N,β) = κ−1Nηr +O(N2/3ηr) .

By (5.14) we have proved the first statement in the following lemma.

Lemma 5. Let S0, . . . ,Sr denote extremal sequences, and let λ1, . . . , λr denote
positive real numbers such that 1, λ1, . . . , λr are linearly independent over Q. Then
there exists a function U∗(N) with U∗(N) → ∞ as N → ∞, and such that uni-
formly in 0 < η ≤ 1, ‖β‖ ≤ √

N and 1 ≤ U ≤ U∗(N) one has∫
‖α‖≤U/N

S1(α1) . . . Sr(αr)S0(−λα)e(−αβ)Kη(α) dα

= �κ−1ηrN +O(NU− 1
r(r+1) )

and ∫
U/N≤‖α‖≤U∗/N

|S1(α1) . . . Sr(αr)S0(−λα)| dα � NU− 1
r(r+1) .

Here κ and � are defined by (5.4).

To establish the final inequality in Lemma 5, apply the triangle inequality to
(5.9) and integrate over U/N ≤ ‖α‖ ≤ U∗/N . Then, by (5.8),∫

U/N≤‖α‖≤U∗/N

|S1(α1) . . . Sr(αr)S0(−λα)| dα

�
∫

k

|I(α)I(−λα)| dα +NU∗rV −1 .

But U∗ = V 1/(r+1), and the required bound follows from (5.13).
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6. Counting continued

In this section we complete the analysis of the weighted counter Pη(N,β), but
before we direct our forces to the treatment of the minor arc portion of the integral
(5.6), we pause for two auxiliary identities that will frequently be used later.

Let S(α) denote any exponential sum, as in (4.4). Let ν, μ, μ′ denote real
numbers with ν �= 0. Then, provided only that |ν| ≥ η > 0, we deduce from (5.2)
the convolution formula∫ ∞

−∞
S(να+μ)S(−να−μ′)Kη(α) dα =

∑
s,s′≤N
s,s′∈S

Υη(ν(s−s′))e(μs−μ′s′) = S(μ−μ′).

(6.1)
Our second tool concerns functions f ∈ L1(R/Z) that we view as functions

of period 1 on the real line. Then, by Lemma 1 of Brüdern and Perelli [6], or
Brüdern [3], eqn. (4), for any function K ∈ L1(R) that has a compactly supported
Fourier transform K̂ one has∫ ∞

−∞
f(α)K(α)e(−αβ) dα =

∞∑
n=−∞

K̂(β − n)
∫ 1

0

f(α)e(−αn) dα; (6.2)

this is readily proved by Poisson summation ([3], p. 63). In particular, we have∫ ∞

−∞
f(α)Kη(α) dα =

∫ 1

0

f(α) dα (0 < η ≤ 1) .

Two special cases are of interest to us. With S(α) as before and m(Q) and n(Q) =
m(Q) ∩ [0, 1] as in section 3, one has∫

m(Q)

|S(α)|2Kη(α) dα =
∫

n(Q)

|S(α)|2 dα. (6.3)

To see this, it suffices to take f(α) = |S(α)|2 when α ∈ m(Q), and f(α) = 0
otherwise, in the preceding identity. Similarly, one finds∫

M(Q)

Kη(α) dα =
∫

N(Q)

dα � Q2/N. (6.4)

We return to the main theme, and use the notation from section 5 throughout.
The objective is to estimate the quantity∫

k

S0(α0)S1(α1) . . . Sr(αr)e(−αβ)Kη(α) dα = I(k) (6.5)

say; here α0 = −λα as on earlier occasions. Some preparation is required be-
fore we can bring Theorem 3 into play. First we apply Lemma 4 to each of
the sequences S0, . . . ,Sr. This supplies functions Hj(t) that decrease to 0 as
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t → ∞, and increasing unbounded functions Qj(N), such that |Sj(α)| � NΞj(α)
holds for α ∈ M(Qj(N)); here Ξj is the weight associated to Hj . Now take
H = max(H0, H1, . . . , Hr) and Q = min(Q0, . . . , Qr). Then

Sj(α) � NΞ(α) for α ∈ M(Q) (6.6)

holds for all 0 ≤ j ≤ r. With this choice of Q(N) and U∗(N) in the role of U ,
apply Theorem 3. By the comment at the end of section 2, the relevant coefficient
matrix has integral rank 0, and there exists a function T (N), tending to ∞ with
N , with T (N) ≤ U∗(N) and such that

sup
U∗(N)/N≤‖α‖≤T (N)

Ξ(α0)Ξ(α1) . . .Ξ(αr) � T (N)−1. (6.7)

The set k is to be dissected into r+2 subsets that must be considered separately.
We need to define various functions before we can describe this in detail. First, we
apply (4.7) in combination with (6.3) to S = Sj . This shows that for any function
Vj with Vj(N) → ∞ as N → ∞ there exists a function Uj that also increases to
infinity, and such that ∫

m(Vj)

|Sj(α)|Kη(α) dα � NU−1
j . (6.8)

Here we may suppose that Uj ≤ Vj for otherwise Uj can be replaced by min(Uj , Vj).
Now choose functions V0, Vr, Vr−1, . . . , V1 as follows: let

V = V0 = min(Q, T 1/4r) .

This defines a function U0 with U0(N) → ∞ as N → ∞, and such that (6.8) holds
for j = 0. Next, put Vr = U

1/5r
0 and choose an increasing, unbounded function Ur

such that (6.8) holds for j = r. Proceed likewise and recursively put

Vj = U
1/5j
j+1 (1 ≤ j ≤ r − 1). (6.9)

Note that Uj ≤ Vj implies the inequalities

Vj ≤ V
1/5j
j+1 (1 ≤ j ≤ r − 1), V 1/5r

r ≤ V0 = V .

The functions Vj now being defined, we choose U(N) = min(U0(N), V1(N)) in
the work of section 5. This fixes the definition of k, and Lemma 5 is applicable.
Now write

hl = {α ∈ k : αl ∈ m(Vl), αj ∈ M(Vj) for 1 ≤ j ≤ l − 1},
h∗ = {α ∈ k : α0 ∈ m(V0), αj ∈ M(Vj) for 1 ≤ j ≤ r},
H = {α ∈ k : αj ∈ M(Vj) for 0 ≤ j ≤ r}.
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Then k is the disjoint union of h1, . . . , hr, h
∗ and H. Accordingly, by an appropriate

interpretation of (6.5),

I(k) = I(H) + I(h∗) +
r∑

l=1

I(hl). (6.10)

The integral I(H) is estimated in three steps. We consider the subsets

H∗ = {α ∈ H : U∗/N < ‖α‖ ≤ T }, H∗ = {α ∈ H : ‖α‖ > T }
and then first observe that by Lemma 5 we have

I(H) � |I(H∗)| + |I(H∗)| +NU−1/r(r+1) .

Note that H ⊂ Mr where M = M(V ). By (6.5) and (6.6), then (6.7) followed by
(6.4), we find that

I(H∗) � N r+1

∫
H∗

Ξ(α0)Ξ(α1) . . .Ξ(αr)Kη(α) dα

� N r+1T−1

∫
Mr

Kη(α) dα � NT−1V 2r � NT−1/2.

For H∗ we apply brute force, estimate all Sj(αj) trivially and then use symmetry
in α to confirm the bounds

I(H∗) � N r+1

∫
H∗
Kη(α) dα � N r+1

( ∫
M

Kη(α) dα
)r−1(∫

L(T )

Kη(α) dα
)

where L(T ) = M ∩ [T,∞). But straightforward estimates based on (5.1) give∫
L(T )

Kη(α) dα �
∞∑

m=[T ]

m−2

∫
N

dα � T−1V 2N−1

so that (6.4) confirms the bound I(H∗) � NV 2rT−1. This combines to

I(H) � NT−1/2 +NU−1/r(r+1). (6.11)

We now turn our attention to the set hl with 1 ≤ l ≤ r. Note that U(N) ≤
Vj(N) for all j = 0, . . . , r. In particular, when 1 ≤ l ≤ r and α ∈ Rr with
αl ∈ m(Vl), then ‖α‖ ≥ Vl/N , and hence α ∈ k. This shows that hl is a cartesian
product. It is convenient to introduce the following notation: for 1 ≤ l ≤ r and
α ∈ Rs, let αl = (α1, . . . , αl−1, αl+1, . . . , αr), and put

Fl = {αl ∈ Rr−1 : αj ∈ M(Vj) (1 ≤ j ≤ l − 1)} .
Then, by (6.5), (5.3) and Fubini’s theorem,

I(hl) =
∫

m(Vl)

Sl(αl)e(−αlβl)Fl(αl)Kη(αl) dαl (6.12)
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where

Fl(αl) =
∫

Fl

r∏
j=0
j �=l

Sj(αj)e(−αlβl)Kη(αl) dαl, (6.13)

here we continue to use the abbreviation α0 = −λα. By Cauchy’s inequality,

I(hl) ≤
( ∫

m(Vl)

|Sl(α)|2Kη(α) dα
) 1

2 J 1
2

l (6.14)

where

Jl =
∫ ∞

−∞
|Fl(α)|2Kη(α) dα .

We expand this last integral. On writing

Φl(αl) =
r∏

j=1
j �=l

Sj(αj)

and

Ψl(αl,α
′
l) =

∫ ∞

−∞
S0(−λlαl − λlαl)S0(λlαl + λlα

′
l)Kη(αl) dαl ,

one finds from (6.13) and Fubini’s theorem that

Jl =
∫

Fl

∫
Fl

Φl(αl)Φl(−α′
l)e(βl(α

′
l − αl))Ψl(αl,α

′
l)Kη(αl)Kη(α′

l) dαl dα
′
l .

We suppose that 0 < η ≤ minλj . Then, by (6.1), Ψl(αl,α
′
l) = S0(λl(α′

l − αl))
and

Jl =
∫

Fl

∫
Fl

Φl(αl)Φl(−α′
l)S0(λl(α′

l − αl))e(βl(α
′
l − αl))Kη(αl)Kη(α′

l) dαl dα
′
l.

(6.15)

The case l = 1 is particularly simple. Here F1 = Rr−1. Hence, by (5.3) and
a consideration of the underlying diophantine problem, we see that when l = 1,
the integral in (6.15) does not exceed the number of solutions of the system of
inequalities

|λjw − xj | < η, |λjw − yj| < η (2 ≤ j ≤ r) (6.16)

in integers w, xj , yj, all in the interval [1, N ]. For η ≤ 1, the value of w fixes xj and
yj within O(1) possibilities. Hence, J1 � N , and by (6.14) and (6.8), it follows
that

I(h1) � NU
−1/2
1 . (6.17)
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The cases 2 ≤ l ≤ r can be treated along similar lines. We return to (6.15)
and carry out all integrations against αl+1, . . . , αr, α

′
l+1, . . . , α

′
r, with the aid of

5.3. On writing α̃ = (α1, . . . αl−1),

Gl = M(V1) × . . .× M(Vl−1)

and

Θl(α̃, α̃′) =
∑

w,xj,yj

r∏
j=l+1

Υη(xj − λjw − βj)e
(
w

l−1∑
i=1

λi(α′
i − αi)

)
,

where the summation is over all w ∈ S0, xj , yj ∈ S for 1 ≤ j ≤ l − 1 that satisfy
(6.16) and lie in the interval [1, N ], one finds that 6.15 reduces to

Jl =
∫

Gl

∫
Gl

Θl(α̃, α̃′)
l−1∏
j=1

Sj(αj)Sj(−α′
j)e(βj(α′

j − αj))Kη(α̃)Kη(α̃′) dα̃dα̃′ .

All remaining exponential sums will now be estimated trivially. As we saw in the
case l = 1, there are only O(N) tuples w, xj , yj in the summation conditions for
the sum defining Θ. Hence, Θ � N , and therefore, we may conclude from (6.4)
that

Jl � N2l−1
l−1∏
j=1

(∫
M(Vj)

Kη(αj) dαj

)2

� N(V1 . . . Vl−1)4 .

By (6.14) and (6.8), it follows that for 2 ≤ l ≤ r one has

I(hl) � N(V1 . . . Vl−1)2U
−1/2
l � NU

−1/10
l . (6.18)

Finally, we consider h∗. Here we apply Schwarz’s inequality directly to (6.5)
to obtain

I(h∗) ≤ (I1I2)1/2

with

I1 =
∫

h∗
|S0(−λα)|2Kη(α) dα, I2 =

∫
Rr

|S1(α1) . . . Sr(αr)|2Kη(α) dα .

The second integral factorizes into∫ ∞

−∞
|Sj(α)|2Kη(α) dα = #{n ≤ N : n ∈ Sj} � N

whence I2 � N r. For I1, we substitute α0 = −λα for αr as a new variable of
integration. Then, with αr = (α1, . . . , αr−1) as before,

I1 ≤ 1
λr

∫
Gr

∫
m(V0)

|S0(α0)|2Kη(αr)Kη(αr) dα0 dαr .
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Here αr is the function of α0 and αr defined via α0 = −λrαr − λrαr. We can
rewrite the inner integral as∫

m(V0)

|S0(α0)|2Kη

(α0 + λrαr

λr

)
dα0 .

The Fourier transform of α �→ Kη(λ−1
r (α + λrαr)) is β �→ Υη(λrβ)λre(βλrαr).

Hence, by (6.2), when η ≤ λr,∫
m(V0)

|S0(α0)|2Kη

(α0 + λrαr

λr

)
dα0 = λr

∫
n(V0)

|S0(α)|2 dα .

When combined with (6.3) and (6.4), it follows that

I1 � NU−1
0

∫
Gr

Kη(αr) dαr � N2−rU−1
0 (V1 . . . Vr−1)2 � N2−rU

−1/2
0 .

Collecting together, we deduce that I(h∗) � NU
−1/4
0 . By (6.10), (6.11), (6.17)

and (6.18) we finally confirm the bound I(k) = o(N) as N �→ ∞ When combined
with (5.6) and Lemma 5, we have reached the following conclusion.

Theorem 6. Let S0, . . . ,Sr denote extremal sequences. Let λ1, . . . , λr be posi-
tive real numbers such that 1, λ1, . . . , λr are linearly independent over Q. Define
Pη(N,β) by (5.5). There exists a function U(N) with U(N) → ∞ as N → ∞,
and such that

Pη(N,β) = �κ−1ηrN +O(NU−1)

holds uniformly in 0 < η ≤ min λj and |β| ≤ √
N . Here � and κ are defined by

(5.4).

We close this section with a brief comment on the method. The kernel in
our Fourier approach factorizes, as in (5.3). It seems very important to use such
a kernel. This property has been used ubiquitously, but most notably in (6.12).
The second factor in (6.14) reduces, at least in part, to a diophantine system of
linear inequalities. This provides a crucial saving over more traditional methods of
estimation which would require 2r+1 variables for r inequalities, at the very least.
The price we have to pay for this is rather low; it is the tedious and unsymmetric
construction of the functions Vj in (6.9), with consequential asymmetries in the
sets h1, . . . , hl later. One can use the techniques of this section also in the context of
diophantine equations. For example, one can work along the lines of sections 5 and
6 of this paper to give an alternative, more direct proof of the k-tuple-Theorem 1.7
from our recent memoir [5].

7. The main theorem

The weights can be removed from the counting function Pη(N,β) in Theorem 6,
and we may consider more general linear forms than those covered by the methods
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of sections 5 and 6. With this in view, let Λ = (λij) 1≤i≤r
0≤j≤r

denote a real matrix,
and fix a choice of extremal sequences S0, . . . ,Sr. For real numbers τj > 0 define
Zτ (N,μ) as the number of solutions of the system∣∣∣ r∑

j=0

λijxj − μi

∣∣∣ ≤ τi (1 ≤ i ≤ r) (7.1)

with xj ∈ Sj and 1 ≤ xj ≤ N for 0 ≤ j ≤ r.

Theorem 7. Suppose that the real r × (r + 1)-matrix Λ is highly non-singular,
positive and of integral rank 0. Then there exists a constant c > 0, depending only
on Λ, and such that the asymptotic formula

Zτ (N,μ) = c�Nτ1τ2 . . . τr + o(N)

holds uniformly for all |μ| ≤ √
N and for all positive τj that are sufficiently small

in terms of Λ.

Proof. Choose a matrix A ∈ GLr(R) such that AΛ takes the shape (2.2); then all
λj are positive, and by the remark at the end of section 2, the numbers 1, λ1, . . . , λr

are linearly independent over Q. Let

D = {α ∈ Rr : |αj − μj | ≤ τj (1 ≤ j ≤ r)} .
Then AD is a parallelotope, and the inequalities (7.1) are equivalent with the
condition that

(λ1x0 − x1, λ2x0 − x2, . . . , λrx0 − xr) ∈ AD .

Choose U(N) in accordance with Theorem 6, and let η = U−1/4r. Suppose that
τj ≥ η1/4 holds for all j. Then put

D+ = {α : |αj − μj | ≤ τj +
√
η}, D− = {α : |αj − μj | ≤ τj −√

η}
Now consider the set of lattice points B± = ηZr ∩ AD±. The volume of D± is
τ1τ2 . . . τr(1 + O(η1/4)), and hence the volume AD± equals | det A|τ1τ2 . . . τr(1 +
O(η1/4)). By standard lattice point arguments, we find that

#B± = | detA|τ1 . . . τrη−r(1 +O(η1/4)). (7.2)

Now write

Z± =
∑

β∈B±
Pη(N,β) .

By (5.1) and (5.5), one readily confirms that whenever N is large one has

Z− ≤ Zτ (N,β) ≤ Z+ .
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By Theorem 6 and (7.2), one finds that for some constant c one has

Z± = �cτ1 . . . τrN +O(NU−3/4) +O(Nτ1τ2 . . . τrη1/4) .

Theorem 7 is now immediate. This also proves Theorem 1 because the square-free
numbers form an extremal sequence. �

It is perhaps of interest that Theorem 7 may be generalized to the case of non-
zero integral rank. In such a situation there are hidden diophantine equations in
the system (7.1), as we pointed out in §2. The asymptotic formula for Zτ (N,μ)
will reflect this with the appearance of a suitable singular series that, however, is
not necessarily positive. When Λ is of integral rank r, then the desired formula is
actually contained in [5], chapter 5, and the intermediate cases can be handled by
the methods of this paper and the intersection principles of [5], chapter 4.

8. Outroduction

Suppose that 0 < λ < 1
2 is an irrational number, and let Zτ (N) denote the number

of solutions of |m − λn| < τ with 1 ≤ n,m ≤ N . This is the simplest situation
where Theorem 7 is applicable. The work of Hardy and Littlewood [13], section 4.4
is readily modified to show that in the current context the error term in the formula
Zτ (N) = 2τN + o(N) is sharp: for any function T (N) increasing to infinity with
N , there exists an irrational λ ∈ (0, 1

2 ) such that |Zτ (N)− 2τN | > N/T (N) holds
on a sequences of values for N tending to infinity. In particular, the error term
in Theorem 7 crucially depends on λ. One would expect that this is so for any
r, and any choice of extremal sequences S0, . . . ,Sr. However, a more thorough
discussion of this matter requires another development of our methods that we
intend to communicate on a future occasion.
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