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SUMS OF FOURTH POWERS OF POLYNOMIALS OVER
A FINITE FIELD OF CHARACTERISTIC 3

MIREILLE CAR

Abstract: Let F' be a finite field with g elements and characteristic 3. A sum
M =M{+ ... +M?

of fourth powers of polynomials Mi,..., M is a strict one if 4deg M; < 4 4+ deg M for each
i =1,...,s. Our main results are: Let P € F[T] of degree > 329. If ¢ > 81 is congruent to 1
(mod. 4), then P is the strict sum of 9 fourth powers; if ¢ = 81 or if ¢ > 3 is congruent to 3
(mod 4), then P is the strict sum of 10 fourth powers. If ¢ = 3, every P € F[T] which is a sum
of fourth powers is a strict sum of 12 fourth powers, if ¢ = 9, every P € F[T] which is a sum
of fourth powers and whose degree is not divisible by 4 is a strict sum of 8 fourth powers; every
P € F|T] which is a sum of fourth powers, whose degree is divisible by 4 and whose leading
coefficient is a fourth power is a strict sum of 7 fourth powers.

Keywords: Waring’s problem, Polynomials, Finite Fields.

1. Introduction

Let F be a finite field of characteristic p with ¢ elements and let S(g, k) be the set
of polynomials in F[T] which are sums of k-th powers. Let g(q, k), respectively,
G(q,k) denote the least integer s, if it exists, such that every polynomial M €
S(q, k), respectively, every polynomial M € S(q,k) of sufficiently large degree,
may be written as a sum

M=M{+...+MF

with M, ..., Mg polynomials satisfying the degree condition: kdeg M; < k +
deg M. Such a representation is called a strict representation in opposition to rep-
resentations without degree conditions. Waring’s problem consists in determining
or, at least, bounding the numbers g(q, k) and G(q, k). Bounds for g(q,k) and
G(q, k) were given in [3] where the author described a process introduced in [§]
and performed in [4] to deal with the polynomial Waring’s problem for cubes.

Some notations and definitions are necessary before stating the main results
proved in [3].
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If every a € F is a sum of k-th powers, the field F' is called a Waring field for
the exponent k or briefly, a k-Waring field. If F' is a k-Waring field, let ¢(q, k)
denote the the least integer £ such that every element of F' is the sum of ¢ k-th
powers. Let A(q, k) denote the least integer s such that -1 is the sum of s k-th
powers. Let d(q, k) = ged(q — 1, k).

Let v(q, k) denote the least integer v, if it exists, such that 7' may be written as
asum (a1 +b1)* + ...+ (a,T + b,)* with a;,b; € F. Otherwise, let v(gq, k) = oo.
If v(q, k) is finite, every P € F[T] may be written as a sum

P=(a1P+b)" ...+ (aygr P + b))

so that S(¢, k) = F[T] and F is a k-Waring field. If z is a real number, [z] is
defined as the integral part of z and [z] is defined as the least integer > x.

In what follows, unless otherwise stated we agree that, if R is a ring, the
statement a € R is a sum of fourth powers means that a is a sum b + ... + b}
with by,...,bs € R.

In [3], the bounds for G(q, k) and g(g, k) arise from the two following proposi-
tions.

Proposition 1.1. ([3]) (I) If F is a k-Waring field and if ¢ > k, then

v(q, k) < k/d(q, k) + (g, k)(k — k/d(q,k))).

(IT) Assume that one of the following conditions is satisfied: (1) p >k, (2) F is a
k-Waring field, g > k, k = hp® — 1 with 1 <h <p,s > 1. Then every A € F[T] of
degree < kn is the strict sum of £(q,k)(kn + 1) k-th powers.

Proposition 1.2. ([3]) Assume that F' is a k-Waring field and that ¢ > k. Put

r=log(k/(k—1)).

(I) Let m > [@] Then, every P € F[T] of degree at least equal to n(m, k) =

k2 —2k—k2(1—L1)ym+? . .
k[ TR Ty 1—=k+1 is the strict sum of m+v(q, k)+max(£(q, k), 1+ A(g, k))
k

k-th powers. Moreover, if m > @, then, n(m, k) < k* — 3k3 + 2k% — 2k + 1.
(IT) Let m > w. Then, every P € F[T)| of degree > k3 — 3k +1 is the
strict sum of m + v(q, k) + max(¢(q, k), 1 + A(q, k)) k-th powers.
(IIT) Let m > @ — 1. Then, every P € F[T)] such that k* —2k* —k +1 <
deg P < k3 — 3k is the strict sum of m + v(q, k) + max(£(q, k), 1 + X(q, k)) k-th
powers.

Roughly speaking, the object of this paper is the study of the Waring problem
in the particular case k = 4,p = 3. It can be viewed as a continuation of the
work in [5] where it was proved that G(¢,4) < 11 for ¢ ¢ {3,9,5,13,17,25,29}
and that G(g,4) < 10 for ¢ ¢ {17,25} and congruent to 1 (mod 8). This case
does not fall in the scope of the second part of Proposition 1.1, and the study
of the numbers ¢(3™,4) has not be done. In the special case k = 4,p = 3, it
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is possible to compute the exact value of v(3™,4). This involves an improvement
for the bounds given in [3] and [5]. Since the numbers ¢(3™,4) and G(3™,4) are
not sufficient to describe every possible case, we introduce new parameters. Let
8*(q,4) denote the set of polynomials in F[T] which are strict sums of fourth
powers. Let g*(q,4), respectively, G*(g,4) denote the least integer s, if it exists,
such that every polynomial M € S*(q,4) respectively, every polynomial M €
S*(g,4) of sufficiently large degree, may be written as a strict sum

M =M} +...+ M
The main results proved in this work are summarized in the following theorem.

Theorem 1.1. Assume that F is a finite field with ¢ = 3V elements.
(I) For N > 3, S(3N,4) is equal to the whole ring F[T] and S*(3N,4) is the
union of the set {A € F[T]|deg A > 4} and the set of polynomials

A=aT* +bT>+ T +d

with a,b,c,d € F. For N € {1,2}, S(3",4) is the subset of F[T] formed by the
polynomials A such that T® — T divides A3 — A. Moreover, S*(3,4) = S§(3,4) and
8*(9,4) is the set formed by the polynomials A € §(9,4) satisfying one of the two
following conditions:

(i) 4 does not divide deg A, (ii) 4 divides deg A and the leading coefficient of
A is in the prime field Fs.

(IT) We have g(3N,4) = oo for N > 2 and g(3,4) < 12. We have g*(3V,4) < 19
for even N > 4, g*(81,4) < 21 and g*(9,4) < 8. We have g*(3V,4) < 20 for odd
N >1 and ¢g*(3,4) < 12.

(IIT) We have G(3N,4) <9 for even N > 4, G(81,4) < 10 and G(9,4) = oo.
We have G(3V,4) < 10 for odd N > 1 and G(3,4) < 12. We have G*(3V,4) <9
for even N > 4, G*(81,4) < 10 and G*(9,4) < 8. We have G*(3",4) < 10 for odd
N >1 and G*(3,4) < 12.

Observe that for the classical Waring’s problem we have G(4) = 16 and g(4) =
19, see [6], [1] and [7].

The paper is organized as follows. In order to prove that T is a strict sum of
fourth powers, we have to prove that some algebraic equations have solutions in
F. This is done in Section 2. In Section 3, we prove that for ¢ = 27 or ¢ > 81,
v(g,4) = 3 and that v(81,4) = 4 and we deduce bounds for the numbers G(q,4).
In Section 4, we prove some identities and we show that, with the exception g = 3,
the sets S(3V,4) and S*(3V,4) are different. In section 5, we describe a new
descent process and we end the proof.

Choosing an algebraic closure F of F, we shall denote by F¢ the unique subfield
of F with @ elements, so that F' =F,. Let a € Fg be such that

o =-1 (1.1)

and let
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Then,
ﬁQ = aaﬁ4 = -1 (13)

2. Equations

Although it is very simple, the following lemma is very useful to obtain represen-
tations of polynomials as sums of fourth powers.

Lemma 2.1. Let (u,v) € F? be such that uv # 0 and u® # v®. Then, for each
ordered pair (a,b) € F?, the system (€(u,v,a,b)) :

a=udzr+ v3y
{ b = uzd + vy’ (2.1)
has a unique solution in F2.
Proof. If (z,y) € F? is a solution of £(u,v,a,b), then,
(a —uz)
y="—p (2.2)
so that . s
bv® —a
3
= 2.3
v u(v8 — ud) (2:3)
Conversely, there is one and only one = € F satisfying (2.3) and, for that x, there
is one and only one y € F satisfying (2.2). |

When ¢ = 3 (mod 4), the set of fourth powers in F is the set of squares in F,
so that the numbers v;(a) of representations of a € F' as a sum of ¢ fourth powers
are well known. (See e.g. [2]). It remains to compute these numbers in the case
when ¢ is congruent to 1 (mod 4). For that, we have to introduce some character
sums

2.1. Character sums

In this subsection we suppose ¢ = 1 (mod 4). Then, Fg C F. Let o € F be defined
by (1.1). Let tr denote the absolute trace on F' and let 3 be the character of the
additive group of F' defined by

2mitr(x)

U(w) = exp(Z ). 24

Then, v is not the trivial character. For a and b elements of F' let

o(a,b) = Z Y(az® + br). (2.5)

zEF
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Proposition 2.1. Let a,b € F. Then,

(1) o(a,b) € {0,q}.
(ii) o(a,b) = q if and only if a + b* = 0.

Proof. The map 7 : x + (az® + bx) is additive so that 1 o v is a character of the
additive group of F. This proves (i). Let b € F. Then,

Z o(a,b) = Z Z Y(az® + bx).
acF acF zeF
Inverting the order of summation gives
S o(a,b) = 3 wbe) S p(as)
acF zeF acF
Since 9 is not trivial, the last inner sum is 0 if z # 0 and ¢ if = 0. Thus,
Z o(a,b) =
acF

Since o(a,b) € {0,q} for each a € F, there exists one and only one a € F such
that o(a,b) = q. For every = € F, tr((bx)3) = tr(bx) and ¢(b3z3 — bz) = 1. Thus,
o(—b%,b) = ¢ so that —b3 is the unique a € F such that o(a,b) = q. |

Let B denote the set of non-zero fourth powers in F. Observe that

_a—1
1Bl =~ (2.6)
Fort € F let
=) (tat). (2.7)
zEF
Remark 2.1. For every t € F,
f(t) = f(=t) = J(®), (2.8)

so that f takes real values.

Proof. Observe that ¢ is congruent to 1 (mod 8), so that —1 is a fourth power in
F, say —1 = 3* with 3 defined by (1.2). [ ]

Proposition 2.2. (I) We have f(0) = ¢
(I) Let t € F*.
(i) If t/a ¢ B, then f(t)* =

(i) If t/a € B, then f(t) zf(a) and f() 9q.
(i11) If t/ o & B then 3f(t) + f(a) =
(iv) If ¢ =9, then f)y=f(-1)= —3 and fla) = f(—a)=09.

(v) If = 8L, then f(1) = f(~1) = f(a) = f(~a) = -2,
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Proof. (I) is obvious. From (2.8), for every t € F, f(t)* = |f(t)|?. Let t € F*.
Then, with (2.5),

ZZw (z +y)* Zwtx (tw, ta®).

zeF yeF zEF

From Proposition 2.1, o(tz,tz®) = 0 or q and is equal to ¢ if and only = € X (t)
where

X(t)y={zeF|tz+t°2" =0} ={z € F |z +t°2" = 0}.
If X(t) contains a non-zero element z, then t?2% = —1 so that tz? = £, and t/«
is a 4-th power. Thus, if t/a ¢ B, then f(t)? = ¢. Suppose that t/a = u* with
u € F. Then, 1/u € X (t). Thus, X (¢t) = {z/u | z € Fg}, so that

2=q ) (az?)

z€Fg

If 2 € Fg, then z* € F3, so that tr(az*) = 2%r(a) = 0 and f(¢t)? = 9¢g. Moreover,
if t/a = u* with u € F, the change of the variable y = uz in the sum (2.7) gives

f(t) = fla).
Let B’ denote the set of x € F which are not fourth powers. Then,

=2, (2.9)

Let b€ B'. If t ¢ aB, then t € aB’, so that |f(¢)| = |f(ba)|. Set f(t) = e.f(ba).
Observe that e, = £1.We compute the sum

D=3 f). (2.10)
teEF*
Firstly,
L= fO)—q=) > wta") -
teF teF zeF

Inverting the order of summation gives
¥ =0. (2.11)

On the other hand,

S=) fo+ Y, f©)

teaB teaB’
Thus,
=|Blf(a) + f(ba) Y e (2.12)

teaB’

From (2.9) and (2.11),

Fba) 3 el = T ()l

teaB’
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From IL.(i) and II.(ii),
3¢ —1)
| Y al==— =11
teaB’

Hence, for each t € aB’, we have €, = €po and f(t) = f(ba). From (2.11) and
(2.12),

g—1 3(¢—1) _
@)+ 2 (b <0
Therefore, for every (t,u) € B x B’,
q—1 3(g—1) _
o fta) + 1 flua) =0,

proving IL.(iii).

In the case when F' = Fy, we shall use fi1, 11, in the place of f, resp. ¥, and
similarly, we shall write fo and o for f and % in the case F' = Fg;. Denote by t;
the absolute trace map from Fg to F3 and by 7 the relative trace map from Fg; to
Fy. If 2 € Fy, then 2* € F3. Thus

t1(azt) = 2t (a) = 0,1, (2*) = —2™.
From (2.4) and (2.7),
fila) =9,
Ji1) = 1+ 4(exp( ) +exp(—)) = =3,
Let w € Fg; be such that w? = 1+ a. Then, w* = —a, so that « is a fourth power

and f(1) = f2(a). Now,

fala) = Z Z Y2 (alz 4+ yw)?t) = Z Z U1 (1 (a(z 4+ yw)?)) =

z€Fy yeFgy z€lFg yEFg
Y > di(—aat —yh) = fil-a)fi(-1) = 2.
z€Fg yeFy

2.2. Sums of fourth powers in F

Let ¢ be a positive integer. For a € F, let v;(a) denote the number of solutions
(z1,...,2;) € F* of the equation

a=2x}+... .+ (2.13)
Proposition 2.3. If ¢ = 3 (mod 4), then

VQ(O) = 1,
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v3(0) = ¢*
and for a € F*, we have
va(a) =q+1,

2 .
| ¢ —-q if a€B,
@ ={ L1 eeh

Proof. Observe that a € F'is a fourth power if and only if a is a square. Apply the
well-known results on sums of squares in a finite field, [2, exercise 5, p.175-176]. W

Proposition 2.4. If ¢ =1 (mod 4), then
2(0) = 4q — 3;
v3(0) = ¢* +2f(a)(¢ — 1)
and for a € F*, we have
va(a) = ¢ — 3+ 2f(aa);
v3(a) = ¢* — ¢ + qri(a) — 2f(a) + 2f(a) f(ac).
Proof. By orthogonality, for i = 1,2, 3,

)= .. % ézw(t(aﬁl—f—...—i—xf—a)).

z1€F z;€F teF

After inverting the order of summation, we get with (2.7),
qui(a) = > p(—at) f(t)". (2.14)
teF

Let ¢ = 2,3. From Proposition 2.2,

qil@) = ¢ +9¢ 3 w(—a) [ +q Y w(-at)f(t) .

teaB

teF*
t¢aB
Hence,
qui(a) = ¢ — ¢ +8¢ Y P(—at) f(1)' P +q Y p(—at)f(t) 2. (2.15)
teaB teF

Suppose i = 2. Then, from (2.6)
r2(0) =q—-1+2(¢—1)+q.

Let a € F*. With (2.15),

va(a) =q—1+8 Z P(—at).

teaB
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If t € aB, the equation ¢/a = u* has exactly 4 solutions in F. Thus,

va(a) =q—1+2 Z Y(—aou?) =q—3+2 Z Y(—aau?)

u€F* uel

so that with (2.7) and (2.8),
va(a) = q =3+ 2f(—aa) = q—3+2f(aq).

Suppose ¢ = 3. Then, from (2.15) and (2.14),

v3(a) = ¢° —q+8 Y P(—at)f(t) + g (a),
teaB
so that
vs(a) =q* —q+2 Y (—aau®)f(au®) + qui(a).
ueF*

From Proposition 2.2-(ii),

vs(a) = ¢* — ¢+ qri(a) + 2f(a Z ¥ (—acu’

u€F*

With (2.7),
v3(a) = ¢* — ¢+ qui(a) — 2f () + 2f () f(—aw).
Thus,
v3(0) = ¢* — 2f(a) + 2¢f (). ]

Proposition 2.5. (I) F is a 4-Waring field if and only if ¢ # 9.
(I1) If ¢ # 9, then {(q,4) = 2.

Proof. (I) is given by [10, lemma 3.6, p. 181]. We suppose ¢ # 9. From [9], if
g > 81, then £(q,4) < 2. Let a € F*. From Proposition 2.3, if ¢ = 3 (mod 4),
then ve(a) = ¢ — 1 > 0; from Proposition 2.4, if ¢ = 1 (mod 4), then vy(a) =
¢ — 3+ 2f(aa) and in view of Proposition 2.2, v5(a) > ¢ — 3 — 6¢'/? > 24. In
any case, a is a sum of two 4—th powers. Therefore, F' is a 4-Waring field with
£(q,4) < 2. We have d(q,4) > 2, so that, from [3, Proposition 3.1|, (¢, k) > 2. R

Proposition 2.6. For a € F, let N3(a) denote the number of (x,y,2) € F? such
that
4yt +z2t=a, (e1)
zy #0, (e2) (F(a))
a® £y (es).

(I) If g =1 (mod 4), then

N3(0) = ¢* — 28¢ + 27+ 2(q — 1) f(a)
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and for every a € F*, we have

[ P —q+54—14f(a) if a€B,
N3(a)—{q2_13q+18+2f(a) if a¢B.

(I1) If ¢ = 3 (mod 4), then
N3(0) =¢* —4q+3
and for every a € F*, we have

2 .
| ¢ —-5¢+6 if ae€B,
Ns(a) { > —3q if a¢ B.

Proof. Let A(a) denote the set formed by the (z,vy, 2) € F? satisfying conditions

(e1), (e2) and (e3). Then,

N3(a) = |A(a)]
Let
Bo(a) = {(z,y,2) € F* | 2* + y* + 2* = a, 2y = 0},
Bi(a) ={(z,y,2) € F3 | 4yt 42t =a,xy £0,2° = ys}.
Then

v3(a) = [A(a)| + |Bo(a)| + |Bi(a)].
Firstly, we deal with By(a). We have

Bo(a) = Boo(a) UBp,1(a) UBio(a),
with the B; j(a) defined as follows. For (z,y,z) € Bo(a),

(x,y,2) € Boola) & (x,y) = (0,0),
(x,y,2) € Bpi(a) &y #0,
(x,y,2) € Bio(a) & x # 0.

Now, (0,0,z2) € Boo(a) & a = 2%, so that
|Bo,o(a)| = vi(a);
and (0,y,2) € Bo1(a) & a=y* + z* with y # 0, so that
1Bo.1(a)| = va(a) — 11 (a).
By symmetry, with (2.20), (2.21) and (2.22),

|Bo(a)| = 2va(a) — vi(a).

(2.16)

(2.21)

(2.22)

(2.23)
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Now, we deal with By (a). Let (z,y) € F* x F*. Then 28 = y® & y = uz with
u8 = 1. Thus,

Bi(a)] = ) nu(a), (2.24)

us=1

where n,(a) is the number of (z, z) € F* x F' such that
a=z(1+u*)+ 2% (2.25)

We have to distinguish two cases accordingly as —1 is or is not a fourth power.
Suppose Fg C F, so that —1 = 3*. There are exactly 8 elements u € F such that

u® = 1, for four of them u* = 1, and for the others, u* = —1 = 3*. Thus, by
(2.24),
1B1(a)| = 4(n1(a) + np(a)). (2.26)
Now, ng(a) is the number of (x,2) € F* x F such that a = 2%, so that
ng(a) = (¢ — Drvi(a), (2.27)
and n1(a) is the number of (z,z) € F* x F such that a = —z* + 2%, so that
ni(a) = va(a) — v1(a). (2.28)
From (2.26), (2.27) and (2.28),
Bi(a)| = 4(v2(a) + (¢ = 2)vi(a)). (2.29)

Suppose now that Fg ¢ F, so that —1 is not a fourth power. Then, for u € F,
u® =1 u=+1, and in this case u* = 1. By (2.24) and (2.25), |B1(a)| = 2u(a),
where p(a) denotes the number of (z,z) € F* x F such that

a = —x4+z4.

We have u(a) = p(a) — v1(a), where p(a) denotes the number of (z,2) € F? such
that

a=—2%+ 2%
From [2, exercise 4, p.175],
] 2¢-2 if a=0,
M(a)_{q—l—z/l(a) if a#0.
Thus,
[ 4(q—-1) if a=0,
[Bi(a)] = { 2(q—1—-w(a)) if a#0. (2.30)

We are ready to conclude. Firstly, we suppose ¢ =1 (mod 4). Combining (2.19),
(2.23) and (2.29) gives

|A(a)] = v3(a) = 2v2(a) — n1(a) = (4(v2(a) + (¢ = 2)vi(a)))
=v3(a) — 6va(a) — (4g — 91 (a).
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We end the proof, using results given by Proposition 2.4. For brevity, we only give
the proof in the case a # 0. From Proposition 2.4,

[A(a)| = ¢* = Tg + 18 = (3¢ = 91 (a) — 2f(a) + 2f (o) f(~a0) — 12f(~aa).

If a € B, then from Proposition 2.2, f(—aa) = f(a) and f(a)f(—aa) = 9¢q, so
that

|A(a)| = ¢* — q + 54 — 14f ().

If a ¢ B, from Proposition 2.2, f(—aa) = —f(a)/3 and f(a)f(—aa) = —3¢, so
that

|A(a)| = ¢* — 13¢ + 18 + 2f(a).
Now, we suppose ¢ = 3 (mod 4). Combining (2.19), (2.23) and (2.30) gives
|A(a)| = v3(a) — (2v2(a) + 3vi(a)) — 2(¢ — 1)
for a € F* and
[A0)] = vs(a) — (2v2(0) —1(0)) — 4(g — 1).
We conclude using Proposition 2.3. u

Corollary 2.1. (I) Let a € F. If a # 0 and q ¢ {3,9}, or if a = 0 and q ¢
{3,9,81}, then (F(a)) has a solution in F3. If g € {3,9,81}, then (F(0)) has zero
solutions in F3.

(I1) Let a € Fs1. Then there exists (z,y, z,u) € F* such that

eyttt tut =a, ()
xy #0, (e2) (G(a))
z® # y8 (63)-

Proof. (I) Suppose ¢ > 9 and # 81. From the previous proposition, for each a € F,
N3(a) > 0. so that (F(a)) has a solution. If ¢ < 9, there is no pair (x,y) € F?
satisfying (e2) and (eg). If ¢ = 81, then N3(a) > 0 for a # 0.

(IT) Let a € Fgy. If a # 0, for every (x,y, z) solution of (F(a)), (z,y,2,0) is a
solution of (G(a)), if a = 0, for every (x,y, z) solution of (F(-1)), (z,y,2,1) is a
solution of (G(a)). |

3. The numbers v(q,4)
Remark 3.1. We have v(q,4) > 3.
Proof. Suppose v(q,4) < 2. Then, there is (z,y,u,v) € F* such that

T = @T+y)" + (ul +0)*,



Sums of fourth powers 207

so that,
0=a* +u, (3.1)
0= 23y + uv, (3.2)
1 =2y + uvd, (3.3)
0=y"+o" (3.4)

By (3.1), if zu = 0, then (x,u) = (0,0) and (3.3) is not satisfied, so that zu # 0.
Thus, from (3.1), —1 is a 4—th power and ¢ is congruent to 1 (mod 4). Now,
by (3.1), u = xz with 2* = —1, thus, with (3.2), v = zy so that from (3.3),
1 =2y3(1+ 2%) = 0, leading to a contradiction. |

Proposition 3.1. (I) If g € {3,9}, then v(q,4) = .
(IT) If ¢ = 27 or if ¢ > 81, then v(q,4) = 3.
(III) If g = 81, then v(q,4) = 4.

Proof. Suppose v(q,4) = s. Then, there exists (u1,v1,. .., us,vs) € F? such that

T= Z(uzT + ’Ui)47

i=1
so that .

i=1
and i

i=1

Raising (3.5) to the power 3 gives

S
0= E uigvﬁ.
i=1

If F C Fyg, then for all i's, u;° = u; leading to 0 = 1, a contradiction. We suppose
q = 27 or ¢ > 81. From Corollary 2.1, there exists (ay, a2, a3) € F? such that

(a1)* + (az)* + (az)* =0, (e1)

Let (by,b2) € F? be solution of (£(ay,az,0,1)) with (£(u,v,w,t)) defined at
Lemma 2.1. Then,
(a1)3b1 + (a2)3b2 =0,

al(b1)3 + az(bz)g =1,



208  Mireille Car

so that
(a1 T + b1)* + (a2T + bo)* + (a3T)* = T + (b1)* + (b2)*

and T is sum of three 4—th powers of linear polynomials. Therefore, v(q,4) < 3
and by Remark 3.1 we get v(g,4) = 3. Suppose ¢ = 81. From [5, Corollary 3.3],
v(q,4) < 4. We prove that v(g,4) > 4. Suppose v(q,4) = 3. Then, there exists
(u1,v1uz, v2,usz,v3) € FO such that

3

T = Z(’U,zT + Ui)4-

i=1

If ug = 0, the change U = T — v§ shows that v(q,4) = 2 and leads to a contra-
diction. Thus, us # 0. Now, the change U = T + vgugl shows that there exists
(a1,az,b1,b2,a3) € F° such that

2
T = Z(azT + bi)4 + (agT)4,
i=1

so that (F(0)) admits a solution in contradiction with Corollary 2.1. |

Corollary 3.1. If q ¢ {3,9}, then S(q,4) = F[T]. More precisely, if ¢ = 27 or if
q > 81, then, every A € F[T] is a sum of 3 fourth powers, and if ¢ = 81, then,
every A € F[T] is a sum of 4 fourth powers.

We are ready to present our first result.

Proposition 3.2. (I) Suppose ¢ > 81 and congruent to 1 (mod 4). Then,

(i) every P € F[T] of degree > 329 is the strict sum of 9 fourth powers;

(ii) every P € F[T] of degree > 89 is the strict sum of 10 fourth powers;

(iii) every P € F[T] of degree > 53 is the strict sum of 12 fourth powers; (iv)
every P € F[T] such that 29 < deg P < 52 is the strict sum of 19 fourth powers.

(IT) Suppose g = 81 or q > 27 congruent to 3 (mod 4). Then,

(i) every P € F[T] of degree > 329 is the strict sum of 10 fourth powers;

(ii) every P € F[T] of degree > 89 is the strict sum of 11 fourth powers;

(iii) every P € F[T] of degree > 53 is the strict sum of 13 fourth powers;

(iv) every P € F[T] such that 29 < deg P < 52 is the strict sum of 20 fourth
powers.

log4

Proof. From the first part of Proposition 1.2, if m > [W

8—16(1—1)m*!
P € F[T] of degree > n(m,4) = 4[W
v(q,4) + max(¢(q,4),1 + A(q,4)) fourth powers.
Moreover, if m > %, then, n(m,4) < 89. Suppose ¢ > 81 congruent to 1
(mod 4). From Propositions 2.5 and 3.1, v(q,4) + max(€(g,4),1 + A(q,4)) = 5.
Then, every P € F[T] of degree > n(4,4) = 329 is the strict
sum of 9 fourth powers and every P € F[T]| of degree > 89 is the strict sum
of 10 fourth powers. We get the other points using parts II and III of Propo-

sition 1.1. When ¢ = 81, or when ¢ # 3 is congruent to 3 (mod 4), then

] = 4, then, every

1 — 3 is the strict sum of m +
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v(q,4) + max(¢(q,4),1 + A(g,4) = 6 so that an additional fourth power is nec-
essary. |

Corollary 3.2. If g ¢ {9,81} is congruent to 1 (mod 4), then G(q,4) < 9.
If ¢ = 81, then G(q,4) < 10.
If ¢ # 3 is congruent to 3 (mod 4), then G(q,4) < 10.

Proof. Given by the first part of the previous proposition. |

We end this section with the following proposition which is the case p = 3 of
Proposition 4.4 in [3].

Proposition 3.3. For every integer n > 3, there exists B,, € Fo[T] of degree 4n
which is a sum of 3 fourth powers and which is not a strict sum of fourth powers,
so that G(9,4) = occ.

4. Identities and strict sums of small degree

Proposition 4.1. (I) Suppose ¢ > 27. Let A € F[T] with deg A < 4. Then, A is
a strict sum of fourth powers if and only if

A=aT*+bT%+cT +d

with a,b,c,d € F. Moreover, such a polynomial is a strict sum of 5 fourth powers
if ¢ # 81 and a strict sum of 6 fourth powers if ¢ = 81.
(IT) If ¢ > 27, then S(q,4) # S*(q,4) and g(g,4) = oc.

Proof. Let A € F[T] be a strict sum of fourth powers and suppose that deg A < 4.
Then A is a sum of polynomials A; = (2;T + y;)* with x;,9; € F. Now, A; =
o}Th + 23y, T + 2 y3T + yi so that A = aT* + bT2 + ¢T + d with a,b,c,d € F.
We note that T2 is not a strict sum of 4-th powers.

We suppose ¢ > 27. From Corollary 3.1, every P € F[T] is a sum of 4-th
powers. This proves the second part of the proposition. Let (a,b, c,d) € F*. From
Corollary 2.1, if ¢ # 81, then (F(a)) has a solution, say (z1,z2,z3), if ¢ = 81,
then (G(a)) has a solution, say (z1, 2,3, 74). Let (y1,y2) € F? be solution of
(E(x1,29,b,¢)) with (E(u,v,w,t)) defined at Lemma 2.1, that is

b= aty +a3ys,
¢ = 11y} + T2y

According to Proposition 2.5, d — 3} — 3 is a sum of 2 fourth powers, say
d=yf +ys+21 +2
Then, if ¢ # 81,

A= (1T +y1)* + (@2T + y2)* + (x3T)* + (21)* + (22)%,
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so that A is a strict sum of 5 fourth powers and if ¢ = 81,
A= (@1 T +y)' + @7 +y2)* + (23T)* + (2aT)* + (21)* + (22)*,
so that A is a strict sum of 6 fourth powers. |
The following very simple proposition is the key of the method.
Proposition 4.2. Forr € {0,1,2} and X € F[T] let
L.(X)=X*T"+ XT%". (4.1)
Then, L, is additive,
L(X)=(X =T = (X+T) = (X =T + (X +T"* + (X +T7)*, (4.2)
L(X)+T" = (X +T")* - X4, (4.3)
L(X) =TV = X' = (X =T,
and for every b € F,
Lo(X +bT7) = L.(X) + (b + )T, (4.5)
Proof. Immediate. ]

Proposition 4.3. Suppose that ¢ ¢ {3,9,81}. Let A € F[T] be such that 4 <
deg A < 8. Then, A is the strict sum of 8 fourth powers. Let A € Fg1[T] be such
that 4 < deg A < 8. Then A is the strict sum of 10 fourth powers.

Proof. Let

8
A= Z a, T
n=0
be a polynomial of F[T] of degree < 8. We want to prove that there exists a
positive integer s and, for i = 1,..., s, polynomials

2
Xi = Z (Ei’nTn
n=0
such that .
A= (X)h
i=0

In other words, we want to prove that there exists a positive integer s such that the
system ((es), (€7), ..., (€1), (o)) is solvable in F3*,  (e,) denoting the equation

an = Z Z (xr,u)gxr,v~ (En)

n=3u+v
0<u<2
0<v<2
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We suppose g # 81.

First step: Corollary 2.1 implies the existence of a solution (x; 2, %22, %32) €
F3 of (F(ag)). Then, z12222 # 0 and z¥, # 2§ ,. Let (x1,1,22,1) be solution of
(E(x1,2,%2,2,a7,a5)) and let (x1,0,x2,0) be solution of (E(x1,2, 22,2, a6, a2)), with
(E(u,v,w,t)) defined at Lemma 2.1. Let x31 = x3,0 = 0. Then, with s = 3,
equations (eg), (€7), (€6), (€5), (e2) are satisfied.

Second step: Let x4 2 = x52 = 6,2 = 0. Corollary 2.1 implies the existence of
a solution (z41,251,76.1) € F3 of (F(as —:c‘io —x‘Q{O)). Let (24,0,%5,0) be solution
of (E(wa1, 5,1, a3 — (x1,1)%x1,0 — (22,1)322,0, a1 — 21,1 (21,0)® — 2,1 (22,0)*)). Then,
with s = 6, equations (es), (€7), ..., (e2), (€1) are satisfied.

For v =1,2,3, let

2
X, =Y w17,
§=0
Then,
6
A=Y (X)) =ao - x%,o - 953,0 - xi,o - xé,o =0

v=1

with b € F.

Last step: Since F' is a 4-Waring field, b is the sum of ¢(q,4) = 2 fourth powers,
so that A is the sum of 8 fourth powers.

The proof is similar when ¢ = 81. The first and second steps need 4 fourth
powers. |

Lemma 4.1. Suppose F C Fy. Let A € F[T] be a sum of fourth powers. Then,
T — T divides A% — A.

Proof. Let z € Fy. Since A € Fo[T], A(x) is a sum of fourth powers in Fg Thus,

A(z) € F3, so that A(x)® — A(x) = 0. Therefore, A3 — A is divisible by (T + z) for

every z € Fg, so that, T — T = [] (T + z) divides A% — A. [ |
zEFg

Proposition 4.4. Suppose F C Fg. Let

8
A= Z a, T
n=0

be a polynomial of F[T) of degree <8 such that T? — T divides A> — A. Then,
(I) form=3j+1d with0 < j <3,0<1i< 3, we have

an = (an)?

where, 1. = 3i + 7,
(II-1) if F =F3 and deg A < 4, then A is a strict sum of 3 fourth powers,
(II-2) if F =TF5 and 4 < deg A < 8, then A is a strict sum of 6 fourth powers,
(ITI-1) if F =Ty and deg A < 4, then A is a strict sum of 3 fourth powers,
(ITI-2) if F =Fg and 4 < deg A < 8, then A is a strict sum of 5 fourth powers.
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Proof. (I) Let
A=A+ AiT? + AT

be the expansion of A in base T3. Thus, for j = 0,1, 2,
Aj =ag; + a3j+1T + a3j+2T2.

Then,
2 2
AP =Y (AP (T = T7) + Y (A4))°T
j=0 j=0

For j =0,1,2, T% — T7 is congruent to 0 (mod T° — T). Thus,

A% = i(Aj)a’Tj (mod (T°—T))
j=0

and

— A= (APTT =Y ATV (mod (T? - T)). (4.6)
j=0 Jj=0

For j =0,1,2, deg((A;)*T7) < 8 and deg(A;T37) < 8. Hence, by (4.6),

22: ((A4;)*T7 — A;,T¥) =0

j=0
that is
2 2 2 2
DD a5k T =3 0> T as i T = 0. (4.7)
§=0 k=0 §=0 k=0
Let n € {0,...,8}. By euclidean division, n is uniquely written as n = 3u + v,

with u,v < 3. Set # = 3v + u. By (4.7),
Gp = Q3y+v = (a3v+u)3 = (aﬁ)3~ (48)

this proves (I).
Let n € {1,...,7} be non divisible by 4. If n = 3j+k with0 < j < 3,0 < k < 3,
then
anT" + arT™ = (aspr;) T + (agp;) T3

By (4.1),
anT" + azT™ = Li(azps;T7).

For n divisible by 4, equality (4.8) gives a,, = (a,)?, proving that a, belongs to
the prime field F3, this fact being obvious when F = [F3.

(II) Suppose F' = F3. Firstly, suppose deg A < 4. The result is obvious for the
constants. Up to the changes T — —T, T — T + 1, T — —T £+ 1, we have to
consider the following polynomials:
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O)T*+T=T+1)*"+(T+1)*+ (T -1)*4,

(i) T4, T4+ 1,T* -1 =T*+1+1,

(iil) —T*=T*+ T4 -T*+1=T*+T*+1,-T* - 1= (T+ 1)* + (T - 1)~
Each of them is a strict sum of 3 fourth powers.

Suppose now deg A < 8. If ag # 0, we write

A =aop+ Lo(ar1T) + asT* + La(ag + a7T) + agT®.

We have seen above that ag + Lo(a;T) + asT* is a sum of 3 fourth powers of
polynomials < 1. By (4.3) and (4.4), La(az + asT) + asT® is a sum of 3 fourth
powers of polynomials of degree < 2, so that A is a strict sum of 6 fourth powers.
If ag = 0, we write

A= an + Lo(alT + GQTQ) + CL4T4 + Ll(a5T2),

and by (4.3) an (4.4), A is a strict sum of 6 fourth powers.
(III) Suppose F = Fg. The trace map y — y3 +y from F to F3 is onto. For
every k = 0,1, 2, there is uy € F such that

Aqr, = uz + ug.

Moreover, since ayqx € F3, we have ayqr = vz with vy € F.
If deg A < 4, then, as = a5 = 0, and

A= (1}1T)4 + ’U,g + ug + Lo(alT),

so that by (4.5), then (4.3) and (4.4), A is a sum of 3 fourth powers of polynomials
whose degrees are < 1 and A is a strict sum of 3 fourth powers.

Now, suppose deg A > 4. Proceeding as in the F3 case, we get that A is a strict
sum of 5 fourth powers. |

5. The descent
In this section, we describe a new descent process which works for exponent 4 and
characteristic 3.

Proposition 5.1. Let n > 3 be an integer and let X € F[T] be such that deg X <
3n. Then, there exist Yo,Y1,Ya, R € F[T] such that

X=> L.(Y,)+R, (5.1)
r=0
deg(Y;) <n if 0<r<2, (
deg R <9, 9.3
2 r
R=3"3 aser T, (5.4)
r=0 j=0

with azjt+r € F.
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Proof. Set
3n—1
X=3 a1 (5.5)
§=0
with z; € F for j =0,...,3n—1. For j =0,...,3n — 1, let §; € F be defined by
&° = ;. (5.6)
(I) Suppose n = 3. Then,
2 r ‘
X = (&T+ &I+ T(&T?P + > T[> w54, 7Y
r=0 7=0

and by (4.1),

1 2 2 r
X=YL( Y &T) = &T =T —&T°+ Y T [ Y wsje, T

r=0 j=r+1 r=0 7=0

Thus,

with Y5 = 0,

2
Yo(X)= > & T
j=r+1
for r =0,1 and
2 T )
RX) =3 > agjsr TV,
r=0 j=0
that is R(X) of the form (5.4). We note that deg(Y,(X)) < 3.
(IT) Suppose n = 4. Then,
X = Lo(&1T?) + L1(&0T?) + (w9 — £11)T° + X
with
deg X' < 9.
Set g — 511 = 773. Then,

(zg — &11)T° = Lo(nT?) — nT?,

so that
X = Lo(E11T?) 4 L1(€10T?) + Lo(nT?) + Y



Sums of fourth powers 215

with degY < 9. From the case n = 3,

2
X =Y L(Y:(X)) + R(X)
r=0
with R(X) of the required form (5.4) and degY,.(X) < 3 for r = 0,1, 2.
(IIT) Suppose now n > 4. We proceed inductively. Set

n—1
Z(X) =) &y, T? (5.7)
5=0
and
2
o(X)=-) 2,T%, (5.8)
r=0
so that
deg Z,(X) <n; deg®(X)<n+5 (5.9)
and
2
X =Y L.(Z(X)) + 0(X). (5.10)
r=0
(i) Step 0. Set
X:Xo,n:no, (511)
so that
deg Xy < 3nyg. (5.12)
(ii) Steps 1,...,k,... For k > 1, let
ny, = (”’;)‘11 +2, (5.13)
X = P(Xj-1) (5.14)
Yok = Zr(Xg-1) (5.15)
for r = 0,1, 2. Then, by (5.10), (5.11), (5.14) and (5.15),
2 k
X=> L) Y)+ Xz (5.16)
r=0 i=1

By (5.9) and (5.13),
degY; < np—1, degXi < 3ny.

If n; > 4, then n;41 < n;; if n; = 3,4, then n; 11 = n;. Let k be the least integer
such that nj < 4. From (5.16), using results given by parts (I) or (II), we get

2 k
X=>L, (Z Yoi+ Yr(Xk)> + R(Xy).

i=1
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The degree conditions (5.9), (5.11) and (5.13) imply

k
deg (Z Y.+ YT(X;C)> < n.

i=1

Corollary 5.1. Suppose F' C Fg. Then, S(q,4) is the subset of F[T| formed by
the polynomials A such that A3 — A is multiple of T — T.

Proof. From Lemma 4.1,
S(a,4) € {A € PIT]| (T~ T)|4° - A}

Conversely, let X € F[T] be such that T° — T divides X3 — X. By (5.1) and (5.3),
X may be written as a sum

2
X=> L(Y,)+R
r=0

with Y1,Y3,Y3, R € F[T] and deg R < 9. By (4.2), for r =0,1,2, L, (Y;) € S(q,4)
so that from Lemma 4.1, (L,.(Y;.))? — L,(Y;.) is multiple of 7% — T. Thus, R* — R
is multiple of T2 — T. From Proposition 4.4, R is a sum of 4-th powers so that,
using Proposition 4.2, we get that X is a sum of 4—th powers. |

We are now ready to present our second result.

Proposition 5.2. (I) Suppose ¢ > 81 and q congruent to 1 (mod 4). Then,

(i) every H € F[T] of degree > 29 is the strict sum of 14 fourth powers.

(ii) every H € F[T| of degree > 9 is the strict sum of 19 fourth powers.

(iii) every H € F[T] such that 5 < deg P < 8 is the strict sum of 8 fourth
powers.

(IT) Suppose that ¢ = 81. Then,

(i) every H € F[T] of degree > 29 is the strict sum of 15 fourth powers.

(ii) every H € F[T| of degree > 9 is the strict sum of 21 fourth powers.

(i1i) every H € F[T] such that 5 < deg P < 8 is the strict sum of 10 fourth
powers.

(IIT) Suppose q congruent to 3 (mod 4) and g > 27. Then,

(i) every H € F[T) with degree > 29 is the strict sum of 15 fourth powers

(ii) every H € F[T] of degree > 9 is the strict sum of 20 fourth powers.

(i1i) every H € F[T] such that 5 < deg P < 8 is the strict sum of 8 fourth
powers.

(IV) Suppose F = F3. Then

(i) every H € §(3,4) is a strict sum of 12 fourth powers.

(i) every H € F[T] with degree multiple of 4 is a strict sum of 11 fourth powers.

(Vi) Every H € §(9,4) with degree non multiple of 4 is a strict sum of 8 fourth
powers.

(V.ii) Every H € §(9,4) of degree multiple of 4 and whose leading coefficient
belongs to F3 is a strict sum of 7 fourth powers.
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Proof. The claims (I.(iii))-(III.(iii)) are given by the second part of Proposi-
tion 4.3. We prove the other ones. Let H € F[T] and let n be the integer
defined by

4(n—1) < deg H < 4n. (5.17)

If n < 2, we conclude using Proposition 4.4. We suppose n > 3. According to
[3, Lemma 5.1], there exist By, ..., By, P € F[T] such that

H=DB!+B}+P (5.18)
with
A= X, k),
deg By <n,...,deg By < n,deg P = 4n, (5.19)

the leading coeflicient of P being a fourth power.
According to [3, Lemma 5.2], there exist X,Y € F[T] such that:

P=Y"+X, (5.20)

deg X < 3n,degY =n. (5.21)
From Proposition 5.1, there exist Yy, Y1, Y2, R € F[T] such that

X =3 L,(%)+R, (5.1)
r=0
deg(Yr) <n
for 0 <r < 3 and
deg R < 9. (5.3)

(A) We suppose ¢ ¢ {3,9}. By (4.2),
L(Y,) = (Y, = T")* +2(Y, + T")~.

Thus,
2

X = ((Zea)' +(Ze2)' + (Zr)") + R, (5.22)
r=0

where for j =1,2,3, Z,; is a polynomial such that
deg Z, ; < max(r,n —1). (5.23)
Set v = v(q,4). Then, there exist a1, b1,...,a,,b, in F such that
R=(aiR+b)*+... 4 (a,R+b,)" (5.24)
From (5.18), (5.20), (5.22) and (5.24),

2 3 v
H=Bl+B{+Y*+ ) Y (Z:j)* + > (a:R+b)*, (5.26)

r=0 j=1 i=1
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so that H is written as a sum of A + v 4+ 10 fourth powers of polynomials.
From (5.19), (5.21) and (5.23), these polynomials have their degrees bounded by
max(n,8). By (5.17), if n > 8, the above sum is a strict one.

On the other hand, in view of Proposition 4.3, since deg R < 9, R may be

written as a sum
s(q)

R=> (R, (5.27)

where Ry,..., Ry are polynomials of degree < 2 and where s(q) = 8 if ¢ # 81
and s(¢q) = 10 if ¢ = 81. Thus, by (5.18), (5.20) and (5.22),

2 3 s(q)
H=Bl+By+Y*+> ) (Z:j)" + > (R, (5.28)
r=0 j=1 —1

so that H is sum of A+ 10 + s(g) fourth powers. From (5.17), if n > 2, then (5.28)
is a strict representation.

The proof of the three first parts is complete after observing that in the case (I)
we have v(q,4) = 3,\(q,4) = 1, in the case (II), we have v(q,4) = 4, (¢, 4) = 1,
and in the case (III), we have v(q,4) = 3, A(¢,4) = 2.

(B) We suppose F' C Fyg. In addition, in the case when ¢ = 9 and deg H = 4n,
we suppose that the leading coefficient of H is in F3. When F = g, since the
leading coefficient of H is a 4-th power, we take P = H in (5.18) so that By =
By, =0.

At this point, observe that R satisfies

2 r
R = Z Z a3j+,«T3j+r. (54)

r=0 j=0

In view of (5.1) and (4.2), X — R is a sum of fourth powers. From (5.18) and (5.20),
H — R is a sum of fourth powers. Since H € S(¢,4), R is also a sum of fourth
powers. From Lemma 4.1 and Proposition 4.4-(I), all coefficients as;{, of R with
j > r are equal to 0 and all coefficients a4, are in the prime field F3. Therefore,

2
R= Z er4T7
r=0

with y1, 41,92 € F3. By (5.1),

2

X = Z (L, (Yy) +y T .
r=0

(B.1) Suppose F' = Fg Then, A = 2.
In view of (4.2), (4.3) and (4.4), X is sum of 9 fourth powers. By (5.18) and
(5.20), H is a sum of A + 10 = 12 fourth powers.
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Since n > 3, this sum is a strict one. Suppose in addition that deg H = 4n.
The leading coefficient of H is a sum of at most 2 fourth powers, say b* + ¢. In
(5.18), we can take By = 0 and P = H — b*"T*" so that H is a sum of 11 fourth
powers.

(B.2) Suppose F = Fg. Then —1 is a fourth power and A = 1.

For r =0,1,2, y» = —(y)> — ¥», so that

L.(Y;)+ er4T = L.(Y:) - ((%)3 + yT)T4r'

By (4.5), then (4.2), X is the sum of 6 fourth powers. From (5.18) and (5.20), H
is the sum of 8 fourth powers. Moreover, if deg H = 4n, we have H = P so that
H is the sum of 7 fourth powers. As above, this sum is a strict one. |

Corollary 5.2. (I) Suppose q > 27. Then, S§*(q,4) is the union of the set
{A € F[T] | deg A > 4} and the set of polynomials

A=aT*+bT3+cT +d

with a,b,c,d € F. Moreover,
(i) if ¢ > 81 is congruent to 1 (mod 4), then

G(q,4) = G*(q,4) <9,

9(q,4) = 00,9"(q,4) < 19;

(i)
G(81,4) = G*(81,4) < 10,

9(81,4) = 00, g (81,4) < 21;
(i) if ¢ > 27 is congruent to 3 (mod 4), then
G(q,4) = G"(q,4) <10,
9(q,4) = 00,9%(¢,4) < 20.
(II) $*(3,4) =8(3,4) ={Ac F[T] | A*—~A=0 (mod (T°-T))},
G(3,4) <g(3,4) <12,G%(¢;4) < g7 (3,4) < 12.

(IIl) 8(9,4) = {A€ F[T]|A*-A=0 (mod (T°-T))}, §*(9,4) is the
set of A € §(9,4) such that either deg A is not multiple of 4, or deg A is multiple
of 4 and the leading coefficient of A is in the prime field Fs;

G(9,4) = g(9,4) = 00,G*(9,4) < g*(9,4) < 8.

Proof. Apply Propositions 3.2, 3.3, 4.1, 4.3 and 4.4. |
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