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Abstract: For any unitary cuspidal representations πn of GLn(QA) , n = 2, 3, 4 , respectively,
consider two automorphic representations Π and Π′ of GL6(QA) , where Πp

∼= ∧2π4,p for
p 6= 2, 3 and π4,p not supercuspidal (π4,p denotes the local component of π4 ), and Π′ =

π2 £π3 . First, Hypothesis H for Π and Π′ is proved. Then contributions from prime powers are
removed from the prime number theorem for cuspidal representations π and π′ of GLm(QA) and
GLm′ (QA) , respectively. The resulting prime number theorem is unconditional when m, m′ 6 4

and is under Hypothesis H otherwise.
Keywords: Hypothesis H, functoriality, prime number theorem.

1. Introduction

Recent developments in functoriality by the Langlands-Shahidi method have many
profound applications in prime distribution. To name a few, we recall a recent proof
of Hypothesis H for any cuspidal representation of GL4(QA) and for Sym4(π) by
Kim [2], where π is an automorphic cuspidal representation of GL2(QA). Here
Hypothesis H predicts the convergence of a certain Dirichlet series associated with
(L′/L)′(s, π × π̃) taken over prime powers.

More precisely, let π = ⊗pπp be a unitary automorphic cuspidal representa-
tion of GLm(QA). Or more generally, let π be an automorphic representation irre-
ducibly induced from unitary cuspidal representations, i.e., π = Ind σ1⊗ · · ·⊗σk ,
where σj is a cuspidal representation of GLmj (QA), with m1 + · · ·+mk = m . The
local component πp with p <∞ can be parameterized by the Satake parameters
diag[απ(p, 1), . . . , απ(p,m)] . For ν > 1 define

aπ(pν) =
m∑

j=1

απ(p, j)ν . (1.1)

2000 Mathematics Subject Classification: Primary 11F70.
∗ Project sponsored by the National Security Agency under Grant Nr H98230-06-1-0075.

The United States Government is authorized to reproduce and distribute reprints notwithstan-
ding any copyright notation herein.



462 Jie Wu & Yangbo Ye

Let π̃ be the contragredient representation of π , and L(s, π×π̃) the Rankin-Selberg
L-function. Then for <e s > 1, we have (see [10], RS 1)

(L′
L

)′
(s, π × π̃) =

∞∑
n=1

(log n)Λ(n)|aπ(n)|2
ns

. (1.2)

Here Λ(n) = log p if n = pν and Λ(n) = 0 otherwise, so that the series in (1.2) is
taken over primes and prime powers.

Hypothesis H. (Rudnick and Sarnak [10]) For any fixed ν > 2 ,

∑
p

(log p)2|aπ(pν)|2
pν

<∞.

Hypothesis H is trivial for m = 1. For m = 2, 3, Hypothesis H follows from
the Rankin-Selberg theory 10]. The GL4 case was proved by Kim [2] based on his
proof of the (weak) functoriality of the exterior square ∧2π from a cuspidal repre-
sentation π of GL4(QA) (see [1]). Beyond GL4 , the only known special case for
Hypothesis H is the symmetric fourth power Sym4(π) of a cuspidal representation
π of GL2(QA), which is an automorphic representation of GL5(QA).

The first goal of the present paper is to prove Hypothesis H for two types of
automorphic representations of GL6(QA).

Theorem 1. Let π be a cuspidal representation of GL4(QA) . Denote by T the
set of places consisting of p = 2, 3 and those p at which πp is supercuspidal. Let
Π be the automorphic representation of GL6(QA) such that Πp

∼= ∧2πp if p 6∈ T ,
according to [1]. Then Hypothesis H holds for Π .

Theorem 2. Let π1 (resp. π2) be a cuspidal representation of GL2(QA) (resp.
GL3(QA)) . Let Π′ be the automorphic representation of GL6(QA) equal to π1£π2

according to [3]. Then Hypothesis H holds for Π′ .

As an application, one can use Hypothesis H to deduce the following Mertens’
theorem for automorphic representations, or the so-called Selberg orthogonality
conjecture, from unconditional results on similar sums taken over primes and prime
powers:

∑

p6x

|aπ(p)|2
p

= log log x+O(1); (1.3)

∑

p6x

aπ(p)aπ′(p)
p

= O(1), (1.4)

when π 6∼= π′ . Here (1.3) was proved by Rudnick and Sarnak [10], while (1.4) was
proved by Liu, Wang and Ye ([6], [4]). Results in (1.3) and (1.4) played crucial
roles in the n-level correlation of nontrivial zeros of automorphic L -functions and
random matrix theory ([10], [5], [7]).



Hypothesis H and the prime number theorem 463

Another application of Hypothesis H is on the prime number theorem for au-
tomorphic representations. For any self-dual cuspidal representation π of GLm(QA),
Liu, Wang and Ye [4] showed that there is a constant c > 0 such that

∑

n6x
Λ(n)|aπ(n)|2 = x+O

(
xe−c

√
log x). (1.5)

More generally, Liu and Ye [8] proved that
∑

n6x
Λ(n)aπ(n)aπ′(n)

=





x1+iτ0

1 + iτ0
+O

(
xe−c

√
log x) if π′ ∼= π ⊗ | det |iτ0 for some τ0 ∈ R;

O
(
xe−c

√
log x

)
if π′ 6∼= π ⊗ | det |iτ for any τ ∈ R,

(1.6)

where π and π′ are cuspidal representations of GLm(QA) and GLm′(QA), respec-
tively, such that at least one of them is self-dual.

The second goal of the present paper is to use Hypothesis H to remove terms
on prime powers from the left side of (1.6) and deduce a prime number theorem
over primes.

Theorem 3. Let π and π′ be as above. (i) If m,m′ 6 4 , then
∑

p6x
(log p)aπ(p)aπ′(p)

=





x1+iτ0

1 + iτ0
+O

(
xe−c

√
log x) if π′ ∼= π ⊗ | det |iτ0 for some τ0 ∈ R,

O
(
xe−c

√
log x

)
if π′ 6∼= π ⊗ | det |iτ for any τ ∈ R.

(1.7)

(ii) If max(m,m′) > 5 , asymptotic relation (1.7) is true under Hypothesis
H with error terms replaced by O(x/ log x) .

We remark that (i) is an unconditional result.

2. Proof of Theorems 1 and 2

Lemma 2.1. Let π be a unitary cuspidal representation for GLm(QA) , or an
automorphic representation irreducibly induced from unitary cuspidal representa-
tions. Then for any ν0 > (m2 + 1)/2 + 1 , ε > 0 , and integer ` > 0 ,

∑

ν>ν0, pν6x
(log p)|aπ(pν)|2 � x1−2/(m2+1)+1/ν0 log x, (2.1)

∑
p

(log p)`|aπ(p)|2
p1+ε <∞. (2.2)
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Proof. From (1.1) and the bound toward the Ramanujan conjecture ([10])

|απ(p, j)| 6 p1/2−1/(m2+1) (j = 1, . . . ,m), (2.3)

we know that
|aπ(pν)|2 6 m2p{1−2/(m2+1)}ν .

Then

∑

ν>ν0, pν6x
(log p)|aπ(pν)|2 6 m2

∑

ν06ν62 log x

∑

p6x1/ν

(log p)p{1−2/(m2+1)}ν

�m x1−2/(m2+1)+1/ν0 log x.

Inequality (2.2) follows from the fact that the `th-derivation of logL(s, π × π̃)
converges absolutely for <e s > 1.

Lemma 2.2. Let π′ (resp. π′′) be a unitary cuspidal representation, or an auto-
morphic representation irreducibly induced from unitary cuspidal representations,
for GLm′(QA) (resp. GLm′′(QA)) . Let ν > 2 be an integer and P a set of prime
numbers. If there are fixed constants δ′ ∈ (0, 1] and δ′′ ∈ (0, 1

2 ] such that

|aπ′(pν)|2 �ν |aπ′′(p)|2p(1−δ′)(ν−1) + p(1/2−δ′′)ν (2.4)

for all p ∈ P , then for any ε > 0 we have

∑

pν6x, p∈P
(log p)|aπ′(pν)|2 �ν,ε x

1−δ (2.5)

with δ := min{δ′/(2 + δ′)− ε, δ′′} .

Proof. By (2.4) and the Rankin-Selberg theory, for any η > 0 we can write

∑

pν6x
p∈P

(log p)|aπ′(pν)|2 �ν

∑

pν6x
p∈P

(log p)|aπ′′(p)|2p(1−δ′)(ν−1) + x1/2+1/ν−δ′′

�ν x
η
∑

pν6xη
p∈P

(log p)|aπ′′(p)|2
p1+δ′(ν−1)

+ x
∑

xη<pν6x
p∈P

(log p)|aπ′′(p)|2
p1+δ′(ν−1)

+ x1−δ′′ .

By (2.2) with π = π′′ and ` = 1, it follows that

∑

pν6xη
p∈P

(log p)|aπ′′(p)|2
p1+δ′(ν−1)

� 1
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and

∑

xη<pν6x
p∈P

(log p)|aπ′′(p)|2
p1+δ′(ν−1)

6 1
(xη/ν)δ′(ν−1)−ε

∑

xη<pν6x
p∈P

(log p)|aπ′′(p)|2
p1+ε

6 x−η[δ′(ν−1)−ε]/ν .

Inserting these two estimates into the preceeding inequality, we find
∑

pν6x
p∈P

(log p)|aπ′(pν)|2 �ν,ε x
η + x1−η[δ′(ν−1)−ε]/ν + x1−δ′′ .

Taking η = ν/{(1 + δ′)ν − δ′}+ ε , we obtain

∑

pν6x, p∈P
(log p)|aπ′(pν)|2 �ν,ε x

ν/{(1+δ′)ν−δ′}+ε + x1−δ′′

�ν,ε x
1−δ′/(2+δ′)+ε + x1−δ′′

�ν,ε x
1−δ.

In the second inequality, we have used the fact that ν > 2.

Remark. In proving Hypothesis H, an inequality of the form of (2.4) plays a
crucial role. Lemma 2.2 has more flexibility as π′′ is allowed to be different from π′ .

Lemma 2.3. Let Π′′ be either Π or Π′ as in Theorems 1 and 2. Then for any
ε > 0 , we have ∑

ν>2, pν6x
(log p)|aΠ′′(pν)|2 �ε x

1−1/38+ε. (2.6)

Proof. In view of (2.1) with the choice of m = 6 and ν0 = [37 × 38/39] + 1, it
suffices to show that for any fixed ε > 0 and ν > 2 we have

∑

pν6x
(log p)|aΠ(pν)|2 �ν,ε x

1−1/38+ε, (2.7)

∑

pν6x
(log p)|aΠ′(pν)|2 �ν,ε x

1−1/38+ε. (2.8)

First let us consider the case of Π. Let π = ⊗πp be a cuspidal automorphic
representation for GL4(AQ). Recall that Π is irreducibly induced from unitary
cuspidal representations. Let S0 be the set of places where Πp is tempered. Then

∑

p∈S0

(log p)2|aΠ(pν)|2 <∞. (2.9)

Inequality (2.9) is also true if we replace S0 by T , which is given in Theorem 1,
because at most two terms for p = 2, 3 will then be added to (2.9).
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If p /∈ S0 ∪ T , we want to determine the Satake parameters of πp . Recall
that the general non-tempered representation πp can be described as a Langlands
quotient based on a standard parabolic subgroup P of type (m1, . . . ,mr) = (4),
(3, 1), (2, 2), or (2, 1, 1):

πp = J(G,P ;σ1[t1], . . . , σr[tr]).

Here σj is a tempered representation of GL(mj), tj ∈ C , and σj [tj ] = σj⊗|det |tj ,
with

{
σj [tj ]

}
=
{
σ̃k[−tk]

}
. Consequently, the Satake parameters of πp are in one

of the following forms in view of (2.3):

S1 : diag
[
u1p

a, u2p
a, u1p

−a, u2p
−a], where 0 < a 6 1

2 − 1
17 ,

S2 : diag
[
u1p

a, u2, u3, u1p
−a], where 0 < a 6 1

2 − 1
17 ,

S3 : diag
[
u1p

a1 , u2p
a2 , u1p

−a1 , u2p
−a2
]
, where 0 < a2 < a1 6 1

2 − 1
17 ,

(2.10)

where u1, u2, u3 are complex numbers of absolute value 1 and we have suppressed
their dependence on p for the simplicity of notation. As in [1], the corresponding
Satake parameters of Πp ' ∧2πp are as follows:

S1 : diag
[
u1u2p

2a, u1u2, u
2
1, u

2
2, u1u2, u1u2p

−2a],
S2 : diag

[
u1u2p

a, u1u3p
a, u2

1, u2u3, u1u2p
−a, u1u3p

−a],
S3 : diag

[
u1u2p

a1+a2 , u1u2p
a1−a2 , u2

1, u
2
2, u1u2p

−(a1−a2), u1u2p
−(a1+a2)].

Since Π is a automorphic representation for GL6(AQ) which is irreducibly induced
from unitary cuspidal, (2.3) gives





0 < 2a 6 1
2 − 1

37 if p ∈ S1,

0 < a 6 1
2 − 1

17 if p ∈ S2,

0 < a2 < a1 6 1
2 − 1

17 and a1 + a2 6 1
2 − 1

37 if p ∈ S3.

(2.11)

If p ∈ S1 , then

∣∣aΠ(pν)
∣∣ =

∣∣(u1u2)ν(p2aν + p−2aν + 2) + u2ν
1 + u2ν

2

∣∣ 6 p2aν + 5,
∣∣aΠ(p)

∣∣ =
∣∣u1u2(p2a + p−2a + 2) + u2

1 + u2
2

∣∣ > p2a.

From these and (2.3) with m = 6, we deduce that

|aΠ(pν)|2 6 (|aΠ(p)|ν + 5)2

�ν |aΠ(p)|2ν + 1

�ν |aΠ(p)|2p(1−2/37)(ν−1) + 1,

where the implied constants are all independent of p .
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Similarly if p ∈ S2 , then
∣∣aΠ(pν)

∣∣ =
∣∣uν1(uν2 + uν3)(paν + p−aν) + u2ν

1 + (u2u3)ν
∣∣ 6 2paν + 4,

∣∣aπ(p)
∣∣ =

∣∣u1(pa + p−a) + u2 + u3
∣∣ > pa − 2.

These and (2.3) with m = 4 imply

|aΠ(pν)|2 6 {2(|aπ(p)|+ 2)ν + 4}2
�ν |aπ(p)|2ν + 1

�ν |aπ(p)|2p(1−2/17)(ν−1) + 1.

(2.12)

Finally if p ∈ S3 , then
∣∣aΠ(pν)

∣∣ 6 2p(a1+a2)ν + 4,
∣∣aΠ(p)

∣∣ > pa1+a2 − 1,

from which we deduce, as before,

|aΠ(pν)|2 6 {2(|aΠ(p)|+ 1)ν + 4}2
�ν |aΠ(p)|2ν + 1

�ν |aΠ(p)|2p(1−2/37)(ν−1) + 1.

(2.13)

Now we apply Lemma 2.2 with the choice of parameters

(π′, π′′, δ′, δ′′) =

{
(Π,Π, 2

37 ,
1
2 ) if P = S1 or S3

(Π, π, 2
17 ,

1
2 ) if P = S2

to write
∑

pν6x, p∈Sj
(log p)|aΠ(pν)|2 �ν

{
x1−1/38+ε if j = 1, 3.

x1−1/19+ε if j = 2,
(2.14)

Now the required estimate (2.7) for Π follows from (2.11) and (2.14).
Next let us turn to the case of Π′ . Let π1 = ⊗pπ1,p (resp. π2 = ⊗pπ2,p) be a

cuspidal representation of GL2(QA) (resp. GL3(QA)). We may just consider those
p such that at least one of π1,p and π2,p is not tempered. By the same construction
as before (2.10), the Satake parameters of π1,p and π2,p are as follows:

π1,p : diag
[
u1p

a, u1p
−a], where 0 6 a 6 7

64 ,

π2,p : diag
[
u2p

b, u3, u2p
−b], where 0 6 b 6 1

2 − 1
10 ,

where u1 , u2 u3 are complex numbers of absolute value 1. Here we used the
parabolic subgroups of type (2) for π1,p , and of type (3) or (2, 1) for π2,p . Thus
the Satake parameters of Π′p = π1,p £ π2,p are:

diag
[
u1u2p

a+b, u1u2p
b−a, u1u3p

a, u1u3p
−a, u1u2p

−(b−a), u1u2p
−(a+b)].
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If Π′ is cuspidal, following the bound (2.3) proved in [10], we get

0 < a+ b 6 1
2 − 1

37 . (2.15)

If Π′ is not cuspidal, then it is irreducibly induced from unitary cuspidal repre-
sentations of smaller GLm ’s, and (2.15) holds with an even smaller bound. Then

|aΠ′(pν)|
=
∣∣(u1u2)ν(p(a+b)ν + p(a−b)ν + p(b−a)ν + p−(a+b)ν) + (u1u3)ν(paν + p−aν)

∣∣. (2.16)

From (2.16) we can see that

|aΠ′(pν)| 6 6p(a+b)ν , |aΠ′(p)| > pa+b − pa. (2.17)

Thus in view of (2.15), (2.17) and the fact that a 6 7
64 , (∗) we can deduce

|aΠ′(pν)|2 � (|aΠ′(p)|+ pa)2ν (2.18)

�ν |aΠ′(p)|2ν + p2aν

�ν |aΠ′(p)|2p(1−2/37)(ν−1) + p(1/2−9/32)ν .

Applying Lemma 2.2 with π′ = π′′ = Π′ , δ′ = 2
37 and δ′′ = 9

32 , we now conclude
that ∑

pν6x
(log p)|aΠ′(pν)|2 � x1−1/38+ε.

This completes the proof.

The proof of Theorems 1 and 2. Let Π′′ be either Π or Π′ . We can write

∑

pν>x, ν>2

(log p)2|aΠ′′(pν)|2
pν

=
∑

j>0

∑

2jx<pν62j+1x, ν>2

(log p)2|aΠ′′(pν)|2
pν

6
∑

j>0

log(2j+1x)
2jx

∑

2jx<pν62j+1x, ν>2

(log p)|aΠ′′(pν)|2.

Using Lemma 2.3, we have

∑

pν>x, ν>2

(log p)2|aΠ′′(pν)|2
pν

�
∑

j>0

log(2j+1x)
2jx

(2j+1x)1−1/38+ε

�
∑

j>0

log(2j+1x)
(2j+1x)1/38−ε

� x−1/38+2ε.

This implies the required result.

(∗) Note that instead of using the bound 0 6 a 6 7/64 , it suffices to use a bound with

7/64 being replaced by 1/4− δ for any δ > 0 .
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3. Proof of Theorem 3

Theorem 3 follows immediately from (1.6) and the following lemma.

Lemma 3.1. Let π be a unitary automorphic cuspidal representation for GLm(QA) .
(i) For each m ∈ {1, . . . , 4} , there is a constant δm > 0 such that

∑

pν6x, ν>2

(log p)|aπ(pν)|2 � x1−δm .

(ii) If m > 5 , under Hypothesis H we have
∑

pν6x, ν>2

(log p)|aπ(pν)|2 � x/ log x.

Proof. In view of (2.1) of Lemma 2.1 with a suitable choice of ν0 , it suffices to
show, for fixed ν > 2, that (i)

∑

pν6x
(log p)|aπ(pν)|2 �ν x

1−δm , (3.1)

if m 6 4, and (ii) ∑

pν6x
(log p)|aπ(pν)|2 �ν x/ log x (3.2)

if m > 5 under Hypothesis H.
First we prove (3.2):

∑

pν6x
(log p)|aπ(pν)|2 =

∑

pν6x1/2

(log p)|aπ(pν)|2 +
∑

x1/2<pν6x
(log p)|aπ(pν)|2

6 x1/2
∑

pν6x1/2

(log p)2|aπ(pν)|2
pν

+
2x

log x

∑

x1/2<pν6x

(log p)2|aπ(pν)|2
pν

,

which is � x/ log x under Hypothesis H.
Next we prove (3.1) for m = 4, since other cases are easier. As before it

suffices to consider the sum on the left side of (3.1) taken over p 6= 2, 3 with
πp being not tempered. Then for such a p , Πp

∼= ∧2πp . There are then three
possibilities.

If p ∈ S1 as in (2.10), using Πp we get 0 < 2a 6 1
2 − 1

37 as in (2.11). Then

|aπ(pν)|2 = |(uν1 + uν2)(paν + p−aν)|2
6 16p(1/2−1/37)ν .
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From this, we deduce that

∑

pν6x, p∈S1

(log p)|aπ(pν)|2 �
∑

pν6x, p∈S1

(log p)p(1/2−1/37)ν

� x1−1/37.

(3.3)

If p ∈ S2 , we have

|aπ(pν)| = |uν1(paν + p−aν) + uν2 + uν3 | 6 paν + 3,

|aπ(p)| = |u1(pa + p−a) + u2 + u3| > pa − 2

with 0 < a 6 1/2− 1/17. Then

|aπ(pν)|2 6 {(|aπ(p)|+ 2)ν + 3}2

�ν |aπ(p)|2ν + 1

�ν |aπ(p)|2p(1−2/17)(ν−1) + 1.

(3.4)

Similarly if p ∈ S3 , then

∣∣aπ(pν)
∣∣ =

∣∣uν1
(
pa1ν + p−a1ν) + uν2

(
pa2ν + p−a2ν)

∣∣ 6 2pa1ν + 2,
∣∣aπ(p)

∣∣ =
∣∣u1
(
pa1 + p−a1

)
+ u2

(
pa2 + p−a2

)∣∣ > pa1 − 2pa2 .

From this, (2.3) with m = 4 and the last inequality of (2.11), we deduce that

|aπ(pν)|2 6 {2(|aπ(p)|+ 2pa2)ν + 2}2

�ν |aπ(p)|2ν + p2a2ν

�ν |aπ(p)|2p(1−2/17)(ν−1) + p(1/2−1/37)ν .

(3.5)

As before, we can apply Lemma 2.2 with the choice of parameters

(π′, π′′, δ′, δ′′) =

{
(π, π, 2

17 ,
1
2 ) if P = S2

(π, π, 2
17 ,

1
37 ) if P = S3

to write ∑

pν6x, p∈Sj
(log p)|aπ(pν)|2 �ν x

1−1/37 (j = 2, 3). (3.6)

Now the required result follows from (3.3) and (3.6).
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