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Abstract: Let Jkq [t] denote the additive closure of the set of k th powers in the polynomial

ring Fq [t] , defined over the finite field Fq having q elements. We show that when s>k + 1 and

q>k2k+2 , then every polynomial in Jkq [t] is the sum of at most s k th powers of polynomials from

Fq [t] . When k is large and s>( 4
3 + o(1))k log k , the same conclusion holds without restriction

on q . Refinements are offered that depend on the characteristic of Fq .
Keywords: Waring’s problem, function fields.

1. Introduction

Investigations concerning Waring’s problem in function fields have focused on two
variants, a restricted problem in which the degrees of the polynomials employed in
the representation are confined to be as small as is possible, and the corresponding
unrestricted problem in which no such constraints are imposed. Let Fq[t] denote
the polynomial ring defined over the finite field Fq having q elements, and, when k
is a natural number, define Jkq [t] to be the additive closure of the set of k th powers
in Fq[t] . In 1933, Paley [8] considered the unrestricted variant of Waring’s problem,
showing that a natural number s exists with the property that every polynomial
in Jkq [t] may be represented as the sum of s k th powers of polynomials from
Fq[t] . Let wq(k) denote the least permissible choice for such a number s . In this
paper we make progress on bounds for wq(k) in two directions. On one hand, we
apply estimates stemming from Deligne’s resolution of the Weil conjectures so as
to obtain sharp bounds valid when q is sufficiently large in terms of k . On the
other hand, making use of the Hardy-Littlewood method, we derive weaker bounds
valid uniformly in q .
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Before proceeding further, we require some notation. When k is a natural
number and p is a prime number, we define the integer kp as follows. We write k
in base p , say

k = a0 + a1p+ . . .+ anp
n, (1)

where 0 6 ai < p (0 6 i 6 n), and then put kp =
∏n
i=0(ai + 1)− 1. It is apparent

that kp 6 k for every k , and that kp = k if and only if k < p , or else k = pm − 1
for some natural number m . In §2 we derive the bound for wq(k) recorded in the
following theorem.

Theorem 1. Let k be a natural number, and suppose that Fq is a finite field of
characteristic p . Then whenever q > k2kpk2

p , one has wq(k) 6 kp + 1 .

For comparison, Theorems 1(iii) and 4(iii) of Vaserstein [12] show that when
q > k4 , and in addition q exceeds a certain Ramsey number defined in terms of
k , then wq(k) 6 3kp/2. In addition to providing a sharper bound for wq(k), the
conclusion of Theorem 1 has the merit of replacing the potentially astronomical
Ramsey number in the condition on q by an explicit function of k of terrestrial
magnitude. Now observe that −1 is a sum of k th powers in Fq (consider q − 1
copies of 1k for example), and so the set of polynomials that are the sum of some
finite number of terms of the form ±xk , with x ∈ Fq[t] , is equal to Jkq [t] . Let vq(k)
denote the least natural number s with the property that, whenever m ∈ Jkq [t] ,
then m is the sum of at most s such terms. Theorem 1(iii) of Vaserstein [12]
shows that when q is larger than a certain Ramsey number defined in terms of k ,
then vq(k) 6 kp . For odd k one has wq(k) = vq(k), and so the latter conclusion
supercedes the upper bound on wk(q) provided by Theorem 1 for odd k , albeit
with a potentially severe constraint on q . On the other hand, the trivial relation
vq(k) 6 wq(k) leads from Theorem 1 to the bound vq(k) 6 kp + 1, provided only
that q > k2kpk2

p . See [10] and [11] for further bounds on vq(k) and wq(k) valid
for intermediate ranges of q .

When g ∈ Fq[t] , let ord g denote the degree of g . We say that m admits
a strict representation as a sum of s k th powers when, for some xi ∈ Fq[t] with
ord xi 6 d(ord m)/ke (1 6 i 6 s), one has m = xk1 + . . . + xks . Here, as usual,
we write dθe for the least integer greater than or equal to θ . When k and q
are natural numbers exceeding 1, define Gq(k) to be the least integer s with
the property that, whenever m ∈ Jkq [t] has degree sufficiently large in terms of k
and q , then m admits a strict representation as the sum of s k th powers. By
reference to the argument underlying Theorem 1.4(ii) of Gallardo and Vaserstein
[3], we obtain the following direct consequence of Theorem 1 in §3.

Corollary 2. Let k be an integer exceeding 3 , and suppose that Fq is a finite
field of characteristic p . Then whenever q > k2kpk2

p , one has Gq(k) < k log k +
kp − 1

2 log k + 4 .

For comparison, Theorem 1.4(ii) of [3] shows that when q > k4 , one has
Gq(k) 6 k log(k + 1) + 2k + 1. The conclusion of Corollary 2 is modestly sharper
at the expense of requiring q to be rather larger.
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For smaller values of q , the most problematic cases are those wherein the
characteristic p of Fq is smaller than k . By employing work of Kubota [5,6], the
paper of Chinburg [1] comes closest to providing bounds uniform in q , though
the focus is on vq(k) rather than wq(k). In §4 we apply our recent work [7] to
establish a uniform bound on wq(k). Define the integer A = Aq(k) as follows.
Let k0 be the largest divisor of k coprime to q . Write k in base p as in (1), take
γ = a0 + a1 + . . . + an , and then set A = (1 − 2−γ)−1 when p < k0 , and A = 1
when p > k0 . Finally, when x is a positive number, write Logx for max{1, log x} ,
and put

Ĝq(k) = Ak0(Log k0 + Log Log k0 + 2 +ALog Log k0/Log k0).

Theorem 3. There is a positive absolute constant C with the property that
whenever k is a natural number and Fq is a finite field, then wq(k) 6 Ĝq(k) +
Ck0
√

Log Log k0/Log k0 .

The conclusion of Theorem 3 implies that the bound wq(k) 6 ( 4
3+o(1))k log k

holds uniformly in k and q . For a specific exponent k and finite field Fq , more-
over, the algorithm associated with Theorem 14.2 of [7] provides an explicit upper
bound for wq(k). We avoid providing the lengthy details of this algorithm in the
interests of concision. We note also that since vq(k) 6 wq(k), the bound supplied
by Theorem 3 for wq(k) applies also to vq(k).

The authors are grateful to Professors Gallardo and Vaserstein for making
available their preprint [3], without which the conclusion recorded in Corollary 2
could not have been presented.

2. Methods applicable for larger qqq

In order to bound wq(k) for larger q , we consider the polynomial equation

xk1(t+ y1)k + . . .+ xks(t+ ys)k = at+ b. (2)

For suitable elements a, b ∈ Fq , with a non-zero, we seek a solution x,y ∈ Fsq of
the equation (2). It transpires that when q is sufficiently large, such a solution may
be shown to exist when s is taken to be kp + 1, which we henceforth assume. Fix
any such solution of (2), and consider a given polynomial m(t) ∈ Fq[t] . A repre-
sentation of m(t) as the sum of s k th powers of elements of Fq[t] is obtained by
replacing t by a−1(m(t)− b) in (2), and thereby we confirm that wq(k) 6 s . Con-
sidering the coefficients of powers of t in (2), we derive a system of equations over
Fq which we investigate by means of Deligne’s resolution of the Weil conjectures.

The proof of Theorem 1. Let k and q be natural numbers satisfying the hy-
potheses of the statement of Theorem 1, and let p be the characteristic of Fq .
Plainly, there is nothing to prove when k = 1. Moreover, when p|k one has

xk1 + . . .+ xks = (xk/p1 + . . .+ xk/ps )p ∈ Fq[tp].
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Writing k0 for the largest divisor of k coprime to q , we deduce that wq(k) =
wq(k0). There is consequently no loss in supposing that k > 2 and (k, p) = 1,
as we assume henceforth. Next write k in base p as in (1). We recall that the
binomial coefficient

(
k
r

)
is coprime to p if and only if the base p expansion of r

takes the form r = b0 +b1p+ . . .+bnp
n , with 0 6 bi 6 ai (0 6 i 6 n) (this follows

from Lucas’ criterion; see, for example, the argument of the proof of Lemma 8.1
of [7]). Write R for the set of integers r , with 0 6 r 6 k , for which

(
k
r

)
is not

divisible by p . Note that since p - k , one has k − 1 ∈ R . We may suppose that
R = {r1, r2, . . . , rs} , with 0 = r1 < r2 < . . . < rs = k . For the sake of concision,
we write R1 for R \ {k} , and R2 for R \ {k − 1, k} .

When ε is 1 or 2, and y ∈ Fsq , we denote by Nε(y ) the number of distinct
Fq -rational projective solutions x of the system

xk1y
r
1 + . . .+ xksy

r
s = 0 (r ∈ Rε). (3 .ε)

Here, we interpret z0 as unity for every z in Fq . We seek to establish that y may
be chosen from Fsq in such a manner that N2(y ) > N1(y). In such circumstances, a
solution x of (3.2) necessarily exists for which the expression xk1y

k−1
1 +. . .+xksy

k−1
s

is non-zero, and hence the equation (2) is satisfied with a 6= 0. From this, as we
have already noted in the discussion following (2), the desired conclusion wq(k) 6 s
follows at once.

In order to make a suitable choice for y , we introduce for ε = 1 and 2
the determinant V(z; Bε,Rε), which we define for (s− ε)-element subsets Bε of
{1, 2, . . . , s} by V(z; Bε,Rε) = det

(
z
rj
i

)
, where the entries are indexed by i ∈ Bε

and j ∈ {1, . . . , s− ε} (in numerically increasing order). Consider the polynomial
F(z) given by the product of the polynomials V(z; Bε,Rε) over all (s−ε)-element
subsets Bε of {1, . . . , s} , for ε = 1 and 2. The degree of F(z) is at most ks3 , and
so it follows from Lemma 1 of Schmidt [9] that whenever q > ks3 , then a choice for
y ∈ Fsq exists with the property that V(y; Bε,Rε) 6= 0 for every (s− ε)-element
subset Bε of {1, . . . , s} , for ε = 1, 2. We now fix a choice for y with the latter
property, and we consider the system (3.2).

We claim that the complete intersection defined by (3.2) is non-singular. Sup-
pose to the contrary that a singular solution x exists. Then whenever
B2 = {u1, u2, . . . , us−2} , with 1 6 u1 < u2 < . . . < us−2 6 s , one must have
det
(
kxk−1

ui y
rj
ui

)
16i,j6s−2 = 0, whence

ks−2(xu1xu2 . . . xus−2)k−1V(y; B2,R2) = 0.

But by hypothesis, one has V(y; B2,R2) 6= 0, and so xui must be zero for some
index i with 1 6 i 6 s−2. Considering such implications as arise from all possible
(s− 2)-element subsets of {1, 2, . . . , s} , we infer that xj is necessarily zero for at
least 3 distinct indices j with 1 6 j 6 s . Temporarily relabelling variables so
that xs−1 and xs are zero, we set B2 = {1, 2, . . . , s− 2} and examine (3.2). Since
x defines a projective solution of (3.2), the variables x1, . . . , xs−2 cannot all be
zero, and so one must have V(y; B2,R2) = 0. But in view of our earlier choice
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of y , this is impossible. We therefore arrive at a contradiction, and are forced to
conclude that the variety X defined by the system (3.2) is non-singular.

The projective non-singular complete intersection (3.2) is defined by s − 2
equations of degree k in s variables, so the components of X each have dimension
1. Since we have established that this variety is non-singular, it follows that X is
regular in codimension one, and hence irreducible (see, for example, the preamble
to Corollary 6.2 of [4]). We therefore deduce from Theorem 6.1 of Ghorpade and
Lachaud [4] that |N2(y) − (q + 1)| 6 b1

√
q , where, in view of Example 4.3(ii) of

[4], the Betti number b1 is equal to ks−2(k(s− 2)− s) + 2 (see also Theorem 8.1
of Deligne [2]). We may conclude thus far, therefore, that

N2(y) > q + 1− ks−1(s− 2)
√
q. (4)

Next we consider the system (3.1). Set B1 = {1, 2, . . . , s− 1} . In view of our
choice for y , one has V(y; B1,R1) 6= 0. Therefore, if we fix any non-zero choice
for xs , we deduce that the system

xk1y
r
1 + . . .+ xks−1y

r
s−1 = −xksyrs (r ∈ R1),

uniquely determines (xk1 , . . . , x
k
s−1). There are consequently at most ks−1 possible

such choices for (x1, . . . , xs−1). When xs = 0, meanwhile, the same argument
shows that (x1, . . . , xs−1) = 000 . We therefore deduce that the number of projective
solutions of the system (3.1) counted by N1(y) is at most ks−1 . On combining
the latter estimate with (4), we find that

N2(y)−N1(y) > q + 1− ks−1(s− 2)
√
q − ks−1.

But by hypothesis, we may suppose that q > k2s−2(s− 1)2 , and thus we conclude
that N2(y) > N1(y). In view of the discussion following equation (3 .ε) above, we
infer that wq(k) 6 s , and this completes the proof of Theorem 1.

3. The method of Gallardo and Vaserstein

The conclusion of Corollary 2 follows from Theorem 1 by means of a direct ap-
plication of the methods of Gallardo and Vaserstein [3], additional refinements
stemming only from careful book-keeping. Consider a polynomial m ∈ Jkq [t] of
sufficiently large degree d . As reported in [3], it is a consequence of work of Weil
[13] that when q > k4 , then every element of Fq is the sum of two k th powers
from Fq . Let

n =
⌈

log k
log(k/(k − 1))

⌉
+ 2. (5)

Then an inspection of the argument of the proof of Proposition 3.5 of [3] reveals
that there exist polynomials xi ∈ Fq[t] (1 6 i 6 n), each of degree not exceeding
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d(ord m)/ke , with the property that the polynomial m0 = m− xk1 − . . .− xkn has
degree at most D , where D = kdd/ke(1− 1/k)n−2 + k(k − 1). When k > 2, the
quotient (log k)/(log(k/(k − 1))) is not an integer, and hence there is a positive
number δ = δk for which D 6 (1− δ)d/k+ k2 . We note that the latter is at most
d/k whenever d is sufficiently large in terms of k . It follows from (5), moreover,
that for k > 4 one has n < k log k − 1

2 log k + 3.
We next recall that since −1 is a sum of k th powers in Fq , then m0 is the

sum of some number of k th powers from Fq[t] , that is m0 ∈ Jkq [t] . Consequently,
when q > k2kpk2

p and u > kp + 1, the conclusion of Theorem 1 demonstrates that
the polynomial m0 is represented in the shape m0 = yk1 + . . .+yku , with yi ∈ Fq[t]
(1 6 i 6 u). An inspection of the proof of Theorem 1 in §2, moreover, confirms
that one may constrain the polynomials yi (1 6 i 6 u) employed in the latter
representation to have degree at most that of m0 , namely D 6 d/k . We conclude
that m possesses the representation m = xk1 + . . . + xkn + yk1 + . . . + yku , with
xi ∈ Fq[t] (1 6 i 6 n) each of degree at most d(ord m)/ke , and with yj ∈ Fq[t]
(1 6 j 6 u) each of degree d/k 6 d(ord m)/ke . In particular, the polynomial m
has a restricted representation as the sum of (n + u) k th powers of polynomials
from Fq[t] . We conclude that Gq(k) 6 n+u , and so on recalling our upper bound
on n , we find that

Gq(k) < (k log k − 1
2 log k + 3) + (kp + 1).

This completes the proof of Corollary 2.

4. Methods applicable for smaller qqq

The upper bound presented in Theorem 3 may be established cheaply by making
use of our recent work [7] concerning the restricted variant of Waring’s problem.
The argument is familiar, but we provide details for the sake of completeness.
Observe first that when the characteristic of Fq divides k , one has wq(k) = wq(k0),
in which k0 is the largest divisor of k coprime to q . It therefore suffices to bound
wq(k) for (k, q) = 1, as we henceforth assume. Suppose that m ∈ Jkq [t] , so that
m is the sum of some number of k th powers from Fq[t] . Let x0 be an element of
Fq[t] of degree sufficiently large in the context of the methods of [7], and consider
the polynomial m0 = m− xk0 . In accordance with our opening observation in the
final paragraph of §3, one has m0 ∈ Jkq [t] . Let C0 be a suitable positive absolute

constant, and write v = [Ĝq(k) + C0k
√

Log Log k/Log k] . Then since m0 has
sufficiently large degree, the conclusion of Theorem 1.1 of [7] ensures that m0 is
the sum of at most v k th powers from Fq[t] , say m0 = xk1 + . . . + xkv . But then
one has m = xk0 +xk1 + . . .+xkv , whence m is the sum of at most v+1 k th powers
from Fq[t] . This completes the proof of Theorem 3.

We remark that the methods of §§2–14 of [7] may be used to count the
number of solutions of the equation m = xk1 + . . .+ xku , with xi ∈ Fq[t] of degree
B sufficiently large in terms of k (1 6 i 6 u). When u is at least as large as
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the integer v above, for a suitable absolute constant C0 , an asymptotic lower
bound for the number of solutions may be obtained which confirms that m has
infinitely many representations as the sum of u k th powers whenever m ∈ Jkq [t] .
In some sense, therefore, the additional k th power employed in the first paragraph
is redundant, and may be eliminated in a more refined analysis of this problem.
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