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GAUSSIAN SEQUENCES IN ARITHMETIC PROGRESSIONS
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Dedicated to Jean-Marc Deshouillers
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Abstract: We prove an optimal ‘level of distribution’ result sequences of integers of the type
X2 + Y 2r .
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1. Introduction

This paper is motivated by problems in sieve theory. Let A =
(
an
)

be a sequence
of non-negative reals. The most ambitious goal for the sieve is the evaluation of
the sum

S(x) =
∑

n6x
an Λ(n) , (1)

where Λ denotes the von Mangoldt function.
Before one can count primes using the sieve one has to be able to count the

multiples of a given integer. More precisely, we need a good asymptotic formula
for the congruence sum

Ad(x) =
∑

n6x
n≡0(mod d)

an . (2)

Here the main point is not how sharp the error term, but rather, how wide
the range of uniformity in the modulus d . Actually, for the application one needs
this only on average over d , say d < D , and we want D = D(x) to be as large as
possible.

In this paper we are going to consider Gaussian sequences, including some
which are quite lacunary. Lacunary sequences present serious challenges, not only
for counting primes, but even for addressing issues of divisibility. We are fortunate
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that some of the very difficult technical obstacles concerning divisibility can be
resolved by means of Landreau’s inequality, see Proposition 1.

By a Gaussian sequence we mean a sequence A =
(
an
)

supported on integers
n which can be written as the sum of two squares, that is on norms of Gaussian
integers.

The method we present works for quite general sequences

an =
∑

`2+m2=n
(`,m)=1

γ` (3)

where γ` are any complex numbers with |γ`| 6 1. The problem is more attractive
when γ` is a lacunary sequence, but a certain spacing property is helpful. The-
refore, to control the spacing we fix a positive integer r and assume that γ` is
supported on r–th powers

γ` = 0 if ` 6= kr (4)

|γ`| 6 1 if ` = kr. (5)

In this case we have ∑

n6x
an = X +O

(
x

1
2r log x

)
(6)

where

X =
∑

`<
√
x

γ`
ϕ(`)
`

√
x− `2 . (7)

Since X � x
1
2 + 1

2r , the best level of distribution one can hope for is

D(x) = x
1
2 + 1

2r
(
log x

)−A
(8)

and we are going to achieve this.
For any d not too large we expect that Ad(x) is well approximated by

Md(x) = g(d)
∑

`<
√
x

(`,d)=1

γ`
ϕ(`)
`

√
x− `2 (9)

where g(d) = ρ(d)/d and ρ(d) is the number of solutions of the congruence

α2 + 1 ≡ 0 (mod d) . (10)

Theorem. Let γ` be supported on r–th powers and |γ`| 6 1 . Then, for

x
1
2 6 D 6 x

r+1
2r (11)
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we have ∑

d6D

∣∣Ad(x)−Md(x)
∣∣� D

1
4x

3(r+1)
8r
(
log x

)130
, (12)

where the implied constant depends only on r .

Particular cases of our theorem have been considered and applied before.
Examples are the sequence (3) with γ` the characteristic function on primes [2],
on squares [3], in both of which cases the sum (1) has been successfully evaluated,
and on cubes [4] in which case the goal for primes remains open.

The main ingredient, aside from Proposition 1, is a large sieve type inequality
for the roots of the congruence (10), see Proposition 2. A result of this type was
first considered in [2].

2. Basic tools

In this section we state the Landreau inequality and the large sieve inequality
which are used in the proof of the theorem.

Proposition 1. Let k > 2 be an integer. For all n > 1 we have

τ(n) 6 C
∑

d|n
d6n1/k

(
2ω(d)τ(d)

)k
(13)

where C is a constant.

We shall need this for k = 4, that is

τ(n)�
∑

d|n
d6n1/4

(
τ(d)

)8
. (14)

The proof of Proposition 1 is given in [6], and indeed the result there is much
more general. See also [1].

Proposition 2. For any complex numbers βn we have

∑

d6D

∑

α2+1≡0(mod d)

∣∣∣∣∣
∑

n6N
βne
(αn
d

)∣∣∣∣∣� D
1
2
(
D +N

) 1
2

(∑

n6N
|βn|2

) 1
2

, (15)

where the implied constant is absolute.

Proof. See (3.6) of [3].
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3. Proof of the theorem

Now we proceed to the proof of the theorem. As usual, before applying harmo-
nic analysis it helps to introduce some smoothing factors. Let f(t) be a smooth
function on [0,∞] such that

f(t) = 1 if 0 6 t 6 (1− η)x

f(t) = 0 if t > x,

f (j) � (ηx)−j for j = 0, 1, 2,

where x−
1
4r 6 η 6 1 will be chosen later.

We replace Ad(x),Md(x) by their smooth counterparts

Ad(f) =
∑

n≡0(d)

an f(n) , (16)

Md(f) = g(d)
∑

(`,d)=1

γ`
ϕ(d)
d

∫ ∞
0

f(`2 + t2) dt. (17)

We estimate the corrections resulting from this modification by elementary argu-
ments as follows:

∑

d6D

∣∣Ad(x)−Ad(f)
∣∣ 6

∑′

(1−η)x<`2+m26x
(`,m)=1

|γ`|τ(`2 +m2) +O
(√
x log x

)
.

Here Σ′ means that the terms with a value of ` which is nearest to
√
x are

omitted. For the remaining points we apply the inequality of Landreau, Proposition
1, getting the bound

∑′

`<
√
x

|γ`|
∑

d6x 1
4

(d,`)=1

τ(d)8
∑

(1−η)x<`2+m26x
`2+m2≡0(d)

1 .

Note that m runs over an interval of length O
(
ηx/
√
x− `2) . Splitting into residue

classes m ≡ α`(mod d) with α running over the roots of (10) we estimate the above
sum by

� ηx
(∑

d

)(∑′

`

)
+ x

1
4 + 1

2r
(
log x

)256
,

where the first sum is

∑

d6x 1
4

τ8(d)ρ(d)d−1 � (
log x

)256
,
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and the second sum is

∑′

`<
√
x

|γ`|
(
x− `2)−

1
2 6

∑′

k<x
1
2r

(
x− k2r)− 1

2

� x
1−2r

4r

∑′

k<x
1
2r

(
x

1
2r − k

)− 1
2 � x

1−r
2r .

Hence we obtain
∑

d6D

∣∣Ad(x)−Ad(f)
∣∣� ηx

r+1
2r
(
log x

)256
. (18)

Similarly (actually much easier), we show that

∑

d6D

∣∣Md(x)−Md(f)
∣∣� ηx

r+1
2r log x . (19)

Next we decompose Ad(f) as follows (expand m to all Z):

Ad(f) =
1
2

∑∑

`2+m2≡0(d)
(`,m)=1

γ` f(`2 +m2) =
1
2

∑

α2+1≡0(d)

∑

`

γ`
∑

(m,`)=1
m≡α`(d)

f(`2 +m2)

=
1
2

∑

α2+1≡0(d)

∑
a

µ(a)
∑

`

γa`
∑

m≡a`(d/(a,d))

f
(
a2(`2 +m2)

)
.

To the inner sum we apply Poisson’s formula

∑
m

=
(a, d)
d

∑

h∈Z
e
(
αh`

(a, d)
d

)
Fa`

(h(a, d)
d

)
,

where Fa`(v) is the Fourier integral

Fa`(v) =
∫ ∞
−∞

f
(
a2(`2 + t2)

)
e(−vt)dt = 2

∫ ∞
0

f
(
a2(`2 + t2)

)
cos(2πvt)dt . (20)

Integrating (20) by parts twice we get an alternative expression

Fa`(v) =
( a

πv

)2
∫ ∞

0

(
f ′ + 2a2t2f ′′

)(
a2(`2 + t2)

)
cos(2πvt)dt . (21)

The zero frequency h = 0 yields exactly Md(f), so we have

∣∣Ad(f)−Md(f)
∣∣ 6 1

d

∑
a

[ ∑

bc=d
b|a

ρ(b)b
∑

α(mod c)
α2+1≡0(c)

∣∣Wa(c, α)
∣∣
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where

Wa(c, α) =
∑

h>0

∑

`

γa` e
(αh`

c

)
Fa`

(h
c

)
(22)

and Σ[ denotes a sum over squarefree integers. Summing over the moduli d in a
dyadic segment we get

∑

D<d62D

∣∣Ad(f)−Md(f)
∣∣ 6 1

D

∑
a

[ ∑

b|a
ρ(b)bVa(D/b) , (23)

where
Va(C) =

∑

C<c62C

∑

α2+1≡0(c)

∣∣Wa(c, α)
∣∣ . (24)

Next we split the outer summation in (22) into dyadic segments H 6 h < 2H and
we shall treat these partial sums separately. By (24) we obtain

Va(C) 6
∑

H

Va(C,H) (25)

where
Va(C,H) =

∑

C<c62C

∑

α2+1≡0(c)

∣∣Wa(H; c, α)
∣∣ (26)

and

Wa(H; c, α) =
∑

H6h<2H

∑

`

γa` e
(αh`

c

)
Fa`

(h
c

)
. (27)

We wish to separate the modulus c from the variables h, ` in the Fourier
integral Fa`

(
h
c

)
. This can be easily achieved by changing t into tH/h in the

integrals (20) or (21), and then holding t fixed. Note that the trivial integration
over t in (20) or (21) gives

Fa`(v)�
√
x

a
,

Fa`(v)�
√
x

a

( a

ηv
√
x

)2
,

respectively, because f � 1, f ′ � (ηx)−1 , f ′′ � (ηx)−2 . Hence Fa`(h/c) �
Ga(C,H), where

Ga(C,H) =
√
x

a
min

{
1,
( aC

ηH
√
x

)2
}
. (28)

By (26), (27), we obtain

Va(C,H)� Ga(C,H)Ua(C,H) , (29)
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where

Ua(C,H) =
∑

C<c62C

∑

α2+1≡0(c)

∣∣∣∣∣
∑

H6h<2H

∑

`

γa` ξh` e
(αh`

c

)∣∣∣∣∣ (30)

with some coefficients ξh` which do not depend on c, α and which satisfy
∣∣ξh`

∣∣ 6 1.
Now we are ready to apply the large sieve for quadratic roots, Proposition 2,

which yields

Ua(C,H)� C
1
2
(
C +H

√
x/a

) 1
2E

1
2 (31)

where

E =
∑
n

( ∑

h`=n
H6h<2H

∣∣γa`
∣∣
)2

.

Because a is squarefree and a` is an r -th power it follows that ` = ar−1mr with
m 6 a−1x

1
2r = M , say. Therefore we see that E is bounded by the number of

solutions of
h1m

r
1 = h2m

r
2

with H 6 h1, h2 < 2H and m1,m2 6 M . The solutions are given explicitly by
m1 = st1,m2 = st2 with (t1, t2) = 1 , st1, st2 6 M and h1 = ktr2, h2 = ktr1 with
k 6 4H(tr1 + tr2)−1 . Hence

E 6 8HM
∑∑

t1,t26M
(tr1 + tr2)−1(t1 + t2)−1 6 16HM

∑

t6M
t−r .

The worst case is r = 1, giving E � Ha−1x
1
2r log x , and (31) yields

Ua(C,H)� C
1
2
(
C +H

√
x / a

) 1
2H

1
2 a−

1
2x

1
4r
(
log x

) 1
2 . (32)

Introducing (32) to (29) we see by (28) that the series (25) over the dyadic
endpoints H converges and the largest contribution is at

H � aC/η√x . (33)

Therefore we obtain

Va(C)� (
ηa
)−1

C
3
2x

r+1
4r
(
log x

) 3
2 . (34)

Inserting this to (23) we arrive at
∑

D<d62D

∣∣Ad(f)−Md(f)
∣∣� η−1D

1
2x

r+1
4r
(
log x

) 5
2 . (35)

This bound remains the same for the sum over all d 6 D . Finally, combining this
with (18), (19) we conclude (12) by choosing

η = D
1
4x−

r+1
8r
(
log x

) 5
4−128

, (36)

proving the theorem.
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4. A main term computation

Write

Xd =
∑

`<
√
x

(`,d)=1

γ`
ϕ(`)
`

√
x− `2 . (37)

By Mellin inversion we have

√
x− y =

√
x

2πi

∫

(σ)
B(s)

(x
y

)s
ds

where, say, σ = 1 and

B(s) =
∫ 1

0

√
1− y ys−1dy = B

(
s,

3
2

)
=

Γ(s)Γ
(

3
2

)

Γ
(
s+ 3

2

) .

Therefore,

Xd =
√
x

2πi

∫

(σ)
B(s)xsZ(2s)ds ,

where

Z(s) =
∑

(`,d)=1

γ`
ϕ(`)
`

`−s .

Now specialize to γ` , the characteristic function of r–th powers, in which case
Z(s) is given by

Z(s) =
∑

(k,d)=1

∏

p|k

(
1− 1

p

)
k−rs =

∏

p-d

(
1− 1

prs

)−1(
1− 1

prs+1

)

=
ζ(rs)

ζ(rs+ 1)

∏

p|d

(
1− 1

prs

)(
1− 1

prs+1

)−1
.

Moving the contour to σ = ε we encounter a simple pole of Z(2s) at s = 1
2r

with residue
res
s= 1

2r

Z(2s) =
1

2rζ(2)
h(d)

where

h(d) =
∏

p|d

(
1 +

1
p

)−1
. (38)

Because B(s)� |s|− 3
2 on the line s = ε , the integral converges absolutely so that

Xd = x
r+1
2r B

( 1
2r

)
res
s= 1

2r

Z(2s) +O
(
τ(d)x

1
2 +ε
)
.

Hence:
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Proposition 3. Let γ` be the characteristic function of r–th powers. We have,
for Xd given by (37),

Xd = h(d)
B
(

1
2r ,

3
2

)

2ζ(2)
x

1
2 + 1

2r +O
(
τ(d)x

1
2 +ε
)
, (39)

where h(d) is given by (38), B is the beta function, and the implied constant
depends on r and ε .

Remark. In this case the sequence A =
(
an
)

satisfies the usual linear sieve axioms
with the density function

g(d) = ρ(d)h(d)d−1 . (40)

An immediate application, using the weighted sieve of Laborde [5], gives the fol-
lowing.

Corollary 1. For each r 6 13 , there are infinitely many numbers `2r +m2 which
have at most two distinct prime factors.

Of course this is known, even for the sequence 1 + m2 , however Laborde’s
sieve leads to the present result much more quickly.

References

[1] J.-M. Deshouillers and F. Dress, Sommes de diviseurs et structure multipli-
cative des entiers, Acta Arith. 49 (1988), 341–375.

[2] E. Fouvry and H. Iwaniec, Gaussian primes, Acta Arith. 79 (1997), 249–287.
[3] J.B. Friedlander and H. Iwaniec, The polynomial X2+Y 4 captures its primes,

Ann. Math. 148 (1998) 945–1040.
[4] J.B. Friedlander and H. Iwaniec, A polynomial divisor problem,J. Reine An-

gew. Math. 601 (2006), 109–137.
[5] M. Laborde, Buchstab’s sifting weights, Mathematika 26 (1979) 250–257.
[6] B. Landreau, Majorations de fonctions arithmétiques en moyenne sur des
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