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Abstract: We survey properties of the Ankeny-Onishi sieve function and establish inequalities
for jκ(κ) and for 1− jκ(u) for u →∞ .
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1. Introduction

The function σκ(u) was first introduced by Ankeny and Onishi in their pioneering
extension [1] of the Selberg sieve method, albeit in a different notational guise. It
is given by

σκ(u) := jκ(u/2), κ > 1, (1.1)

where

j(u) = jκ(u) =
{

0, u 6 0,
e−γκuκ/Γ(κ+ 1), 0 < u 6 1, (1.2)

and j is continued forward as the continuous solution of

uj′(u) = κj(u)− κj(u− 1) = κ

∫ u

u−1
j′(t)dt, u > 1, (1.3)

by means of the restatement

(u−κj(u))′ = −κu−κ−1j(u− 1), u > 1, (1.3 ′ )

of (1.3); in fact (1.3) holds for all u > 0. It is a differential delay equation of a
kind common in the study of sieves.

In this note we review basic information about j/σ and develop several
interesting properties of these functions. In particular, we present simpler proofs
that (i) jκ(κ) > 1/2 for all κ > 1, and that (ii) for each fixed c > 1, jκ(cκ) tends
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to 1 from below as κ → ∞ (both these results were first proved by Grupp and
Richert in [2]); also, we show in explicit fashion that jκ(u)→ 1 and j′κ(u)→ 0 as
u→∞ , each at a rate that is faster than exponential.

We begin studying j with some observations about the continuity of its
derivatives. If u > 0 and κ > 1, then j′(u) is continuous for u > 0 by (1.3) and
the continuity of j ; more generally, by differentiating (1.3) we see that j(n)

κ (u) is
continuous for u > 0 for all positive integers n < κ . If κ is a positive integer, then
j

(κ)
κ (u) has a jump discontinuity at u = 0, and j

(κ+n)
κ (u) has jump discontinuities

at u = 1, . . . , n . If κ > 1 is not an integer, then j([κ]+n)(u) has infinite jump
discontinuities from the right at u = 0, 1, . . . , n− 1 for each positive integer n . In
each of the preceding cases, the function is continuous at all other values of u > 0.

We show next for each κ > 1 that jκ(u) is a positive, strictly increasing
function of u > 0. By (1.2), j′(u) > 0 when 0 < u 6 1, and by (1.3) it remains
positive for some distance to the right side of 1. Suppose there were a point u0 > 1
with j′(u0) = 0. By the continuity of j′ , we may assume that u0 is the first such
point, i.e. that j′(u0) = 0 and j′(t) > 0 for 0 < t < u0 . Upon evaluating the
integral form of (1.3) at u = u0 we obtain a contradiction, since the left side is 0
and the right side is κ times the integral of a positive function. Hence

j′(u) > 0, u > 0; (1.4)

and we deduce immediately that

j(u) > 0, u > 0. (1.5)

The higher derivatives of j(u) also satisfy differential delay equations. Upon
differentiating (1.3), and then once again, we obtain

uj′′(u) = (κ− 1)j′(u)− κj′(u− 1) (1.6)

and
uj′′′(u) = (κ− 2)j′′(u)− κj′′(u− 1). (1.7)

In (1.3) itself, if we integrate by parts on the right (which is valid, since j′ is
absolutely continuous), we obtain

uj′(u) = κ(t− κ+ 1)j′(t)
∣∣∣
u

u−1
− κ

∫ u

u−1
(t− κ+ 1)j′′(t)dt

or

(u− κ){(κ− 1)j′(u)− κj′(u− 1)} = κ

∫ u

u−1
(t− κ+ 1)j′′(t)dt;

hence by (1.6) (for all κ > 1 and u > 0),

u(u− κ)j′′(u) = κ

∫ u

u−1
(t− κ+ 1)j′′(t)dt. (1.8)

We use the last equation to show that jκ has a unique inflection point uκ
(for κ > 1) and that it lies in the interval (κ − 1, κ] . A finer analysis (see [2])
would show that κ− 1/2 < uκ < κ for all κ > 1.
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Lemma 1. Suppose κ > 1 . There exists a unique number, call it uκ , between
κ− 1 and κ , such that j′′(u) > 0 for 0 < u < uκ and j′′(u) < 0 for all u > uκ .
For κ = 1 , we have j′′(u) = 0 for all u < u1 = κ = 1 and j′′(u) < 0 for all u > 1 .

Proof. For κ = 1, we have by (1.6) that uj′′(u) = −j′(u− 1), an expression that
is 0 for u < 1 and is negative for u > 1 by (1.5).

Now suppose κ > 1. On taking u = κ in (1.8) we find that

∫ κ

κ−1
(t− κ+ 1)j′′(t)dt = 0.

Since t−κ+ 1 > 0 on (κ− 1, κ) it follows that j′′(t) changes sign in this interval.
By (1.2) j′′(u) > 0 on (0, 1] and it follows from (1.7) and the continuity of j′ that
j′′ is continuous on [0,∞). Thus there exists some number uκ , the smallest value
of u > 1 at which j′′(u) = 0. By (1.7) at u = uκ

uκj
′′′(uκ) = −j′′(uκ − 1) < 0

since j′′(u) > 0 for 0 < u < uκ , whence uκ is a simple zero of j′′ .
Suppose if possible that j′′ has other zero beyond uκ , and let v be the least

of these. We claim that

v < uκ + 1;

for if, on the contrary, v > uκ+1 then j′′(v) = 0 and j′′(u) < 0 when uκ < u < v .
But then, by (1.6) at u = v ,

0 = vj′′(v) = (κ− 1)j′(v)− κj′(v − 1),

so that

0 < j′(v) = κ{j′(v)− j′(v − 1)} = κj′′(w)

for some w strictly between v − 1 (> uκ) and v , a contradiction.
Next suppose that uκ < v < uκ + 1. We know that j′′(u) is non-decreasing

at u = v , so that j′′′(v) > 0; yet by (1.7)

vj′′′(v) = −κj′′(v − 1) < 0

since v − 1 < uκ , also an impossibility.
Hence v does not exist, and j′′ has just the one zero uκ , which is simple

and lies in (κ− 1, κ).

The most rapid rate of increase of j occurs at uκ . How fast is the function
rising here? It was shown by Wheeler ([3], [4]) that j′κ(uκ) ∼ 1/

√
πκ as κ→∞ .
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2. The adjoint function

We introduce next the so-called “adjoint” of j , a function r(u) = rκ(u) defined
for κ > 0 by

(ur(u))′ = κr(u+ 1)− κr(u), u > 0, (2.1)

and normalized so that
lim
u→∞

u r(u) = 1. (2.2)

A normalized solution of (2.1) is provided by

rκ(u) =
∫ ∞

0
exp(−ut+ κEin t)dt, (2.3)

where

Ein t :=
∫ t

0
(1− e−s)ds

s
=
∞∑
n=1

(−1)n−1 tn

n!n
, t ∈ C, (2.4)

an entire function. With log t denoting the principal value of log t ,

Ein t = log t+ γ +
∫ ∞
t

e−s

s
ds, | arg t |< π. (2.5)

To see that the integral (2.3) satisfies (2.1), first integrate it by parts, next multiply
by u , and then differentiate with respect to u .

The behavior of r(u) as u→∞ is no harder to derive: by (2.4) we have

0 6 Ein t 6 t, t > 0,

whence ∫ ∞
0

exp(−ut)dt < rκ(u) <
∫ ∞

0
exp(−ut+ κt)dt,

and it follows at once that

u−1 < rκ(u) (u > 0) and rκ(u) < (u− κ)−1 (u > κ).

Together, the last two inequalities imply that the normalization (2.2) holds.
The integral representation (2.3) of r(u) shows that (−1)νr(ν)(u) > 0 for

ν = 0, 1, 2, . . . , and in particular, that r′(u) < 0 and r′′(u) > 0 for all u > 0;
also, that (ur(u))′ < 0 by (2.1) and ((u− κ)r(u))′ > 0. The last inequality holds
since

((u− κ)r(u))′ = κ{r(u+ 1)− r(u)− r′(u)} = κr′′(u+ θ)/2 > 0

for some θ in (0, 1), by Taylor’s expansion. It follows that

u+ 1
u

<
r(u)

r(u+ 1)
<
u− κ+ 1
u− κ ,

the latter for u > κ .
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The Iwaniec “inner product”

〈j, r〉(u) := uj(u)r(u)− κ
∫ u

u−1
j(t)r(t+ 1)dt, u > 0,

is constant, as one can verify by differentiating and using the defining equations
of r and j . To evaluate this constant let u→ 0+; by (2.3) and (2.5)

r(u) =
∫ ∞

0
exp{−ut+ κ log t+ γκ+ o(1)}dt

∼ eγκ
∫ ∞

0
exp(−ut)tκdt, u→ 0+,

= eγκΓ(κ+ 1)u−κ−1.

Hence, by (1.2), uj(u)r(u)→ 1 as u→ 0+ and so

uj(u)r(u)− κ
∫ u

u−1
j(t)r(t+ 1)dt = 1, u > 0. (2.6)

In the same vein

ur(u)− κ
∫ u

u−1
r(t+ 1)dt

is constant by (2.1), and since ur(u)→ 1 as u→∞ , we see that

ur(u)− κ
∫ u

u−1
r(t+ 1)dt = 1. (2.7)

Lemma 2. Suppose κ > 1 and u > κ . Then each of the functions

(j(u)− j(t))r(t+ 1), (1− j(t))r(t+ 1)

is convex in t on the interval u− 1 6 t 6 u .

Proof. The argument is the same for each function, so focus on the first and call
it J(t). Then, by (2.3),

J ′′(t) = −r(t+ 1)j′′(t) + 2(−j′(t))r′(t+ 1) + (j(u)− j(t))r′′(t+ 1)

=
∫ ∞

0

{− j′′(t) + 2(−j′(t))(−u) + (j(u)− j(t))u2}

× exp(−(t+ 1)u+ κ Einu) du.

By (1.6) the expression within the curly brackets is equal to

− 1
t
((κ− 1)j′(t)− κj′(t− 1)) + 2uj′(t) + (j(u)− j(t))u2

=
(

2u− κ− 1
t

)
j′(t) +

κ

t
j′(t− 1) + (j(u)− j(t))u2;
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The second and third terms here are positive, and the coefficient of j′(t) is at least

2u− κ− 1
u− 1

> 2u− 1 > 0

since u > κ . Hence, J ′′ > 0.

We next consider the limiting behavior of j(u) as u→∞ . When we multiply
(2.7) by j(u) and subtract it from (2.6) we obtain

1− j(u) = κ

∫ u

u−1
{j(u)− j(t)}r(t+ 1)dt; (2.8)

if we simply subtract (2.6) from (2.7) this time we find

{1− j(u)}ur(u) = κ

∫ u

u−1
{1− j(t)}r(t+ 1)dt. (2.9)

There is much to be learned from these two relations. First, the integral on the
right of (2.8) is positive and therefore

j(u) < 1, u > 0,

as we reported earlier. Next, by (2.9), since r(·) is positive and decreasing and
j(·) > 0, we obtain at once

{1− j(u)}ur(u) < κ

∫ u

u−1
r(t+ 1)dt < κr(u),

so that
0 < 1− j(u) < κ/u

and therefore
lim
u→∞

jκ(u) = 1. (2.10)

We apply Lemma 2 to the right side of (2.9) and obtain

{1− j(u)}ur(u) <
κ

2

(
r(u+ 1){1− j(u)}+ r(u){1− j(u− 1)}), u > κ; (2.11)

this inequality can be rewritten in two ways, which lead to different lines of deve-
lopment, one an iteration and the other a differential inequality.

First, we have

1− j(u) <
κr(u)

2ur(u)− κr(u+ 1)
{1− j(u− 1)}

=
κ

2u− κr(u+ 1)/r(u)
(1− j(u− 1))
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and since r(u+ 1)/r(u) < u/(u+ 1) from above, we derive the recurrence

1− j(u) <
u+ 1
u

κ/2
u+ 1− κ/2 {1− j(u− 1)}, u > κ. (2.12)

This inequality plainly lends itself to iteration and leads, for any v > κ − 1 and
positive integer n , to

1− jκ(v + n) (2.13)

<
v + 1− κ/2

v + 1
v + n+ 1

v + n+ 1− κ/2
(κ/2)n Γ(v + 1− κ/2)

Γ(v + n+ 1− κ/2)
(1− jκ(v))

< Γ(v + 1− κ/2)
{ (κ/2)n

Γ(v + n+ 1− κ/2)

}
(1− jκ(v)).

If u is a number near κ+ n for some positive integer n , then the factor in
curly brackets shows that jκ(u) does indeed tend to 1 faster than exponentially
as u → ∞ . In the next section we shall show that 1 − jκ(κ) < 1/2, which in
combination with (2.13) yields a quite sharp inequality for 1− jκ(u).

To conclude this section, we return to (2.11) and deduce from it a differential
inequality. We begin by writing the relation in the form

{1− j(u)}ur(u) <
κ

2
{1− j(u)}(r(u+ 1) + r(u)) +

κ

2
({j(u)− j(u− 1)}r(u)

and, after applying (1.3) and a little rearrangement, this becomes

1− j(u) <
κ

2
(1− j(u))

(r(u+ 1)
ur(u)

+
1
u

)
+

1
2
j′(u)

<
κ

2
(1− j(u))

( 1
u+ 1

+
1
u

)
+

1
2
j′(u),

or
(1− j(u))′ +

{
2− κ

( 1
u

+
1

u+ 1

)}
(1− j(u)) < 0;

in other words, for u > κ ,

{(1− j(u) exp(2u− κ log u(u+ 1))}′ < 0.

Upon integrating, we find for u > κ that

(1− j(u)) exp(2u− κ log u(u+ 1)) 6 (1− j(κ)) exp(2κ− κ log κ(κ+ 1)).

Here then we have come to a curious pass: starting from (2.11) and adding
extra information – application of (1.3) – we have derived the inequality

1− jκ(u) 6 (1− jκ(κ))
(u(u+ 1)
κ(κ+ 1)

)κ
exp(−2u+ 2κ), u > κ, (2.14)
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which is perhaps more pleasing to the eye, and not without interest, but yields
only exponential decay of 1− jκ(u) towards 0 as u→∞ ! We cannot understand
why, apparently, the second approach is inferior to the first.

It should be said at this point that [1] derives a slightly weaker inequality
than (2.14) valid for u > κ+ 1. This is implicit in their formula (2.9) on p. 40.

In the next section we shall simplify (2.13) and (2.14) by determining a lower
bound for jκ(κ).

3. A lower bound for jκ(κ)jκ(κ)jκ(κ)

We learn from (1.2) that j1(1) = e−γ = 0.56145 . . . and from numerical computa-
tions that j1.5(1.5) = 0.55179 . . . and j2(2) = 0.54454 . . . . In fact, it was proved
in [2] that for any constant c > 0, jκ(κ+ c) decreases in κ > 1 and tends to 1/2
as κ→∞ ; also that jκ(c′κ)→ 1 as κ→∞ for any constant c′ > 1. Also, it was
shown by Wheeler ([3], [4]) that, for κ > 1,

jκ(κ) = 1/2 + 1/(9
√
πκ) + O

(
κ−3/2).

Here we show by a Laplace inversion method that

Proposition 1. For κ > 1 ,
jκ(κ) > 1/2.

Proof. Since 1 − jκ(u) vanishes rapidly at infinity, it has a Laplace transform
whose integral converges for Res > 0. By a calculation analogous to that which
identified r(u) as a Laplace transform, we have

∫ ∞
0

e−su(1− jκ(u))du =
1
s

(1− exp(−κ Ein s)), <s > 0.

It follows by Fourier inversion (Laplace inversion on the imaginary axis) that, for
u > 0,

1− jκ(u) = lim
T→∞

1
2π

∫ T

−T
eiuy{1− exp(−κ Ein iy)}dy

iy
.

Since j is real valued, we have at u = κ

1− jκ(κ) = <
{ 1

2πi

∫ ∞
−∞

eiκy(1− exp{−κEin (iy)})dy
y

}

=
1
π

∫ ∞
0

sinκy
dy

y
−<

{ 1
2πi

∫ ∞
−∞

e−κ( Ein (iy)−iy) dy

y

}
.

The first expression on the right is well known to be equal to 1/2. In the second
expression,

Ein (iy)− iy =
∫ y

0

1− cos t
t

dt+ i

∫ y

0

sin t− t
t

dt

= C(y) + iS(y),
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say, where C(y) is an even function of y and S(y) an odd function. Hence

jκ(κ)− 1
2

=
1
π

∫ ∞
0

e−κC(y) sin(−κS(y))
dy

y
. (3.1)

We complete the proof by showing that the integral on the right is positive.
Since

sin(−κS(y)) =
(
κ

sin y − y
y

)−1 d

dy
cos(−κS(y)),

the integral equals, after integrating by parts,

1
κ

{ e−κC(y)

y − sin y
(1− cos{κS(y)})

}∣∣∣∣
∞

0
− 1
κ

∫ ∞
0

(1− cos{κS(y)}) d
dy

( e−κC(y)

y − sin y

)
dy .

The integrated term vanishes at infinity since C(y) ∼ log y as y → ∞ , and it
vanishes also at 0 since

1− cos(κS(y)) ∼ 1
2!

(κS(y))2 ∼ κ2

648
y6 as y → 0

whereas
y − sin y ∼ 1

6
y3 as y → 0 .

As for the integral, we observe that each of e−κC(y) and (y − sin y)−1 is positive
and decreasing as y increases, so that

− d

dy

( e−κC(y)

y − sin y

)
> 0.

Since 1 − cos(κS(y)) > 0, this completes the proof that the integral on the right
side of (3.1) is positive.

The estimate of the Proposition appears to be quite sharp: it is likely, on
the basis of the two asymptotic estimates of Wheeler that we have cited, that
jκ(κ− 1) < 1/2. However, we have not investigated this question.

The Proposition allows us to derive from (2.13) and (2.14)

Theorem 1. For u > κ

jκ(u) > 1− 1
2

(u(u+ 1)
κ(κ+ 1)

)κ
exp(2κ− 2u), (3.2)

and for any positive integer n ,

jκ(n+ κ) > 1− 1
2

(
1− κ

2κ+ 2

)
Γ(
κ

2
)
(

1 +
κ

2n+ 2 + κ

) (κ/2)n+1

Γ(n+ 1 + κ/2)

> 1− Γ(κ/2) (κ/2)n+1

2 Γ(n+ 1 + κ/2)
. (3.3)
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Corollary 1. Let c > 1 be a constant. Then jκ(cκ)→ 1 from below as κ→∞ .

Proof. Let c = 1 + δ, δ > 0. By (3.2)

1 > jκ(cκ) > 1− 1
2

(1 + δ)2κ exp(−2κδ) = 1− 1
2

(1 + δ

eδ

)2κ
→ 1

as κ→∞ .

The theorem is most effective when u is large. As an illustration of its use,
we have σκ(3.5κ) = jκ(1.75κ) > 0.99995 for κ > 25. In an earlier paper, we had
been able to show only that σκ(3.5κ) > 0.99994 when κ > 200.

The following examples illustrate the accuracy – and the limitations – of
formulas (3.2) and (3.3) for κ and u of modest size. For κ = 2 and u = 6 we have

1− j2(6) < 0.00821 . . . (using (3.2))

< 0.00324 . . . (using (3.3) – first form)

= 0.000908 . . . (calculation)

We had remarked earlier that the differential inequality for j gave poorer
estimates than did the recurrence. We note in conclusion that estimates of j′(u)
as u→∞ of the quality of (3.3) are easy to achieve. By (1.3)

uj′(u) = κ(1− j(u− 1))− κ(1− j(u))

< κ(1− j(u− 1)), u > 1.

In light of (2.12), little has been lost by omitting the term involving 1−j(u) when
u is large. Thus when n > 1, we have

j′κ(n+ 1 + κ) <
κ

n+ 1 + κ
(1− jκ(n+ κ)),

and we may apply (3.3) to estimate the last factor.

Added in proof. At the end of Section 2, we observed that the asymptotic es-
timate (2.14) for 1 − j(u) produced by using the differential equation was worse
than that found by using the recursion (2.13). We have now obtained an estimate
for 1 − j(u) having the size predicted by the recursion. The method is based on
establishing a monotonicity of j′′/j′ . The details will be given in our forthcoming
monograph on sieves.

References

[1] N.C. Ankeny and H. Onishi, The general sieve, Acta Arith. X (1964), 31–62.
[2] F. Grupp and H.-E. Richert, Notes on functions connected with sieve, Ana-

lysis 8 (1988), 1–23.



Some properties of the Ankeny-Onishi function 107

[3] Ferrell S. Wheeler, On two differential-difference equations arising in analytic
number theory, Ph.D. thesis, University of Illinois, Urbana, 1988.

[4] Ferrell S. Wheeler, On two differential-difference equations arising in number
theory, Trans. A.M. S. 318 (1990), 491–521.

Address: Dept. of Math., Univ. of Illinois, 1409 W. Green St., Urbana IL 61801 USA
E-mail: diamond@math.uiuc.edu; heini@math.uiuc.edu
Received: 17 November 2006; revised: 3 February 2007


