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Abstract: For d<n!/8~¢ we determine in a large range of integers Ni,...,N; the asymptotic
number of partitions of n with exactly N, parts congruent to r modulo d for 1<r<d. In the
second part of the paper we derive many results on the distributions of the parts in residue
classes. In particular we obtain for 1<a<b<d<n!/8~¢ an asymptotic formula for the number of
partitions of n in which there are more parts =a(modd) than parts =b(modd).
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1. Introduction

Recently Andrds Sarkozy and the authors [3] proved that for almost all partitions
of an integer n, the parts are well distributed in arithmetic progressions modulo
d for d < n'/?=¢. This range for d is large if we compare it with the largest
parts of almost all partitions. Indeed, Erdés and Lehner [6] proved in 1941 that
for almost all partitions of n (with at most o(p(n)) exceptions) the biggest part is
(140(1)) @ log n. However this well distribution is limited by some phenomenon
of preponderance of parts with small module. For example, it is well known that
for almost all partitions the number of parts equal to 1 is ~ /n (see [11]).

In order to some applications, the aim of this paper is to study precisely
the distribution of the parts congruent to j modulo d. Let d > 2 and R =
{Ny,...,Ng} aset of some positive integers.

We denote by IIz(n,R) the number of partitions of n with exactly N, parts
congruent to r mod d for 1 <r <d.
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We immediately remark that IIz(n,R) > 1 if and only if n = R (modd)
with

d
R:=> rN,. (1.1)
r=1

It is the reason why we will compute IIz(n + R,R) for n = 0(modd). In the

following result we give an asymptotic formula for II;(n + R,R) in a large range
of N17...,Nd.

Theorem 1.1. Let 0 < ¢ < 1072, There exists ng such that for n > ng, d <
ns~¢, djn and

3 Vv o6n ns
° logn <N, < — (1<r<d 1.2
(1 +€) g logm g (sr<d (1.2)
we have
2+d 1 da—1

d (1.3)
xexp(—(iinr_l xp (— df/vg))

The condition d < n¥~¢ is a consequence of the use of saddle point method.
This condition is probably not optimal. It is clear that we must have d < y/nlogn
but perhaps another approach could give some significative result in some part of
the range [ns <, n2 <.

The error term (o(1)) in (1.3) depends mainly on the computation of the
term S; (see paragraphs 4 and 5). We could replace it by O(n=¢/6). In fact if
we take a smaller range for Nip,..., Ny than the one given in (1.2), then we can
obtain a more precise error term in (1.3).

The first part of the paper (the paragraphs 2,3,4,5,6,7) is devoted to the
proof of this theorem by the saddle point method.

In the second part of the paper we derive many results on the distributions
of the parts in residue classes. Some of these results solve problems posed in [1],
[2] and [4].

We first obtain a statistical result on the size of all N, for 1 <r <d.

Corollary 1.2. For 0<e<1072, n>ny(¢), and d<ns~¢, in almost all partitions

of n the number of summands = r (modd) are between [(2 +¢) 2‘7{52 vnlogn|d

and L\/izz/sjd — 1 simultaneously for r =1,...,d.

It should be noted that, for d = o(log®n), Corollary 1.2 is implied by the
Theorem 1 and Corollary 2 of the article of Andréds Sarkézy with the two authors
[3]. Next we will state a corollary which shows that for almost all partitions, two
given residue classes doesn’t contain the same number of summands.
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Corollary 1.3. For 0 < ¢ < 1072, n > n3(e), d < ns—¢,and 1 <a<b<d,
the number of partitions of n with the same number of summands in the residue
classes a and b (mod d) is o(p(n)).

In [1] and [2] Dartyge and Sarkézy proved that for a positive proportion
of partitions some residue classes are much more represented than others. For
a given partition II of n and for any 1 < j < d, we denote by N; = N,(II)
the number of parts congruent to j modulo d. Dartyge and Sarkozy [2] showed
that, for d fixed, n large enough (n > ni(d)) and any 1 < a < b < d, the
inequality N, — N, > (a+blvin o satisfied for at least p(n)/12 partitions of n. In
the introduction of [1] and in the end of [4] it is conjectured that for 1 <a <b < d
there exists C = C(a,b,d) > 1/2 such that N, > N, for at least Cp(n) partitions
of n.

In the following theorem we prove this conjecture. In fact, we obtain an
asymptotic estimation of the number of such partitions.

Theorem 1.4. For any 0 < e < 1072, n > ny(e), d < ns=¢ and 1<a<b< d,
we have the three following properties.

(i) The number of partitions of n in which there are more parts = a (mod d)
than parts = b(modd) is

1+ 0(1))p(n)r(g)1r(g) /Ooo xd'—le—f(/:o yi eV dy) dz.  (1.4)

(ii) The number of partitions of n in which there are at least as many parts
= a(modd) as parts = b(modd) is

(1+ 0(1))1)(“)1"(3)11@ /000 xg_le_g"(/:o y%_le_y dy) dz. (1.5)

(iil) For fixed d, 1 < a < b < d, and large enough n , the number of partitions
of n in which there are more parts = a (modd) than parts = b(modd) is

> p(n)(% + blgda) > p(n)(% + ﬁ) (1.6)

On the other hand, this number is less than

p(n)274(1+ o(1)). (1.7)

When b = d in the above theorem, it is possible to compute the integrals
in (1.4) or in (1.5). We obtain that for 1 < a < d, the number of partitions of n
such that N, > Ny (or such that N, > Ng) is (1 + o(1))2~%%p(n).

In [2], Dartyge and Sérkozy proved by combinatorics arguments that for
at least p(n)/d partitions of n, we have Ny > N; for any 2 < j < d. In [4],
it is conjectured that there are at least (4 + ¢)p(n) such partitions for some
¢ = ¢(d) > 0. We state this for fixed d in the following theorem.
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Theorem 1.5. For fixed d > 2 and 1 < a < d, the three following assertions are
satisfied.

(i) The number of partitions of n in which there are more parts = a (mod d)
than parts = b(modd) for all be {1,---,d}\ {a} is

1 ® ge1- s
(1+0(1))p(”)w/0 g/ yilte dy)d

(ii) The number of partitions of n in which there are at least as many parts
= a(modd) as parts = b(modd) for all b€ {1,---,d} \ {a} is

S d o0

(iii) For n large enough, the number of partitions of n in which there are
more parts = 1 (modd) than parts = b(modd) for all b € {2,...,d} is

9005+ 11q (1= 7))

In [2], Dartyge and Sérkozy proved that for at least p(n) (14+0(dld*/\/n)) w
have Ny > Ny > --- > Ny. In [4] we conjectured that this hOldb in fact for at leabt
Cp(n) partitions with C' > 1/d!. In the following result we solve this conjecture
for fixed d.

Theorem 1.6. For fixed d > 2, the number of partitions of n in which there are
more parts = a (modd) than parts = b(modd) for any 1 <a<b<d is

( o(1))p
el 0

For n large enough this is

-1

[§]
|
—_

-1

=l

d
a7 e @ttt qu L dyy.

We won’t give the details of the proof of this theorem because it is an adap-
tation of the proof of Theorem 1.5. In fact, the proof of Theorem 1.5 may be also
adapted easily to obtain the more general result:
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Theorem 1.7. For fixed d > 2 and any permutation o on the set {1,...,d},
the number of partitions of n in which there are more parts = o(a) (modd) than
parts = o(b) (modd) for any 1 <a<b<dis

(L o) [t s [0
r(3)r(s) - r(dpe . =
X gd) d
/ x,? le—2a H dz,.
Td—1 r=1

With much more computations some results could be more precise. Some
estimations are obtained only for d fixed mainly because in some steps we apply
many times Corollary 1.3. It is probably possible to improve this corollary by a
more direct use of the saddle point method.

2. A lemma on some generating function

In order to use the saddle point method we define the generating function:

G(z) = Z I4(n, R)z".

n=0
n=R (mod d)
We will prove that this function is a finite product.
Lemma 2.1. For z € C and |z| < 1, we have

Z1N1+---+de

1 TI (1= 2id)

G(z) =

We will give two proofs of this result. The first one uses a multi-variable
generating function and a formula of Euler, the second is more combinatoric.

First proof of Lemma 2.1. According to Euler’s theorem, for |¢| < 1 and
lg] < 1, we have

[e%e} i - .
X agume oo Ui (2.1)

for example, see [10] Theorem 349 p. 280.
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For z,w, € C,|z| <1, and |w,| < |2|7", (1 <7 < d) we have

I
—=
—#
—
+
g
N
!
+
=
A
+
S
SN
N
[\
=
+
o
&
+

(2.2)

N1 Ng
1 ...wd R

I
M8
M8
/N
M*
=
E
o
=
=
—
X
N—
g

where * indicates that the sum is over the n € N such that n = R (modd).
On the other hand, for 1 < r < d, we write w,2z"tF 4 = (w,2")(24)* and

we apply (2.1) with t = w,.2", ¢ = z%:

d oo 1
HHW

r=1k,.=0
_ e (UJTZT)NT
= rl;[l (1 + ]\;1 (1— 24)(1— 224) .- (1 — ZN,.d))

d ')
My ™

N, .
r=1 N,=0 Hj:rl(l —2/9)

o0 o0 ( N1+ +dNg

. o :
nzo wNa=o ML= T2 (= ZId)

Ny Ng
)wl ...wd .

We finish the proof by comparing the coefficient of w{" - --w" in (2.2) and (2.3).

Second proof of Lemma 2.1. Let IT be a partition of n counted in IIz(n,R).
This partition is of the form:

Min=>Y "> (r+\;d),
with

Thus we have

d N,
n=R+dY m, withm, =Y X\ ; (1<r<d).

r=1 j=1
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For each 1 <7 <d, Ar1,..., A N, is a partition of m, in at most N, parts. Let
PN, (m,) denote the number of such partitions. We have

G(2) =2 3 S o (ma) e (mg)2d0m )

where we have used the formula for |z| <1

- n __ 1
2 Pl =

Jj=1

3. The saddle point method

For v € C, |v| < 1, it follows from Lemma 2.1 that

e d N,
> Ta(dm + R, R)o*™ = T [ - o)~
m=0 r=1j=1

For d|n, and some 0 < g < 1, we obtain by the Cauchy formula that

2

d N
1 - .
My(n+ R,R) = —/ vl I I | I(l —IH = du.
lvl=e

r=1j=1

Let >0, p=e7", =2+ 1y, v=e"?. Then we have:

d N,
1 (" 1 1
I R)=— iy)) d
ot 1. =g | A ey ) ottt )
d w/d

d N, 1
- U —sgrag gy et )

271' 77r/d el

since the integrand is periodic in y and has period 27/d. For Rw > 0, we set

oo

fw) =[]~ exp(=vw) ™

v=1
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and
k [e%s)
gr(w) = [J (@ = exp(—vw)) ™" = f(w) J] (1 - exp(—vw))
v=1 v=k+1
With this notation,
d [
Ha(n+R.R) = o /_ﬂ/d { TZIQN,,,(d(-T + z’y))} exp(n(z +1iy)) dy.

For e >0,0<e<1072, d< ns—¢ and n > ng, we consider the interval

3 V6 n?
1= I’n,d,s = [(Z + E)ﬁ\/ﬁlogn, 7:| .

We will estimate II;(n + R,R) for Ny,...,N4 € I and d|n. Choosing = = zg =
\/%, Y1 =n"it5, yy =n"8T5 and y3 = 7xo, we write Ily(n + R, R) as

d

| AT B
2 Ulyicon Jui<lul<ue Juoslyl<us  Jys<lyl<nsd (3.1)
=51+ S+ S35+ 94.

Theorem 1.1 will be derived by the following lemma:
Lemma 3.1. Under the hypotheses of Theorem 1.1, we have

d—1 d
S1=(01+ 0(1))p(n)d# (%) * exp ( - d—io Zexp(—dero)); (3.2)

In the next paragraph we state some estimates of g and in the paragraphs
5, 6, and 7 we prove (3.2), (3.3) respectively.

4. The function gi

By elementary arguments we will prove the following lemma which compares g
with f.

Lemma 4.1. (i) For k € I and |y| < 7n/d we have

exp(—dk(zo + 1y)) }
d(zo + iy)

X exp {O(exp(—dkmo)) + O(\/Zexp(—2dk:xo)) },

gu(d(wo + iy)) = f(d(o +iy))exp { -
(4.1)
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and
e+ i) = Fldmn + i) exp ( — 20 (12)
X exp {O(l) exp(—dkxo)(vnkly| + 1+ ? exp(—dkxo))}.

(ii) For k € I and |y| < y1 we have

(o +i9) = fldwo + i) exp (LY o (0(" 2 ey
= (Lt ofd ™)) f(d(o + iy)) exp dixo exp(~dhz) ). (4.3)

Proof. Consider gy(dz) for k€ I and |y| < n/d.If v > k+1 then

_3_
8

[SI[L)

| exp(—vd(xo + iy))| = exp(—vdzy) < exp(—kdzy) < n

Therefore (here log denotes the principal determination of logarithm defined on

C\R™),
gr(d(zo + 1y))

= fld(wo+iy))exp{ Y log(1 - exp(-vd(wo +iy)))}
v=k+1

= f(d(zo + iy)) exp{ - Z (exp(—vd(zo + iy)) + O(exp(fQdeo)))}
v=k+1

_exp(—dk(zo +1y)) ( exp(—2dkxg) )}
exp(d(zo +1iy)) — 1 exp(2dzg) —1/J°

= f(d(o + i) exp {

Here, |d(zo + iy)| < dzo + 7 < 6. Thus

1 1
- = — +
exp(d(zg +iy)) —1  d(xo + iy)

This yields that

gk (d(wo +iy)) = f(d(zo + iy))

exp(—dk(xg + 1 n
X exp{ _ p(d(x0(+0i;; Y)) + O(exp(—dkzxg)) + O(% exp(—2dkxo)) },

this ends the proof of (4.1).
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To prove (4.2) we remark that

exp(—dk(zo + iy))  exp(—dkxo)
d(zg + 1y) a dzg ‘
exp(—dkxo) |exp(—dkiy) — 1 —iyzy !
B d o + iy ’
o &xp(=dkzo) (dkly| + |ylzy )

~X

d i)
= O(V/nkly| exp(—dkz)),

since x5! = O(dk). Tt remains to insert (4.4) in (4.1) to obtain (4.2).
Now we prove (4.3). For k € I and |y| < w1

= n~1% the different factors
in the error term of (4.2) become:

5/8 4 . sie
Vitklyl 4 14+ Y exp(—dhag) < virmn=35 4 4LV s o)
d d i a q
and .
,J’_E _ e 1
g exp(dke) < T = o) (4.5)

Consequently, for k € I and |y| < y1,

Xp(—arT nits
gr(d(wo + iy)) = f(d(wo + iy)) eXP{ - p(d::(l)k o) O(

_ -1 , _exp(—dkxo)
= (14 o(d ™) fdlwo +iy)) exp { ~ T =0,
this ends the proof of (4.3).

5. The main term S;

By (3.1) and Lemma 4.1 we have

v 4
Si=o [ {Tow o +is) fexptntao + i) ay

—iex (—1zd:ex (—de))
_27T p deT:1 p L0

Y1 % d
x| fA(d(zo + iy)) exp {n(xo +iy) + O(n ; Z exp(—dNTmo)) } dy

=1

wlm

d
= dexp ( - dTlcO Zexp(—dNTx0)>
r=1

<o [ 1 i) exp (o + i) + O(n4) dy.
—yn
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Next we use the well-known formula (see for example [7] or [8])

2

f(w) =exp (gTu + %log % + O(|w|))

for w— 0 in |argw| < kK < 7/2 and Rw > 0.
For |y| < y3 = mxo,

72 1 d(xo + 1y)
3 = — —1 —
FldGeo +i9)) = exp (s + 5 log (S5 =) + Olda)),
2 .
o 2 dwetiy),
F(do +i9) = exp (G o+ G log (TG ) + O(da0) )
_ ) g d—1 To + 1y 9
—f(:z:0+zy)exp(2logd+ 5 log o +0(d xo)).
For |y| <y, =n~ 85,
. . d d—1 x ly]
d _ @ 20 91
fUd(zo +iy)) = f(xo + iy) exp (2 logd + 5 log 5+ O(d)(x0 + da:o)>
d_1 1, ¢
= flxo + iy)dd/Q(g—O)T exp(O(dn~=+5)). (5.1)
™

Finally by (5.1) and (4.5),
a (T % 1 d
_ Ji+g (20 _ _
Sy =d "2 (27r> exp ( e ;exp( dero)>

{om [ s+ i) expaan + i) ay

Y1

+0(1) [ 1o + i) expiontan + i) ay

—Y1

For |y| < w1, - - - as it is well known - - -

f(zo +1iy) exp(n(zo + 1y))

w2 1 To + 1Y
= 71
xp (6(m0 o T2l (T

_ m? Wy ui

) + o(1) + nazo + my)

1 To Y1 .
+5log (%) + O(z—o) +0(1) + nzo + zny)
2 2,2 1

T L log (x—) +o(1) + nxo)

o o 0
_eXp(Gxo 6z3 2 °\2x

= (14 o(1))[f (zo + iy) exp(n(zo + iy))|,
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and
1 Y1

| f(xo +iy) exp(n(xo + iy)) dy = (1 — o(1))p(n).

This ends the proof of (3.2).

6. The term Ss

We write

Y2 —Y1
Sy = / +/ =55 +5;.
Y1 —Y2

Thus we have
N d Y2 d 3 .
Sy = - /y1 { EgNr(d(l‘o + zy))} exp(n(zo + iy)) dy.

From Lemma 4.1 we have for k € I and |y| < 7/d

exp(—dk(zo + 1y))
d(xo + iy)

lge(d(@o + iy))| = | F(d(wo + iy)) | exp { =R

+ O(exp((—dkxo)) + O(% exp(—2dkxo)) }

If kel and yy <y<ys=n 5 then

|gr(d(z0 + iy))| (6.1)
_ exp(—dkao) %exp(—dkiy)
dJ?Q 1+ i%

+0(n~+

oo
|
wlo
_|_
.
—~
S8
~—
—

dfﬂo 0

= (o + i)l e { — ZEED (contaey) + 000 +49)) +o(a ™))
_ oxp(“dhao) (1 - 2sin (%)) +o(d ™M)},

{

= |G + i) exp { — P iy axp ki) 1+ 0(22))) + ol )}
{

{ dxg

= [f(d(wo + iy))| exp

If £ < %\/ﬁlogn then

NG

exp(—dkao) ) = O(~-)(dkys)? exp(—dkzo)

dky
2sin? (—=

NG

&‘§ a

=0 5 = o(dY).

)n_%_% (log® n)n~
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Ifk> %logn then

MZ sin? (@) = O(@) exp(—dkzg) = O(\/ﬁ)n_1 =o(d™'). (6.3)
do 2 d d
By (6.1), (6.2), (6.3), and (5.1) we have
d
d exp(—dN,xzg)\ [¥2 )
Tl < _ Py s d
1< o (=30 ) [ U1t + iesatnro + ot ay
d
B exp(—dN,xg) 4 T\ o5t y2 .
= O(d) exp ( - ; B — )d (277) /yl |f(zo + iy)| exp(nxo) dy.
Here the usual estimation:
2
. 7r
| (20 + iy)| = exp {mm +O(logn) }
2 xd
< _— .
< exp { 670 2+ 12 + O(log n)}

yields that S5 = 0(S;) and the same goes for S .

7. The terms S3 and Sy

Like in the previous paragraph we write

S = / +/ =S5+ 55
Y2<Y<Ys —Ys<YS—Y2

and in the same way we write S; = S} + S, . Similarly, for y» < |y| < y3 = 70,

d—1

(Ao + i) = |f(@o + iy)ld? (32) F exp(O(dlogn))

and

gn(d(ao + )| = |F(d(wo + i) exp { - RELEACLWD o1y

d(zo +1iy)
< (o + i)l { + ZLEI) 4 o))
<1t + i)l exp { - CELIE 4 o102y
yield that |S3| = o(S7) since
LQ. 5 ﬁ( _yi)<L2_ni,
620 2% +y3 670 2237 60
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Finally, for y3 < |y| < 7/d, we obtain again that

1
ns—

exp(—dkx 5
p( 0)+O( y )}

lgx(d(o +in)] < F(dlao + i) exp { — =22

Since

f(w) = exp ( Z m(exp(;bw) - 1)>

m=1
for w > 0, we have

oo

R o O ——

ev — mlemv — 1|

m=2

< (;jLL(LZ_l))
S P lew — 1] Rw* 6

1 1,72
S exp (%|Imw| + %(F B 1)>
if Imw| < 7. Thus

T 1 72
F(dGeo + i)l < b (g0 + o (g = 1))

4 , 7 1,7 ) w2 1
d < T (22 1) Cexp (=— — —).

4o i)l < exp (50 + - (g = 1)) < e (G = 50)

Observing that
d (/2T dz;l
d—z (—) = exp(O(dlogn))
o

we see that Sy = 0(S1), this ends the proof of Lemma 3.1 and Theorem 1.1 is
proved.

8. When n = R(modd)

We are going to apply Theorem 1.1 for n — R instead of n when n = R (modd).
In this section we will derive from Theorem 1.1 the following result:

Corollary 8.1. For 0 <e <1072, n>ny, d < (n — n3/4)%_5, n = R(modd),
and

3 Von V6 nS/®
2 X logn <N, < ~—— (r=1,...,d 1
<4 +e) omd 2" T od ) (81)

we have

My(n, R) = (1+0(1))p(n)d*z" (L) T {_ﬁ_@ Z_: o (_ dN,.?T) }
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Proof. Under the hypotheses of Corollary 8.1, we have

thus n — R > n —n3/4, @715/8 < (n—R)"?®, and

n—R=n(l+ O(n_1/4)) = nexp(O(n_1/4))
Vn = R = ynexp(O(n~ %)) = n+ O(n'/%)

\/n%iR = % exp(O(n~ /%)) = % +0(n=3/%)
(ﬁ) == (%) 7 exp(Olan ) = (%) T (14 o1).

Next we compute the argument of the exponential in Theorem 1.1:

wd

d
(G ) S (- s

In the same way we have for 1 <r < d:

exp | — 7dNT7T =exp| — T L n=3/4
p( G(H—R)) p( dN, (\/%—'_O( )))
- nb/8
= exp ( — (i]/v(;? + O(d7n73/4))
=(1+0n %)) exp (- %).

It remains to sum this equality over 1 < r < d:

S (- ) = 000 e (<)

r=1

6(n—R)> =0 X ew (- Von

79



80  Cécile Dartyge & Mihély Szalay

We apply Theorem 1.1:

g(n,R) (8.2)
d

= (1+o0(1))p(n — R)d*** (J@)Texp (- %Ze}(p (- d\]/\/'%r».

r=1

From the asymptotic formula

B 1 2my/n
p(n) = (1+0(1)) ﬁexp( x )

of Hardy and Ramanujan [9] we obtain for 1 <t < n%_e, that

(

(1+o(1))exp(E)QXP(\Q/%(\/E_,_i/mQ\t/ﬁ))
( m) p( 2t n—+n—t )
(

6n V6 2yn(yR+a—t)
= (14 o(1)) exp _Lgn) exp (0(Pn~3/2)) = (1+o(1))eXp(_%).

The equalities (8.3) and (8.2) give Corollary 8.1.

9. Local stability of IIa(n,R)

The next corollary says that if we take two sets R = {Ny,..., Ny} C Z? verifying
(8.1) and R* = {Ny,...,N;} C R? such that the N; are near the N, on average,
then in the estimation of IIz(n,R) we may replace the N, by the N in cost of
an admissible error term. This will be very useful for the proofs of the different
results announced in the introduction.

Corollary 9.1. For 0 <e <1072, n>ny, d < (n — n3/4)%_5, n = R(modd),
and two sets R = {Ny,...,Nq} C Z%, R* = {Ny,...,N;} C R? such that:

(i) R satisfies (8.1);

(ii) R and R* verify

d
S IN, - Ny < d?, (9.1)
r=1
we have
2 1 =t TR* /6n d dN}m
Ma(n,R) = (1+0(1))p(n)d "+ (—— ——— -
o %) = (LoD ™ (7)™ exp {= 7= S 5 en (-2 )}
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Proof. Let F' be the function defined by:

(9.2)

If R* satisfy (9.1), then in Corollary 8.1, F(Ny,...,N,) ~ F(Ny,...,N}) since

and
S (o (= ) - o (- 20 € 7S (— 0
X ’1—exp(— d(N:_NT)ﬂ-)‘

This ends the proof of Corollary 9.1.

10. Partitions without abnormally represented residue classes;
proof of Corollary 1.2

If we shall sum over certain choices of Ny, ..., Ny then the product in

7rN, V6n dN,m
Vo~ na o (- )

would be useful for an “independent” computation but we have the condition

d
F(Ny,...,Ng) = Hexp{ -
r=1

d
N, = n—ZrNr (mod d). (10.1)
r=2

For Nf = L%Jd (or [%]d) and N = N, (r =2,...,d), Corollary 9.1 implies

that in an asymptotic sense, we can substitute the condition (10.1) by the condition
d|Ny. Let A:=[(2 +¢)5%5 /nlogn]d and B := Yo |4,

Thus d|A, d|B, and

3 Vv on \/6n5/8
— — <A< BK .
(4 + 6) 2md ogn < wd
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In the following lines, for each A < Np,...,Ng < B, R is the associated set
R ={Ny,...,Ng} and the integer R is Zle rN,.. By Corollary 9.1,

24d 1 i
> M R) = (o(1)p(m)d™ (- =) Y F(Ni....Na).
ANy, N4<B 2v6n/ N TN<B

R=n (mod d) d| N1

Here the sum is

S = > F(dN],Ny,...,Ny)

A/d<N|<B/d
ALN,,...,Ny<B

Ni+1 pNo+1 Ng+1
= / / / F(dN], Ny, ..., Ng)dt, dty - - dt,.

A/d<N1<B/d
ALNa,...,.Ny<B

Next we apply Corollary 9.1

Ni+1 Nao+1 Ng+1
S = / / / (1+o0(1)F(dt), ta, ... tg)dt) - dtg,

A/d<N1<B/d
ALN,,...,Ny<B

since (dt) —dN{)+ (ta— No) + -+ (ta — Ng) <d+d—1 < d>.
By dt} =t,, it is

S = 1+0 / / / Ft1,..., dtl dd
1 mrt Von dtm
= (1+0(1)= e vn — L) at.
(1+0of ))drl:ll/A exp ( Jon  nd exp ( @))
We set t = uv/6n/mwd in the integral:

o4 pBmapen
S:(1+o(1))$(—ﬁ) / o~ % o= TR gy,

o
)
3

1/ And//6n
Next we write x = —ﬁe’“
6n Amnd
PN D LA G I
S=(1 —i—o(l))f(—) = / 2ile" dy
d 7Td 7];[1 \/”Gdn exp (_ Bg:)
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We shall estimate the complementary integrals:

/F o (252
0

xd te™® dg.

exp(—n'/8+0(1))Ven/(nd)
zd te T dy = /

0

NG exp(—n%) d T
< / ritdr = 7(@6}{10(_”1/8))4
O d

r
d logn - d nt/®
< ey - < et
d nt T nt
<2 ~ Dy o L L
<dow (- ) =0w()en-3)
1 r
=o()r(3):
by )
1 = e/ 1
F —
() e H 14+ 27 geve’

where v is the Euler constant.
For the other side, we have:

o) ) oo .
/ 2 le=% dp — / rd te % dx
LB op (,ﬁ) exp (7(%+ ) 10gﬂ+0(1)) i

since 1"(5) >1.
Finally we obtain that

a1 \T 1 V60 T
> Ma(n, R) = (14 o(1))p(n)d"=" L

AN N d” o™ (=) " 5(57)
R=n (modd

=1 . p
= (1 +o(pmVa(5-) T (1 +ol@ ) TIT(5)
1., p(d=1
- (-+oftpto L T
Vd
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11. Partitions with equilibrated residue classes: proof of Corollary 1.3

For 1 < a < b < d, we can estimate the number of partitions of n with the
property that the residue classes a and b (mod d) contain the same number of
summands. Let E(a,b) denote the set of such partitions. By Corollary 1.2, apart
from o(p(n)) partitions of n we may assume that A < Np,..., Ny < B. Thus we

have:
E(avb) = Z Hd(nva) + o(p(n))
ALNy,...,N4<B
n=R (mod d)
N,=N,

We can follow the proof of to make the INi,..., N; independent.

There is a technical difficulty when d is small (when ¢(d) < 3). We would
like to replace for some convenient j € {1,...,d} \ {a,b} the condition

jN; =n— Z r N, (mod d)
1<r<d
T#J

by d|N . But in this way, when d is small we are not sure that the correspondence
between the corresponding sets R and R* is one-to-one.

We will choose our set R* in the following way. If @ # 1 then we take
N{ = dL%J .

Ifa=1,b#d—1and d>3 thenweuse j=d—1, Nj_, =d| Y]

Ifa=1,b=d—-1 and d ¢ {2,3,4,6} weuse j =c¢, NFf = dL%J with ¢
minimal satisfying 1 <c¢<d—1 and (¢,d) =1.

If (a,b,d) = (1,5,6), we use Ny = 3[22], Nj = 2[%2] (thus in this case
we have R* = {Ny, N5, Nj, Ny, N5, Ng}).

The cases (a,b,d) € {(1,2,2),(1,2,3),(1,3,4)} are to be investigated sepa-
rately. Later we have to substitute

/ABeXp(— \/%ata — {Tid?exp(— %)) dt,

X /Bexp(— \/%btb — %exp(— (\i/t—;%)) dty

A
by
B T Vén dtm
" exp(— m(a+b)t—2ﬁexp(—\/ﬁ))dt,
moreover, F(%)F(%) by
wd [ s . rd T(<EP)

xd ey = —

Von Jo v on 2a§b

The complementary integrals change unessentially.
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Thus the final result is

wd at

olp(r)) + (1-+ o(1)pln) T2 )I‘i()b)
b d

-
!
12| —~
‘Q
>

= o(p(n)) + O(p(n)j;) = o(p(n)),

we have used the facts that T'(¢)T'(4) > 1, I'(22) <T(4) =dr (3 +1) < d.

This result is valid for (a,b,d) = (1,2, 2) too. For (a,b,d) € {(1,2,3),(1,3,4)}
we can obtain similar expressions weighted by constants depending on the residue
of n mod d: 0,0,3; 0,2,0,2.

12. Comparison between the number of summands in two residue
classes: proof of Theorem 1.4

12.1. Proof of the propositions (i) and (ii) of Theorem 1.4. In this section,
for 1 < a < b < d, we investigate the number of partitions of n in which there are
more parts = a (modd) than parts = b(modd), briefly the case N, > N,. We
shall consider the cases N, > N, resp. N, > N, together as N, > Np + A with
A=1resp. A=0.

By Corollary 1.2 the N, belong to [A4, B] for almost partitions:

S MR =opm)+ > M)

N1,...,Nq ALNy,...,Ng<B
R=n (mod d) R=n (mod d)
NoZNp+A NazNp+A

Apart from (a,b,d) € {(1,2,2),(1,2,3),(1,3,4)} - as in the proof of Corollary 1.3
— we can suppose that 1 < a and follow the proof of Corollary 1.2.
We have to substitute:

Ng+1 Np+1

> Z/ / F(.. tay. . ty,...)dta dty
A<N,<B A<Ny<B "’ Na Ny

by

Ng+1 pNp+1
Top= Y > / / Footay o ty,...) dtg dby.

A+ALSN,<B ANy <No—A Y Na Ny

We have

No+1 Ng+1—-A
Top = Z /N /A F(.. . tay. .. ty,...)dt, dty.

A+ALN,<B
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When A =1 we have the upper bound

Bt
Tmbg/ / F(oo ity by, .. .) dtg dty.
A A

If A =0, then it is a lower bound:

B ta
Ta,b>/ / F(o ity ty,...) dta dby.
A A

Taking into account Corollary 1.3, apart from o(p(n)) partitions of n, we can
compute both cases substituting [, , g [acicn PV Jacr. <5 Jaci,<t, - Later,
considering also the complementary integrals, we have to substitute

a

(1 4+ ot )P(4) (1 + ot )r(3)

[t (e (G (G)

For (a,b,d) € {(1,2,2),(1,2,3),(1,3,4)} weuse both Ni =d|%t|, Ny* = [2L]d.
Thus the final result is

> My(n,R)

Ni,...;Nq
R=n (mod d)
No=Np+A (12.1)

= o(p(n)) + 20 oy / et [Tty

r()r(s)

This ends the proofs of (i) and (ii) of Theorem 1.4.

by

12.2. Proof of the lower bound (1.6). For the special case 1 < a < b =d,
(12.1) becomes

ooy« W) [ oy op (14 o(1)p(n)
o)+ ) / () + 2
B p(n)
= (1+o0(1)) ER
since 1 < 27 < 2.
Moreover,
i} 1 zlex (log2) 1 log2.

2 2d
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For the general case 1 < a < b < d let us consider the integrals

oo
:/ zi te _x / y%_le_ydy) dx
0 T
> b o a
:/ rile _m / yﬁ_le_ydy) dx.
0 T

L -1, = / / e_"_y(xy)%_l(yb_Ta — mb_Ta) dydz > 0.
x

0

and

Therefore, I > %I‘(%)F(%) and

We can estimate
I

r(a)r(s)

. h-D

from below in the following way. For any § > 0,

L -1 > / / e_””_y(xy)%_l(yb%a —xb_Ta) dy dx
(1+6)

ot a_y( bma Y N\
//(1+5 =) (y (1+5) )dydx

87

( (1+5) T )
oo rx(1+6) 61 e b1y
:(1—(1+15)bda){11—/0 /z xd e TydT e dydx}
a © . w(1+0) .
(- g O e [ e aa)
(- () - [ et e )
) () ()
We obtain
I — I ( 1 ){1 or aTb) }
2F(g>r(g) (1+6) 4 21+“#’r(g)r<g)
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For z,y > 0,
['(z)T .
(37) (y> _ B(a:,y) :/ tx—l(l _ t)y—l dt.
Iz +y) 0
For 0 <z <y<1, weget B(z,y) > fltr_ldt: 1 and I +y) < x. Further
S W=l + M @) |
—z 1 _— __ 1
r4 < log4410g41 ~ 2elog?2”
Therefore,
5F(a7b> §e 51
b < 2a | b—a g b—a °
21+%1"<%)F(2) ol+3 425 977 4elog?2

d
Then
0 —a 1 b—a
=27 "d ex ( lo )—2_ d
= p b—a gl_O‘bTTa
—a > ]. b a\m—1 b—a
=274 exp(aJr —a™ ) 274
2" )

b—a 1 b—a b—a
<27 @ ( 1 — )72*7
exp | + ( og I~ a a) d

1 (b—a b—a
:exp(a— (log2+a—loglia) 7 ) —exp (— (log2) 7 )
which is monotonically decreasing in ”‘T“ (for a = 0.59). Therefore
4]
b—a < ea - 1
274

Finally,

(1_ 1 ){1_ 1) 1 }>ab—a1<1_eo‘—1)>ib—a
(1+0)57 /4 o5t delog2) = d 4 elog2/ ~ 12 d

We remind the reader of the fact that we considered the cases N, > N, resp.
N, > N, together. Increasing ¢, we can use d < ns—¢. Thus (1.6) is proved.

12.3. Proof of the upper bound (1.7). For 1 < a,b < d, we denote by S,
the set of the partitions of n satisfying N, > N.

As it is said in the introduction, when b = d, we can compute |Sq 4| by (1.5),
|Sa.a| = p(n)(27@ +0(1)). The upper bound (1.7) in Theorem 1.4 is a consequence
of the following lemma:
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Lemma 12.1. For 1 < a < b < d, we have |Sqp| < |Sq.qa] + o(p(n)).

Proof. For any 1 < ¢1,¢9,c3 < d, let S(c1,ca,c3) denote the set of the partitions
of n such that N., > N, > N, (here as before, N,, is the number of parts
= ¢; (mod d)).

We have the two equalities:

Sap = S(a,b,d)US(a,d,b)US(d,a,b),
and
Sa,d = S(a,b,d) U S(a,d,b) U S(b,a,d).

By Corollary 1.3, |S(c1,ca,c3) N S(cq(1), Co2)s Co(3))| = 0(p(n)) for any non
trivial permutation o on the set {1,2,3}. Thus we have:

1Sa| = 15(a,b,d)| +[S(a, d,b)| + |S(d, a,b)| + o(p(n)),
|Sa,d| = |S(aa b, d)| + ‘S(a7d, b)| + ‘S(b’aad)‘ + O(p(n))

To prove Lemma 12.1, it is sufficient to show that
15(d,a,b)] < |S(b,a, )| + o(p(n)). (12.2)

To prove this inequality, we will show that there exists an injective map ¥ defined
on S(d,a,b) such that for almost all partitions II € S(d,a,b), ¥(II) € S(b,a,d).
This map consists in exchanging the parts = b (mod d) with the parts = d (mod d)
and to put some appropriate parts to compensate the quantity (d — b)(Ng — Np)
arising from this exchange. Such sort of idea was already used in some proofs of [2].

e We suppose that a # 1. Let IT be a generic partition of n in S(d,a,b).
We write II in the following way:

d N,
Min =YY (r+\,d) with X\, >0, for 1<r<d, 1<
r=1j=1

N

Ny,

so that for 1 <r <d, r+Ai,d,...,7+ Ay, »d are the parts = r (mod d). To this
partition II we assign the following partition W(II)

d M,
U :n=Y Y (r+pjd) with pi, >0, (1<r<d, 1<) <M,),

r=1 j=1
with
N, if »¢{1,b,d}
) Ng if r=9%
MT - Nb if r=d

N1+ (d— b)(Nd —Nb) if r=1,
and the integers (i, , are defined by:

Hg,r = Ajﬂ" for r g {1’bad}a 1 < .] g Mr’
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tib = Nja (1 <J<My), pja= Ny (1<j< M),

I YRSt i Sy Y]
Fil=3 0" if Ny +1<j<M,.

We check easily that this application ¥ is injective, and that we have M, > M, >
My, O(II) € S(b,a,d).

e Case a = 1. If a = 1, the above application is not good because it may
happen that M, = My = Ny + (d — b)(Ng — Np) > My, U(II) &€ S(b,a,d).

In the case a = 1, we transform the quantity (d — b)(Ng — N;) in parts
equal to 2 and eventually add a part equal to 1. We set Z = LWJ . The
partition W(II) is defined by:

for r ¢ {1,2,b,d}, M, =N, and p;, =\, for 1<j <M,

Md = Nb and Hj.d = )\j,b for 1 < ] < Md,

Ml:{Nl if (Ng—Np)(d—b)=0(mod2)

Ny +1 if (Ng— Np)(d—b)=1(mod2)’ Hia = Aga for 1S5 <M,

and if (Ng — Np)(d —b) =1(mod?2), pin,+1,1 =0.
If b # 2, then we take

Mb = Nd and Hib = /\j,d for 1 g‘] < ]\Ib7

Aj2 i 1<j< N

M2N2+Zandﬂj72{0 i N2+1<]<M2

If b =2, then we take

Njag it 1<7< Ny
My = Ng+ Z and Hj,2:{oj i Ny +1<j< M.
In all cases we have M, > My, and M, > M,. Furthermore, we have
M; < N1 +1 < Ng+1 thus the situation M; > M, can happen only if Ny = Ny.
By Corollary 1.3, this can arrive for at most o(p(n)) partitions of n. Thus ¥(II) €
S(b,a,d) for almost all II € S(d, a,b). This ends the proof of Lemma 12.1.
Thus Theorem 1.4 is proved.

13. Dominant residue class

We investigate the number of partitions of n in which there are more parts =
a (modd) than parts = b(modd) for all b € {1,...,d} \ {a}, briefly the case
N, > Np for 1 < b<d, b# a. We shall consider the cases N, > N, (b # a) resp.
Ny = Ny (b# a) together as N, > Ny + A (b#a) with A =1 resp. A =0.
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‘We have to estimate

M, = E II4(n, R).
Ni,...,Na
R=n (mod d)
NQ>A+maXb¢a Nb

Like in the proof of Corollary 1.3 or Theorem 1.4 we apply Corollary 1.2 to
avoid the abnormally small or big N, and Corollary 9.1 to make the N, indepen-
dent.

Lemma 13.1. We have the equality:

d—1

1 =
M = o(p(n) + (1 o(1)p(m)d " (7= S F(Ni...,Na). (13.0)
2V6n/ N TN<B
d| N,
NoZzA+maxprq Ny

We use both Ni = [&t]d and Ny* = [21]d.

We first state the case a = 1, next we will quote the modifications to handle
the case a > 2.

By Corollary 9.1 and Corollary 1.2 we have

M, (13.2)

2
=o(p(n)) + (1 +o(1))p(n)d™=" ( —= > F(N{,...,Na)
(2 v 6”> ANy, N,<B
R=n (mod d)
Ni1Z>2A+maxpx1 Ny

1 ==
= olp(n)) + (1+o()p(m)d ™" (7=) T 3T F(N{".. Na),
2v6n AN, . Na<B
R=n (mod d)
N1>A+maxb¢1 Ny

‘We have

S F(NY.....Ny)
A<N,...,Ng<B
Ny En—Zfzz rN, (mod d)
NiZzA+maxagp<d No

> > F(N{,...,Nyg)
A<N1,..,Ny<B (13.3)

Ny En—Z?_z rN, (mod d)
NI >A+maxagy<a No

- S POV N

ALNY,...,Ng<B
Nf}A—‘—maXnggd Ny
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and

> F(N;*, ..., Ny)
A<N1,...,No<B
lenfzf:2 rN, (mod d)
Ni1ZA+maxagp<a No

< > F(N*, ..., Ny)

N1£n72i72 rN, (mod d)
NT*ZA-i-maXnggd Ny

E F(N{™*, ..., Ng)
ALN{",...,Na<B
N{">2A+maxagpca Ny
< E F(N{*,...,Ng) + E,

AgNl**,..A,Nd<B
N{“‘;A+max2gb<d Ny

(13.4)

N

where F is an error term collecting the (N7™*,..., Ny) with N;* = B. This term
is small enough by Corollary 1.2. Therefore

M,y = o(p(n)) + (1 + o(1))p(n)d*+* (ﬁ)* 3 F(Ny,...,Ny).
ALN1,...,Ny<B

Ni12>A4maxpx1 Ny

This proves (13.1) for a = 1. For a # 1 we replace in (13.2) the conditions
N1 > A4+maxagpga Ny by the conditions N, > A+maxy+, Ny . When we replace
in these conditions N7 by N and change < B to < B, the corresponding (13.3)
becomes an upper bound and when we replace N1 by N;*, (13.4) becomes a lower
bound. (The inequalities are permuted). This ends the proof of the lemma.

Proof of (i) and (ii) of Theorem 1.5 for a =1. It remains to compute the
summations of

Ty = > F(dN!,N,,...,Ny).

A<AN{,Na,...,.Ng<B
dN!>Ny+A
b=2,....d

We have:

Ni{+1 pNa+1 Ng+1
T, = Z / / / F(dN7, Na,...,Ng)dt| dts--- dtg.

7
A<AN! | Na,..,.No<B N1 N2 Na

dN{Z2Ny+A
b=2,...,d
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We apply one more times Corollary 9.1:

T
NlJrl No+1 NdJrl
= (1+o0(1)) / / / F(dt), ta, ... tg)dt) dta---dty
A<LdN] N2 ..... Ny,<B
dN{>Nb+A
b=2,...,d
N{+1 (dN;—A+1 dN{—A+1
:(1+0(1))Z / / / F(dt), ta, ... tq)dt) dty---dty
A+A N B N; A A
d =N d

dt} dt}
g/ (/ / F(dt), ta, - tg)dtg - dtd) dt}
4 A A

if A =1 resp.

B
d

dth—d dth—d
>/ (/ / (At o, ta) i -+ dty ) d,
A+d A
d
/B d

if A =0. Taking into account Corollary 1.3, apart from o(dp(n)) partitions of n
we can compute both cases together for fixed d as

dt dt
/ F(dt; + d, ty, - -,td)dtg---dtd) dt,

71 = ofp(n) + (1 +o(1)p()d*s* (- 7—) 7

2V/6n
/ /t1 tlFt17-"’td)dt2"'7dtd>dt1
= o(p(n)) + (1 + o(1))p(n)d*+* (ﬁ) =
B - Jen 7T
8 é/A exp(_ﬁtl_%exp(—%))
d . W Vo i
X {}_IQ/A exp(*ﬁrtfﬂ—ilexp( j%)dt}dtl

_ (L o) [* sy (T [ yi-temv
O(p(n))+r(i).«~Fp(g)/0 (1;[/ ya ! dy)d

for fixed d. This ends the proof of Theorem 1.5 (i) and (ii) in the case a = 1.
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Case a = 2. The term corresponding to T} is

T, = > F(dN!,Ny,...,Ny).

Ang{,A..,Nd<B
No>AtdN]
N,,,>A+maxb€{1ﬂ} Ny

We use the integral representation and we apply Corollary 9.1:

T, = (1+0(1))
No+1

No—A+1  pN,—A+1
/ / Fdty,....ta) ] chej]ohf’1 dt,.

A j#l,a

A+A<N <B A/d

By Corollary 1.3 we see that we can handle the cases A =0 and 1 together
and we do the same computations as in the case a = 1.

14. Some properties of truncated Gamma functions; end of the proof
of Theorem 1.5

For 1 < a < d, let us consider the integrals

/ yale™V dy) dzx.

=~
Il
S—
3
&
ale
|
B
8
/
—=

r=1
r#a
We have
d j d o,
[T0) -1 o) s
j=1 j=1 70
since
{(x1,...,2q) €[0,00[} = U {(x1,...,2q) € [0,00[%, x4, = min z;}.

1<j<d

For 1 <a<d,

Ji—J, = /000 (/moo ef‘”fy(a:y)é*l(ya;l — T )( ﬁ /:O za—le? dz) dy) dz > 0.

Therefore,
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for fixed d > 2. We can estimate

J1 1 _ Zd:2 Ji —Ja)
)+ w0
from below in the following way. For any § > 0 and 2 < a < d,
Ji—Ja
g /o (/.t(l—i-é) o) 1(3/7 (135)7)
d )
X (:E%/z zi~le dz)dy)dx

(= M) o (@) - () 1)

exp(“dllog(1+5))—1{ ) }
> - ———
(1+0)7 PP
—1(1—-9)log(1+9)
d? 1+6 '
Choosing § := 0.364 we obtain that

d

L= Sye-t_ 1l o1y
;df(;)r(2)...p(d) Z 7d3 14(d dz)

d

d d =

This ends the proof of Theorem 1.5.
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Similar arguments yield estimates for the case Ny > Ny > ... > Ny, i. e., for
the number of “d-regular” partitions of n, and more generally to obtain estimates
for Theorem 1.7.
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