
Functiones et Approximatio

XXXVII.1 (2007), 65–96

DOMINANT RESIDUE CLASSES CONCERNING
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Abstract: For d5n1/8−ε , we determine in a large range of integers N1,...,Nd the asymptotic
number of partitions of n with exactly Nr parts congruent to r modulo d for 16r6d . In the
second part of the paper we derive many results on the distributions of the parts in residue
classes. In particular we obtain for 15a<b5d5n1/8−ε , an asymptotic formula for the number of

partitions of n in which there are more parts ≡a(mod d) than parts ≡b(mod d) .
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1. Introduction

Recently András Sárközy and the authors [3] proved that for almost all partitions
of an integer n , the parts are well distributed in arithmetic progressions modulo
d for d < n1/2−ε . This range for d is large if we compare it with the largest
parts of almost all partitions. Indeed, Erdős and Lehner [6] proved in 1941 that
for almost all partitions of n (with at most o(p(n)) exceptions) the biggest part is
(1+o(1))

√
6n

2π logn . However this well distribution is limited by some phenomenon
of preponderance of parts with small module. For example, it is well known that
for almost all partitions the number of parts equal to 1 is ≈ √n (see [11]).

In order to some applications, the aim of this paper is to study precisely
the distribution of the parts congruent to j modulo d . Let d > 2 and R =
{N1, . . . , Nd} a set of some positive integers.

We denote by Πd(n,R) the number of partitions of n with exactly Nr parts
congruent to r mod d for 1 6 r 6 d .
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We immediately remark that Πd(n,R) > 1 if and only if n ≡ R (mod d)
with

R :=
d∑
r=1

rNr. (1.1)

It is the reason why we will compute Πd(n + R,R) for n ≡ 0 (mod d). In the
following result we give an asymptotic formula for Πd(n+ R,R) in a large range
of N1, . . . , Nd .

Theorem 1.1. Let 0 < ε < 10−2 . There exists n0 such that for n > n0 , d 6
n

1
8−ε , d|n and

(3
4

+ ε
)√6n

2πd
logn 6 Nr 6 n

5
8

d
(1 6 r 6 d) (1.2)

we have

Πd(n+R,R) = (1 + o(1))p(n)d
2+d

2
( 1

2
√

6n

) d−1
2

× exp
(
−
√

6n
πd

d∑
r=1

exp
(− dNrπ√

6n

))
.

(1.3)

The condition d 6 n
1
8−ε is a consequence of the use of saddle point method.

This condition is probably not optimal. It is clear that we must have d� √n logn
but perhaps another approach could give some significative result in some part of
the range [n

1
8−ε, n

1
2−ε] .

The error term (o(1)) in (1.3) depends mainly on the computation of the
term S1 (see paragraphs 4 and 5). We could replace it by O(n−ε/6). In fact if
we take a smaller range for N1, . . . , Nd than the one given in (1.2), then we can
obtain a more precise error term in (1.3).

The first part of the paper (the paragraphs 2,3,4,5,6,7) is devoted to the
proof of this theorem by the saddle point method.

In the second part of the paper we derive many results on the distributions
of the parts in residue classes. Some of these results solve problems posed in [1],
[2] and [4].

We first obtain a statistical result on the size of all Nr for 1 6 r 6 d .

Corollary 1.2. For 0<ε<10−2 , n>n2(ε) , and d6n 1
8−ε , in almost all partitions

of n the number of summands ≡ r (mod d) are between d( 3
4 + ε

) √
6

2πd2

√
n logned

and b
√

6n5/8

πd2 cd− 1 simultaneously for r = 1, . . . , d .

It should be noted that, for d = o(log2 n), Corollary 1.2 is implied by the
Theorem 1 and Corollary 2 of the article of András Sárközy with the two authors
[3]. Next we will state a corollary which shows that for almost all partitions, two
given residue classes doesn’t contain the same number of summands.
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Corollary 1.3. For 0 < ε < 10−2 , n > n3(ε) , d 6 n
1
8−ε , and 1 6 a < b 6 d ,

the number of partitions of n with the same number of summands in the residue
classes a and b (mod d) is o(p(n)) .

In [1] and [2] Dartyge and Sárközy proved that for a positive proportion
of partitions some residue classes are much more represented than others. For
a given partition Π of n and for any 1 6 j 6 d , we denote by Nj = Nj(Π)
the number of parts congruent to j modulo d . Dartyge and Sárközy [2] showed
that, for d fixed, n large enough (n > n1(d)) and any 1 6 a < b 6 d , the
inequality Na −Nb > (a+b)

√
n

50ab is satisfied for at least p(n)/12 partitions of n . In
the introduction of [1] and in the end of [4] it is conjectured that for 1 6 a < b 6 d
there exists C = C(a, b, d) > 1/2 such that Na > Nb for at least Cp(n) partitions
of n .

In the following theorem we prove this conjecture. In fact, we obtain an
asymptotic estimation of the number of such partitions.

Theorem 1.4. For any 0 < ε < 10−2 , n > n4(ε) , d 6 n
1
8−ε and 1 6 a < b 6 d ,

we have the three following properties.
(i) The number of partitions of n in which there are more parts ≡ a (mod d)

than parts ≡ b (mod d) is

(1 + o(1))p(n)
1

Γ
(
a
d

)
Γ
(
b
d

)
∫ ∞

0
x
a
d−1e−x

(∫ ∞
x

y
b
d−1e−y dy

)
dx. (1.4)

(ii) The number of partitions of n in which there are at least as many parts
≡ a (mod d) as parts ≡ b (mod d) is

(1 + o(1))p(n)
1

Γ
(
a
d

)
Γ
(
b
d

)
∫ ∞

0
x
a
d−1e−x

(∫ ∞
x

y
b
d−1e−y dy

)
dx. (1.5)

(iii) For fixed d , 1 6 a < b 6 d , and large enough n , the number of partitions
of n in which there are more parts ≡ a (mod d) than parts ≡ b (mod d) is

> p(n)
(1

2
+
b− a
12d

)
> p(n)

(1
2

+
1

12d

)
. (1.6)

On the other hand, this number is less than

p(n)2−
a
d (1 + o(1)). (1.7)

When b = d in the above theorem, it is possible to compute the integrals
in (1.4) or in (1.5). We obtain that for 1 6 a < d , the number of partitions of n
such that Na > Nd (or such that Na > Nd ) is (1 + o(1))2−a/dp(n).

In [2], Dartyge and Sárközy proved by combinatorics arguments that for
at least p(n)/d partitions of n , we have N1 > Nj for any 2 6 j 6 d . In [4],
it is conjectured that there are at least ( 1

d + c)p(n) such partitions for some
c = c(d) > 0. We state this for fixed d in the following theorem.
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Theorem 1.5. For fixed d > 2 and 1 6 a 6 d , the three following assertions are
satisfied.

(i) The number of partitions of n in which there are more parts ≡ a (mod d)
than parts ≡ b (mod d) for all b ∈ {1, · · · , d} \ {a} is

(1 + o(1))p(n)
1

Γ
(

1
d

)
· · ·Γ

(
d
d

)
∫ ∞

0
x
a
d−1e−x

( d∏
r=1
r 6=a

∫ ∞
x

y
r
d−1e−y dy

)
dx.

(ii) The number of partitions of n in which there are at least as many parts
≡ a (mod d) as parts ≡ b (mod d) for all b ∈ {1, · · · , d} \ {a} is

(1 + o(1))p(n)
1

Γ
(

1
d

)
· · ·Γ

(
d
d

)
∫ ∞

0
x
a
d−1e−x

( d∏
r=1
r 6=a

∫ ∞
x

y
r
d−1e−y dy

)
dx.

(iii) For n large enough, the number of partitions of n in which there are
more parts ≡ 1 (mod d) than parts ≡ b (mod d) for all b ∈ {2, . . . , d} is

> p(n)
(1
d

+
1

14d

(
1− 1

d

))
.

In [2], Dartyge and Sárközy proved that for at least p(n)
d! (1+O(d!d4/

√
n)) we

have N1 > N2 > · · · > Nd . In [4] we conjectured that this holds in fact for at least
Cp(n) partitions with C > 1/d! . In the following result we solve this conjecture
for fixed d .

Theorem 1.6. For fixed d > 2 , the number of partitions of n in which there are
more parts ≡ a (mod d) than parts ≡ b (mod d) for any 1 6 a < b 6 d is

(1 + o(1))p(n)

Γ
(

1
d

)
Γ
(

2
d

)
· · ·Γ

(
d
d

)

×
∫
· · ·
∫

0<x1<x2<···<xd
x

1
d−1
1 x

2
d−1
2 · · ·x

d
d−1
d e−(x1+x2+···+xd) dxd · · · dx1.

For n large enough this is

>
p(n)
d!

.

We won’t give the details of the proof of this theorem because it is an adap-
tation of the proof of Theorem 1.5. In fact, the proof of Theorem 1.5 may be also
adapted easily to obtain the more general result:
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Theorem 1.7. For fixed d > 2 and any permutation σ on the set {1, . . . , d} ,
the number of partitions of n in which there are more parts ≡ σ(a) (mod d) than
parts ≡ σ(b) (mod d) for any 1 6 a < b 6 d is

(1 + o(1))p(n)

Γ
(

1
d

)
Γ
(

2
d

)
· · ·Γ

(
d
d

)
∫ ∞

0
x
σ(1)
d −1

1 e−x1

∫ ∞
x1

x
σ(2)
d −1

2 e−x2

∫ ∞
x2

x
σ(3)
d −1

3 e−x3

· · ·
∫ ∞
xd−1

x
σ(d)
d −1

d e−xd
d∏
r=1

dxr.

With much more computations some results could be more precise. Some
estimations are obtained only for d fixed mainly because in some steps we apply
many times Corollary 1.3. It is probably possible to improve this corollary by a
more direct use of the saddle point method.

2. A lemma on some generating function

In order to use the saddle point method we define the generating function:

G(z) :=
∞∑
n=0

n≡R (mod d)

Πd(n,R)zn.

We will prove that this function is a finite product.

Lemma 2.1. For z ∈ C and |z| < 1 , we have

G(z) =
z1N1+···+dNd

∏d
r=1

∏Nr
j=1(1− zjd)

.

We will give two proofs of this result. The first one uses a multi-variable
generating function and a formula of Euler, the second is more combinatoric.

First proof of Lemma 2.1. According to Euler’s theorem, for |t| < 1 and
|q| < 1, we have

1 +
∞∑
n=1

tn

(1− q)(1− q2) · · · (1− qn)
=
∞∏
n=0

1
1− tqn , (2.1)

for example, see [10] Theorem 349 p. 280.
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For z, wr ∈ C, |z| < 1, and |wr| < |z|−r , (1 6 r 6 d) we have

d∏
r=1

∞∏

kr=0

1
1− wrzr+krd

=
d∏
r=1

∞∏

kr=0

(1 + wrz
r+krd + w2

rz
2(r+krd) + · · ·)

=
∞∑

N1=1

· · ·
∞∑

Nd=1

(∑∗

n∈N
Πd(n, {N1, . . . , Nd})zn

)
wN1

1 · · ·wNdd ,

(2.2)

where ∗ indicates that the sum is over the n ∈ N such that n ≡ R (mod d).
On the other hand, for 1 6 r 6 d , we write wrz

r+krd = (wrzr)(zd)kr and
we apply (2.1) with t = wrz

r , q = zd :

d∏
r=1

∞∏

kr=0

1
1− wrzr+krd

=
d∏
r=1

(
1 +

∞∑

Nr=1

(wrzr)Nr

(1− zd)(1− z2d) · · · (1− zNrd)
)

=
d∏
r=1

∞∑

Nr=0

wNrr zrNr∏Nr
j=1(1− zjd)

=
∞∑

N1=0

· · ·
∞∑

Nd=0

( zN1+···+dNd
∏d
r=1

∏Nr
j=1(1− zjd)

)
wN1

1 · · ·wNdd .

(2.3)

We finish the proof by comparing the coefficient of wN1
1 · · ·wNrr in (2.2) and (2.3).

Second proof of Lemma 2.1. Let Π be a partition of n counted in Πd(n,R).
This partition is of the form:

Π : n =
d∑
r=1

Nr∑

j=1

(r + λr,jd),

with
λr,1 > . . . > λr,Nr > 0 (1 6 r 6 d).

Thus we have

n = R+ d

d∑
r=1

mr, with mr =
Nr∑

j=1

λr,j (1 6 r 6 d).



Dominant residue classes concerning the summands of partitions 71

For each 1 6 r 6 d , λr,1, . . . , λr,Nr is a partition of mr in at most Nr parts. Let
pNr (mr) denote the number of such partitions. We have

G(z) = zR
∞∑
n=0

n≡R (mod d)

∑

m1+···+md=n−R
d

mj∈N

pN1(m1) · · · pNd(md)zd(m1+···+md)

= zR
d∏
r=1

( ∞∑
m=0

zdmpNr (m)
)

=
zR∏d

r=1

∏Nr
j=1(1− zdj)

,

where we have used the formula for |x| < 1

∞∑
n=0

pm(n)xn =
1∏m

j=1(1− xj) .

3. The saddle point method

For v ∈ C , |v| < 1, it follows from Lemma 2.1 that

∞∑
m=0

Πd(dm+R,R)vdm =
d∏
r=1

Nr∏

j=1

(1− vjd)−1.

For d|n , and some 0 < % < 1, we obtain by the Cauchy formula that

Πd(n+R,R) =
1

2iπ

∫

|v|=%
v−n−1

d∏
r=1

Nr∏

j=1

(1− vjd)−1 dv.

Let x > 0, % = e−x , z = x+ iy , v = e−z . Then we have:

Πd(n+R,R) =
1

2π

∫ π

−π

{ d∏
r=1

Nr∏

j=1

1
1− exp(−jd(x+ iy))

}
exp(n(x+ iy)) dy

=
d

2π

∫ π/d

−π/d

{ d∏
r=1

Nr∏

j=1

1
1− exp(−jd(x+ iy))

}
exp(n(x+ iy)) dy

since the integrand is periodic in y and has period 2π/d . For <w > 0, we set

f(w) :=
∞∏
ν=1

(1− exp(−νw))−1
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and

gk(w) :=
k∏
ν=1

(1− exp(−νw))−1 = f(w)
∞∏

ν=k+1

(1− exp(−νw)).

With this notation,

Πd(n+R,R) =
d

2π

∫ π/d

−π/d

{ d∏
r=1

gNr (d(x+ iy))
}

exp(n(x+ iy)) dy.

For ε > 0, 0 < ε < 10−2 , d 6 n
1
8−ε and n > n0 , we consider the interval

I = In,d,ε :=
[(3

4
+ ε
) √6

2πd

√
n log n,

n
5
8

d

]
.

We will estimate Πd(n + R,R) for N1, . . . , Nd ∈ I and d|n . Choosing x = x0 =
π√
6n

, y1 = n−
3
4 + ε

3 , y2 = n−
5
8 + ε

3 and y3 = πx0 , we write Πd(n+R,R) as

Πd(n+R,R) =
d

2π

{∫

|y|6y1

+
∫

y16|y|6y2

+
∫

y26|y|6y3

+
∫

y36|y|6π/d

}

= S1 + S2 + S3 + S4.

(3.1)

Theorem 1.1 will be derived by the following lemma:

Lemma 3.1. Under the hypotheses of Theorem 1.1, we have

S1 = (1 + o(1))p(n)d
2+d

2

(x0

2π

) d−1
2

exp
(
− 1
dx0

d∑
r=1

exp(−dNrx0)
)

; (3.2)

Si = o(S1) (i = 2, 3, 4). (3.3)

In the next paragraph we state some estimates of gk and in the paragraphs
5, 6, and 7 we prove (3.2), (3.3) respectively.

4. The function gkgkgk

By elementary arguments we will prove the following lemma which compares gk
with f .

Lemma 4.1. (i) For k ∈ I and |y| 6 π/d we have

gk(d(x0 + iy)) = f(d(x0 + iy)) exp
{
− exp(−dk(x0 + iy))

d(x0 + iy)

}

× exp
{
O(exp(−dkx0)) +O

(√n

d
exp(−2dkx0)

)}
,

(4.1)
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and

gk(d(x0 + iy)) = f(d(x0 + iy)) exp
(
− exp(−dkx0)

dx0

)
(4.2)

× exp
{
O(1) exp(−dkx0)(

√
nk|y|+ 1 +

√
n

d
exp(−dkx0))

}
.

(ii) For k ∈ I and |y| 6 y1 we have

gk(d(x0 + iy)) = f(d(x0 + iy)) exp
(− exp(−dkx0)

dx0

)
exp

(
O
(n 3

8 + ε
3

d
exp(−dkx0)

))

= (1 + o(d−1))f(d(x0 + iy)) exp
(
− 1
dx0

exp(−dkx0)
)
. (4.3)

Proof. Consider gk(dz) for k ∈ I and |y| 6 π/d . If ν > k + 1 then

| exp(−νd(x0 + iy))| = exp(−νdx0) < exp(−kdx0) 6 n−
3
8− ε2 .

Therefore (here log denotes the principal determination of logarithm defined on
C \ R− ),

gk(d(x0 + iy))

= f(d(x0 + iy)) exp
{ ∞∑

ν=k+1

log(1− exp(−νd(x0 + iy)))
}

= f(d(x0 + iy)) exp
{
−

∞∑

ν=k+1

(
exp(−νd(x0 + iy)) +O(exp(−2νdx0))

)}

= f(d(x0 + iy)) exp
{
− exp(−dk(x0 + iy))

exp(d(x0 + iy))− 1
+O

( exp(−2dkx0)
exp(2dx0)− 1

)}
.

Here, |d(x0 + iy)| 6 dx0 + π < 6. Thus

1
exp(d(x0 + iy))− 1

=
1

d(x0 + iy)
+O(1).

This yields that

gk(d(x0 + iy)) = f(d(x0 + iy))

× exp
{
− exp(−dk(x0 + iy))

d(x0 + iy)
+O(exp(−dkx0)) +O

(√n
d

exp(−2dkx0)
)}
,

this ends the proof of (4.1).
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To prove (4.2) we remark that
∣∣∣exp(−dk(x0 + iy))

d(x0 + iy)
− exp(−dkx0)

dx0

∣∣∣

=
exp(−dkx0)

d

∣∣∣exp(−dkiy)− 1− iyx−1
0

x0 + iy

∣∣∣

6 exp(−dkx0)
d

(dk|y|+ |y|x−1
0 )

x0

= O(
√
nk|y| exp(−dkx0)),

(4.4)

since x−1
0 = O(dk). It remains to insert (4.4) in (4.1) to obtain (4.2).

Now we prove (4.3). For k ∈ I and |y| 6 y1 = n−
3
4 +ε , the different factors

in the error term of (4.2) become:

√
nk|y|+ 1 +

√
n

d
exp(−dkx0) 6

√
n
n5/8

d
n−

3
4 + ε

3 +
d

d
+
√
n

d
n−

3
8− ε2 = O

(n 3
8 + ε

3

d

)
,

and
n

3
8 + ε

3

d
exp(−dkx0) 6 n−

ε
6

d
= o
(1
d

)
. (4.5)

Consequently, for k ∈ I and |y| 6 y1 ,

gk(d(x0 + iy)) = f(d(x0 + iy)) exp
{
− exp(−dkx0)

dx0
+O

(n 3
8 + ε

3

d
exp(−dkx0)

)}

= (1 + o(d−1))f(d(x0 + iy)) exp
{
− exp(−dkx0)

dx0

}
,

this ends the proof of (4.3).

5. The main term S1S1S1

By (3.1) and Lemma 4.1 we have

S1 =
d

2π

∫ y1

−y1

{ d∏
r=1

gNr (d(x0 + iy))
}

exp(n(x0 + iy)) dy

=
d

2π
exp

(
− 1
dx0

d∑
r=1

exp(−dNrx0)
)

×
∫ y1

−y1

fd(d(x0 + iy)) exp
{
n(x0 + iy) +O

(n 3
8 + ε

3

d

d∑
r=1

exp(−dNrx0)
)}

dy

= d exp
(
− 1
dx0

d∑
r=1

exp(−dNrx0)
)

× 1
2π

∫ y1

−y1

fd(d(x0 + iy)) exp
(
n(x0 + iy) +O(n−

ε
6 )
)

dy.
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Next we use the well-known formula (see for example [7] or [8])

f(w) = exp
( π2

6w
+

1
2

log
w

2π
+O(|w|)

)

for w → 0 in | argw| 6 κ < π/2 and <w > 0.
For |y| 6 y3 = πx0 ,

f(d(x0 + iy)) = exp
( π2

6d(x0 + iy)
+

1
2

log
(d(x0 + iy)

2π

)
+O(dx0)

)
,

fd(d(x0 + iy)) = exp
( π2

6(x0 + iy)
+
d

2
log
(d(x0 + iy)

2π

)
+O(d2x0)

)

= f(x0 + iy) exp
(d

2
log d+

d− 1
2

log
x0 + iy

2π
+O(d2x0)

)
.

For |y| 6 y2 = n−
5
8 + ε

3 ,

fd(d(x0 + iy)) = f(x0 + iy) exp
(d

2
log d+

d− 1
2

log
x0

2π
+O(d)

( |y|
x0

+ dx0
))

= f(x0 + iy)dd/2
(x0

2π

) d−1
2 exp(O(dn−

1
8 + ε

3 )). (5.1)

Finally by (5.1) and (4.5),

S1 = d1+ d
2

(x0

2π

) d−1
2

exp
(
− 1
dx0

d∑
r=1

exp(−dNrx0)
)

×
{ 1

2π

∫ y1

−y1

f(x0 + iy) exp(n(x0 + iy)) dy

+ o(1)
∫ y1

−y1

|f(x0 + iy) exp(n(x0 + iy))|dy
}
.

For |y| 6 y1 , - - - as it is well known - - -

f(x0 + iy) exp(n(x0 + iy))

= exp
( π2

6(x0 + iy)
+

1
2

log
(x0 + iy

2π

)
+ o(1) + nx0 + iny

)

= exp
( π2

6x0

(
1− iy

x0
− y2

x2
0

+O
(y3

1

x3
0

))

+
1
2

log
(x0

2π

)
+O

( y1

x0

)
+ o(1) + nx0 + iny

)

= exp
( π2

6x0
− π2y2

6x3
0

+
1
2

log
(x0

2π

)
+ o(1) + nx0

)

= (1 + o(1))|f(x0 + iy) exp(n(x0 + iy))|,
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and
1

2π

∫ y1

−y1

f(x0 + iy) exp(n(x0 + iy)) dy = (1− o(1))p(n).

This ends the proof of (3.2).

6. The term S2S2S2

We write

S2 =
∫ y2

y1

+
∫ −y1

−y2

= S+
2 + S−2 .

Thus we have

S+
2 =

d

2π

∫ y2

y1

{ d∏
r=1

gNr (d(x0 + iy))
}

exp(n(x0 + iy)) dy.

From Lemma 4.1 we have for k ∈ I and |y| 6 π/d

|gk(d(x0 + iy))| = |f(d(x0 + iy))| exp
{
−<exp(−dk(x0 + iy))

d(x0 + iy)

+O(exp((−dkx0)) +O
(√n
d

exp(−2dkx0)
)}
.

If k ∈ I and y1 6 y 6 y2 = n−
5
8 + ε

3 then

|gk(d(x0 + iy))| (6.1)

= |f(d(x0 + iy))| exp
{
− exp(−dkx0)

dx0
<exp(−dkiy)

1 + i yx0

+O(n−
3
8− ε2 ) +O

(n− 1
4−ε

d

)}

= |f(d(x0 + iy))| exp
{
− exp(−dkx0)

dx0
<( exp(−dkiy)(1 +O(

y2

x0
))
)

+ o(d−1)
}

= |f(d(x0 + iy))| exp
{
− exp(−dkx0)

dx0

(
cos(dky) +O(n−

1
8 + ε

3 )
)

+ o(d−1)
}

= |f(d(x0 + iy))| exp
{
− exp(−dkx0)

dx0

(
1− 2 sin2 (dky

2

))
+ o(d−1)

}
.

If k 6
√

6
πd

√
n logn then

exp(−dkx0)
dx0

2 sin2 (dky
2

)
= O

(√n
d

)
(dky2)2 exp(−dkx0)

= O
(√n
d

)
n−

3
8− ε2 (log2 n)n−

1
4 + 2ε

3 = o(d−1).

(6.2)
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If k >
√

6n
πd log n then

exp(−dkx0)
dx0

2 sin2 (dky
2

)
= O

(√n
d

)
exp(−dkx0) = O

(√n
d

)
n−1 = o(d−1). (6.3)

By (6.1), (6.2), (6.3), and (5.1) we have

|S+
2 | 6

d

2π
exp

(
−

d∑
r=1

exp(−dNrx0)
dx0

)∫ y2

y1

|fd(d(x0 + iy))| exp(nx0 + o(1)) dy

= O(d) exp
(
−

d∑
r=1

exp(−dNrx0)
dx0

)
d
d
2
(x0

2π

) d−1
2

∫ y2

y1

|f(x0 + iy)| exp(nx0) dy.

Here the usual estimation:

|f(x0 + iy)| = exp
{
< π2

6(x0 + iy)
+O(log n)

}

6 exp
{ π2

6x0
.

x2
0

x2
0 + y2

1
+O(log n)

}

yields that S+
2 = o(S1) and the same goes for S−2 .

7. The terms S3S3S3 and S4S4S4

Like in the previous paragraph we write

S3 =
∫

y26y6y3

+
∫

−y36y6−y2

= S+
3 + S−3

and in the same way we write S4 = S+
4 + S−4 . Similarly, for y2 6 |y| 6 y3 = πx0 ,

|fd(d(x0 + iy)) = |f(x0 + iy)|d d2 (x0

2π

) d−1
2 exp(O(d log n))

and

|gk(d(x0 + iy))| = |f(d(x0 + iy))| exp
{
−<exp(−dk(x0 + iy))

d(x0 + iy)
+ o(d−1)

}

6 |f(d(x0 + iy))| exp
{

+
exp(−dkx0)

dx0
+ o(d−1)

}

6 |f(d(x0 + iy))| exp
{
− exp(−dkx0)

dx0
+O

(n 1
8− ε2
d

)}

yield that |S3| = o(S1) since

π2

6x0
.

x2
0

x2
0 + y2

2
6 π2

6x0

(
1− y2

2

2x2
0

)
6 π2

6x0
− n 1

4 .
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Finally, for y3 6 |y| 6 π/d , we obtain again that

|gk(d(x0 + iy))| 6 |f(d(x0 + iy))| exp
{
− exp(−dkx0)

dx0
+O

(n 1
8− ε2
d

)}
.

Since

f(w) = exp
( ∞∑
m=1

1
m(exp(mw)− 1)

)

for <w > 0, we have

|f(w)| 6 exp
(
< 1
ew − 1

+
∞∑
m=2

1
m|emw − 1|

)

6 exp
( 1
|ew − 1| +

1
<w

(π2

6
− 1
))

6 exp
( 1

2
π |Imw|

+
1
<w

(π2

6
− 1
))

if |Imw| 6 π . Thus

|f(d(x0 + iy))| 6 exp
( π

2d|y| +
1
dx0

(π2

6
− 1
))
,

|fd(d(x0 + iy))| 6 exp
( π

2|y| +
1
x0

(π2

6
− 1
))

6 exp
( π2

6x0
− 1

2x0

)
.

Observing that

d−
d
2

(2π
x0

) d−1
2

= exp(O(d log n))

we see that S4 = o(S1), this ends the proof of Lemma 3.1 and Theorem 1.1 is
proved.

8. When n ≡ R (mod d)n ≡ R (mod d)n ≡ R (mod d)

We are going to apply Theorem 1.1 for n−R instead of n when n ≡ R (mod d).
In this section we will derive from Theorem 1.1 the following result:

Corollary 8.1. For 0 < ε < 10−2 , n > n1 , d 6 (n − n3/4)
1
8−ε , n ≡ R (mod d) ,

and

(3
4

+ ε
)√6n

2πd
logn 6 Nr 6

√
6
π

n5/8

d
(r = 1, . . . , d) (8.1)

we have

Πd(n,R) = (1+o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2

exp
{
− πR√

6n
−
√

6n
πd

d∑
r=1

exp
(
− dNrπ√

6n

)}
.
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Proof. Under the hypotheses of Corollary 8.1, we have

R <
n

5
8

d
.
d(d+ 1)

2
6 dn

5
8 < n

3
4−ε < n

3
4 ,

thus n−R > n− n3/4 ,
√

6
π n

5/8 < (n−R)5/8 , and

n−R = n(1 +O(n−1/4)) = n exp(O(n−1/4))√
n−R =

√
n exp(O(n−1/4)) =

√
n+O(n1/4)

1√
n−R =

1√
n

exp(O(n−1/4)) =
1√
n

+O(n−3/4)

( 1√
n−R

) d−1
2

=
( 1√

n

) d−1
2

exp(O(dn−1/4)) =
( 1√

n

) d−1
2

(1 + o(1)).

Next we compute the argument of the exponential in Theorem 1.1:

(√6n
πd
−
√

6(n−R)
πd

) d∑
r=1

exp
(
− dNrπ√

6(n−R)

)
= O

(n1/4

d

) d∑
r=1

exp
(− dNrπ√

6n

)

= O
(n1/4

d

)
dn−

3
8− ε2

= O(n−
1
8− ε2 ) = o(1).

In the same way we have for 1 6 r 6 d :

exp
(
− dNrπ√

6(n−R)

)
= exp

(
− dNrπ

( 1√
6n

+O(n−3/4)
))

= exp
(
− dNrπ√

6n
+O

(
d
n5/8

d
n−3/4))

= (1 +O(n−1/8)) exp
(− dNrπ√

6n

)
.

It remains to sum this equality over 1 6 r 6 d :

√
6n
πd

d∑
r=1

exp
(
− dNrπ√

6(n−R)

)
=

√
6n
πd

(1 +O(n−1/8))
d∑
r=1

exp
(
− dNrπ√

6n

)

=

√
6n
πd

d∑
r=1

exp
(
− dNrπ√

6n

)
+O

(n 1
2− 1

8

d
dn−

3
8− ε2

)

=

√
6n
πd

d∑
r=1

exp
(
− dNrπ√

6n

)
+ o(1).
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We apply Theorem 1.1:

Πd(n,R) (8.2)

= (1 + o(1))p(n−R)d
2+d

2

( 1

2
√

6n

) d−1
2

exp
(
−
√

6n
πd

d∑
r=1

exp
(
− dNrπ√

6n

))
.

From the asymptotic formula

p(n) = (1 + o(1))
1

4n
√

3
exp

(2π
√
n√

6

)

of Hardy and Ramanujan [9] we obtain for 1 6 t 6 n
3
4−ε , that

p(n− t)
p(n)

= (1 + o(1)) exp
(
− 2π√

6
(
√
n−√n− t)

)
(8.3)

= (1 + o(1)) exp
(
− πt√

6n

)
exp

(
− 2π√

6

( t√
n+
√
n− t −

t

2
√
n

))

= (1 + o(1)) exp
(
− πt√

6n

)
exp

(
− 2πt√

6

√
n−√n− t

2
√
n(
√
n+
√
n− t)

)

= (1 + o(1)) exp
(
− πt√

6n

)
exp

(
O(t2n−3/2)

)
= (1 + o(1)) exp

(
− πt√

6n

)
.

The equalities (8.3) and (8.2) give Corollary 8.1.

9. Local stability of Πd(n,R)Πd(n,R)Πd(n,R)

The next corollary says that if we take two sets R = {N1, . . . , Nd} ⊂ Zd verifying
(8.1) and R∗ = {N∗1 , . . . , N∗d } ⊂ Rd such that the N∗r are near the Nr on average,
then in the estimation of Πd(n,R) we may replace the Nr by the N∗r in cost of
an admissible error term. This will be very useful for the proofs of the different
results announced in the introduction.

Corollary 9.1. For 0 < ε < 10−2 , n > n1 , d 6 (n − n3/4)
1
8−ε , n ≡ R (mod d) ,

and two sets R = {N1, . . . , Nd} ⊂ Zd , R∗ = {N∗1 , . . . , N∗d } ⊂ Rd such that:
(i) R satisfies (8.1);
(ii) R and R∗ verify

d∑
r=1

|Nr −N∗r | 6 d3, (9.1)

we have

Πd(n,R) = (1+o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2

exp
{
−πR

∗
√

6n
−
√

6n
πd

d∑
r=1

exp
(
−dN

∗
r π√
6n

)}
.
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Proof. Let F be the function defined by:

F (N1, . . . , Nd) = exp
{
− πR√

6n
−
√

6n
πd

d∑
r=1

exp
(
− dNrπ√

6n

)}
. (9.2)

If R∗ satisfy (9.1), then in Corollary 8.1, F (N1, . . . , Nr) ∼ F (N∗1 , . . . , N
∗
d ) since

∣∣∣ 1√
n

d∑
r=1

r(Nr −N∗r )
∣∣∣ 6 1√

n

d∑
r=1

d|Nr −N∗r | 6
d4
√
n

= o(1),

and

∣∣∣
√
n

d

d∑
r=1

(
exp

(− dNrπ√
6n

)− exp
(− dN∗r π√

6n

))∣∣∣ 6
√
n

d

d∑
r=1

exp
(− dNrπ√

6n

)

×
∣∣∣1− exp

(− d(N∗r −Nr)π√
6n

)∣∣∣

6
√
n

d

d∑
r=1

n−
3
8− ε2O

( d√
n
|N∗r −Nr|

)

= O(d3n−
3
2− ε2 ) = o(1).

This ends the proof of Corollary 9.1.

10. Partitions without abnormally represented residue classes;
proof of Corollary 1.2

If we shall sum over certain choices of N1, . . . , Nd then the product in

F (N1, . . . , Nd) =
d∏
r=1

exp
{
− πrNr√

6n
−
√

6n
πd

exp
(
− dNrπ√

6n

)}

would be useful for an “independent” computation but we have the condition

N1 ≡ n−
d∑
r=2

rNr (mod d). (10.1)

For N∗1 = bN1
d cd (or dN1

d ed) and N∗r = Nr (r = 2, . . . , d), Corollary 9.1 implies
that in an asymptotic sense, we can substitute the condition (10.1) by the condition
d|N1 . Let A := d( 3

4 + ε
) √

6
2πd2

√
n logned and B := b

√
6n5/8

πd2 cd .
Thus d|A , d|B , and

(3
4

+ ε
)√6n

2πd
logn 6 A < B 6

√
6n5/8

πd
.
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In the following lines, for each A 6 N1, . . . , Nd < B , R is the associated set
R = {N1, . . . , Nd} and the integer R is

∑d
r=1 rNr . By Corollary 9.1,

∑

A6N1,...,Nd<B
R≡n (mod d)

Πd(n,R) = (1+o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2 ∑

A6N1,...,Nd<B
d|N1

F (N1, . . . , Nd).

Here the sum is

S :=
∑

A/d6N ′1<B/d
A6N2,...,Nd<B

F (dN ′1, N2, . . . , Nd)

=
∑

A/d6N ′1<B/d
A6N2,...,Nd<B

∫ N ′1+1

N ′1

∫ N2+1

N2

· · ·
∫ Nd+1

Nd

F (dN ′1, N2, . . . , Nd) dt′1 dt2 · · · dtd.

Next we apply Corollary 9.1

S =
∑

A/d6N ′1<B/d
A6N2,...,Nd<B

∫ N ′1+1

N ′1

∫ N2+1

N2

· · ·
∫ Nd+1

Nd

(1 + o(1))F (dt′1, t2, . . . , td) dt′1 · · · dtd,

since (dt′1 − dN ′1) + (t2 −N2) + · · ·+ (td −Nd) 6 d+ d− 1 6 d3.
By dt′1 = t1 , it is

S = (1 + o(1))
1
d

∫ B

A

∫ B

A

· · ·
∫ B

A

F (t1, . . . , td) dt1 · · · dtd

= (1 + o(1))
1
d

d∏
r=1

∫ B

A

exp
(
− πrt√

6n
−
√

6n
πd

exp
(
− dtπ√

6n

))
dt.

We set t = u
√

6n/πd in the integral:

S = (1 + o(1))
1
d

(√6n
πd

)d d∏
r=1

∫ Bπd/
√

6n

Aπd/
√

6n
e−

ur
d e−

e−u√6n
πd du.

Next we write x =
√

6n
πd e−u

S = (1 + o(1))
1
d

(√6n
πd

)d−∑d

r=1
r
d

d∏
r=1

∫ √
6n
πd exp

(
−Aπd√

6n

)

√
6n
πd exp

(
−Bπd√

6n

) x
r
d−1e−x dx

= (1 + o(1))
1
d

(√6n
πd

) d−1
2

d∏
r=1

∫ √
6n
πd exp

(
−Aπd√

6n

)

√
6n
πd exp

(
−Bπd√

6n

) x
r
d−1e−x dx.
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We shall estimate the complementary integrals:

∫ √
6n
πd exp

(
−Bπd√

6n

)

0
x
r
d−1e−x dx =

∫ exp(−n1/8+o(1))
√

6n/(πd)

0
x
r
d−1e−x dx.

<

∫ √nd−1 exp(−n 1
8 )

0
x
r
d−1 dx =

d

r

(√n
d

exp(−n1/8)
) r
d

6 d

r

(
exp(

log n
2
− n1/8))r/d 6 d

r
exp(−n

1/8

2d
)

6 d

r
exp

(− nε

2

)
= O(Γ(

r

d
)) exp(−n

ε

2
)

= o
(1
d

)
Γ
( r
d

)
,

by

Γ(x) =
1

xeγx

∞∏
ν=1

ex/ν

1 + x
ν

>
1

xeγx
,

where γ is the Euler constant.
For the other side, we have:∫ ∞
√

6n
πd exp

(
−Aπd√

6n

) x rd−1e−x dx =
∫ ∞

exp

(
−
(

3
8 + ε

2

)
logn+o(1)

)√
6n
πd

x
r
d−1e−x dx

=
∫ ∞

(1+o(1))
√

6
π
n

1
8−

ε
2

d

x
r
d−1e−x dx

6
∫ ∞
n
ε
2
2

x
r
d−1e−x dx 6

∫ ∞
n
ε
2
2

e−x dx

6 exp
(− n

ε
2

2

)
= o
(1
d

)
= o
(1
d

)
Γ
( r
d

)
,

since Γ
(
r
d

)
> 1.

Finally we obtain that
∑

A6N1,...,Nd<B
R≡n (mod d)

Πd(n,R) = (1 + o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2 1
d

(√6n
πd

) d−1
2

×
d∏
r=1

{
Γ
( r
d

)
+ o
(1
d

)
Γ
( r
d

)}

= (1 + o(1))p(n)
√
d
( 1

2π

) d−1
2

(1 + o(d−1))d
d∏
r=1

Γ
( r
d

)

= (1 + o(1))p(n)
Γ
(

1
d

) · · ·Γ(d−1
d

)

(2π)
d−1

2√
d

= (1 + o(1))p(n).
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11. Partitions with equilibrated residue classes: proof of Corollary 1.3

For 1 6 a < b 6 d , we can estimate the number of partitions of n with the
property that the residue classes a and b (mod d) contain the same number of
summands. Let E(a, b) denote the set of such partitions. By Corollary 1.2, apart
from o(p(n)) partitions of n we may assume that A 6 N1, . . . , Nd < B . Thus we
have:

E(a, b) =
∑

A6N1,...,Nd6B
n≡R (mod d)
Na=Nb

Πd(n,R) + o(p(n)).

We can follow the proof of to make the N1, . . . , Nd independent.
There is a technical difficulty when d is small (when ϕ(d) < 3). We would

like to replace for some convenient j ∈ {1, . . . , d} \ {a, b} the condition

jNj ≡ n−
∑

16r6d
r 6=j

rNr (mod d)

by d|N∗j . But in this way, when d is small we are not sure that the correspondence
between the corresponding sets R and R∗ is one-to-one.

We will choose our set R∗ in the following way. If a 6= 1 then we take
N∗1 = dbN1

d c .
If a = 1, b 6= d− 1 and d > 3 then we use j = d− 1, N∗d−1 = dbNd−1

d c .
If a = 1, b = d − 1 and d 6∈ {2, 3, 4, 6} we use j = c , N∗c = dbNcd c with c

minimal satisfying 1 < c < d− 1 and (c, d) = 1.
If (a, b, d) = (1, 5, 6), we use N∗2 = 3bN2

3 c , N∗3 = 2bN3
2 c (thus in this case

we have R∗ = {N1, N
∗
2 , N

∗
3 , N4, N5, N6}).

The cases (a, b, d) ∈ {(1, 2, 2), (1, 2, 3), (1, 3, 4)} are to be investigated sepa-
rately. Later we have to substitute

∫ B

A

exp
(
− π√

6n
ata −

√
6n
πd

exp
(
− dtaπ√

6n

))
dta

×
∫ B

A

exp
(
− π√

6n
btb −

√
6n
πd

exp
(
− dtbπ√

6n

))
dtb

by ∫ B

A

exp
(
− π√

6n
(a+ b)t− 2

√
6n
πd

exp
(
− dtπ√

6n

))
dt;

moreover, Γ
(
a
d

)
Γ
(
b
d

)
by

πd√
6n

∫ ∞
0

x
a+b
d −1e−2x dx =

πd√
6n

Γ
(
a+b
d

)

2
a+b
d

.

The complementary integrals change unessentially.
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Thus the final result is

o(p(n)) + (1 + o(1))p(n)
πd√
6n

2−
a+b
d

Γ
(
a+b
d

)

Γ
(
a
b

)
Γ
(
b
d

)

= o(p(n)) +O
(
p(n)

d2
√
n

)
= o(p(n)),

we have used the facts that Γ
(
a
d

)
Γ
(
b
d

)
> 1, Γ

(
a+b
d

)
6 Γ

(
1
d

)
= dΓ

(
1
d + 1

)
6 d.

This result is valid for (a, b, d) = (1, 2, 2) too. For (a, b, d) ∈ {(1, 2, 3), (1, 3, 4)}
we can obtain similar expressions weighted by constants depending on the residue
of n mod d : 0, 0, 3; 0, 2, 0, 2.

12. Comparison between the number of summands in two residue
classes: proof of Theorem 1.4

12.1. Proof of the propositions (i) and (ii) of Theorem 1.4. In this section,
for 1 6 a < b 6 d , we investigate the number of partitions of n in which there are
more parts ≡ a (mod d) than parts ≡ b (mod d), briefly the case Na > Nb . We
shall consider the cases Na > Nb resp. Na > Nb together as Na > Nb + ∆ with
∆ = 1 resp. ∆ = 0.

By Corollary 1.2 the Nr belong to [A,B] for almost partitions:

∑

N1,...,Nd
R≡n (mod d)
Na>Nb+∆

Πd(n,R) = o(p(n)) +
∑

A6N1,...,Nd<B
R≡n (mod d)
Na>Nb+∆

Πd(n,R).

Apart from (a, b, d) ∈ {(1, 2, 2), (1, 2, 3), (1, 3, 4)} - as in the proof of Corollary 1.3
— we can suppose that 1 < a and follow the proof of Corollary 1.2.

We have to substitute:

∑

A6Na<B

∑

A6Nb<B

∫ Na+1

Na

∫ Nb+1

Nb

F (. . . , ta, . . . , tb, . . .) dta dtb

by

Ta,b :=
∑

A+∆6Na<B

∑

A6Nb6Na−∆

∫ Na+1

Na

∫ Nb+1

Nb

F (. . . , ta, . . . , tb, . . .) dta dtb.

We have

Ta,b =
∑

∆+A6Na<B

∫ Na+1

Na

∫ Na+1−∆

A

F (. . . , ta, . . . , tb, . . .) dta dtb.
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When ∆ = 1 we have the upper bound

Ta,b 6
∫ B

A

∫ ta

A

F (. . . , ta, . . . , tb, . . .) dta dtb.

If ∆ = 0, then it is a lower bound:

Ta,b >
∫ B

A

∫ ta

A

F (. . . , ta, . . . , tb, . . .) dta dtb.

Taking into account Corollary 1.3, apart from o(p(n)) partitions of n , we can
compute both cases substituting

∫
A6ta6B

∫
A6tb6B by

∫
A6ta6B

∫
A6tb6ta . Later,

considering also the complementary integrals, we have to substitute

(1 + o(d−1))Γ
(a
d

)
(1 + o(d−1))Γ

( b
d

)

by ∫ ∞
0

x
a
d−1e−x

(∫ ∞
x

y
b
d−1e−y dy

)
dx+ o(d−1)Γ

(a
d

)
Γ
( b
d

)
.

For (a, b, d) ∈ {(1, 2, 2), (1, 2, 3), (1, 3, 4)} we use both N∗1 = dbN1
d c , N∗∗1 = dN1

d ed .
Thus the final result is

∑

N1,...,Nd
R≡n (mod d)
Na>Nb+∆

Πd(n,R)

= o(p(n)) +
(1 + o(1))

Γ
(
a
d

)
Γ
(
b
d

)p(n)
∫ ∞

0
x
a
d−1e−x

∫ ∞
x

y
b
d−1e−y dy dx.

(12.1)

This ends the proofs of (i) and (ii) of Theorem 1.4.

12.2. Proof of the lower bound (1.6). For the special case 1 6 a < b = d ,
(12.1) becomes

o(p(n)) +
(1 + o(1))p(n)

Γ
(
a
d

)
Γ
(

1
)

∫ ∞
0

x
a
d−1e−2x dx = o(p(n)) +

(1 + o(1))p(n)
2
a
d

= (1 + o(1))
p(n)
2
a
d
,

since 1 < 2
a
d < 2.

Moreover,

1
2
a
d

> 1

2
(d−1)
d

=
1
2

exp
( log 2
d

)
>

1
2

+
log 2
2d

.
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For the general case 1 6 a < b 6 d let us consider the integrals

I1 =
∫ ∞

0
x
a
d−1e−x

(∫ ∞
x

y
b
d−1e−y dy

)
dx

and

I2 =
∫ ∞

0
x
b
d−1e−x

(∫ ∞
x

y
a
d−1e−y dy

)
dx.

Then we have I1 + I2 = Γ
(
a
d

)
Γ
(
b
d

)
and

I1 − I2 =
∫ ∞

0

∫ ∞
x

e−x−y(xy)
a
d−1(y b−ad − x b−ad ) dy dx > 0.

Therefore, I1 > 1
2Γ
(
a
d

)
Γ
(
b
d

)
and

o(p(n)) + (1 + o(1))p(n)
I1

Γ
(
a
d

)
Γ
(
b
d

) ∼ p(n)
I1

Γ
(
a
d

)
Γ
(
b
d

) .

We can estimate
I1

Γ
(
a
d

)
Γ
(
b
d

) − 1
2

=
I1 − I2

2Γ
(
a
d

)
Γ
(
b
d

)

from below in the following way. For any δ > 0,

I1 − I2 >
∫ ∞

0

∫ ∞
x(1+δ)

e−x−y(xy)
a
d−1(y b−ad − x b−ad ) dy dx

>
∫ ∞

0

∫ ∞
x(1+δ)

e−x−y(xy)
a
d−1
(
y
b−a
d − ( y

1 + δ

) b−a
d

)
dy dx

=
(

1− 1

(1 + δ)
b−a
d

)∫ ∞
0

∫ ∞
x(1+δ)

x
a
d−1e−xy

b
d−1e−y dy dx

=
(

1− 1

(1 + δ)
b−a
d

){
I1 −

∫ ∞
0

∫ x(1+δ)

x

x
a
d−1e−xy

b
d−1e−y dy dx

}

>
(

1− 1

(1 + δ)
b−a
d

){1
2

Γ
(a
d

)
Γ
( b
d

)
−
∫ ∞

0
x
a
d−1e−x

∫ x(1+δ)

x

y
b
d−1e−y dy dx

}

>
(

1− 1

(1 + δ)
b−a
d

){1
2

Γ
(a
d

)
Γ
( b
d

)
−
∫ ∞

0
x
a
d−1e−x(x

b
d−1e−xδx) dx

}

=
(

1− 1

(1 + δ)
b−a
d

){1
2

Γ
(a
d

)
Γ
( b
d

)
− δΓ

(a+ b

d

)
2−

a+b
d

}
,

We obtain

I1 − I2
2Γ
(
a
d

)
Γ
(
b
d

) >
(

1− 1

(1 + δ)
b−a
d

){1
4
−

δΓ
(
a+b
d

)

21+ a+b
d Γ

(
a
d

)
Γ
(
b
d

)
}
.
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For x, y > 0,
Γ(x)Γ(y)
Γ(x+ y)

= B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt.

For 0 < x 6 y 6 1, we get B(x, y) >
∫ 1

0 t
x−1 dt = 1

x and
Γ(x+ y)
Γ(x)Γ(y)

6 x. Further,

x4−x 6 1
log 44

−1
log 4 = 1

2e log 2 .
Therefore,

δΓ
(
a+b
d

)

21+ a+b
d Γ

(
a
d

)
Γ
(
b
d

) 6
δ ad

21+ 2a
d + b−a

d

6 δ

2
b−a
d

1
4e log 2

.

Let α := 0.59 and

δ :=
( 1

1− α b−ad

) d
b−a − 1.

Then

δ

2
b−a
d

= 2−
b−a
d exp

( d

b− a log
1

1− α b−ad

)
− 2−

b−a
d

= 2−
b−a
d exp

(
α+

∞∑
m=2

1
m
αm
(b− a

d

)m−1
)
− 2−

b−a
d

6 2−
b−a
d exp

(
α+

(
log

1
1− α − α

)b− a
d

)
− 2−

b−a
d

= exp
(
α− ( log 2 + α− log

1
1− α

)b− a
d

)
− exp

(− (log 2)
b− a
d

)

which is monotonically decreasing in b−a
d (for α = 0.59). Therefore

δ

2
b−a
d

6 eα − 1.

Finally,

(
1− 1

(1 + δ)
b−a
d

){1
4
− δ

2
b−a
d

1
4e log 2

}
> α

b− a
d

1
4

(
1− eα − 1

e log 2

)
>

1
12
b− a
d

.

We remind the reader of the fact that we considered the cases Na > Nb resp.
Na > Nb together. Increasing ε , we can use d 6 n

1
8−ε . Thus (1.6) is proved.

12.3. Proof of the upper bound (1.7). For 1 6 a, b 6 d , we denote by Sa,b
the set of the partitions of n satisfying Na > Nb .

As it is said in the introduction, when b = d , we can compute |Sa,d| by (1.5),
|Sa,d| = p(n)(2−

a
d +o(1)). The upper bound (1.7) in Theorem 1.4 is a consequence

of the following lemma:



Dominant residue classes concerning the summands of partitions 89

Lemma 12.1. For 1 6 a < b < d , we have |Sa,b| 6 |Sa,d|+ o(p(n)) .

Proof. For any 1 6 c1, c2, c3 6 d , let S(c1, c2, c3) denote the set of the partitions
of n such that Nc1 > Nc2 > Nc3 (here as before, Nci is the number of parts
≡ ci (mod d)).

We have the two equalities:

Sa,b = S(a, b, d) ∪ S(a, d, b) ∪ S(d, a, b),

and
Sa,d = S(a, b, d) ∪ S(a, d, b) ∪ S(b, a, d).

By Corollary 1.3, |S(c1, c2, c3) ∩ S(cσ(1), cσ(2), cσ(3))| = o(p(n)) for any non
trivial permutation σ on the set {1, 2, 3} . Thus we have:

|Sa,b| = |S(a, b, d)|+ |S(a, d, b)|+ |S(d, a, b)|+ o(p(n)),

|Sa,d| = |S(a, b, d)|+ |S(a, d, b)|+ |S(b, a, d)|+ o(p(n)).

To prove Lemma 12.1, it is sufficient to show that

|S(d, a, b)| 6 |S(b, a, d)|+ o(p(n)). (12.2)

To prove this inequality, we will show that there exists an injective map Ψ defined
on S(d, a, b) such that for almost all partitions Π ∈ S(d, a, b), Ψ(Π) ∈ S(b, a, d).
This map consists in exchanging the parts ≡ b (mod d) with the parts ≡ d (mod d)
and to put some appropriate parts to compensate the quantity (d− b)(Nd −Nb)
arising from this exchange. Such sort of idea was already used in some proofs of [2].

• We suppose that a 6= 1. Let Π be a generic partition of n in S(d, a, b).
We write Π in the following way:

Π : n =
d∑
r=1

Nr∑

j=1

(r + λj,rd) with λj,r > 0, for 1 6 r 6 d, 1 6 j 6 Nr,

so that for 1 6 r 6 d , r+λ1,rd, . . . , r+λNr,rd are the parts ≡ r (mod d). To this
partition Π we assign the following partition Ψ(Π)

Ψ(Π) : n =
d∑
r=1

Mr∑

j=1

(r + µj,rd) with µj,r > 0, (1 6 r 6 d, 1 6 j 6 Mr),

with

Mr =





Nr if r 6∈ {1, b, d}
Nd if r = b
Nb if r = d
N1 + (d− b)(Nd −Nb) if r = 1,

and the integers µj,r are defined by:

µj,r = λj,r for r 6∈ {1, b, d}, 1 6 j 6 Mr,
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µj,b = λj,d (1 6 j 6 Mb), µj,d = λj,b (1 6 j 6 Md),

µj,1 =
{
λj,1 if 1 6 j 6 N1

0 if N1 + 1 6 j 6 M1.

We check easily that this application Ψ is injective, and that we have Mb > Ma >
Md , Ψ(Π) ∈ S(b, a, d).

• Case a = 1. If a = 1, the above application is not good because it may
happen that Ma = M1 = N1 + (d− b)(Nd −Nb) > Mb , Ψ(Π) 6∈ S(b, a, d).

In the case a = 1, we transform the quantity (d − b)(Nd − Nb) in parts
equal to 2 and eventually add a part equal to 1. We set Z = b (Nd−Nb)(d−b)

2 c . The
partition Ψ(Π) is defined by:

for r 6∈ {1, 2, b, d}, Mr = Nr and µj,r = λj,r for 1 6 j 6 Mr,

Md = Nb and µj,d = λj,b for 1 6 j 6 Md,

M1 =
{
N1 if (Nd −Nb)(d− b) ≡ 0 (mod 2)
N1 + 1 if (Nd −Nb)(d− b) ≡ 1 (mod 2)

, µj,1 = λj,1 for 1 6 j 6 N1,

and if (Nd −Nb)(d− b) ≡ 1 (mod 2), µN1+1,1 = 0.
If b 6= 2, then we take

Mb = Nd and µj,b = λj,d for 1 6 j 6 Mb,

M2 = N2 + Z and µj,2 =
{
λj,2 if 1 6 j 6 N2

0 if N2 + 1 6 j 6 M2.

If b = 2, then we take

M2 = Nd + Z and µj,2 =
{
λj,d if 1 6 j 6 Nd
0 if Nd + 1 6 j 6 M2.

In all cases we have Mb > Md , and Ma > Md . Furthermore, we have
M1 6 N1 + 1 6 Nd + 1 thus the situation M1 > Mb can happen only if Nd = N1 .
By Corollary 1.3, this can arrive for at most o(p(n)) partitions of n . Thus Ψ(Π) ∈
S(b, a, d) for almost all Π ∈ S(d, a, b). This ends the proof of Lemma 12.1.

Thus Theorem 1.4 is proved.

13. Dominant residue class

We investigate the number of partitions of n in which there are more parts ≡
a (mod d) than parts ≡ b (mod d) for all b ∈ {1, . . . , d} \ {a} , briefly the case
Na > Nb for 1 6 b 6 d , b 6= a . We shall consider the cases Na > Nb (b 6= a) resp.
Na > Nb (b 6= a) together as Na > Nb + ∆ (b 6= a) with ∆ = 1 resp. ∆ = 0.
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We have to estimate

Ma :=
∑

N1,...,Nd
R≡n (mod d)

Na>∆+maxb 6=aNb

Πd(n,R).

Like in the proof of Corollary 1.3 or Theorem 1.4 we apply Corollary 1.2 to
avoid the abnormally small or big Nr and Corollary 9.1 to make the Nr indepen-
dent.

Lemma 13.1. We have the equality:

Ma = o(p(n))+(1+o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2 ∑

A6N1,...,Nd<B
d|N1

Na>∆+maxb 6=aNb

F (N1, . . . , Nd). (13.1)

We use both N∗1 = bN1
d cd and N∗∗1 = dN1

d ed .
We first state the case a = 1, next we will quote the modifications to handle

the case a > 2.
By Corollary 9.1 and Corollary 1.2 we have

M1 (13.2)

= o(p(n)) + (1 + o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2 ∑

A6N1,...,Nd<B
R≡n (mod d)

N1>∆+maxb6=1 Nb

F (N∗1 , . . . , Nd)

= o(p(n)) + (1 + o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2 ∑

A6N1,...,Nd6B
R≡n (mod d)

N1>∆+maxb6=1 Nb

F (N∗∗1 , . . . , Nd).

We have
∑

A6N1,...,Nd<B

N1≡n−
∑d

r=2
rNr (mod d)

N1>∆+max26b6dNb

F (N∗1 , . . . , Nd)

>
∑

A6N1,...,Nd<B

N1≡n−
∑d

r=2
rNr (mod d)

N∗1 >∆+max26b6dNb

F (N∗1 , . . . , Nd)

=
∑

A6N∗1 ,...,Nd<B
N∗1 >∆+max26b6dNb

F (N∗1 , . . . , Nd)

(13.3)
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and ∑

A6N1,...,Nd6B
N1≡n−

∑d

r=2
rNr (mod d)

N1>∆+max26b6dNb

F (N∗∗1 , . . . , Nd)

6
∑

A6N1,...,Nd6B
N1≡n−

∑d

r=2
rNr (mod d)

N∗∗1 >∆+max26b6dNb

F (N∗∗1 , . . . , Nd)

6
∑

A6N∗∗1 ,...,Nd6B
N∗∗1 >∆+max26b6dNb

F (N∗∗1 , . . . , Nd)

6
∑

A6N∗∗1 ,...,Nd<B
N∗∗1 >∆+max26b6dNb

F (N∗∗1 , . . . , Nd) + E,

(13.4)

where E is an error term collecting the (N∗∗1 , . . . , Nd) with N∗∗1 = B . This term
is small enough by Corollary 1.2. Therefore

M1 = o(p(n)) + (1 + o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2 ∑

A6N1,...,Nd<B
d|N1

N1>∆+maxb 6=1 Nb

F (N1, . . . , Nd).

This proves (13.1) for a = 1. For a 6= 1 we replace in (13.2) the conditions
N1 > ∆+max26b6dNb by the conditions Na > ∆+maxb6=aNb . When we replace
in these conditions N1 by N∗1 and change 6 B to < B , the corresponding (13.3)
becomes an upper bound and when we replace N1 by N∗∗1 , (13.4) becomes a lower
bound. (The inequalities are permuted). This ends the proof of the lemma.

Proof of (i) and (ii) of Theorem 1.5 for a = 1a = 1a = 1 . It remains to compute the
summations of

T1 :=
∑

A6dN ′1,N2,...,Nd<B

dN ′1>Nb+∆
b=2,...,d

F (dN ′1, N2, . . . , Nd).

We have:

T1 =
∑

A6dN ′1,N2,...,Nd<B

dN ′1>Nb+∆
b=2,...,d

∫ N ′1+1

N ′1

∫ N2+1

N2

· · ·
∫ Nd+1

Nd

F (dN ′1, N2, . . . , Nd) dt′1 dt2 · · · dtd.
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We apply one more times Corollary 9.1:

T1

= (1 + o(1))
∑

A6dN ′1,N2,...,Nd<B

dN ′1>Nb+∆
b=2,...,d

∫ N ′1+1

N ′1

∫ N2+1

N2

· · ·
∫ Nd+1

Nd

F (dt′1, t2, . . . , td) dt′1 dt2 · · · dtd.

= (1 + o(1))
∑

∆+A
d 6N ′1<B

d

∫ N ′1+1

N ′1

∫ dN ′1−∆+1

A

· · ·
∫ dN ′1−∆+1

A

F (dt′1, t2, . . . , td) dt′1 dt2 · · · dtd.

Here the sum is

6
∫ B

d

A
d

(∫ dt′1

A

· · ·
∫ dt′1

A

F (dt′1, t2, · · · , td) dt2 · · · dtd
)

dt′1

if ∆ = 1 resp.

>
∫ B

d

A+d
d

(∫ dt′1−d

A

· · ·
∫ dt′1−d

A

F (dt′1, t2, · · · , td) dt2 · · · dtd
)

dt′1

=
∫ B−d

d

A
d

(∫ dt′1

A

· · ·
∫ dt′1

A

F (dt′1 + d, t2, · · · , td) dt2 · · · dtd
)

dt′1

if ∆ = 0. Taking into account Corollary 1.3, apart from o(dp(n)) partitions of n
we can compute both cases together for fixed d as

T1 = o(p(n)) + (1 + o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2

× 1
d

∫ B

A

(∫ t1

A

· · ·
∫ t1

A

F (t1, . . . , td) dt2 · · · , dtd
)

dt1

= o(p(n)) + (1 + o(1))p(n)d
2+d

2

( 1

2
√

6n

) d−1
2

× 1
d

∫ B

A

exp
(
− π√

6n
t1 −

√
6n
πd

exp
(
− dt1π√

6n

))

×
{ d∏

d=2

∫ t1

A

exp
(
− π√

6n
rt−

√
6n
πd

exp
(
− dtπ√

6n

)
dt
}

dt1

= o(p(n)) +
(1 + o(1))p(n)

Γ
(

1
d

)
· · ·Γ

(
d
d

)
∫ ∞

0
x

1
d−1e−x

( d∏
r=2

∫ ∞
x

y
r
d−1e−y dy

)
dx

for fixed d . This ends the proof of Theorem 1.5 (i) and (ii) in the case a = 1.
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Case a = 2 . The term corresponding to T1 is

Ta :=
∑

A6dN ′1,...,Nd<B
Na>∆+dN ′1

Na>∆+maxb6∈{1,a}Nb

F (dN ′1, N2, . . . , Nd).

We use the integral representation and we apply Corollary 9.1:

Ta = (1 + o(1))

×
∑

A+∆6Na<B

∫ Na+1

Na

∫ Na−∆
d +1

A/d

[ ∫ Na−∆+1

A

· · ·
∫ Na−∆+1

A

F (dt′1, . . . , td)
∏

j 6=1,a

dtj
]
dt′1 dta.

By Corollary 1.3 we see that we can handle the cases ∆ = 0 and 1 together
and we do the same computations as in the case a = 1.

14. Some properties of truncated Gamma functions; end of the proof
of Theorem 1.5

For 1 6 a 6 d , let us consider the integrals

Ja =
∫ ∞

0
x
a
d−1e−x

( d∏
r=1
r 6=a

∫ ∞
x

y
r
d−1e−y dy

)
dx.

We have

d∏

j=1

Γ
( j
d

)
=

d∏

j=1

(∫ ∞
0

x
j
d−1
j e−xj dxj

)
= J1 + J2 + · · ·+ Jd,

since

{(x1, . . . , xd) ∈ [0,∞[d} = ∪da=1{(x1, . . . , xd) ∈ [0,∞[d, xa = min
16j6d

xj}.

For 1 < a 6 d ,

J1−Ja =
∫ ∞

0

(∫ ∞
x

e−x−y(xy)
1
d−1(y a−1

d −x a−1
d

)( d∏
r=2
r 6=a

∫ ∞
x

z
r
d−1e−z dz

)
dy
)

dx > 0.

Therefore,

J1 >
1
d

Γ
(1
d

)
Γ
(2
d

)
· · ·Γ

(d
d

)
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and

o(p(n)) + (1 + o(1))p(n)
J1

Γ
(

1
d

)
Γ
(

2
d

)
· · ·Γ

(
d
d

) ∼ p(n)
J1

Γ
(

1
d

)
Γ
(

2
d

)
· · ·Γ

(
d
d

)

for fixed d > 2. We can estimate

J1

Γ
(

1
d

)
Γ
(

2
d

)
· · ·Γ

(
d
d

) − 1
d

=
∑d
a=2(J1 − Ja)

dΓ
(

1
d

)
Γ
(

2
d

)
· · ·Γ

(
d
d

)

from below in the following way. For any δ > 0 and 2 6 a 6 d ,

J1 − Ja

>

∫ ∞
0

(∫ ∞
x(1+δ)

e−x−y(xy)
1
d−1
(
y
a−1
d −

( y

1 + δ

) a−1
d
)

×
( d∏
r=2
r 6=a

∫ ∞
x

z
r
d−1e−z dz

)
dy
)

dx

=
(

1− 1

(1 + δ)
a−1
d

){
J1

−
∫ ∞

0
x

1
d−1e−x

(∫ x(1+δ)

x

y
a
d−1e−y dy

)( d∏
r=2
r 6=a

∫ ∞
x

z
r
d−1e−z dz

)
dx
}

>
(

1− 1

(1 + δ)
a−1
d

){1
d

Γ
(1
d

)
· · ·Γ

(d
d

)
− δΓ

(1 + a

d

)
2−

1+a
d

d∏
r=2
r 6=a

Γ
( r
d

)}
,

J1 − Ja
dΓ
(

1
d

)
· · ·Γ

(
d
d

) >
(

1− 1

(1 + δ)
a−1
d

){ 1
d2 −

δΓ
(

1+a
d

)

2
1+a
d dΓ

(
1
d

)
Γ
(
a
d

)
}

>
exp

(
a−1
d log(1 + δ)

)
− 1

(1 + δ)
a−1
d

{ 1
d2 −

δ

d2

}

>
a− 1
d3

(1− δ) log(1 + δ)
1 + δ

.

Choosing δ := 0.364 we obtain that

d∑
a=2

J1 − Ja
dΓ
(

1
d

)
Γ
(

2
d

)
· · ·Γ

(
d
d

) >
d∑
a=2

a− 1
7d3 =

1
14

(1
d
− 1
d2

)
.

This ends the proof of Theorem 1.5.
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Similar arguments yield estimates for the case N1 > N2 > . . . > Nd , i. e., for
the number of “d-regular” partitions of n , and more generally to obtain estimates
for Theorem 1.7.
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