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We investigate simple random walks on graphs generated by
repeated barycentric subdivisions of a triangle. We use these
random walks to study the diffusion on the self-similar fractal
known as the Strichartz hexacarpet, which is generated as the
limit space of these graphs. We make this connection rigorous
by establishing a graph isomorphism between the hexacarpet
approximations and graphs produced by repeated barycentric
subdivisions of the triangle. This includes a discussion of vari-
ous numerical calculations performed on these graphs and their
implications to the diffusion on the limiting space. In particu-
lar, we prove that equilateral barycentric subdivisions—a metric
space generated by replacing the metric on each 2-simplex of
the subdivided triangle with that of a scaled Euclidean equilat-
eral triangle—converge to a self-similar geodesic metric space
of dimension log(6)/ log(2), or about 2.58. Our numerical ex-
periments give evidence to a conjecture that the simple random
walks on the equilateral barycentric subdivisions converge to a
continuous diffusion process on the Strichartz hexacarpet cor-
responding to a different spectral dimension (estimated numeri-
cally to be about 1.74).

1. INTRODUCTION AND MAIN CONJECTURES

The goal of this paper is to investigate the relation
between simple random walks on repeated barycentric
subdivisions of a triangle and the self-similar fractal
Strichartz hexacarpet. We explore a graph approxima-
tion to the hexacarpet in order to establish a graph iso-
morphism between the hexacarpet and barycentric sub-
divisions of the triangle. After that, we discuss various
numerical calculations performed on the approximating
graphs. We prove that the equilateral barycentric subdi-
visions converge to a self-similar geodesic metric space
of dimension log(6)/ log(2) ≈ 2.58, but at the same time,
our mathematical experiments give evidence to a con-
jecture that the simple random walks converge to a
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continuous diffusion process on the Strichartz hexacar-
pet corresponding to the spectral dimension ≈ 1.74.

In Section 2, we develop the framework and ba-
sic results pertaining to barycentric subdivision. This
is a standard object, intrinsic to the study of simpli-
cial complexes; see [Hatcher 02] (and such classics as
[Lefschetz 42, Pontryagin 52, Spanier 66]). We define a
metric on the set of edges of the nth iterated barycen-
tric subdivision of a 2-simplex, and use this to define
a new limiting self-similar metric on the standard Eu-
clidean equilateral triangle.

In Section 3, we turn to the theory of self-similar
structures, as developed in [Kigami 01]. Using this the-
ory, we introduce a fractal structure, which we call
the Strichartz hexacarpet, or hexacarpet for short.
The hexacarpet is not isometrically embeddable into
two-dimensional Euclidean space, but otherwise re-
sembles other self-similar infinitely ramified fractals
with Cantor-set boundaries, such as the octacarpet
(which is sometimes referred to as the octagasket;
see [Berry et al. 09] and references therein), the Laakso
spaces (see [Romeo and Steinhurst 09, Steinhurst 11a,
Steinhurst 11b] and references therein), and the standard
and generalized Sierpiński carpets (see [Barlow et al. 06]
and references therein).

We draw a connection between the hexacarpet and
barycentric subdivisions in Section 4, in which we prove
that the approximating graphs to the hexacarpet are iso-
morphic to the graphs created by barycentric subdivi-
sions (where the 2-simplices of the n-times subdivided
triangle become graph vertices, connected by a graph
edge of the simplices that share a common face).

Section 5 discusses properties of the approximating
graphs of the hexacarpet to contrast and illuminate con-
nections between the hexacarpet and the limiting struc-
ture on the triangle defined in Section 2. In particular,
we examine the growth properties of the graph distance
metric. We prove a proposition that heuristically places
the diameter (in the sense of the usual graph distance)
of the nth-level graph as somewhere between O(2n ) and
O(n2n ). Our numerical analysis supports a conjecture for
the formulas of the diameter and radius of these graphs.

Finally, in Section 6, we briefly describe numerical
analysis of the spectral properties of the approximating
graphs to the hexacarpet. Primarily, we calculate eigen-
values of the Laplacian matrix for the first eight levels
of the approximating graphs. This allows us to approxi-
mate the resistance scaling factor of the hexacarpet, and
suggests that there is a limit resistance. We also plot ap-
proximations to the hexacarpet in 2- and 3-dimensional
eigenfunction coordinates.

The experimental results in Section 6 strongly sug-
gest that the simple random walks on the barycentric
subdivisions converge to a diffusion process on K (most
efficiently this can be shown by analyzing harmonic
functions and eigenvalues and eigenfunctions of the
Laplacian). Thus, our theoretical and numerical results
support the following conjecture, which is explained in
Section 6.

Conjecture 1.1. We conjecture the following:

(1) On the Strichartz hexacarpet there exists a unique
self-similar local regular conservative Dirichlet form
E with resistance scaling factor ρ ≈ 1.304 and the
Laplacian scaling factor τ = 6ρ; this form is a re-
sistance form in the sense of Kigami.

(2) The simple random walks on the repeated barycentric
subdivisions of a triangle, with the time renormalized
by τn , converge to the diffusion process that is the
continuous symmetric strong Markov process corre-
sponding to the Dirichlet form E.

(3) This diffusion process satisfies the sub-Gaussian
heat kernel estimates and elliptic and parabolic
Harnack inequalities, possibly with logarithmic cor-
rections, corresponding to the Hausdorff dimen-
sion log 6/ log 2 ≈ 2.58 and the spectral dimension
2 log 6/ log τ ≈ 1.74.

(4) The spectrum of the Laplacian has spectral gaps in
the sense of Strichartz.

(5) The spectral zeta function has a meromorphic con-
tinuation to C.

We note that our data on spectral dimension are
not inconsistent with the (random) geometry of the
numerical approximations used in the theory of quan-
tum gravity, according to [Ambjørn et al. 05], at small
time asymptotics: dS = 1.8 ± 0.25. This reference as well
as [Reuter and Frank Saueressig 11] uses triangulations
similar to those in our study to approximate quan-
tum gravity. Therefore, one can conclude that with the
present state of numerical experiments, fractal carpets
may represent a plausible (although simplified) model of
sample geometries for quantum gravity.

2. EQUILATERAL BARYCENTRIC SUBDIVISIONS
AND THEIR LIMIT

The process of subdividing the 2-simplex using its
barycentric coordinates (see Figure 1) is useful in
establishing an isomorphism of graphs in later sec-
tions. Information on barycentric subdivision of more
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FIGURE 1. Barycentric subdivision.

general n-simplices can be found in [Hatcher 02]. We
adapt Hatcher’s notation slightly, which is outlined in
the following definitions.

Consider any 2-simplex (triangle) T0 in the plane, de-
fined by the vertices [v0 , v1 , v2 ] that do not all lie on
a common line. The sides of T0 are the 1-simplices:
[v0 , v1 ], [v0 , v2 ], [v1 , v2 ].

Definition 2.1. We perform barycentric subdivision (BCS)
on T as follows: First, we append the vertex set with
the barycenters of the 1-simplices [v0 , v1 ], [v0 , v2 ], [v1 , v2 ]
and label them b01 , b02 , b12 , respectively. We also ap-
pend the barycenter of T0 , which is the point in the
plane given by 1

3 (v0 + v1 + v2), which we denote by b.
Thus, bij is the midpoint of the segment [vi, vj ]. Every
2-simplex in the collection of 2-simplices formed by the
set N = {v0 , v1 , v2 , b01 , b02 , b12 , b} is said to be minimal
if its edges contain no points in N other than its three
vertices. Let B(T0) denote this collection of minimal 2-
simplices. Note that these six triangles are of the form
[vi, bij , b], where i �= j ∈ {1, 2, 3}.

We define the process of performing repeated barycen-
tric subdivision on T0 as follows: For a collection C of
2-simplices, we define B(C) =

⋃
c∈C B(c) to be the col-

lection of minimal 2-simplices obtained by performing
BCS on each element of C. In this way, we define the
nth-level barycentric subdivision of T0 inductively by
Bn (T0) = B(Bn−1(T0)).

Definition 2.2. We call the elements of Bn (T0) the level-n
offspring of T0 , where T0 is the level-n ancestor of its
6n offspring in Bn (T0). Similarly, for any triangle T ob-
tained from repeated BCS of T0 , we may consider the
level-n offspring of T to be the collection Bn (T ). We use

the terms child and grandchild to denote respectively the
level-1 and level-2 offspring of T . Likewise, we use the
terms parent and grandparent to denote the level-1 and
level-2 ancestors of T . We will use t ⊂ T to denote that t
is a child of T , and when necessary, t ⊂ T ⊂ T ′ to denote
that t is a child of T and a grandchild of T ′. If s and t are
both children of T , then we say that s and t are siblings.

Definition 2.3. For every triangle T = [a, b, c], we define
the boundary of T to be the union of its sides, which we
denote by ∂T = [a, b] ∪ [b, c] ∪ [a, c]. A level-k offspring
t of T is said to be a boundary triangle for T or on the
boundary of T if a side of t lies on ∂T . For a given triangle
T , we say that a level-k offspring of T is special with
respect to T if it is on the boundary of T and contains a
vertex of T . Note that all first-level offspring are special
with respect to T , and that every special offspring has
exactly one special offspring.

Definition 2.4. We say that two level-n triangles are
adjacent if they share a side. Given a level-n triangle
T = [v0 , v1 , v2 ], we know that the children of T are of
the form [vi, bij , b], where i �= j ∈ {1, 2, 3}. We say that
two children of T are vertex-adjacent if their common
side is a segment connecting the barycenter of T to one
of the original vertices of T ([vi, b] for some i ∈ {1, 2, 3})
and that two children of T are side-adjacent if their com-
mon side is a segment connecting the barycenter of T to
one of the barycenters of the sides of T ([bij , b] for some
i �= j ∈ {1, 2, 3}).

Note that each application of BCS to any triangle T
produces six new offspring, so we have |B(C)| = 6 · |C|
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for every collection of 2-simplices C. Similarly, starting
with T0 , we have inductively that |Bn (T0)| = 6n . Thus,
there are 6n level-n offspring of T0 . Also, we see that each
triangle in Bn (T0) is adjacent to at most three other tri-
angles in Bn (T0) and that if t ∈ Bn (T ) is not on the
boundary of T , then t is adjacent to exactly three other
members of Bn (T ). On the other hand, if t ∈ Bn (T ) is
on the boundary of T , then t is adjacent to exactly two
other members of Bn (T ), namely its vertex-adjacent sib-
ling and side-adjacent sibling, and possibly one other tri-
angle not in Bn (T ) but adjacent to T .

Proposition 2.5. The following are immediate conse-
quences of the above definitions:

(1) The number of level-n boundary triangles of T0 is
6 · 2n−1 .

(2) The number of adjacencies among Bn (T0) is

1
2

[
2 · (6 · 2n−1) + 3 · (6n − 6 · 2n−1)]
= 2n−1 · (3n+1 − 3

)
.

(3) If s ⊂ S and t ⊂ T are adjacent, then either S = T
or S is adjacent to T .

(4) If t ⊂ T , then exactly one child of t is special with
respect to T .

Theorem 2.6. On the triangle T0 , there exists a unique
geodesic distance d∞(x, y) such that each edge of each
triangle in the subdivision Bn (T0) is a geodesic of length
2−n . The metric space (T0 , d∞(x, y)) has the following
properties:

(1) (T0 , d∞(x, y)) is a compact metric space homeomor-
phic to T0 with the usual Euclidean metric |x− y|.

(2) The distance d∞(x, y) from any vertex of a triangle
in Bn (T0) to any point on the opposite side of that
triangle is 2−n .

(3) There are infinitely many geodesics between any two
distinct points.

(4) (T0 , d∞(x, y)) is a self-similar set built with six con-
tracting similitudes with contracting ratios 1

2 .

(5) The Hausdorff and self-similarity dimensions of
(T0 , d∞(x, y)) are equal to log 6/ log 2.

Proof. We choose a particular triangle T0 = [v0 , v1 , v2 ]
and construct a metric d∞ on T0 by approximating with
metrics dn on ∂Bn (T0), the union of edges of the trian-
gles in Bn (T0). We have that ∂Bn (T0) is a 1-simplicial

complex, a quantum graph, and a one-dimensional mani-
fold with junction points at the vertices of Bn (T0). There
is a unique geodesic metric dn (x, y) on ∂Bn (T0) such that
the length of each edge is 2−n . It is easy to see that for
any x, y ∈ ∂Bn (T0) and any k > 0, we have dn (x, y) �
dn+k (x, y). Moreover, by induction one can show that if
x, y are vertices of Bn (T0) and k > 0, then we have the
compatibility condition dn (x, y) = dn+k (x, y). Therefore,
on the union ∪∞

n=0∂Bn (T0), there is a unique geodesic
metric d∞(x, y) such that each edge of each triangle in
the subdivision Bn (T0) is a geodesic of length 2−n .

Since the diameter, in the Euclidean metric, of 2-
simplices of an r-times-repeated barycentric subdivided
equilateral triangle is bounded by (2/3)r , ∪∞

n=0∂Bn (T0)
is dense in T0 with respect to the Euclidean topology (see
[Hatcher 02, Section 2.1]). Thus d∞ can be extended to
T0 by continuity.

Next we note that with the metric d∞, T0 is self-
similar in that if T = [a0 , a1 , a2 ] is a 2-simplex of Bn (T0),
then the map of simplices f sending vi to ai and ex-
tended by linearity is a homeomorphism with d∞(x, y) =
2−nd∞(f−1(x), f−1(y)).

To prove (2), we note that it is enough to show that
for x a corner of T0 and y a vertex of Bn (T0) on the
side of T0 opposite x, d∞(x, y) = 1. This is sufficient
because of self-similarity and because such vertices
become dense in the side of T0 that is opposite x. Any
such y can be connected to a barycenter of a 2-simplex
of Bn−1(T0)—call this barycenter xn−1—by an edge of
length 2−n . In turn, xn−1 can be connected to xn−2 ,
a barycenter of a 2-simplex of Bn−2(T0), by an edge
of length 2−n . In turn, xn−2 can be connected to a
barycenter of a 2-simplex of Bn−3(T0), called xn−3 , by
a path of length 2−n−1 . Proceeding by induction, we get
that x can be connected to y by a path of length

2−1 + 2−2 + · · · + 2−n+1 + 2−n + 2−n = 1.

This is precisely d∞(x, y), because it can be shown
that any path from x to y on ∂Bn (T0) has to pass
through at least 2n − 1 vertices. This argument implies,
in particular, that the diameter of T0 in the metric
d∞ is equal to 1, and so the metric is finite even when
continued from ∪∞

n=0∂Bn (T0) to T0 .
The same kind of argument also proves (3). If y is a

vertex of Bn (T0), then it is a vertex of Bn+k (T0) for all
k � 0, and the paths described above differ depending
on our choice of n and k. It is then easy to construct
infinitely many geodesics with the same length between
arbitrary distinct points of T0 .
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To prove (1), we use the insight into the properties of
d∞ described above. In particular, the d∞ ball of radius
2−n centered at x, a vertex of Bn (T0), is contained in
the union of all 2-simplices of Bn (T0) that contain x as
a vertex. The union of these triangles clearly contains
a Euclidean open set containing x, and is contained
in the Euclidean ball around x of radius (2/3)n . Since
∪∞
n=1Bn (T0) is dense in both metrics, this proves that

the metrics are equivalent in the sense that they induce
the same topology. This proves (1), and has the added
bonus of proving that T0 is compact with respect to d∞,
and thus d∞ is complete.

The compactness of T0 with respect to d∞ proves
(4), because T0 is the union of the six contraction maps
from T0 onto each 2-simplex of B1(T0), and so it is a
self-similar structure (see the next section). Each of
these maps has contraction ratio 1/2, and thus using
a calculation found in [Edgar 08], one discovers that
the self-similarity and Hausdorff dimension of T0 is
log 6/ log 2, which proves (5).

3. SELF-SIMILAR STRUCTURES AND THE STRICHARZ
HEXACARPET

First we introduce some notation that we will use. We
set X = {0, 1, . . . , N − 1}, called an alphabet, and

Xn = {x1x2 . . . xn | xi ∈ X}
will be the set of words of length n. Also, we take

X∗ =
∞⋃
n=0

Xn and Σ =
∞∏
i=1

X .

Naturally, the set X has the discrete topology, and Σ is
given the product topology (i.e., the topology whose basis
is sets of the form

∏∞
i=1 Ai such that Ai = X for i ≥M

for some M). There is even a natural metric on Σ, defined
below.

Proposition 3.1. Fix a number r ∈ (0, 1). For w =
w1w2 . . . and v = v1v2 . . . in Σ, we define δr (w, v) =
rn , where n = min {� : w� �= v�} with the convention that
δr (w,w) = 0. Then δr is a metric on Σ. Additionally,
the maps σi(w) = iw for i ∈ X are contractions with Lip-
schitz constant r.

This is proven as [Kigami 01, Theorem 1.2.2]. The
work [Kigami 01] introduces the the theory of self-similar
structures and is developed in the context of contractions
on metric spaces. We also use the definition of self-similar
structure set forth in the above paper. In the rest of this

section, we shall take δ = δ1/2 to be the metric that makes
σi contractions with Lipschitz constants 1/2.

Definition 3.2. Let K be a compact metrizable space,
and let X be a finite indexing set for Fi : K → K con-
tinuous injections such that K = ∪i∈XFi(K). We call the
triplet L = (K,X, {Fi}i∈X) a self-similar structure on K

if there is a continuous surjection π : Σ → K such that
the relation Fi ◦ π = π ◦ σi , where σi(w) = iw, holds for
all w ∈ X∗.

We define the nth-level cells of K, Kw = Fw (K),
for w = w1w2 . . . wn ∈ Xn , where Fw = Fw 1 ◦ Fw 2 ◦ · · · ◦
Fwn

. In particular, if K is some quotient space of Σ,
where π is the quotient map where the σi are con-
stant on the fibers of π for all i ∈ X, then we can define
Fi = π ◦ σi ◦ π−1 , creating a self-similar structure. In this
way, we shall define a fractal.

We define the equivalence relation ∼ by the following
relations: Let X = {0, 1, . . . , 5}, where x is any element in
X∗ and v ∈ {0, 5}ω . Suppose i, j ∈ X and j = i+ 1 mod 6.
Then if i is odd,

xi3v ∼ xj3v and xi4v ∼ xj4v. ( 3–1)

If i is even (j is still congruent to i+ 1 modulo 6), then

xi1v ∼ xj1v and xi2v ∼ xj2v. ( 3–2)

We define K := Σ/ ∼.
We may also define K in an alternative way, which we

shall call K̃. The equivalence relation on K̃ is defined by

xiy ∼ xjz

for x ∈ X∗, i, j ∈ X, and z, y ∈ Σ, where

j = i+ 1 mod 6

and if i is odd, then

yk = i+ 2 or i+ 3 mod 6, ( 3–3)

zk =

{
i− 1 mod 6 if yk = i+ 2 mod 6,

i− 2 mod 6 if yk = i+ 3 mod 6,

and if i is even, then

yk = i+ 1 or i+ 2 mod 6, ( 3–4)

zk =

{
i if yk = i+ 1 mod 6,

i− 1 mod 6 if yk = i+ 2 mod 6.

Proposition 3.3. The space (K,X, {σi}) is a self-similar
structure, where σi : K → K is defined as follows: if π :
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FIGURE 2. G2 generated by (3–1), (3–2) on left, and (3–3), (3–4) on right.

Σ → K is the projection associated with the equivalence
relation ∼, then σi(π(x)) = π(σi(x)).

Proof. Since x ∼ y implies that σi(x) ∼ σi(y) for all
x, y ∈ Σ and i ∈ X (this can be seen in the definition of
∼), then σi : K → K is well defined. The only thing left
to check is that K is metrizable. This follows because we
can define a metric δ on K by

δ([x], [y]) = inf
x∈[x],y∈[y ]

{δr (x, y)} .

This metric is well defined because the equivalence classes
of ∼ contain at most two elements.

Proposition 3.4. The equivalences defined in (3–1), (3–2),
and (3–3), (3–4) provide two definitions of K that are
equivalent. (See Figure 2.)

Proof. We show that there is a self-homeomorphism
f : Σ → Σ that transforms the equivalence in (3–1) and
(3–2) into the equivalence (3–3) and (3–4). This map f

is given by f(u) = v, where

v1 := u1 and vm := (−1)αm −1 um + αm−1 ,

where αk =
∑k

j=1 uj . This map is continuous, since how
f acts on the nth letter is independent of any future
letters, δ(x, y) ≤ (f(x), f(y)). In fact, since f acts bijec-
tively on Xn (which is easy to check by induction), this
means that f is an isometry with respect to δr and is
thus a bijection as a map of Σ to itself. Moreover, f also
descends to an isometry with respect to δ, but to see

this, we need to know that f preserves the equivalence
relation, which we will show shortly.

Another way of seeing that f is bijective comes from
that fact that we can define an inverse f−1(v) = u, where

u1 := v1 and um := (−1)αm −1 (vm − αm−1).

Showing that the two equivalences produce identical quo-
tient spaces is a matter of showing that f and f−1 pre-
serve equivalence, i.e., u ∼ v with respect to (3–1), (3–2)
implies that f(u) ∼ f(v) with respect to (3–3), (3–4).
This involves checking a few cases, and we provide an
example of such a case.

For the remainder of the proof, all equalities are as-
sumed to be modulo 6. Now suppose that u(1) is of the
form xi3w and u(2) is of the form xj3w, where j = i+ 1
and i is odd, as in (3–1), and we assume that i and
j are in the nth position. Finally, we assume, letting
α

(1)
k =

∑k
l=1 u

(l)
l and α(2)

k =
∑k

l=1 u
(2)
l , that α(1)

n−1 = α
(2)
n−1

is odd. We need to vary all of the above for various cases
of equivalence.

Let v(l) = f(u(l)) for l = 1, 2. Then for k < n, v(1)
k =

v
(2)
k and v

(1)
n = v

(2)
n − 1. Furthermore, v(2)

n and α
(2)
n are

odd, so v(2)
n+1 = v

(2)
n + 3, and

v
(1)
n+1 = v(1)

n + 3 = v
(2)
n−1 − (j − 1) + 3 = v(2)

n + 4

= v(2)
n − 2 mod 6.

This is consistent with (3–3).
For k > n+ 1, if we have u(1)

k = u
(2)
k = 0, then v

(1)
k =

u
(1)
k−1 and v(2)

k = v
(2)
k−1 . The first instance (if it happens at

all) where u(1)
k = u

(2)
k = 5, α(2)

k−1 = α
(2)
n + 3 will be odd,
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so v
(2)
k = v

(2)
n + 2 and α

(1)
k−1 = α

(1)
n + 3 will be even, so

v
(1)
k = v

(2)
n − 1. Any further instance where u(1)

k = u
(2)
k =

5 will alternately add or subtract 1 and any instance
where u(1)

k = u
(2)
k = 0 will add nothing. In this way, we

have v
(1)
k = v

(2)
n + 2 or v

(2)
n + 3 with v

(1)
k = v

(2)
n − 1 or

v
(2)
n − 2 respectively. This shows that v(1) ∼ v(2) in the

sense of (3–3). All cases can be checked in this way.

We define the shift map σ : Σ → Σ by σ(x1x2x3 . . . ) =
x2x3 . . . . In this way, the concatenation maps σi can be
seen as branches of the inverse of σ.

Lemma 3.5. If we use the definition of K from (3–1) and
(3–2), then the shift map σ descends to a well-defined
map from K to K, which we also call σ.

The proof of the above is a matter of showing, for
x, y ∈ Σ, that x ∼ y if and only if σ(x) ∼ σ(y). This is
easily verified to be true in the equivalences in (3–1) and
(3–2).

We turn to topological properties of the space. A nat-
ural question is to ask what the intersection of two neigh-
boring cells looks like.

Proposition 3.6. If i, j ∈ X and i �= j, then either σi(K) ∩
σj (K) is empty or homeomorphic to the middle-third
Cantor set.

Proof. The set σi(K) consists of infinite words beginning
with the letter i, and the intersection with σj (K) is the
set of words that begin with an i that are equivalent
to the words that start with a j. If i �= j ± 1, then this
intersection is empty. Since there is no loss in generality,
we assume that j = i+ 1; if we further assume that i is
odd, then (3–1) tells us that σi(K) ∩ σj (K) is given by
the words

i3v ∼ j3v or i4v ∼ j4v,

where v ∈ Σ is an infinite word consisting of 0’s and 5’s.
By ignoring the leading i or j, this set is naturally home-
omorphic to the shift space of {0, 1}, which is in turn
homeomorphic to the middle-third Cantor set (see, for
example, [Kigami 01]). The case in which i is even fol-
lows the exact same argument.

If we examine planar realizations of the approximating
graphs, we see a large “hole” in the center. We see that
this hole consists of truncations of the elements of the set
C consisting of words of the form ijv, where i, j ∈ X, i is

any letter, j is a 3 or 2, and v ∈ Σ is a word consisting
of 0’s and 1’s.

Proposition 3.7. The set C is homeomorphic to the circle.

Proof. If we consider C ∩ σi(K) (the subset starting
in i), then we have that i210 ∼ i310 and ix3010 ∼ ix3110
for every finite word x. The shift space of {0, 1} with
x010 ∼ x110 is homeomorphic to the unit interval (this
is seen in the limit space of the Grigorchuk group; see
[Nekrashevych 05, Section 3.5.3]).

In this homeomorphism, the endpoints of the interval
are 0 and 10. So we have two copies of the unit interval
corresponding to the sets starting with i2 and i3, which
are identified at one of the endpoints. This shows that
each set C ∩ σi(K) is itself isomorphic to the interval.
These intervals are in turn identified at their endpoints,
i20 ∼ k20 and i30 ∼ �30, where k = i± 1 and � = i∓ 1,
depending on whether i is odd or even.

From the results above we obtain, in particular, the
following theorem.

Theorem 3.8. The self-similar set K defined above and
called the Stichartz hexacarpet is an infinitely ramified
fractal not homeomorphic to T0 .

Proof. This follows by Proposition 3.6. Since K can be
disconnected into arbitrarily small pieces by removing
a topological Cantor set, it must be topologically one-
dimensional. On the other hand, T0 is topologically two-
dimensional, and thus the spaces cannot be homeomor-
phic. The general theory of topological dimension can
be found in [Engelking 78] (in particular see Definitions
1.1.1 and 1.6.7, Theorems 1.4.5, 4.1.4, and 4.1.5).

4. GRAPH APPROXIMATIONS AND ISOMORPHISM

In this section we show that the self-similar structure
from the previous section can be approximated by graphs
constructed from repeated barycentric subdivision of a 2-
simplex.

We make this precise by constructing approximating
graphs to the hexacarpet K. Taking X = {0, 1, . . . , 5}
as in the previous section, we define the graph Gn =
(Xn ,En ) with Xn as the set of vertices. We define the edge
relations En , where two words u and w are connected if
there are x, y ∈ Σ such that the concatenated words wx
satisfy wx ∼ uy according to the equivalence defining K,
as in (3–1) and (3–2). We can alternatively define the
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set of vertices to be the set of nth-level cells of K, where
(Kw ,Ku ) are in the edge relation ifKw ∩Ku �= �. In this
way, we can think of the vertices of Gn as being nth-level
cells of K.

We now exhibit partitions of the vertex set Xn and
edge set En that will be useful in discussing edge rela-
tions. Let W1 = {x1x2 . . . xn | xi ∈ {0, 5} , 2 ≤ i ≤ n} be
the set of words of length n whose second through last
letters are 0’s or 5’s. For each x = x1x2 . . . xn ∈ Xn \ W1 ,
there is at least one i ∈ {2, 3, . . . , n} such that xi /∈ {0, 5}.
So we may define the function l : Xn \ W1 → {2, 3, . . . , n}
by

l : x1x2 . . . xn → max {2 ≤ i ≤ n | xi /∈ {0, 5}} .
Now for 2 ≤ k ≤ n, define

Wk = l−1 (k)
= {x1x2 . . . xn | xk /∈ {0, 5} , xi ∈ {0, 5} , k < i ≤ n} .

These are the words that end in exactly (n− k) 0’s
and 5’s.

From the equivalence relation ∼ defined on Σ we re-
cover the following edge relations on Xn by truncating
the relations after the nth coordinate:

F1 =
{{xi, xj} | x ∈ Xn−1 , j = i+ 1 mod 6

}
,

Fk =
{
xiαv, xjαv} | x ∈ Xk−2 , j = i+ 1 mod 6,

α = 3 or 4, v ∈ {0, 5}n−k
}
, for 2 ≤ k ≤ n.

We simplify the edge relations by writing
{xiαv, xjαv}. Here α ∈ {3, 4} is the same in both com-
ponents of the relation when i is odd, j = i+ 1 mod 6.
We take α ∈ {1, 2} to be the same on both sides when i

is even, j = i+ 1 mod 6.
We now collect some information about the cardinal-

ities of the vertex and edge sets.

Proposition 4.1. The following are apparent from our con-
struction:

(1) |W1 | = 3 · 2n and |Wk | = 6k−1 · 4 · 2n−k=3k−1 · 2n+1 ,
for 2 ≤ k ≤ n.

(2) |F1 | = 6n and |Fk | = 6k−1 · 2n−k+1 , for 2 ≤ k ≤ n.

(3) |En | =
∑n

k=1 |Fk | = 2n−1 · (3n+1 − 3).

Proposition 4.2. Every vertex in W1 has degree two, with
both edge relations in F1 . For k ≥ 2, every vertex in Wk

has degree three, with two edge relations in F1 and the
third in Fk .

Proof. First we note that each vertex x = x1x2 . . . xn
has exactly two edge relations in F1 , namely
{x1x2 . . . xn−1y, x} and {x, x1x2 . . . xn−1z}, where
y = xn − 1 mod 6 and z = xn + 1 mod 6. In addition,
for all 2 ≤ k ≤ n, each vertex in Wk has one additional
edge relation in Fk . By construction, the vertices in W1

do not have any edge relations in Fk for all k �= 1.

We now collect our information on the graph approx-
imation of the hexacarpet and the graph constructed us-
ing repeated barycentric subdivision of the 2-simplex in
order to establish an isomorphism between them. We be-
gin by introducing some information that will be useful
in the proof of Theorem 4.7 at the end of this section.

Proposition 4.3. There exists a labeling of Bn (T0) with
the strings in Xn that establishes a bijection between the
two sets.

Proof. Label B(T0) with the elements in the alphabet
X = {0, 1, 2, 3, 4, 5} cyclically so that we have the edge ad-
jacencies {1, 2} , {3, 4} , {5, 0} and the vertex adjacencies
{0, 1} , {2, 3} , {4, 5}. We call this construction a standard
labeling of the offspring of T0 with the letters of the al-
phabet X. We note that there are six standard labelings
of the offspring of T0 , and each is uniquely determined
by labeling any one child.

We choose an arbitrary child of T0 to be labeled 0
and construct a standard labeling of the remaining chil-
dren. Thus we have labeled the triangles of B(T0) bijec-
tively with the words in X1 via the standard labeling map
Φ1 : B(T0) → X. For n ≥ 2, we shall define an inductive
labeling of Bn (T0) with the words in Xn and establish
the bijection Φn : Bn (T0) → Xn .

By assumption, for each triangle t ∈ Bn−1(T0) we have
an associated unique word x = x1x2 . . . xn−1 in Xn−1 (i.e.,
Φn−1 : Bn−1(T0) → Xn−1 is a bijection). We will label
the offspring of t with the words x0, x1, x2, x3, x4, x5
as follows (where x0 denotes the word of length n,
x1x2 . . . xn−10 ∈ Xn ).

Let T be the parent of t. From above, we know that
exactly one child of t is special with respect to T . We
assign this triangle the word x0 and label the other chil-
dren of t according to the standard labeling fixed by x0.
Therefore, to each element of Bn (T0) we have associated
a word of Xn .

To show that this is an injective labeling, assume that
there are two level-n offspring s and t of T0 that have
the same label, say x1x2 . . . xn ∈ Xn . By the induction
hypothesis, there is exactly one triangle T ∈ Bn−1(T0)
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with the labeling x1x2 . . . xn−1 . This means that s and t
are both children of T that have the same label xn by the
standard labeling of the children of T . Thus, s and t are
the same triangle. So we have that Φn is an injective map
between the finite sets Bn (T0) and Xn . Since |Bn (T0)| =
|Xn | = 6n , we see that Φn is a bijection, as desired.

Definition 4.4. For every triangle s ∈ Bn (T0) there exists
a unique chain of ancestors s = sn ⊂ sn−1 ⊂ · · · ⊂ s1 ⊂
s0 = T0 , called the family tree of s.

Proposition 4.5. If s, t ∈ Bn (T ) and s is adjacent to t,
then there is some maximal 0 ≤ m ≤ n such that sm = tm
in the family trees for s and t (i.e., s and t are both level-�
offspring of sm = tm .) In particular, as k-level triangles,
sk and tk are equal for all 0 ≤ k ≤ m and are adjacent
for all m < k ≤ n.

Proof. For every pair of adjacent s and t, we have that
s0 = t0 = T0 , so this assignment is well defined. Since
each triangle has a unique parent, if sm = tm for some
0 ≤ m ≤ n, then sm−1 = tm−1 . Thus, we have that sk and
tk are equal for all 0 ≤ k ≤ m. To see that sk and tk are
adjacent for all m < k ≤ n, we note that if sk ⊂ sk−1 and
tk ⊂ tk−1 are adjacent, then sk−1 and tk−1 are either ad-
jacent or equal. For all n ≥ k ≥ m+ 2 we have that sk−1

and tk−1 are not equal by assumption. Also by assump-
tion, sn and tn are adjacent. Therefore, by induction, we
see that the final statement of the proposition holds.

Lemma 4.6. Let s and t be adjacent level-n offspring of
T0 with s ⊂ S ⊂ S ′ and t ⊂ T ⊂ T ′. Then exactly one of
the following is true of the labeling of s and t:

(1) If S = T has the label x ∈ Xn−1 , then either s has
label xi and t has label xj for some i ∈ X, j = i+
1 mod 6, or t has label xi and s has label xj. So the
addresses of s and t differ only in their last letter by
1 mod 6.

(2) If S �= T and S ′ = T ′ has the labeling x ∈ Xn−2 , then
s is labeled xiα and t is labeled xjα. If i is even,
then α is either 1 or 2 (in the addresses of both s
and t), and if i is odd, then α is either 3 or 4 (in
both addresses).

(3) If S �= T and S ′ �= T ′, then the addresses for s and t
end in the same letter, which is either 0 or 5.

Proof. The proof of (1) is immediate from the standard
labeling procedure. We have forced the children of every

triangle to observe the adjacencies {i, j} for all j = i+
1 mod 6.

For (2), we see that S and T satisfy the hypothesis
of (1). Therefore, without loss of generality, we may as-
sume S = xi and T = xj for some j = i+ 1 mod 6. Now
i is either even or odd. If i is even, then we have that S
and T are vertex-adjacent siblings (this was also forced
by our construction). Thus their common edge is of the
form u = [vk , b], k ∈ {0, 1, 2}, where vk (respectively b)
is a vertex (respectively the barycenter) of S ′ = T ′. By
the standard labeling of the offspring of S and T , we
see that the labels of s and t end in either 1 or 2. As-
sume for the sake of obtaining a contradiction that the
last coordinates of s and t are different. Thus, without
loss of generality, we have that s = xi1 and t = xj2. We
see that s = [vk , bS , bu ] and t = [b, bT , bu ], where bu is the
barycenter of the segment u, and bS (respectively bT ) is
the barycenter of S (respectively T ). Since s and t have
only one vertex in common, it is impossible for s and t to
be adjacent. Now we see that the address for s is xiα and
the address for t is xjα, where α ∈ {1, 2} is the same in
both addresses. If i is odd, then S and T are side-adjacent
siblings, and the proof follows as in the case that i is even.

For (3), we know that S ′ and T ′ are adjacent, so with-
out loss of generality, let their common side be [v0 , v1 ].
After BCS, we see that S and T must have either [v0 , b01 ]
or [v1 , b01 ] as their common side. Again without loss of
generality, assume that the common side of S and T is
[v0 , b01 ]. Subdividing further, we see that the common
side of s and t must be either [v0 ,m] or [m, b01 ], where
m is the barycenter of [v0 , b01 ]. Since [v0 ,m] ⊂ [v0 , v1 ], it
follows that if [v0 ,m] is a side of s and t, we see that
s and t are each special with respect to their respective
grandparents, S ′ and T ′. Thus, the last letter in the ad-
dresses of both s and t must be 0 by construction. On
the other hand, if [m, b01 ] is the common side of s and t,
we see that s and t are both side-adjacent to their sib-
lings who received a label of 0. Thus, the last letter in the
addresses of s and t must be 5 by the standard labeling
construction.

We are now in a position to define the desired isomor-
phism of graphs.

Theorem 4.7. Let Bn (T0) be the vertex set of a graph
in which two level-n offspring of T0 are connected by an
edge if and only if they are adjacent as level-n offspring of
T0 . This graph is isomorphic to Gn with the isomorphism
given by Proposition 4.3.
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Proof. We already have that Φn : Bn (T0) → Xn is a bi-
jection between the vertex sets of the two graphs. It re-
mains to show that Φn preserves the adjacency struc-
ture of the two graphs. Most of the hard work was
done in Lemma 4.6. We must now show in particu-
lar that if s, t ∈ Bn (T0) are adjacent triangles, then
Φn (s) and Φn (t) satisfy an edge relation in Fk for some
1 ≤ k ≤ n.

Let s = sn ⊂ sn−1 ⊂ · · · ⊂ s1 ⊂ s0 = T0 and t = tn ⊂
tn−1 ⊂ · · · ⊂ t1 ⊂ t0 = T0 be the family trees for s and
t, respectively, and let m be maximal with respect
to sm = tm . Assume Φm (sm ) = Φm (tm ) = x1x2 . . . xm ∈
Xm . First suppose that m = n− 1 and Φn−1(sn−1) =
Φn−1(tn−1) = x1x2 . . . xn−1 ∈ Xn−1 . Then by part (1) of
Lemma 4.6, without loss of generality we have Φn (s) =
x1x2 . . . xn−1i and Φn (t) = x1x2 . . . xn−1j, where j = i+
1 mod 6. Thus {Φn (s),Φn (t)} ∈ F1 , as desired.

Now suppose that m = n− 2 and Φn−2(sn−2) =
Φn−2(sn−2) = x ∈ Xn−2 . We apply part (1) of Lemma 4.6
to sn−1 and tn−1 to obtain Φn−1(sn−1) = xi and
Φn−1(tn−1) = xj, where j = i+ 1 mod 6 and i is ei-
ther even or odd. We apply part (2) of Lemma 4.6
to sn and tn to see that Φn (s) = x1x2 . . . xn−2iα and
Φn (t) = x1x2 . . . xn−2jα, where j = i+ 1 mod 6, α is the
same in the addresses of both s and t, and α is as above.
Thus, {Φn (s),Φn (t))} ∈ Fn , as desired.

Finally, suppose that m ≤ n− 3. From parts (1) and
(2) of Lemma 4.6, we know that Φm+2(sm+2) = xiα

and Φm+2(tm+2) = xjα, where Φm (sm ) = Φm (tm ) = x ∈
Xm , j = i+ 1 mod 6, and α is as above. For 3 ≤ k ≤
n−m, we see that sm+k and tm+k satisfy the conditions
of part (3) of Lemma 4.6. Thus, the last label in the
addresses of both sm+k and tm+k is either 0 or 5. Induc-
tively, we have Φn (s) = xiαv and Φn (t) = xjαv, where

j = i+ 1 mod 6, α is as above, and v ∈ {0, 5}n−m−2 . Thus
{Φn (s),Φn (t))} ∈ Fm+2, as desired.

We now see that to each edge in Bn (T0) there corre-
sponds an edge in En . We verify from Propositions 2.5
and 4.1 that the number of edges in each graph is the
same. Therefore, we have an isomorphism of graphs given
by Φn .

5. GRAPH DISTANCES

Each Gn inherits a natural planar embedding from
Bn (T0); see Figure 3. Two interesting features of these
embeddings are their central hole and outer border. Fig-
ure 4, generated by the computer program Mathemat-
ica, shows a deformed embedding, accentuating these fea-
tures. In this section we use the isomorphism established
in Theorem 4.7 to derive formulas for the length of paths
that follow the outer border and the central hole. We call
these paths outer and inner circumference paths.

Definition 5.1. Let Yn denote the collection of level-n
boundary triangles of T0 defined in Definition 2.1. De-
fine the extended level-n boundary triangles of T0 as the
set of all t ∈ Bn (T0) such that t intersects ∂T0 in exactly
one point. We denote the collection of extended level-n
boundary triangles of T0 by Zn . Define the outer circum-
ference path of T0 , Outn , to be the cycle that crosses
each triangle in Yn and Zn . Define the inner circumfer-
ence path of T0 , Innn , to be the cycle that crosses each
triangle containing the barycenter b of T0 as a vertex.

Proposition 5.2. We have the following formulas for the
lengths of Outn and Innn :

|Outn | = 3n · 2n , | Innn | = 3 · 2n .
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FIGURE 3. The labeling B2 (T0 ) (left) and the graph isomorphism to G2 .
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n R(Gn+1 ) |PInnn+1 | D(Gn ) Dadjn
1 8 5 3 0
2 19 9 10 0
3 44 17 28 1
4 99 33 68 2
5 220 65 160 5
6 483 129 364 10
7 1052 257 816 21
8 2275 513 1804 42
...

...
...

...
...

n R(Gn+1 ) 2n+1 + 1 D(Gn ) 1
6 (2n − (−1)n − 3)

TABLE 1. Observed relation between R(Gn+1 ), |PInnn+1 |,
and D(Gn ): R(Gn+1 ) = |PInnn+1 | + D(Gn ) − Dadjn .

Proof. We count inductively the lengths of the outer cir-
cumference of T0 and inner circumference of T0 . The
statements about Gn follow from the isomorphism. When
we subdivide any triangle, exactly two of its children
contain any one vertex of the parent. In particular, we
have that for each level-n triangle in Zn , exactly two of
its children are in Zn+1. Similarly, for each level-n tri-
angle containing b, exactly two of its children contain
b. Since | Inn1 | = 6, it follows inductively that | Innn | =
6 · 2n−1 = 3 · 2n .

Note that when we subdivide any triangle in Yn , ex-
actly two of its children are in Yn+1 and exactly two
more of its children are in Zn+1. From Proposition 2.5,
we know that |Yn | = 6 · 2n−1 = 3 · 2n . Thus

|Zn | = 2|Yn−1 | + 2|Zn−1 | =
n−1∑
j=1

2j |Yj−1 | = (n− 1)3 · 2n .

n D(Gn ) 2R(Gn ) Radjn
1 3 6 3
2 10 16 6
3 28 38 10
4 68 88 20
5 160 198 38
6 364 440 76
7 816 966 150
8 1804 2104 300
9 3952 4550 598
...

...
...

...
n D(Gn ) 2R(Gn ) 1

6 (7 · 2n + 2(−1)n + 6)

TABLE 2. Observed relation between D(Gn ) and R(Gn ):
D(Gn ) = 2R(Gn ) − Radjn .

So |Outn | = |Yn | + |Zn | = 3n · 2n .

Next we recall some standard definitions regarding
distance on an arbitrary finite graph G = (V,E); see
[Diestel 10, Foulds 92] for references.

Definition 5.3. The graph or geodesic distance d(x, y) be-
tween two vertices x, y ∈ V is the length of the shortest
edge path connecting them. The eccentricity E(x) of a
vertex x ∈ V is defined as E(x) := max{d(x, y) : y ∈ V }.
Now the diameter and radius of a finite graph G can
be defined as D(G) := max{E(x) : x ∈ V } and R(G) :=
min{E(x) : x ∈ V }, respectively. A vertex x ∈ V is called
central if E(x) = R(G) and peripheral if E(x) = D(G). If
the length of the shortest edge path connecting a central
vertex to another vertex equals the radius of the graph,
then we call that path a radius path. A diameter path is

FIGURE 4. Graph G4 , with typical radius (left) and diameter (right) paths highlighted (color figure available online).
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defined analogously. Note that a radius or diameter path
connecting two vertices need not be unique.

Using Mathematica’s graph utilities package, we were
able to compute the radius and diameter of Gn for 1 ≤
n ≤ 9 and to plot radius and diameter paths. See Figure 4
for some examples. On observing these paths, we noticed
that the typical radius path of Gn+1 is composed of a
partial path along Innn+1 and an approximate diameter
path of Gn . This suggests the equation

R(Gn+1) = |PInnn+1 | + D(Gn ) − Dadjn , (5−1)

where |PInnn+1 | is the length of the partial path along
Innn+1 and Dadjn is the adjustment needed for agree-

ment with our data. Similarly, the well-known fact that
R(G) ≤ D(G) ≤ 2R(G) for any finite graph G suggests
the equation

D(Gn ) = 2R(Gn ) − Radjn , (5−2)

where Radjn is the adjustment needed for agreement with
our data. Both adjustments and |PInnn+1 | appear to
obey simple recurrence relations, see Tables 1 and 2. Solv-
ing these relations using standard techniques gives the
likely formulas

|PInnn+1 | = 2n+1 + 1, (5−3)

Dadjn =
1
6
(2n − (−1)n − 3), (5−4)

FIGURE 5. Two-dimensional eigenfunction coordinates
(
ϕi (x), ϕj (x)

)
of the hexacarpet (color figure available online).
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Radjn =
1
6
(7 · 2n + 2(−1)n + 6). (5−5)

Combining equations (5−1) through (5−5) yields the re-
currence relation

R(Gn+1) = 2R(Gn ) +
1
6

(
2n+2 − (−1)n + 3

)
. (5−6)

Solving this recurrence relation results in explicit formu-
las for R(Gn ) and D(Gn ).

Conjecture 5.4. We conjecture the following formulas for
the radius and diameter of Gn :

R(Gn ) =
1
18

(2n+1(13 + 3n) + (−1)n − 9),

D(Gn ) =
1
9
(2n−1(31 + 12n) + 2(−1)n−1 − 18).

Remark 5.5. If conjecture 5.4 is true, then the following
are easily seen to hold:

1. As n→ ∞, | Innn | = o(D(Gn )) yet |Outn | =
O(D(Gn )).

2. limn→∞
|Outn |
D(Gn )

=
9
2
.

3. R(Gn+2) = 4R(Gn+1) − 4R(Gn ) − 1
2
(1 −

(−1)n ).

FIGURE 6. Three-dimensional eigenfunction coordinates of the hexacarpet (color figure available online).
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λj n = 7 n = 8
1 0.0000 0.0000
2 1.0000 1.0000
3 1.0000 1.0000
4 3.2798 3.2798
5 3.2798 3.2798
6 5.2033 5.2032
7 7.8389 7.8386
8 7.8389 7.8386
9 8.9141 8.9139

10 8.9141 8.9139
11 9.4951 9.4950
12 9.4952 9.4950
13 17.5332 17.5326
14 17.5332 17.5327
15 17.6373 17.6366
16 17.6373 17.6366
17 19.8610 19.8607
18 21.7893 21.7882
19 25.7111 25.7089
20 25.7112 25.7091

TABLE 3. Hexacarpet renormalized eigenvalues at levels n = 7
and n = 8.

4. D(Gn+2) = 4D(Gn+1) − 4D(Gn ) − 2(1 +
(−1)n ).

6. NUMERICAL DATA, CONCLUDING REMARKS,
AND CONJECTURES

From Theorem 4.7, the level-n hexacarpet Gn and the
nth barycentric offspring of a triangle are isomorphic.
The following results assume that we are working with
vertices from Gn , but without loss of generality, we can
assume they are cells of Bn (T0).

We look to solve the eigenvalue on the hexacarpet
on Gn ,

−Δnu(x) = λu(x), (6−1)

at every vertex in Gn . For a finite graph Gn , the graph
Laplacian −Δnu(x) is given as

−Δnu(x) =
∑
x∼y
n

(u(x) − u(y)) (6−2)

for every vertex that neighbors x on Gn . Thus for each
of the 6n vertices x in Gn , there is a linear equation
for −Δnu(x); these equations can be stored in a 6n × 6n

matrix. The eigenvalues and eigenvectors of these graph
Laplacian matrices are calculated using the eigs com-
mand in MATLAB. Table 3 lists the first twenty eigen-
values for the level-n hexacarpet for n = 7, 8.

Using our data, we are able to plot the hexacarpet
in eigenvalue coordinates. This is analogous to harmonic
coordinates, which are used extensively in the literature
on fractals; see [Kajino 12, Kigami 08, Teplyaev 08] and
references therein. Given two eigenfunctions ϕ,ψ defined
on Gn , we plot the ordered pair (ϕ(x), ψ(x)) for each x ∈
Gn . Figure 5 shows the plots of (ϕi, ϕj ) for 2 ≤ i < j ≤ 6
for level n = 7. The first eigenfunction ϕ1 is a constant
function at each level and is excluded. Figure 6 shows
three-dimensional plots (ϕi, ϕj , ϕk ) for some choices of
i, j, k. These plots demonstrate that the geometry of the
hexacarpet is significantly different from the geometry
of the triangle, on which the hexacarpet construction is
based.

In [Berry et al. 09], it is believed that there is a renor-
malization factor τ such that

λnj = τλn+1
j , (6−3)

where λnj represents the jth eigenvalue of the level-n
graph Laplacian. According to [Berry et al. 09], this co-
efficient τ is the Laplacian scaling factor (it is denoted
by R in [Berry et al. 09]). This scaling factor satisfies
τ = Nρ, where N is the factor that describes how Xn

grows at each level n, or alternatively, N can also be
thought of as the number of contraction maps for a car-
pet, and ρ is the resistance scaling coefficient (see, for
instance, [Barlow 98, Kigami 01, Boyle et al. 07] and ref-
erences therein). In the case of the hexacarpet, N = 6
and ρ is not known (in the present state of knowledge
it is not possible to compute ρ theoretically for the
hexacarpet).

Since the renormalized ratios of eigenvalues seems to
converge, as seen in Table 4, we venture Conjecture 1.1
parts (1) and (2), considering the possibility that a Lapla-
cian and its corresponding diffusion process exist on the
limit object, the hexacarpet. The best estimate for ρ will
come from our estimates for the lowest nonzero eigen-
value, thus giving us an estimate of ρ ≈ 1.3064. The hex-
acarpet has six contraction mappings, and the natural
contraction ratio from Section 2 is 1/2. With τ = 6ρ,
our calculation above suggests that the spectral dimen-
sion is 2 log 6/ log τ ≈ 1.74. Part (3) of Conjecture 1.1
comes from the fact that the hexacarpet has well-defined
reflection symmetries, which make it plausible to ap-
ply the methods of [Barlow et al. 10, Barlow et al. 06].
Moreover, we expect logarithmic corrections because the
approximating graphs have diameters that seem to grow
on the order of n6n rather than 6n , as in Proposi-
tion 5.2 and Conjecture 5.4. There is an extensive litera-
ture on heat kernel estimates and their relation to func-
tional inequalities (see [Barlow et al. 10, Barlow et al.
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Level n
ρ 1 2 3 4 5 6 7
1
2 1.2801 1.3086 1.3085 1.3069 1.3067 1.3065 1.3064
3 1.2801 1.3086 1.3079 1.3075 1.3066 1.3065 1.3064
4 1.1761 1.3011 1.3105 1.3064 1.3068 1.3065 1.3065
5 1.1761 1.3011 1.3089 1.3074 1.3073 1.3065 1.3065
6 1.0146 1.2732 1.3098 1.3015 1.3067 1.3065 1.3064
7 1.2801 1.3114 1.3055 1.3071 1.3066 1.3065
8 1.2801 1.3079 1.3086 1.3075 1.3067 1.3065
9 1.2542 1.3191 1.2929 1.3056 1.3065 1.3065

10 1.2542 1.3017 1.3089 1.3069 1.3066 1.3065
11 1.2461 1.3051 1.3063 1.3048 1.3065 1.3065
12 1.2461 1.3019 1.3075 1.3068 1.3066 1.3065
13 1.1969 1.6014 1.0590 1.3068 1.3066 1.3065
14 1.1969 1.2972 1.3063 1.3078 1.3066 1.3065
15 1.2026 1.3059 1.3020 1.3060 1.3066 1.3065
16 1.2026 1.2993 1.3074 1.3071 1.3067 1.3065
17 1.1640 1.3655 1.2349 1.3064 1.3066 1.3065
18 1.1755 1.4128 1.2009 1.3069 1.3067 1.3065
19 1.1761 1.5252 1.1171 1.3073 1.3068 1.3066
20 1.1761 1.2988 1.3114 1.3077 1.3068 1.3065

TABLE 4. Hexacarpet estimates for resistance coefficient ρ
given by λnj /6λ

n+1
j .

06, Grigor′yan and Telcs 01, Grigor′yan and Telcs 02,
Grigor′yan and Telcs 11, Kigami 09, Strichartz 03] and
references therein), which provides a general framework
and background for our calculations and conjectures.

The reasoning for part (4) of the conjecture is il-
lustrated in Figure 7, since gaps in the spectrum cor-
respond to flat intervals in the eigenvalue-counting
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FIGURE 7. Shape of the eigenvalue counting function
N (λ), which is the number of eigenvalues less than λ,
of the sixth-level graph for the first 500 eigenvalues. Flat
intervals correspond to the gaps in the spectrum (color
figure available online).

function. It is a worthwhile point of investigation be-
cause of [Strichartz 05, Hare et al. 12]. Finally, part (5)
of the conjecture is ventured because of recent work
on spectral zeta functions [Steinhurst and Teplyaev 11]
(see [Lapidus and van Frankenhuysen 06, Teplyaev 07]
for background).
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