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We study equivalence classes relating to the Kazhdan–Lusztig
µ(x, w) coefficients in order to help explain the scarcity of dis-
tinct values. Each class is conjectured to contain a “crosshatch”
pair. We also compute the values attained by µ(x, w) for the
permutation groups S10 and S11.

1. INTRODUCTION

The Kazhdan–Lusztig polynomials, introduced in
[Kazhdan and Lusztig 79], arose in the context of
constructing representations of the Hecke algebra
associated to a Weyl group. It was soon apparent
that these polynomials encode important infor-
mation relating to geometry and representation
theory. For example, they encode the singularities
of Schubert varieties and the multiplicities of irre-
ducibles in Verma modules [Beilinson and Bernstein 81,
Brylinski and Kashiwara 81, Kazhdan and Lusztig 79].
They are also of interest from a purely combinatorial
viewpoint (see [Björner and Brenti 05]).

We restrict our attention to the type-A case, in which
there is one Kazhdan–Lusztig polynomial Px,w (q) asso-
ciated to every pair of permutations x,w ∈ Sn . Kazh-
dan and Lusztig give a simple recurrence for these poly-
nomials in their original paper (see Section 2.2 below).
However, our combinatorial understanding of these poly-
nomials is still far from complete. For example, there
is neither a combinatorial proof that the coefficients of
Px,w (q) are nonnegative nor a closed formula for the
degree of a given polynomial. It is important to note
that a noncombinatorial proof of nonnegativity arises
from the interpretation of the coefficients of Kazhdan–
Lusztig polynomials in terms of intersection cohomology
[Kazhdan and Lusztig 80].

The µ-coefficient, µ(x,w), is defined to be the
coefficient of q(�(w )−�(x)−1)/2 in Px,w (q) (where �(w)
denotes the length of w; see Section 2.1). The reason the
above problems are still open is that µ(x,w) controls
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a correction term in Kazhdan and Lusztig’s original
recurrence; µ(x,w) is a number we know little about.
While there are known to be a few simple combinatorial
necessary conditions for µ(x,w) to be nonzero, these
conditions are by no means sufficient. In fact, there are
no nontrivial sufficient conditions known for arbitrary
x and w (however, see [Shi 08, Xi 05]). A combinatorial
rule for the value µ(x,w) would likely lead to insights
wherever Kazhdan–Lusztig polynomials arise.

A major difficulty in the study of these µ-coefficients
is that (as shown in [McLarnan and Warrington 03]) S10

is the smallest symmetric group for which µ(x,w) can
be anything other than 0 or 1. There is little overlap be-
tween what is computationally feasible and what is com-
putationally illuminating. Nonetheless, there are a num-
ber of important combinatorial results regarding these
polynomials. See the book [Björner and Brenti 05] for an
overview and the papers of Brenti (such as [Brenti 98]
and [Brenti 04]) in particular.

The organization of the paper is as follows. Section 2
provides the necessary definitions, while Section 3 out-
lines the properties of µ(x,w) from the literature that
we will be using. The results of this paper are of two
types. First, we present new data regarding the values
µ(x,w) takes; how we do this is outlined in Section 4.2.
Set M(n) = {µ(x,w) : x,w ∈ Sn} \ {0}.

Theorem 1.1. We have

� M(10) = {1, 4, 5};
� M(11) = {1, 3, 4, 5, 18, 24, 28};
� M(12) ⊇ {1, 2, 3, 4, 5, 6, 7, 8, 18, 23, 24, 25, 26, 27, 28,

158, 163}.

Particular pairs x,w realizing each of these values are
given in Table 2. The only µ-values that have already
appeared in the literature for Sn are {0, 1, 2, 3, 4, 5}.

We also offer computer code [Warrington 11] that can
quickly produce a database of all Kazhdan–Lusztig poly-
nomials in S10 ; this code is discussed in Section 4.1. There
are over one billion “extremal pairs” (x,w) in S10 for
which one might hope that µ(x,w) > 0. More than 100
million of these pairs cannot be reduced to equivalent
pairs in smaller symmetric groups. Altogether, approx-
imately one million different polynomials appear. Even
stored efficiently, this yields a gigabyte of data. The com-
parable database for S11 would be on the order of 50
times larger.

Second, we consider the question why there are so few
different values of µ(x,w). For example, in S10 there are
664 752 noncovering pairs x < w for which µ(x,w) > 0.
Yet the only nonzero values taken are 1, 4, and 5. We
explain this in Section 4.3 by showing that for S10 and
S11 , the µ-positive pairs fall into a handful of equiva-
lence classes. The µ-coefficient is constant on each class
by construction. The equivalence relation, ∼, is defined
in Section 4.3; the corresponding class of a pair (x,w) is
denoted by [[x,w]].

A class is n-minimal if it does not intersect Sm for m <

n. Pairs in n-minimal classes are also themselves referred
to as n-minimal. As a consequence of Theorem 1.1, the
numbers of 10- and 11-minimal classes are at least 2 and
4, respectively.

Theorem 1.2. The 2-minimal class [[01, 10]] is the only
class intersecting Sm for some m < 10. The numbers of
10- and 11-minimal classes are at most 4 and 7, respec-
tively.

Finally, in Section 5 we speculate that each ∼-
equivalence class contains a “crosshatch” pair.

2. DEFINITIONS

2.1. The Symmetric Group

The symmetric group Sn has the following presentation
as a Coxeter group:

Sn =
〈
s1 , . . . , sn−1 , : s2

i = 1, sisi±1si = si±1sisi±1 ,

sisj = sj si, for |i − j| > 1
〉
.

We write S for the set of generators {s1 , . . . , sn−1}. The
group Sn is often described as the group of bijections
from {0, 1, . . . , n − 1} to itself (i.e., permutations) under
the usual composition of functions. From this perspec-
tive, it is most convenient to identify the generator si

with the adjacent transposition that switches i − 1 and
i. For clarity in examples, we will write a for 10, b for 11,
etc. The one-line notation for σ ∈ Sn lists the elements
[σ(0), σ(1), . . . , σ(n − 1)] in order. We often omit commas
and brackets. For example, the permutation σ ∈ S6 that
sends i to 5 − i would be written [5, 4, 3, 2, 1, 0] or simply
543210.

The group Sn has the structure of a ranked
poset as follows. An inversion of a permutation w =
[w(0), w(1), . . . , w(n − 1)] is a pair i < j for which w(i) >

w(j). The length �(w) of w is the total number of inver-
sions. The rank of an element is then given by its length.
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FIGURE 1. Bruhat picture for x = [2, 0, 4, 1, 3, 5], w =
[5, 2, 3, 1, 4, 0].

To define the partial order under which we will be re-
lating our elements, we first make two auxiliary defini-
tions. Let x,w ∈ Sn and p, q ∈ Z. Define rw (p, q) = |{i ≤
p : w(i) ≥ q}| and the difference function dx,w (p, q) =
rw (p, q) − rx(p, q). Then the Bruhat partial order ≤ is
determined by setting x ≤ w if dx,w (p, q) ≥ 0 for all p, q.
This definition is equivalent to more common ones such
as the tableau criterion (cf. [Billey and Lakshmibai 00,
Fulton 97, Humphreys 90]).

For a permutation w, let Dw denote the permutation
matrix oriented such that for each i there is a 1 in the ith
column from the left and w(i)th row from the bottom.
We will frequently display a pair of permutations x and
w graphically using Bruhat pictures: Such a picture con-
sists of Dw and Dx overlaid along with shading given by
the difference function. An example is given in Figure 1.
Entries of Dx and Dw are denoted by black disks and cir-
cles, respectively. Positions corresponding to 1’s of both
Dx and Dw (termed capitols) are denoted by a black disk
and a larger concentric circle. Shading denotes regions in
which dx,w ≥ 1. Successively darker shading denotes suc-
cessively higher values of dx,w .

Finally, there are two sets we associate to any per-
mutation w. We define the right descent set rds(w) of
w as {s ∈ S : ws < w}. Similarly, the left descent set is
lds(w) = {s ∈ S : sw < w}.

2.2. Kazhdan–Lusztig Polynomials

We now define the Kazhdan–Lusztig polynomials Px,w (q)
associated to pairs of elements x,w ∈ Sn . For moti-
vation and more general definitions applicable to any
Coxeter group, we refer the reader to [Humphreys 90,
Kazhdan and Lusztig 79]. Set

µ(x,w) = coefficient of q(�(w )−�(x)−1)/2 in Px,w (q)

and define

cs(x) =

{
1 if xs < x,

0 if xs > x.

We have the following paraphrased theorem of Kazhdan
and Lusztig.

Theorem 2.1. [Kazhdan and Lusztig 79] There is a
unique set of polynomials {Px,w (q)}x,w∈Sn

such that for
x,w ∈ Sn :

� Pw,w (q) = 1;
� Px,w (q) = 0 when x �≤ w;
� for s ∈ rds(w),

Px,w (q) = qcs (x)Px,ws(q) + q1−cs (x)Pxs,ws(q)

−
∑

z≤ws
zs<z

µ(z, ws)q
� (w )−� ( z )

2 Px,z (q). ( 2–1)

When x < w, we have an upper bound on the degrees:

deg(Px,w (q)) ≤ �(w) − �(x) − 1
2

.

Note that µ(x,w) is the coefficient of the highest pos-
sible power of q in Px,w (q).

3. PROPERTIES SATISFIED BY µ(x,w)

We now proceed to describe various well-known proper-
ties satisfied by the µ-coefficient. If x �≤ w, then µ(x,w)
is automatically zero. So assume x ≤ w. There are two
easily recognized instances in which the µ-coefficient is
zero. The first follows directly from the definitions, since
Px,w is a polynomial in q rather than q1/2 .

Fact 3.1. If �(w) − �(x) is even, then µ(x,w) = 0.

We will refer to a pair x,w for which �(w) − �(x) is
odd as an odd pair.

The second follows from an important set of equali-
ties satisfied by the Kazhdan–Lusztig polynomials (see
[Humphreys 90, Corollary 7.14] for a proof):

Px,w (q) =

{
Pxs,w (q) if s ∈ rds(w),

Psx,w (q) if s ∈ lds(w).
(3–1)

Define the set of extremal pairs

EP(n) ={x ≤ w ∈ Sn × Sn : lds(x ) ⊇ lds(w)
and rds(x ) ⊇ rds(w)}.
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Fact 3.2. If �(x) < �(w) − 1 and (x,w) �∈ EP(n), then
µ(x,w) = 0.

To see why Fact 3.2 is true, suppose we have a non-
covering pair x < w along with some s ∈ S such that
xs > x and ws < w. The equality Px,w (q) = Pxs,w (q)
combined with the degree bound of Theorem 2.1 implies,
since �(w) − �(xs) = �(w) − �(x) − 1, that the coefficient
of q(�(w )−�(x)−1)/2 in Px,w (q) must be zero.

According to computations in [Hammett and Pittel
08] , there are approximately 800 billion comparable
pairs x,w in S10 . It turns out that whenever w cov-
ers x, Px,w (q) = µ(x,w) = 1; ignore these pairs for
the moment. Then, considering only pairs for which
µ(x,w) > 0, Facts 3.1 and 3.2 allow us to restrict our
attention to the odd extremal pairs. The number of such
pairs in S10 is a modest 626 145 374, yet still much larger
than |M(10)| = 3.

The idea of considering equivalence classes to explain
the redundancy of µ-values is not new. Lascoux and
Schützenberger, and probably others, entertained the
possibility that any pair x,w with µ(x,w) > 0 could be
generated from a cover by applying certain operators (see
the L-S operators below). By construction, all pairs gen-
erated in this way would have the same µ-value. Our
main contribution in this paper in this regard is to con-
sider “compression” (and “decompression”) in conjunc-
tion with the L-S operators and symmetry. Our hope is
that these classes are large enough to explain fully the
scarcity of distinct values of µ. The three relations from
which we build these classes exist already in the litera-
ture. We now describe them.

The simplest relations (of various symmetries) can be
derived from the definitions in [Kazhdan and Lusztig 79].

Fact 3.3. Let w0 denote the long word [n − 1, n −
2, . . . , 1, 0] in Sn . Then for x,w ∈ Sn ,

µ(x,w) = µ(x−1 , w−1) = µ(w0w,w0x) = µ(ww0 , xw0).

Our second relation arises from the Lascoux–
Schützenberger (L-S) operators (which, their name
notwithstanding, were known to Kazhdan and Lusztig
[Kazhdan and Lusztig 79]). Define Rk as the set of per-
mutations w for which wsk < w or wsk+1 < w, but not
both. In other words, Rk consists of all permutations in
which w(k), w(k + 1), w(k + 2) do not appear in increas-
ing or decreasing order. Then wRk is defined to be the
unique element in the intersection Rk ∩ {wsk , wsk+1}.
The operators Rk act “on the right” in the sense that

they act on positions. Operators Lk that act “on the
left” can be defined analogously by having them act on
values. More precisely, we set Lk = {w : w−1 ∈ Rk} and
Lkw = (w−1Rk )−1 . (These operators, elementary Knuth
transformations and their duals, are closely connected to
the Robinson–Schensted correspondence; for details, see
[Fulton 97, Knuth 70].) For x,w ∈ Sn , set

µ[x,w] =

⎧⎪⎪⎨
⎪⎪⎩

µ(x,w), if x ≤ w,

µ(w, x), if w ≤ x,

0, if x and w are not comparable.

Fact 3.4. [Kazhdan and Lusztig 79] If x,w ∈ Lk , then
µ[x,w] = µ[Lkx, Lkw]. If x,w ∈ Rk , then µ[x,w] =
µ[xRk ,wRk ].

Note that the L-S operators do not preserve the lower-
order coefficients of Kazhdan–Lusztig polynomials. Also
note that µ(·, ·) is not invariant under the L-S operators
(consider L0 acting on the pair (021, 201)). In the rest
of this paper, when we refer to µ being constant on an
equivalence class, we are referring to µ[·, ·] rather than
µ(·, ·).

Our third relation, unlike the L-S operators, has the
potential to take a pair in one symmetric group into a
pair in a different symmetric group.

We say that a capitol for a pair x,w ∈ Sn is naked if
it lies within an unshaded region of the corresponding
Bruhat picture. The compression (xı̂ , wı̂) of (x,w) at the
naked capitol (i, x(i)) = (i, w(i)) corresponds to deleting
the ith columns and w(i)th rows of Dx and Dw . Running
the process in reverse is termed a decompression. The
pair (x,w) is incompressible if its Bruhat picture has no
naked capitols. Note that compressing a pair x,w ∈ Sn

produces a pair in Sn−1 , while decompression produces
one in Sn+1. In the figures, compression(s) will be de-
noted by a C and decompressions by a D. A proof of
the following can be found in [Billey and Warrington 03,
Lemma 39].

Fact 3.5. For any naked capitol (i, x(i)) = (i, w(i)), we
have both Px,w (q) = Pxı̂ ,w ı̂ and �(w) − �(x) = �(wı̂) −
�(xı̂). Hence, µ(x,w) = µ(xı̂ , wı̂).

4. RESULTS

4.1. Computation of Kazhdan–Lusztig Polynomials

Construction of the database encoding all Kazhdan–
Lusztig polynomials for pairs x,w ∈ Sm with m ≤
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FIGURE 2. Example actions of L1 and R0 on the pair x = 243015, w = 452310. The simultaneous compression of
(xR0 , wR0 ) at two capitols is displayed in the rightmost picture.

10 proceeded by a direct application of (2–1). Our
algorithm is basically that of the original recur-
rence in [Kazhdan and Lusztig 79] as described in
[Humphreys 90]. However, two aspects of our algorithm
merit note.

First, equation (3–1) allows us to focus on extremal
pairs. As in the program [du Cloux 11], when required to
compute Px,w (q) for any pair (x,w) �∈ EP(n), we simply
move x up in the Bruhat order through the action of el-
ements of rds(w) and lds(w). Second, Fact 3.5 allows us
to focus on incompressible pairs. When required to com-
pute the Kazhdan–Lusztig polynomial for a compressible
pair, we take the novel approach of first compressing a
pair (x′, w′) as much as possible. Often, the resulting pair
is not extremal. Moving x′ up in the Bruhat order can
then lead to additional naked capitols. The process can
repeat, as illustrated in Figure 3.

A great deal of redundancy is avoided by keeping track
of only the incompressible extremal pairs. In S10 , for ex-
ample, 90% of the extremal pairs are compressible.

Table 1 collects various data regarding Kazhdan–
Lusztig polynomials and their computation. The first five
rows list the numbers of extremal pairs, incompressible
extremal pairs, extremal pairs with positive µ-value, ir-
reducible pairs, and (n, 0)-minimal pairs (these last two
terms are defined in Sections 4.2 and 4.3). The final two
rows reflect (among all Px,w (q) with x,w ∈ Sn ) the max-
imum coefficient encountered and the number of distinct
nonconstant polynomials appearing. Due to memory con-
straints, we have only partial results for S11 .

Remark 4.1. It is not clear how to take full advan-
tage of parallel computation in computing collections of
Kazhdan–Lusztig polynomials via (2–1). The computa-
tion of Px,w (q) is not local, in the sense that it is not clear

which Pu,v (q) will be required during the recursive steps.
In fact, due to the structure of the recursive branching,
any given Pu,v (q) may be required many times. As such,
the most efficient approach appears to store the interme-
diate Pu,v (q) whenever possible. For S11 , however, such a
database (useful in this way only if kept in RAM) would
run to roughly 50 gigabytes.

4.2. Computing Possible µ-Values

For n ≤ 10, the possible µ-values can be extracted di-
rectly from the database. For n = 11, the memory con-
straints discussed in Remark 4.1 prevented us from com-
puting the Kazhdan–Lusztig polynomials for all incom-
pressible extremal pairs. Fortunately, the identities of
Section 3 provide a simple way to filter out pairs x,w

for which µ(x,w) �∈ M(n) \ M(n − 1).
Define two pairs in Sn to be ∼ls-equivalent if they can

be connected by a finite chain of L-S operators. Denote
the corresponding equivalence classes by [[x,w]]ls. Let
x,w be an odd pair. Suppose [[x,w]]ls contains a pair
u, v that is (1) compressible, (2) not extremal and with
�(u) < �(v) − 1, or (3) not related in the Bruhat order.
In the first case, µ(x,w) ∈ M(m) for some m < n. But
the following lemma already tells us that such values are
contained in M(n).

Lemma 4.2. For n ≥ 2, M(n − 1) ⊆ M(n).

Proof. Any pair x,w ∈ Sn−1 can be decompressed by
adding a capitol in the nth row and nth column. The
lemma then follows by Fact 3.5.

In the second and third cases, µ(x,w) must be 0. So in
looking for elements of M(n) \ M(n − 1), we can restrict
our attention to odd extremal pairs in Sn for which none

FIGURE 3. Example of how compression can lead to an extremal pair no longer being extremal.
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n 4 5 6 7 8 9 10 11

|EP(n)| 6 122 2 220 45 184 1 107 636 33 487 176 1 248 544 230 56 786 656 838
|EPunc(n)| 2 10 152 3 114 84 624 2 896 168 122 345 174 6 252 533 464
|EPµ>0(n)| 2 2 30 176 2 312 33 550 664 752
| Irr(n)| 0 0 0 0 0 16 2 663 54 214
|(n, 0)-minimal| 0 0 0 0 0 12 2 512 51 060

max coeff. 1 2 4 15 73 460 4 176 ≥18 915
|{Px,w (q)}| 1 4 16 97 1 118 24 361 981 174

TABLE 1. Kazhdan–Lustzig data for various Sn .

of the above three cases apply. Such pairs will be termed
irreducible. It is significantly faster to compute whether
a pair is irreducible than to compute the corresponding
Kazhdan–Lusztig polynomial.

Even though there are over half a million µ-positive
pairs in S10 , there are only 2663 irreducible pairs. The
computation of the Kazhdan–Lusztig polynomials for the
54 214 irreducible pairs in S11 can be done in a few thou-
sand hours of CPU time.

This completes the description of the work required for
the first two parts of Theorem 1.1. The elements of M(12)
given there stem from individual Kazhdan–Lusztig poly-
nomials we chose to compute guided by Conjecture 5.1.
See Table 2 for representative pairs yielding these µ-
values. (In the table, the polynomial a0 + a1q + a2q

2 +
· · · is described by its coefficient list: a0 , a1 , a2 , . . . .)

4.3. Equivalence Classes of Pairs

Let EP′
µ>0(n) = EPµ>0(n) ∪ {(x,w) : w covers x} de-

note the set of pairs (x,w) ∈ Sn × Sn for which µ(x,w) >

0. Write EP′
µ>0 for the union of EP′

µ>0(n) as n runs
over the positive integers. The identities in Facts 3.3, 3.4,
and 3.5 allow us to define the following equivalence rela-
tion on the elements of EP′

µ>0 : Two pairs in EP′
µ>0 are

∼-equivalent if they can be connected by a finite chain
consisting of LS-moves, compressions/decompressions,
and symmetries. (That is, ∼ is the transitive closure of
the union of the relations arising from Facts 3.3, 3.4,
and 3.5.)

By construction, µ[·, ·] is constant on ∼-equivalence
classes. Hence, the number of classes intersecting Sm for
m ≤ n gives an upper bound on the size of M(n). Un-
fortunately, we have no algorithm (in the precise sense
of the word) for computing the equivalence classes: To
show that (x,w) and (y, v) are equivalent, we must pro-
vide a chain (x,w) ∼ (x′, w′) ∼ · · · ∼ (y, v) in which each

successive pair is connected by an L-S operator, a com-
pression, a decompression, or a symmetry. However, we
have no bound on how large a symmetric group we might
have to pass through in order to construct such a chain;
we can always decompress. In other words, given pairs
with the same µ-value, we have no effective method for
showing that they are not in the same ∼-equivalence
class. In light of this problem, we define µ-positive pairs
(x,w) ∈ Sm and (x′, w′) in Sn to be k∼-equivalent if they
can be connected by a chain that does not pass through
Smax(m,n)+k+1. An (n, k)-minimal pair is one whose k∼-
equivalence class does not intersect Sm with m < n. The
irreducible pairs in Sn with positive µ-value are the
(n, 0)-minimal pairs.

Let A be the (|EP′
µ>0(n)| + 1) × (|EP′

µ>0(n)| + 1)
zero–one matrix with the first row and column indexed
by a “sink” and all other rows/columns indexed by
the elements of EP′

µ>0(n). The sink will identify all
pairs in EP′

µ>0(n) that are not (n, k)-minimal. There is
a straightforward algorithm for determining the (n, k)-
minimal equivalence classes:

1. Pick k. Initialize all entries of A to 0.

2. For each pair (x,w) ∈ EP′
µ>0(n) (indexing

row/column i), perform a breadth-first search of
the members of its k∼-equivalence class by consid-
ering L-S moves, symmetries, compressions, and
decompressions. (Allow decompressions only in
the case that the resulting pair lies in Sm for
some m ≤ n + k.)

3. For each pair (y, v) (indexing row/column j) en-
countered in Step 2, set A(i, j) = 1.

4. If (x,w) is related to a pair in some Sm , m < n,
then set A(i, 1) = 1.
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n µ x w Px,w (q)

1 1 01 10 1

10 4 0432187659 4678091235 1,14,60,96,43,4
5 2106543987 5678901234 1, 10, 43, 86, 84, 37, 5

11 3 108765432a9 789a4560123 1,14,82,247,420,420,235,60,3
18 21076543a98 792a4560813 1, 16, 112, 442, 1038, 1485, 1309, 698, 200, 18
24 1065432a987 689a1345702 1, 17, 129, 556, 1416, 2143, 1919, 993, 269, 24
28 21076543a98 6789a123450 1, 18, 145, 646, 1654, 2516, 2283, 1197, 325, 28

12 6 107654328ba9 b6789a123450 1, 24, 267, 1772, 7554, 21518, 41845, 55849,
50705, 30547, 11637, 2552, 259, 6

7 21076543ba98 b6789a501234 1, 4, 18, 83, 233, 514, 1045, 1571, 1648, 1373,
869, 341, 73, 7

8 054321ba9876 9ab834567012 1, 11, 59, 213, 579, 1216, 1920, 2216, 1823,
1034, 386, 89, 8

23 543210ba9876 9ab345678012 1,13,71,207,337,311,153,23
25 10765432ba98 9ab345678012 1, 24, 253, 1527, 5662, 13109, 18983, 16997,

9166, 2836, 453, 25
26 10765432ba98 789ab1234560 1, 21, 191, 933, 2561, 4008, 3573, 1735, 387, 26
27 10765432ba98 b6789a012345 1, 21, 191, 933, 2554, 3994, 3583, 1772, 415, 27

158 210876543ba9 b6789a123450 1, 24, 266, 1752, 7380, 20722, 39703, 52400,
47388, 28667, 10969, 2301, 158

163 21076543ba98 b6789a123450 1, 23, 250, 1682, 7564, 23555, 51779, 80733,
88768, 67850, 35154, 11769, 2280, 163

13 796 321087654cba9 c789ab1234560 1, 27, 347, 2808, 15615, 62330,
183306, 401999, 658761, 802957,
721035, 469418, 215528, 66010, 12044, 796

TABLE 2. Known values of µ(x, w) and pairs that achieve them.

5. We then compute the connected components us-
ing Matlab’s graphconncomp command. (Since
A may be missing edges originating at the sink,
we use the weak option.)

Table 3 illustrates how the various equivalence classes
coalesce for 9 ≤ n ≤ 11 as k ranges from 0 to 2. An s
entry (for “sink”) indicates that some of the pairs are
not (n, k)-minimal. Theorem 1.2 is immediate. We com-
puted the corresponding (n, 3)-minimal classes for all
cases except the µ = 1, n = 11 class, for which we ran out
of memory. For the computed cases, the (n, 3)-minimal
classes equaled the (n, 2)-minimal classes. Figure 4 gives
the Bruhat pictures for (noncanonical) representatives of
each (n, 2)-minimal class.

We suspect that some of these classes may coalesce
further as k is increased. However, already at k = 3, com-

k

n µ No. 0 1 2

9 1 12 3 s s

10 1 586 31 s+1 s+1
4 428 10 3 2
5 1498 27 2 1

11 1 26336 419 s+1 s+1
3 2466 36 2 1
4 5166 59 s+3 s+1
5 17052 170 s s

18 16 1 1 1
24 16 1 1 1
28 8 2 2 2

TABLE 3. Coalescence of k∼-equivalence classes.
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FIGURE 4. Representatives of (n, 2)-minimal classes.

putations become demanding. For example, consider the
(11, 0)-minimal pair x = 21076543a98, w = 6789a123450.
The size of its k∼-equivalence class grows from 1032
to 879 316 to 331 361 376 as k goes from 1 to 2 to
3.

As an example of coalescence, we consider one
of the twelve (9, 0)-minimal pairs in S9 . Figure 5
demonstrates the equality [[216540873, 567812340]] =
[[01, 10]]. Any chain connecting these two pairs must
pass through S10 . This example also serves to il-
lustrate that the Kazhdan–Lusztig polynomials are
not preserved by the L-S operators: P01,10(q) = 1,
while

P216540873,567812340(q) = 1 + 8q + 16q2 + 11q3 + q4 .

5. REPRESENTATIVES OF EQUIVALENCE CLASSES

Given a composition α = (α1 , α2 , . . . , αk ) |= n, let xα be
the permutation

[n − α1 , n − α1 + 1, . . . , n − 1, n − α1 − α2 ,

n − α1 − α2 + 1, . . . , n − α1 − 1, . . . , 0, 1, . . . , αk − 1].

Let Xn = {xα : α |= n}. We define a crosshatch pair to
be a pair x ≤ w for which xw0 , w ∈ Xn .

Conjecture 5.1. Every ∼-equivalence class contains a
crosshatch pair.

In particular, while we conjecture that each n-minimal
class has a crosshatch pair, there may be such pairs in

FIGURE 5. Reduction of (x, w) = (216540873, 567812340).
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FIGURE 6. Crosshatch representatives.

Sm only with m > n. Even after factoring out symme-
try, such putative representatives are not unique. Recall
that Figure 4 gives representatives for the various (n, 2)-
minimal equivalence classes that we have been able to
compute. For five of these classes (one n = 10, µ = 4
class and the µ = 1, 4, 18, 24 classes for n = 11), the rep-
resentative given in that figure is not a crosshatch pair.
Figure 6 remedies this for four of the classes by giving
crosshatch representatives lying in Sm with m equal to
12 or 13. The class for which we were unable to find
a crosshatch representative is the n = 11, µ = 4 class.
However, given our above remark about the sizes of k∼-
equivalence classes, we do not feel that this is a significant
mark against Conjecture 5.1. The three possibilities are
that this class is not (11, k)-minimal for some k > 3, that
its smallest crosshatch pair lies in Sm for some m ≥ 15,
and that it does not contain a crosshatch pair at all.

In light of Conjecture 5.1, it is reasonable to ask
whether there are simple criteria for the µ-value of
a crosshatch pair to be nonzero, or even more ambi-
tiously, to ask for a simple closed formula for the value
of µ on such an interval. We note here that Brenti
(along with various coauthors; see [Brenti et al. 06,
Brenti and Incitti 06]) has closed formulas for Kazhdan–
Lusztig polynomials based on alternating sums of paths
that might be specialized for this purpose.

It would also be interesting to understand geometri-
cally why such intervals appear so prevalent among pairs
with µ-values greater than 1; the crosshatch intervals are
minimal coset representatives for certain Richardson va-
rieties with respect to independent partial flag manifolds
[Knutson 70]. Of course, everything in this section may
be attributable to working with values of n that are too
small. On the other hand, crosshatch pairs are relatively
rare even for these small values of n. Of the 1.2 billion
extremal pairs in S10 , only 4708 are crosshatch pairs.
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