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We test a conjectural nonabelian refinement of the classical 2-
adic Main Conjecture of Iwasawa theory. In the first part, we
show how, in the special case that we study, the validity of this
refinement is equivalent to a congruence condition on the co-
efficients of some power series. Then, in the second part, we
explain how to compute the first coefficients of this power series
and thus numerically check the conjecture in that setting.

1. THE CONJECTURE

Let K be a totally real finite Galois extension of Q with
Galois group G dihedral of order 8, and suppose that

√
2

is not in K. Fix a finite set S of primes of Q including 2,
∞, and all primes that ramify in K. Let C be the cyclic
subgroup of G of order 4 and F the fixed field of C acting
on K. Fix a 2-adic unit u ≡ 5 mod 8Z2 .

Write LF (s, χ) for the 2-adic L-functions, normalized
as in [Wiles 90], of the 2-adic characters χ of C, or equiv-
alently, by class field theory, of the corresponding 2-adic
primitive ray class characters. We always work with their
S-truncated forms

LF,S (s, χ) = LF (s, χ)
∏
p

(
1 − χ(p)

N(p)
〈N(p)〉1−s

)
,

where p runs through all primes of F above S\{2,∞},
and 〈 〉 : Z×

2 → 1 + 4Z2 is the unique function with
〈x〉x−1 ∈ {−1, 1} for all x.

Now our interest is in the 2-adic function

f1(s) =
ρF,S log(u)
8(u1−s − 1)

+
1
8

(
LF,S (s, 1) + LF,S (s, β2) − 2LF,S (s, β)

)
,

where β is a faithful irreducible 2-adic character of C and

ρF,S = lim
s→1

(s − 1)LF,S (s, 1).

It follows from known results that 1
2 ρF,S ∈ Z2 and that

f1(s) is an Iwasawa analytic function of s ∈ Z2 , in the

169



170 Experimental Mathematics, Vol. 20 (2011), No. 2

sense of [Ribet 79]. This means that there is a unique
power series F1(T ) ∈ Z2 [[T ]] such that

F1(un − 1) = f1(1 − n) for n = 1, 2, 3, . . . .

We want to test the following conjecture:

Conjecture 1.1.

1
2
ρF,S ∈ 4Z2 and F1(T ) ∈ 4Z2 [[T ]].

Testing the conjecture amounts to calculating 1
2 ρF,S

and (many of) the power series coefficients of

F1(T ) =
∞∑

j=1

xjT
j−1

modulo 4Z2 . Were the conjecture false, we would expect
to find a counterexample in this way.

The idea of the calculation is, roughly, to express the
coefficients of the power series F1(T ) as integrals over
suitable 2-adic continuous functions with respect to the
measures used to construct the 2-adic L-functions.

The conjecture has been tested for 60 fields K deter-
mined by the size of their discriminant and the splitting
of 2 in the field F . For this purpose, it is convenient to
replace the datum K by F together with the ray class
characters of F that determine K (see Section 5). A de-
scription of the results appears in Section 6. They are
affirmative.

Where does f1(s) come from? It is an example that
arises from an attempt to refine the main conjecture of
Iwasawa theory. This connection will be discussed next
in order to prove that F1(T ) is in Z2 [[T ]].

2. THE MOTIVATION

The main conjecture of classical Iwasawa theory was
proved by Wiles [Wiles 90] for odd prime numbers �.
More recently, an equivariant “main conjecture” has been
proposed [Ritter and Weiss 04] that would both general-
ize and refine the classical one for the same �. When a
certain µ-invariant vanishes, as is expected for odd � (by
a conjecture of Iwasawa), this equivariant “main conjec-
ture,” up to its uniqueness assertion, depends only on
properties of �-adic L-functions, by [Ritter and Weiss 06,
Theorem A].

The point is that it is possible to test numerically
this Theorem A property of �-adic L-functions, at least
in simple special cases in which it may be expressed in
terms of congruences and the special values of these L-

functions can be computed. Conjecture 1.1 is perhaps
the simplest nonabelian example in which this happens,
but with the price of taking � = 2. Although there are
some uncertainties about the formulation of the “main
conjecture” for � = 2, partly because [Wiles 90] applies
only in the cyclotomic case, it seems clearer what the 2-
adic analogue of the Theorem A properties of L-functions
should be, in view of their “extra” 2-power divisibilities
[Deligne and Ribet 80].

More precisely, let

Lk,S ∈ Hom∗ (
R�(G∞),Q c(Γk )×

)

be the “power series”-valued function of �-adic characters
χ of G∞ = Gal(K∞/k) defined in [Ritter and Weiss 04,
Section 4]. This is made from the values of �-adic L-
functions by viewing them as a quotient of Iwasawa
analytic functions, by the proof of Proposition 11 in
[Ritter and Weiss 04]. When � 
= 2, the vanishing of the
µ-invariant mentioned above means precisely that the co-
efficients of these power series have no nontrivial common
divisor; and the Theorem A property of L-functions is
then that Lk,S is in Det (K1(Λ(G∞)•)) (see the next sec-
tion for precise definitions).

When � = 2, we can still form Lk,S , but now its values
at characters χ of degree 1 have numerators divisible by
2[k :Q] , because of [Ribet 79, (4.8), (4.9)]. Define

L̃k,S (χ) = 2−[k :Q]χ(1)Lk,S (χ)

for all 2-adic characters χ of G∞, so that the deflation
and restriction properties of [Ritter and Weiss 04, Propo-
sition 12] are maintained. Then the analogous coprimal-
ity condition on the coefficients of the “power series” val-
ues L̃k,S (χ), for all characters χ, will be referred to as
vanishing of the µ̃-invariant of K∞/k: The Theorem A
property we want to test is therefore contained in the
following conjecture:

Conjecture 2.1. L̃k,S is in Det
(
K1

(
Λ(G∞)•)

)
.

Remark 2.2. (a) When the assertion of Conjecture 2.1
holds, then L̃k,S (χ) is in Λc(Γk )×• for all χ ∈ R2(G∞),
implying the vanishing of the µ̃-invariant of K∞/k.

(b) For � 
= 2, some cases of the equivariant “main con-
jecture” have recently been proved [Ritter and Weiss 08].
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FIGURE 1. Lattice of field extensions considered.

3. INTERPRETING CONJECTURE 2.1 AS A
CONGRUENCE

We now specialize to the situation of Section 1, so we use
the notation of its first paragraph in order to exhibit a
congruence equivalent to Conjecture 2.1 (see Figure 1).

Let Q∞ be the cyclotomic Z2-extension of Q, i.e.,
the maximal totally real subfield of the field ob-
tained from Q by adjoining all 2-power roots of unity,
and set ΓQ = Gal(Q∞/Q) � Z2 . Let K∞ = KQ∞, not-
ing that K ∩ Q∞ = Q follows from

√
2 /∈ K, and set

G∞ = Gal(K∞/Q). Defining Γ = ker(G∞ → G), H =
ker(G∞ → ΓQ), we now have H ↪→ G∞ � ΓQ, in the no-
tation of [Ritter and Weiss 04].

Since G∞ = Γ × H with Γ � ΓQ and H � G is dihe-
dral of order 8, we can understand the structure of

Λ(G∞)• = Λ(Γ)• ⊗Z2 Z2 [H] = Λ(Γ)•[H],

where • means “invert all elements of Λ(Γ)\2Λ(Γ).”
Namely, choose σ, τ in G such that C = 〈τ〉 with

σ2 = 1, στσ−1 = τ−1 , and extend them to K∞, with
trivial action on Q∞, to get s, t respectively. Then the
abelianization of H is Hab = H/〈t2〉, and we get a pull-
back diagram

Λ(G∞)• = Λ(Γ)•[H] −−−−→ (Λ(Γ)•(ζ4)) ∗ 〈s〉⏐⏐	 ⏐⏐	
Γ(Gab

∞ )• = Λ(Γ)•[Hab ] −−−−→ Λ(Γ)•[Hab ]/2Λ(Γ)•[Hab ]

where the upper-right-hand term is the crossed product
order with Λ(Γ)•-basis 1, ζ4 , s̃, ζ4 s̃ with ζ2

4 = −1, s̃ 2 = 1,
s̃ζ4 = ζ−1

4 s̃ = −ζ4 s̃, and the top map takes t, s to ζ4 , s̃

respectively, while the right map takes ζ4 , s̃ to tab , sab .
This diagram originates in the pullback diagram for the
cyclic group 〈t〉 of order 4, then goes to the dihedral group

ring Z2 [H] by incorporating the action of s, and finally
ends by an application of Λ(Γ)• ⊗Z2 −.

We now turn to getting the first version of our con-
gruence in terms of the pullback diagram above. This is
possible, since R× → K1(R) is surjective for all the rings
considered there. We also simplify notation a little by
setting A = (Λ(Γ)•(ζ4)) ∗ 〈s〉 and writing L̃k,S as L̃K∞/k ,
because we will now have to vary the fields and S is
fixed anyway. The dihedral group G has four degree-1 ir-
reducible characters 1, η, ν, ην, with η(τ) = 1, ν(σ) = 1,
and a unique degree-2 irreducible α, which we view as
characters of G∞ by inflation.

Proposition 3.1. Let Kab
∞ be the fixed field of 〈t2〉; hence

Gal(Kab
∞ /Q) = Gab

∞ . Then:

(a) L̃K a b∞ /Q = Det(Θ̃ab) for some Θ̃ab ∈ Λ(Gab
∞ )×• ;

(b) L̃K∞/Q ∈ Det(K1 (Λ(G∞)•)) if and only if any y ∈
A mapping to Θ̃ab mod 2 in Λ(Gab

∞ )•/2Λ(Gab
∞ )•

has

nr(y) ≡ L̃K∞/Q(α) mod 4Λ(ΓQ)•.

Here nr is the reduced norm of (the total ring of fractions
of ) A to its center Λ(Γ)•, and we identify Λ(Γ)• with
Λ(ΓQ)• via Γ �→ ΓQ.

Proof. (a) The vanishing of µ̃ for K∞/Q, in the sense
of Section 2, is known by [Ferrero and Washington 79],
i.e., L̃K a b∞ /Q(χ) is a unit in Λ(ΓQ)• for all 2-adic
characters χ of Gab

∞ . By the proof of Theorem 9 in
[Ritter and Weiss 06], we have LK a b∞ /Q = Det(λ), with
λ ∈ Λ(Gab

∞ )• the pseudomeasure of Serre. The point is
then that λ = 2Θ̃ab with Θ̃ab ∈ Λ(Gab

∞ )•, which follows
from [Ribet 79, Theorem 3.1b], because of [Ribet 79,
Theorem 4.1] and the relation between λ and µc discussed
just after it. Then L̃K a b∞ /Q = Det(Θ̃ab), and now the proof
of the corollary to Theorem 9 in [Ritter and Weiss 06]
shows that Θ̃ab is a unit of Λ(Gab

∞ ).
(b) We make the following claim.

Claim 3.2. nr(1 + 2A) = 1 + 4Λ(Γ)•.

Proof of Claim 3.2. If x = a1 + bζ4 + cs̃ + dζ4 s̃ with
a, b, c, d ∈ Λ(Γ)•, one computes nr(x) = (a2 + b2) −
(c2 + d2), from which nr(1 + 2A) ⊆ 1 + 4Λ(Γ)•; equality
follows from

nr
(
(1 + 2a) + 2as̃

)
= (1 + 2a)2 − (2a)2 = 1 + 4a

for a ∈ Λ(Γ)•
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Suppose first that the congruence for L̃K∞/Q(α) holds.
Start with Θ̃ab from (a) in the lower left corner of
the pullback square and map it to Θ̃ab mod 2 in the
lower right corner. Choosing any y0 ∈ A mapping to
Θ̃ab mod 2, we note that y0 ∈ A×, because the maps
in the pullback diagram are ring homomorphisms and
the kernel 2A of the right one is contained in the radi-
cal of A. Thus nr(y0) ∈ Λ(Γ)×• has nr(y0)−1L̃K∞/Q(α) ∈
1 + 4Λ(ΓQ)• by the congruence, and hence, by the claim,
nr(y0)−1L̃K∞/Q(α) = nr(z), z ∈ 1 + 2A. So y1 = y0z is
another lift of Θ̃ab mod 2 and nr(y1) = L̃K∞/Q(α). By the
pullback diagram we get Y ∈ Λ(G∞)×• , which maps to
Θ̃ab and y1 , where nr(y1) = L̃K∞/Q(α).

It follows that DetY = L̃K∞/Q. To see this, we check
that their values agree at every irreducible character χ

of G∞; it even suffices to check it on the characters
1, η, ν, ην, α of G by [Ritter and Weiss 04, Theorem 8 and
Proposition 11], because every irreducible character of
G∞ is obtained from these by multiplying by a character
of type W . It works for the characters 1, η, ν, ην of Gab

∞ by
[Ritter and Weiss 04, Proposition 12(1b)], since the de-
flation of Y equals Θ̃ab , and Det Θ̃ab = L̃K a b∞ /Q by (a). Fi-
nally, (DetY )(α) = jα

(
nr(Y )

)
= nr(y1) = L̃K∞/Q(α) by

the commutative triangle before [Ritter and Weiss 04,
Theorem 8], the definition of jα , and G∞ = Γ × H.

The converse depends on related ingredients. More
precisely, L̃K∞/Q ∈ Det K1

(
(ΛG∞)•

)
implies L̃K∞/Q =

Det Y with Y ∈ (ΛG∞)×• by surjectivity of (ΛG∞)×• →
K1

(
(ΛG∞)•

)
. Since (ΛGab

∞ )×• → K1
(
(ΛGab

∞ )•
)

is an iso-
morphism, we get that the deflation of Y equals Θ̃ab

in Λ(Gab
∞ )×. Letting y1 ∈ A× be the image of Y in the

pullback diagram, it follows that nr(y1) = L̃K∞/Q(α) and
that y1 maps to Θ̃ab mod 2 in Λ(Gab

∞ )•/2Λ(Gab
∞ )•. Given

any y as in (b), then y−1
1 y maps to 1, hence is in 1 + 2A,

and our congruence follows from the claim on apply-
ing nr.

4. REWRITING THE CONGRUENCE IN TESTABLE
FORM

Set F0 =
L̃K∞/F,S (1) + L̃K∞/F,S (β2)

2 − L̃K∞/F,S (β).

Proposition 4.1.

(a) F0 is in Λ(ΓQ)•;

(b) L̃K∞/Q ∈ Det K1
(
Λ(G∞)•

)
if and only if F0 ∈

4Λ(ΓQ)•.

Proof. Note that indG
C 1C = 1G + η, indG

C β2 = ν + ην,
indG

C β = α. When we inflate β to a character of
Gal(K∞/F ), then indG∞

Gal(K∞/F ) β = α with α inflated to
G∞, etc.

By Proposition 3.1, we can write L̃K a b∞ /Q = Det(Θ̃ab)
with

Θ̃ab = a + btab + csab + dsabtab

for some a, b, c, d in Λ(Γ)•. It follows that

L̃K∞/Q(1) = a + b + c + d,

L̃K∞/Q(η) = a + b − c − d,

L̃K∞/Q(ν) = a − b + c − d,

L̃K∞/Q(ην) = a − b − c + d.

Form y = a + bζ4 + cs̃ + dζ4 s̃ in
(
Λ(Γ)•(ζ4)

) ∗ 〈s〉. By
the computation in Claim 3.2, we have

nr(y) = (a + c)(a − c) + (b + d)(b − d)

=
L̃Q(1) + L̃Q(ν)

2
L̃Q(η) + L̃Q(ην)

2

+
L̃Q(1) − L̃Q(ν)

2
L̃Q(η) − L̃Q(ην)

2

=
1
4

(
L̃Q(1 + η) + L̃Q(1 + ην) + L̃Q(ν + η)

+ L̃Q(ν + ην)
)

+
1
4
(
L̃Q(1 + η) − L̃Q(1 + ην) − L̃Q(ν + η)

+ L̃Q(ν + ην)
)

=
L̃Q(1 + η) + L̃Q(ν + ην)

2
=

L̃F (1) + L̃F (β2)
2

,

because

L̃K∞/Q

(
indG∞

Gal(K∞/F ) χ
)

= L̃K∞/F (χ)

for all characters χ of Gal(K∞/F ). Thus also
L̃K∞/Q(α) = L̃K∞/F (β), so we have now shown that

F0 = nr(y) − L̃K∞/Q(α),

proving (a), since L̃K∞/F (β) ∈ (ΛΓF )• by Section 2, since
β has degree 1.

Moreover, the image of y under the right arrow of
the pullback diagram of Section 3 equals Θ̃ab mod 2, by
construction; hence (b) follows directly from Proposi-
tion 3.1(b).

Remark 4.2. Considering F0 in Λ(ΓQ)•, instead of its nat-
ural home Λ(ΓF )• , is done to be consistent with the
identification in (b) of Proposition 3.1, via the natural
isomorphisms Γ → ΓF → ΓQ: this is the sense in which
LK∞/Q(α) = LK∞/F (β).
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The congruence F0 ≡ 0 mod 4Λ(ΓQ)• can now be put
in the more testable form of Conjecture 1.1. Let γQ be the
generator of ΓQ that when extended to Q(

√−1) as the
identity acts on all 2-power roots of unity in Q∞(

√−1)
by raising them to the uth power, where u ≡ 5 mod 8Z2

as fixed before. Then the Iwasawa isomorphism Λ(ΓQ) �
Z2

[
[T ]

]
, under which γQ − 1 corresponds to T , makes

F0 ∈ Λ(ΓQ)• correspond to some F0(T ) ∈ Z1
[
[T ]

]
• and

the congruence of Proposition 4.1(b) to

F0(T ) ≡ 0 mod 4Z2
[
[T ]

]
•.

Since β is an abelian character, we know that L̃F,S (β2),
L̃F,S (β) correspond to elements of Z2

[
[T ]

]
, not just

Z2
[
[T ]

]
• (cf. [Ritter and Weiss 04, Section 4]), and L̃F (1)

to one of T−1Z2
[
[T ]

]
. We thus have

F0(T ) =
x0

T
+

∞∑
j=1

xjT
j−1

with xj ∈ Z2 for all j ≥ 0.
By the interpolation definition of

(
L̃F,S (βi)

)
(T ) (cf

[Ribet 79, Section 4]), it follows that

F0(us − 1) =
1
2

(LF,S (1 − s, 1)
4

+
LF,S (1 − s, β2)

4

− 2
LF,S (1 − s, β)

4

)
.

We abbreviate the right-hand side of the equality as
f0(1 − s). This implies

x0 = −ρF,S log(u)
8

,

because the left side is

lim
T →0

TF0(T ) = lim
s→1

u1−s − 1
s − 1

(s − 1)f0(s)

= − log(u)lim
s→1

(s − 1)
LF,S (s, 1)

8
,

as required. Note that u ≡ 5 mod 8 implies that log(u)/4
is a 2-adic unit; hence ρF,S /2 ∈ Z2 is in 4Z2 if and only
if x0 ∈ 4Z2 . Define

F1(T ) = F0(T ) − x0T
−1 =

∞∑
j=1

xjT
j−1 ∈ Z2

[
[T ]

]
.

It follows that

F1(us − 1) = − x0

us − 1
+ F0(us − 1)

=
ρF,S log(u)
8(us − 1)

+ f0(1 − s),

which is f1(1 − s), with f1 as in Section 1; hence our
present F1(T ) is also the same as in Section 1. Thus Con-

jecture 1.1 is equivalent to Conjecture 2.1 for the special
case K∞/Q of Section 1.

5. TESTING CONJECTURE 1.1

Let χ be a 2-adic character of the Galois group C of K/F

and let f be the conductor of K/F . By class field theory,
we view χ as a map on the group of ideals relatively
prime to f. Fix a prime ideal c not dividing f. For a, a
fractional ideal relatively prime to c and f, let Zf(a, c; s)
denote the associated 2-adic twisted partial zeta function
[Cassou-Noguès 79]. Thus, we have

LF,S (s, χ) =
1

χ(c)〈Nc〉1−s − 1

∏
p

(
1 − χ(p)

Np
〈Np〉1−s

)

×
∑
σ∈G

χ(σ)−1Zf(a−1
σ , c; s),

where p runs through the prime ideals of F in S not
dividing 2 f, and aσ is a (fixed) integral ideal coprime to
2 fc whose Artin symbol is σ.

Denote the ring of integers of F by OF and let γ ∈
OF be such that OF = Z + γZ. In [Roblot 11] (see also
[Besser et al. 09] for a slightly different presentation), it
is shown that the function Zf(a, c; s) is defined by the
following integral:

Zf(a, c; s) =
∫ 〈NaN(x1 + x2γ)〉1−s

NaN(x1 + x2γ)
dµa(x1 , x2),

where the domain of integration is Z2
2 , 〈 〉 is extended to

Z2 by 〈x〉 = 0 if x ∈ 2Z2 , and the measure µa is a measure
of norm 1 (depending also on γ, f, and c).

Assume now, as we may without loss of generality, that
the ideal c is such that 〈Nc〉 ≡ 5 (mod 8Z2) and take u =
〈Nc〉. For s ∈ Z2 , we let t = t(s) = us − 1 ∈ 4Z2 , so that
s = log(1 + t)/ log(u). For x ∈ Z×

2 , one can check readily
that

〈x〉s =
(
uL(x)

)s

= (1 + us − 1)L(x) =
∑
n≥0

(L(x)
n

)
tn ,

where L(x) = log〈x〉/ log u ∈ Z2 . For x ∈ Z×
2 , we set

L(x;T ) =
∑
n≥0

(L(x)
n

)
Tn ∈ Z2 [[T ]]
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and L(x;T ) = 0 if x ∈ 2Z2 . Now we define

R(a, c;T ) =
∫

L
(
Na N(x1 + x2γ);T

)
Na N(x1 + x2γ)

dµa(x1 , x2)

∈ Z2 [[T ]],

B(χ;T ) = χ(c)(T + 1) − 1 ∈ Z2 [χ][T ],

A(χ;T ) =
∏
p

(
1 − χ(p)

Np
L(Np;T )

)

×
∑
σ∈G

χ(σ)−1R(a−1
σ , c;T ) ∈ Z2 [χ][[T ]],

where p runs through the prime ideals of F in S not
dividing 2 f.

Proposition 5.1. We have, for all s ∈ Z2 ,

LF,S (1 − s, χ) =
A(χ;us − 1)
B(χ;us − 1)

.

We now specialize to our situation. For that, we need
to make the additional assumption that β2(c) = −1, so
β(c) is a fourth root of unity in Qc

2 , which we will denote
by i. Thus, we have

B(1;T ) = T, B(β;T ) = i(T + 1) − 1,

B(β2 ;T ) = −T − 2, B(β3 ;T ) = −i(T + 1) − 1.

Let x �→ x̄ be the Q2-automorphism of Q2(i) sending i

to −i. Then we have LF,S (1 − s, β) = LF,S (1 − s, β3) by
the expression of LF,S (s, χ) given at the beginning of
the section, since the twisted partial zeta functions have
values in Q2 and β̄ = β3 . And furthermore,

LF,S (s, β3) = LQ,S (s, IndG
C (β3)) = LQ,S (s, IndG

C (β))
= LF,S (s, β).

Therefore, by Proposition 5.1, we deduce that

A(β;us − 1) + Ā(β;us − 1)
=

(
B(β;T ) + B(β3 ;T )

)
LF,S (1 − s, β)

= −2LF,S (1 − s, β).

Since

f1(s) =
ρF,S log u

8(u1−s − 1)

+
1
8

(
LF,S (s, 1) + LF,S (s, β2) − 2LF,S (s, β)

)
,

we find that

F1(T ) =
ρF,S log u

8T

+
1
8

(
A(1;T )

T
− A(β2 ;T )

T + 2
+ A(β;T ) + Ā(β, T )

)
is such that F1(un − 1) = f1(1 − n) for n = 1, 2, 3, . . . .

The conjecture that we wish to check states that

1
2
ρF,S ∈ 4Z2 and F1(T ) ∈ 4Z2 [[T ]].

Now define D(T ) = 8T (T + 2)F1(T ), so that

D(T ) = (T + 2) (ρF,S log u + A(1;T ))
− TA(β2 ;T ) + T (T + 2)

(
A(β;T ) + Ā(β, T )

)
.

We can now give a final reformulation of the conjecture
that is the one that we actually tested.

Conjecture 5.2.

ρF,S ∈ 8Z2 and D(T ) ∈ 32Z2 [[T ]].

The computation of ρF,S is done using the following
formula [Colmez 88]:

ρF,S = 2hF RF d
−1/2
F

∏
p

(1 − 1/N(p)) ,

where hF ,RF , dF are respectively the class number
and 2-adic regulator and discriminant of F , and p runs
through all primes of F above 2. Note that although
RF and d

−1/2
F are defined only up to sign, the quantity

RF d
−1/2
F is uniquely determined in the following way:

Let ι be the embedding of F into R for which
√

dF is
positive and let ε be the fundamental unit of F such that
ι(ε) > 1. Then for any embedding g of F into Qc

2 , we have

RF d
−1/2
F =

log2 g(ε)
g(
√

d)
.

Now for the computation of D(T ), the only difficult
part is the computations of the R(a, c;T ). The mea-
sures µa are computed explicitly using the methods of
[Roblot 11] (see also [Besser et al. 09]), that is, we con-
struct a power series Ma(X1 ,X2) in Q2 [X1 ,X2 ] with in-
tegral coefficients, such that∫

(1 + t1)x1 (1 + t2)x2 dµA(x1 , x2) = MA(t1 , t2)

for all t1 , t2 ∈ 2Z2 . In particular, if f is a continuous func-
tion on Z2

2 with values in C2 and Mahler expansion

f(x1 , x2) =
∑

n1 ,n2 ≥0

fn1 ,n2

(
x1

n1

)(
x2

n2

)
,

then we have∫
f(x1 , x2) dµA(x1 , x2) =

∑
n1 ,n2 ≥0

fn1 ,n2 mn1 ,n2 ,

where MA(X1 ,X2) =
∑

n1 ,n2 ≥0 mn1 ,n2 X
n1
1 Xn2

2 .
We compute in this way the first few coefficients of the

power series A(χ;T ), for χ = βj , j = 0, 1, 2, 3, and then
deduce the first coefficients of D(T ) to see whether they
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2 ramified in F

dF f dK

44 3 2 732 361 984
156 2 9 475 854 336
220 2 37 480 960 000
12 14 39 033 114 624
156 4 151 613 669 376
380 2 333 621 760 000
152 3 389 136 420 864
24 11 587 761 422 336
876 1 588 865 925 376
220 4 599 695 360 000
444 2 621 801 639 936
12 28 624 529 833 984
44 12 699 484 667 904
92 6 835 600 748 544
60 8 849 346 560 000
44 10 937 024 000 000
12 19 975 543 388 416
12 26 1 601 419 382 784
44 15 1 707 726 240 000

1 164 1 1 835 743 170 816

2 inert in F

dF f dK

445 1 39 213 900 625
5 21 53 603 825 625

205 3 143 054 150 625
221 3 193 220 905 761
61 5 216 341 265 625
205 4 452 121 760 000
221 4 610 673 479 936
901 1 659 020 863 601
29 15 895 152 515 625

1 045 1 1 192 518 600 625
5 16 1 911 029 760 000

109 5 2 205 596 265 625
1 221 1 2 222 606 887 281
29 20 2 829 124 000 000
29 13 3 413 910 296 329
205 7 4 240 407 600 625
149 5 7 701 318 765 625

1 677 1 7 909 194 404 241
21 19 9 149 529 982 761
341 3 9 857 006 530 569

2 split in F

dF f dK

145 1 442 050 625
41 5 44 152 515 625
505 1 65 037 750 625
689 1 225 360 027 841
777 1 364 488 705 441
793 1 395 451 064 801
17 13 403 139 914 489
897 1 647 395 642 881
905 1 670 801 950 625
305 3 700 945 700 625
377 3 1 636 252 863 921

1 145 1 1 718 786 550 625
145 8 1 810 639 360 000
305 4 2 215 334 560 000

1 313 1 2 972 069 112 961
377 4 5 171 367 076 096
545 3 7 146 131 900 625
17 21 7 163 272 192 041

1 705 1 8 450 794 350 625
329 3 8 541 047 165 049

TABLE 1. Examples tested.

indeed belong to 32 Z2 [[T ]]. We found that this was in-
deed always the case; see the next section for more de-
tails.

To conclude this section, we remark that in fact, we
do not need the above formula to compute ρF,S , since
the constant coefficient of A(1;T ) is −ρF,S log u. (This
can be seen directly from the expression of x0 given at
the end of Section 4 or using the fact that D(T ) has zero
constant coefficient, since F1(T ) ∈ Z2 [[T ]].) However, we
did compute it using this formula, since it then provides a
neat way to check that (at least one coefficient of) A(1;T )
is correct.

6. THE NUMERICAL VERIFICATIONS

We have tested the conjecture on 60 examples. The ex-
amples are separated into three subcases of 20 examples
each according to the way 2 decomposes in the quadratic
subfield F : ramified, split, or inert. In each subcase, the
examples are actually the first 20 extensions K/Q of
the suitable form of the smallest discriminant. These are
given in Table 1, where the entries are the discriminant
dF of F , the conductor f of K/F (which is always a ra-
tional integer), and the discriminant dK of K. In each
example, we have computed ρF,S and the first 30 coeffi-

cients of D(T ) to a precision of at least 28 and checked
that they satisfy the conjecture.

We now give an example, namely the smallest example
for the discriminant of K. We have F = Q(

√
145) and

that K is the Hilbert class field of F . The prime 2 is split
in F/Q, and the primes above 2 in F are inert in K/F .
We compute ρF,S and find that

ρF,S ≡ 27 (mod28).

Using the method of the previous section, we compute
the first 30 coefficients of the power series A( · ;T ) to a
2-adic precision of 28. We get

A(1;T )
≡ 22(16T + 57T 3 + 44T 4 + 8T 5 + 40T 6 + 21T 7

+ 40T 8 + 30T 9 + 16T 10 + 49T 11 + 56T 12 + 29T 13

+ 32T 14 + 50T 15 + 62T 16 + 47T 17 + 48T 18

+ 60T 19 + 32T 20 + 16T 21 + 8T 22 + 21T 23 + 30T 24

+ 26T 25 + 2T 26 + 9T 27 + 56T 28 + 34T 29)
+ O(T 30) (mod 28),

A(β;T )
≡ 22((28 + 1124i) + (36 + 1728i)T + (47 + 45i)T 2

+ (56 + 153i)T 3 + (46 + 154i)T 4 + (56 + 282i)T 5
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+ (55 + 433i)T 6 + (54 + 435i)T 7 + (40 + 386i)T 8

+ (48 + 392i)T 9 + (63 + 65i)T 10 + (48 + 257i)T 11

+ (63 + 161i)T 12 + (20 + 477i)T 13

+ (38 + 182i)T 14 + (56 + 66i)T 15 + (37 + 35i)T 16

+ (6 + 341i)T 17 + (20 + 446i)T 18 + (40 + 412i)T 19

+ 368iT 20 + (56 + 336i)T 21 + (61 + 291i)T 22

+ (40 + 427i)T 23 + (34 + 38i)T 24 + (48 + 94i)T 25

+ (9 + 47i)T 26 + (6 + 497i)T 27 + (40 + 42i)T 28

+ (44 + 52i)T 29) + O(T 30) (mod 28),

A(β2 ;T )
≡ 22(32 + 32T + 22T 2 + 39T 3 + 36T 4 + 20T 5

+ 62T 6 + 27T 7 + 16T 8 + 62T 9 + 46T 10 + 23T 11

+ 30T 12 + 51T 13 + 4T 14 + 2T 15 + 56T 16 + 33T 17

+ 44T 18 + 12T 19 + 40T 20 + 8T 21 + 54T 22 + 11T 23

+ 34T 24 + 42T 25 + 43T 27 + 56T 28 + 46T 29)
+ O(T 30) (mod 28).

Therefore

D(T )
≡ 25(6T + 7T 2 + 4T 3 + 5T 4 + 4T 7 + 2T 8 + 4T 9

+ 2T 10 + 4T 11 + T 12 + 6T 13 + 7T 14 + 3T 16

+ 5T 17 + 2T 18 + 3T 19 + 7T 20 + 5T 21 + 7T 22

+ 4T 23 + 4T 24 + T 25 + 7T 26 + 3T 27 + 7T 28

+ 6T 29) + O(T 30) (mod 28),

and the conjecture is satisfied by the first 30 coefficients
of the series D associated with the extension.

Note, as a final remark, that we have tested the con-
jecture in the same way for 30 additional examples in
which F is real quadratic, K/F is cyclic of order 4,
but K is not a dihedral extension of Q (either K/Q

is not Galois or its Galois group is not the dihedral
group of order 8). In all of these examples, we found
that the conjecture was not satisfied, that is, either ρF,S

did not belong to 8Z2 or one of the first 30 coeffi-
cients of the associated power series D did not belong to
32Z2 .
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