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We investigate experimentally the growth regimes of the number
of LEGO structures that can be constructed contiguously from n
blocks of equal shape and color.

1. INTRODUCTION

1.1. Background and Overview

The number of LEGO structures that can be constructed
contiguously from n blocks of equal shape and color is an
interesting but rather elusive combinatorial object. With
the number Tb×w (n) defined as the count of all contiguous
structures made of n LEGO blocks of size b × w, iden-
tified up to rotation in the XY -plane and translation, a
value such as T2×4(10) is unknown, although it is only,
in all likelihood, a 17-digit number. The lack of apparent
recursive structure in the problem leaves us little com-
binatorial machinery to understand and compute such
numbers.

Our interest in these quantities stems from the obser-
vation by the second-named author that a claim made by
the LEGO Group for decades to the effect that T2×4(6) =
102981500 is false (indeed, only maximal-height towers
such as shown as in Figure 1(a) were counted). In syn-
chronized but independent efforts, the authors computed
the correct value T2×4(6) = 915103765. However, our in-
terest has shifted away from such individual values to-
ward an attempt to understand the asymptotic behav-
ior of each integer sequence (Tb×w (n))n∈N, and how the
asymptotics vary with the dimension b × w.

Even this remains shrouded in mystery. We know only
that certain associated sequences grow supermultiplica-
tively, and hence that quantities

hb×w = lim
n→∞

n
√

Tb×w (n)

are well defined. Furthermore, it was proved in
[Durhuus and Eilers 05] that 78.32 ≤ h2×4 ≤ 176.58.

The main results presented here provide experimental
evidence supporting the conjectures:

� Tb×w (n) grows as hn
b×w · n−3/2 (Conjecture 2.1).
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FIGURE 1. Examples of LEGO structures.

� hb×w varies with (b, w) by a quadratic expression
(Conjecture 2.2).

As described in [Abrahamsen and Eilers 07], signifi-
cant speedups in the algorithms for exact counts are
available. However, since run times grow exponentially in
n, we are able to compute more than ten terms in only
a few of these sequences, even though we have allowed
computing times up to 450 CPU hours on an otherwise
idle mainframe computer. Thus we have taken to Monte
Carlo methods to count far enough to give qualified input
to a theoretical approach to understanding the asymp-
totics of sequences such as (Tb×w (n))n∈N. These methods
are described in Section 3.2 below.

1.2. Notation and Conventions

We study numbers Tb×w (n) defined as the count of
all contiguous structures made of n LEGO blocks of
size b × w, identified up to rotation and translation
(a mathematical definition of this concept is given in
[Durhuus and Eilers 05], but it is the same as what any
LEGO user, mathematician or otherwise, would em-
ploy). The set of all these equivalence classes is denoted
by Tb×w [n].

The number

kb×w = (2b − 1)(2w − 1) + (1 − δb,w )(b + w − 1)2 (1–1)

counts the number of ways one block of a given dimension
may be added to another.

2. RESULTS AND CONJECTURES

When the method is fixed, the computing times for num-
bers Tb×w (n) by exact methods are roughly proportional
to the values found. Rather surprisingly, although we can
give a partial explanation in Remark 3.3 below, the time
consumption for applying our Monte Carlo methods of
Section 3.2 varies dramatically in a nonobvious way with
the dimensions, as indicated in Figure 2 (left). The fig-
ure illustrates the reciprocal of the number of experi-
ments required to compute a 95% confidence interval for
Tb×w (20) of a length that is less than 1% of the estimated
value; thus high bars indicate dimensions that are espe-
cially prone to such an analysis. As indicated, dimensions
1 × w are particularly convenient to work with, but tak-
ing into account that a variation of sizes is desirable in
this setting, we have selected dimensions 1 × 2, 1 × 14,
4 × 5, and 7 × 7 among these dimensions for further
study.

As mentioned in the introduction, our theoretical
knowledge concerning the growth of Tb×w (n) is very lim-
ited, and needless to say, an experimental approach to
such a problem can lead to only circumstantial evidence.
Furthermore, the analysis is rather sensitive to impreci-
sions in the data. Consider, however, Figure 2 (right),
which has been obtained by plotting

Tb×w (n + 1)/Tb×w (n) · (Tb×w (14)/Tb×w (13))−1

for b × w ∈ {1 × 2, 1 × 14, 4 × 5, 7 × 7}. The values for
Tb×w (n) have been computed by our Monte Carlo method
with confidence intervals only 1% of the observed value.
The plots are consistent with a growth regime that is
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FIGURE 2. Left: Inverse computing times for our Monte Carlo method as a function of the block size. Right: Growth
regimes associated with various block sizes. Dotted lines (from below) correspond to subexponential terms of order n−1 ,
n−3/2 , and n−2 , respectively.

roughly Hn−1 · n−3/2 , but far from conclusive in na-
ture. Somewhat more carefully, we make the following
conjecture:

Conjecture 2.1. Tb×w (n) ∼ CHn−1nP for suitably chosen
C = cb×w , H = hb×w , and P = pb×w .

2.1. Growth Constants and Their Variation

Based on Conjecture 2.1 and extensive experimentation,
we have found estimates for cb×w , hb×w , and pb×w for b, w

with 1 ≤ b ≤ w ≤ 16, as indicated in Figure 3 and tab-
ulated in [Abrahamsen and Eilers 07]. These estimates
have been achieved by a least-squares approximation of
the form

C + H(n − 1) + P log(n)

to a semilogarithmic plot of approximated values of
Tb×w (5), . . . , Tb×w (20), generated by our Monte Carlo
methods with a confidence interval at most 10% of the
size of the estimated value.

We have analyzed these estimates as indicated in
Figure 4. The graphs show how well the observed en-
tropies may be approximated by a quadratic fit, as in-
dicated both globally and on certain contours. The case
of square blocks requires special attention, but only in

the requirement that the fitting quadratic expression ap-
proximate twice the observed entropies. Similarly, the ob-
served value for the constant term C in the square case
is half of the observed value in the nonsquare case.

Conjecture 2.2. There exists a function

p(w, b) = Aw2 + Bbw + Cb2 + Dw + Eb + F

that approximates growth constants to a high level of ac-
curacy as follows:

p(w, b) ∼ hb×w , p(w,w) ∼ 2hw×w .

We estimate

p(w, b) = 13.68bw + 2.92b2 + 3.29w2 − 12.62b

− 8.89w + 4.23.

Note that our formula (1–1) for kb×w provides a trivial
lower bound for hb×w of quadratic order. We note, with a
sketch of the proof postponed to Section 3, that an upper
bound of this type also exists:

Theorem 2.3. We have, for any w > 1 and any 1 < b < w,

h1×w ≤ 7w2 + 7w − 14,

hw×w ≤ 18w2 ,

hb×w ≤ 24w2 + 36bw − 48w.
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FIGURE 3. Estimated values for hb×w (top), −pb×w (bottom left), and cb×w (bottom right).

2.2. Subexponential Growth

A subexponential growth of the order n−3/2 is consis-
tent with the observations in [Madras 95, p. 682] for 3-
dimensional lattice animals, lattice trees, etc., but it must
be admitted that our observations are too imprecise to
warrant a firm conclusion that this is indeed the correct
exponent.

It is perhaps interesting to note that if one lim-
its attention to flat LEGO structures, where all blocks
are aligned in a plane as in Figure 1(c), the subex-
ponential growth is clearly of a higher order (see
[Abrahamsen and Eilers 07] for further details). Since
our Monte Carlo method does not work well in this case,

we are unable to verify that the correct order, as pre-
dicted by [Madras 95], is n−1 .

Although the objects considered are not trees in any
sense, the appearance of the power −3/2 is indicative of
a generating function with a square-root singularity at
1/hb×w , which is often seen in counting problems asso-
ciated with trees; see, e.g., [Flajolet and Sedgewick 08].
Thus it is a natural approach to try to understand the
numbers Tb×w (n) using models based on trees.

However, if this were possible, one would expect that
as regards trees, the average height of a structure with n

blocks of a fixed size universally grow as
√

n. This turns
out not to be the case, as quite clearly indicated by Monte
Carlo experiments. We have the following conjecture.
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FIGURE 4. Left: Growth constants with quadratic fit. Right: Fits specialized to dimensions (from below) 1 × w, 2 × w,
and w × w.

Conjecture 2.4. The average height of elements in Tb×w [n]
grows as a power nα with α in the range [0.6, 0.7].

The exponent α varies considerably with the block
size, as indicated in Figure 5. It is interesting to note that
although LEGO’s features allow one to place blocks from
below, thus not contributing to the height, the restric-
tions on the options for building upward force higher av-
erages than for (1, . . . , m)-trees, where m is the maximal
number of blocks that may be placed on top of another.
The phenomenon is more distinctive for small blocks, cor-
responding to the fact that in such cases, there are very
few different ways to construct low buildings.

3. METHODS

3.1. Overcounting Strategy

We follow a strategy developed in [Durhuus and Eil-
ers 11] and recall a few concepts from that paper. The
set of all kb×w ways to attach one block of a fixed di-
mension on top of another is called the set of positions.
A partition of this set is a subdivision into b × w sets
P1 , . . . ,Pbw , one for each stud of the block, with the
extra property that all positions in Pi employ stud i.
We found in [Durhuus and Eilers 05] that a partition
of the 46 positions on a 2 × 4 block into a partition
with

46 = 16 + 15 + 7 + 5 + 2 + 1 + 0 + 0

elements gives optimal estimates. However, in order to
give estimates valid for any block size, and to simplify
our Monte Carlo method described below, we shall focus
entirely on even subdivisions such as

46 = 8 + 8 + 8 + 8 + 8 + 6 + 0 + 0,

which minimize the following quantities:

Definition 3.1. The term count T of a partition is the
number of its nonempty sets. The element count E is the
maximal number of elements in a set in the partition.

More precisely, we aim to minimize first T and then E

for the minimal T.
For a fixed partition with term and element counts

T and E, respectively, we define Ub×w [n] as the col-
lection of (2T + (n − 2)(2T − 1))-tuples with entries in
{0, 1, . . . ,E} such that precisely n − 1 of the entries are
nonzero. As in [Durhuus and Eilers 05], a surjective map

Ψ : Ub×w [n] → Tb×w [n] ∪ {FAIL}

may be defined by reading off, in a systematic way, from
the nonzero entries of the tuple how to attach blocks to
reach a structure. The first 2T entries specify what to
attach to the base block Bb×w by reading each nonzero
integer as an instruction to place a block in one of the at
most E positions on one of the T selected studs (or cor-
responding holes) on either side of the block. The added
blocks will be enumerated 1, 2, . . . , and the next 2T − 1
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FIGURE 5. Left: Growth of average heights (light gray corresponding to blocks with small “eccentricity” w/b, dark gray
to large w/b). The black lines follow growths between n0 .6 and n0 .7 , equally spaced. Right: Average heights of structures
with 13 to 15 blocks by block size (the b = w = 1 entry has been deleted).

entries will be used to specify what to attach to block 2.
We may use one entry fewer by employing in some sys-
tematic way that one position was already used in adding
block i for i > 0.

The procedure is explained in more detail in [Durhuus
and Eilers 05] and [Abrahamsen and Eilers 07]. One can
prove the following lemma:

Lemma 3.2. If a partition of the b × w block exists with
term and element counts T and E, then

#Ub×w [n] =

(
2T + (n − 2)(2T − 1)

n − 1

)
En−1

and

hb×w ≤ E(2T − 2)
(

1 − 1
2T − 1

)−2T+1

.

Sketch of proof of Theorem 2.3: There exist partitions
with term and element counts as indicated in Figure 6.
Applying Lemma 3.2 and the fact that (1 − 1/x)−x de-
creases, one gets the estimates.

Remark 3.3. The values that are especially amenable to
Monte Carlo analysis may be characterized as the values
for which the estimate above is relatively tight.

3.2. Monte Carlo Methods

Since we know the size of Ub×w [n] from Lemma 3.2, we
may use the map Ψ to estimate Tb×w (n), if we take into
account the fact that the map is not injective. Hence for
each tuple t with Ψ(t) ∈ Tb×w [n], we need to determine
Ψ−1(Ψ(t)), i.e., the number of tuples that are mapped
into the same structure as t.

Assume that we have randomly created m tuples from
Ub×w [n]. Let t1 , . . . , tr be those mapped into Tb×w [n] by
Ψ. With

α =
#Ub×w [n]

m

r∑
k=1

1
#Ψ−1(Ψ(tk ))

and

β =
(#Ub×w [n])2

m

r∑
k=1

1
(#Ψ−1(Ψ(tk )))2 −

√
α,

we have the 95% confidence interval for Tb×w (n),[
α − 1.96

√
β

m
,α + 1.96

√
β

m

]
.
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FIGURE 6. Even partitions.

To calculate efficiently the number of tuples that
create a given configuration, we define the concept of a
characteristic graph. For a given configuration, the char-
acteristic graph is the graph whose vertices are the blocks
in the configuration whose vertices are adjacent exactly
when the blocks are attached to each other. One easily
deduces the following result:

Proposition 3.4. The number of tuples creating L is the
number of spanning trees in a characteristic graph G of L.

We can use Kirchhoff’s matrix tree theorem
[Kirchhoff 47], [Matousek 98, p. 323] in calculating the
number of spanning trees. Let G = (V,E) be a graph,
V = {v1 , . . . , vn}. Let δi be the degree of vi and let eij

be the number of vertices from vi to vj (since our graph is
simple, this number is in {0, 1}). The theorem states that
the number of spanning trees is given as N = det A[t],
where A[t] has entries

aij =

{
δi, i = j,

−eij , i 	= j,

where i, j = 1, . . . , n − 1.

Proposition 3.5. When Ψ(t) ∈ Tb×w [n], we have

#Ψ−1(Ψ(t))
= det A[t] · n · 2−δb , w

×

⎧⎪⎨
⎪⎩

1/2 if Ψ(t). symmetric by 90◦,
1 if Ψ(t) symmetric by 180◦ (not 90◦),
2 otherwise.

Example 3.6. Consider the structure shown in
Figure 1(c). The characteristic graph is of the form �,
which is found by Kirchhoff’s theorem to have 192 span-
ning trees. The structure is symmetric after a rotation
by 180 degrees, and therefore the number of tuples corre-
sponding to configurations representing the structure is
192 · 9 = 1728.
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