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In this paper, we compute the minimum discriminants of im-
primitive degree-10 fields for different combinations of Galois
group and signature. We use class field theory when there is a
quintic subfield, and a Martinet search in the more difficult case
in which there is only a quadratic subfield.

1. INTRODUCTION

If L is a degree-n number field, let DL be its discriminant

and dL := |DL| its absolute discriminant. Let G(L) be a

transitive subgroup of Sn giving the Galois group of the

Galois closure of L/Q, which is well defined up to conju-

gation. We let r1 denote the number of real places of L.

For a given positive integer n and group G ≤ Sn, sev-

eral authors have contributed to our knowledge of mini-

mizing dL for fields L with [L : Q] = n and G(L) = G.

In [Klüners and Malle 01], the authors discuss the more

refined problem of minimizing dL with n, G, and r1 fixed,

as well as the still more refined analogue of this question

in which the conjugacy class of complex conjugation is

specified. Their results are primarily for degrees ≤ 8,

and there have been some results in degree 9. Here we

consider imprimitive fields in degree n = 10 and attempt

to determine minimal examples for fixed G and r1.

The computation for imprimitive decics divides natu-

rally into three cases, which we label as follows. We refer

to decics L that contain a quadratic but not a quintic

subfield as type-2 fields, those that contain a quintic but

no quadratic subfield as type-5 fields, and those that con-

tain both as type-2–5 fields. The most difficult cases are

type-2 fields, and here we employed computer searches

based on Martinet’s generalization of Hunter’s theorem.

Some of these were standard Martinet searches and some

were targeted Martinet searches in the sense of [Driver

and Jones 09]. This is explained in Section 2.

Section 3 treats type-5 decics using class field theory.

These computations rely on having a sufficiently large

complete list of quintic fields to work from. We extended

the range of known totally real quintic fields K from
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dK ≤ 2 · 107 to dK ≤ 108, which, in turn, allowed us

to determine more minimal decic discriminants.

Finally, in Section 4 we describe results for the sim-

plest case, type-2–5 decic fields. These fields are just

tensor products of their subfields, so working with ta-

bles of lower-degree fields suffices here. Again, we em-

ployed here our extended list of totally real quintic

fields.

2. TYPE-2 DECICS

2.1 The Martinet Search

A standard technique for searching for all fields with ab-

solute discriminant less than a given bound comes from

the geometry of numbers. In particular, all such primitive

degree-n extensions of a degree-m field can in principle

be found using Martinet’s theorem, a generalization of

Hunter’s theorem [Cohen 00, Section 9.3].

Here, we use Martinet’s theorem to find all quintic

extensions of a quadratic base field. If a decic field L with

a quadratic subfield K satisfies the discriminant bound

dL ≤ B, then the discriminant of K must satisfy

dK ≤ d
1/5
L ≤ B1/5.

In this paper, we take B = 1010. Thus, it is necessary to

search over each quadratic base field satisfying dK ≤ 100;

there are 61 such quadratic fields.

In [Driver and Jones 09], we show how to target par-

ticular discriminants in a Martinet search. Note that our

search here is naturally broken up into 61 searches, one

for each quadratic field. When the quadratic base field

has relatively large discriminant there are correspond-

ingly few possibilities for the decic discriminant beneath

the bound B. For example, when the quadratic base field

is K = Q(
√
97), the only possibility for the decic field is

dL = 975.

When we have a priori knowledge of the absolute de-

cic discriminant, we can first test to make sure that the

ratio of the absolute polynomial discriminant to dL is

a square. This usually weeds out 99% of the candi-

date polynomials, and allows us to skip the more com-

putationally expensive tasks of checking for irreducibility

and computing field discriminants. Even when multiple

discriminants are possible, it is usually much faster to

use several targeted searches instead of a single standard

search.

The use of targeting is helpful here only for those base

fields having the largest discriminant bounds; as the dis-

criminant of the base field drops, a point is reached where

too much targeting would be required in order to be prac-

tical. In our implementation, we found that a good rule

of thumb is to use a targeted Martinet search for those

base fields having dK ≥ 0.75B1/5.

2.2 Results

For our first attempt, we used a discriminant bound of

B = 109. The Martinet search took approximately one

week on a 3-GHz Pentium, and found 239 fields.

To extend the search further, we used a distributed

computing approach through the BOINC system.1 With

B = 1010, the computation took a total of approximately

20,000 machine hours (summed over all hosts). It found

10,565 fields. Table 1 shows the distribution of fields

partitioned by type and signature. If no fields of a par-

ticular Galois group (respectively signature) were found,

then the corresponding row (respectively column) was

left out of the table. Impossible combinations of type

and signature are grayed out.

Table 2 gives the minimum discriminants for type-

2 decics as determined by our computer search. Since

these polynomials were computationally the most diffi-

cult to obtain, we include defining polynomials of the

corresponding fields. Here signatures are given by just

r1, the number of real places. Discriminants are given in

factored form. Here and in subsequent tables we include

exponents of 1 in a factorization if needed to separate

prime factors.

Signature

Galois Group (0, 5) (2, 4) (4, 3) Total

T1 1 1

T2 2 2

T3 6 2 8

T5 1 0 1

T6 6 6

T11 2 0 2

T21 14 12 26

T22 158 14 172

T33 1 0 1

T40 2 4 6

T41 5 0 5

T43 9187 946 202 10335

TABLE 1. Numbers of decics L with a quadratic sub-
field and dL ≤ 1010.

1Berkeley Open Infrastructure for Network Computing (http:
//boinc.berkeley.edu).
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Galois Group r1 Discriminant Polynomial

T6 0 −35314 x10 + 2x8 − 3x7 + 3x6 − 7x5 + 8x4 − 7x3 + 7x2 − 4x+ 1

T21 0 −2107612 x10 − 4x9 + 8x8 − 10x7 + 9x6 − 6x5 + 3x4 − x2 + 1

T21 2 556012 x10 − 3x9 + 5x8 − 5x7 + 2x6 + 2x5 − 4x4 + 2x3 − 2x+ 1

T33 0 −353373 x10 − 4x9 + 7x8 − 11x7 + 18x6 − 19x5 + 16x4 − 17x3 + 10x2 − 3x+ 3

T40 0 −3549032 x10 − x9 + 5x8 − 3x7 + 8x6 − 4x5 + 4x4 − 3x3 − x+ 1

T40 2 5514292 x10 − 4x9 + 8x8 − 12x7 + 18x6 − 21x5 + 18x4 − 9x3 + x2 + 2x− 1

T41 0 −2635132432 x10 − x9 − 4x8 + x7 + 8x6 + 2x5 − 6x4 − x3 + 7x2 + 5x+ 1

T43 0 −351127369 x10 − 3x9 + 5x8 − 6x7 + 6x6 − 4x5 + 2x4 − x3 + x2 − x+ 1

T43 2 55280001 x10 − x9 − x8 + 3x7 − 3x6 − x5 + 5x4 − x3 − 3x2 + x+ 1

T43 4 −55103911049 x10 − 3x9 + 5x8 − 4x7 − 2x6 + 8x5 − 8x4 + x3 + 3x2 − 3x+ 1

TABLE 2. Minimum discriminants and defining polynomials of type-2 decics.

3. TYPE-5-DECICS

3.1 Totally Real Quintics

Studying type-5 decics relies on our knowledge of quintic

fields. In the case of totally real quintics K, those with

dK ≤ 2 ·107 were classified by [Schwarz et al. 94], and are

available at the Bordeaux FTP site.2 While the bound

for dK is large compared to the corresponding bounds for

the two other signatures of quintic fields, it accounts for

only 22,740 fields, which we found insufficient.

We implemented a standard Hunter’s search using the

methods described in [Cohen 00, Section 9.3] to find all

totally real quintic fields K with dK ≤ 108. The number

of fields broken down by Galois group is given in Table 3.

Here we use common names for the Galois groups,

which correspond to T 1–T 5 respectively using the la-

beling of [Butler and McKay 83].3 As was the case in

[Schwarz et al. 94], almost all of the fields have Galois

group S5. Although this is a fairly modest increase in

the range of discriminants, it was of great use in com-

puting the minimal absolute discriminants of totally real

decics of type 5 and type 2–5.

Galois Group C5 D5 F5 A5 S5

Number of Fields 6 72 59 80 162,022

TABLE 3. Numbers of totally real quintic number fields
K with dK ≤ 108, partitioned by Galois group.

2The Bordeaux Database of Number Fields (ftp://megrez.math.
u-bordeaux.fr/pub/numberfields).

3The fields themselves are available online: “Tables of Number
Fields with Prescribed Ramification” (http://math.la.asu.edu/∼jj/
numberfields).

3.2 Class Field Theory

For decic fields containing a quintic subfield, class field

theory provides a mechanism for computing the desired

fields. Here, computations are relatively simple in com-

parison to more general cases of Kummer theory, since

our fields always contain ζ2 = −1, so the desired exten-

sions can be found by taking square roots of appropriate

elements. An algorithm for this is given in [Cohen 00,

Section 9.2.2].

All computations here were carried out with gp.4 We

needed to deviate from the approach given in [Cohen 00]

because of memory issues. Given a base field K and

bound B, a quadratic extension corresponding to mod-

ulus (m0,m∞) needs to satisfy d2KN(m0) ≤ B. In some

cases, it was impractical to first compute all m0 with

N(m0) ≤ B/d2K . Instead, we computed the list L of all

such moduli that are divisible only by primes p ≤ B1 :=√
B/d2K . All additional moduli are then of the formm0Q,

where Q divides a prime q with B1 < q ≤ B/d2K and m0

is from L. So as we compute these, we compute the cor-

responding fields as we go and do not have to store these

additional moduli.

For example, consider the totally real S5 quintic field

of minimal discriminant. It has discriminant 61 · 397.
With B = 1016, the first phase found and stored the

766,157 moduli that are divisible only by primes less than

B1 = 4129. The total number of moduli was 3,851,600.

One could compute decic overfields of quintics using

a Martinet search, as was done in [Selmane 00a, Sel-

mane 00b, Selmane 02]. We found, however, that class

field theory was much more efficient.

4Available online: PARI/GP, version 2.3.3, Bordeaux, 2008,
http://pari.math.u-bordeaux.fr/.
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r1 B 0 2 4 6 8 10

1 1012 226764 210453

3 1012 11972 37249 32852 7876

5 1013 772 3954 7527 7592 2849 313

TABLE 4. Numbers of type-5 decic fields L with dL ≤ B by signature. Columns correspond to the number of real places
for the decic field, and rows correspond to the number of real places of the quintic subfield.

Signature

Gal (0, 5) (2, 4) (4, 3) (6, 2) (8, 1) (10, 0)

T8 118232 118232 210118232

T14 −1181451 11889 −11823 118109 −118331 11843167

T15 210474 324014 6724104

T16 −52475 324015 4015 1724015

T23 −47483 474193 −314014 1314014 −334014 39714014

T24 216136 21051074 ?

T25 212137 21051174 ?

T29 −2813631 2813641 −2831536 2851536 −28191536 285107497

T34 ? 348834 261141134

T36 −21217443 214111174 −24318814 261718814 −358834 241142911134

T37 5257832 2101323472 210364972

T38 −382233 282273 −28134193 6133973 24337693

T39 −722314312 724116312 −7243112172 461157832 −61216713972 6123972757

TABLE 5. Minimum discriminants for type-5 decics.

3.3 Results

For complete searches of type-5 decics, we computed all

fields L with dL ≤ 1012. When the quintic subfield was

totally real, we computed all decics with dL ≤ 1013. The

results are summarized in Table 4.

These computations include, and extend, those per-

formed in [Selmane 00a, Selmane 00b, Selmane 02]. We

found one discrepancy with these prior computations;

namely, we found one more totally complex decic field

with a quintic subfield with r1 = 3 and dL ≤ 1011. Oth-

erwise, our results are consistent with Selmane’s.

Table 5 gives our findings for minimal absolute dis-

criminants for type-5 decics. Most entries come from

the searches summarized above, namely from fields with

dL ≤ 1012. Almost all the cases not settled by that

search had a totally real quintic subfield. This natu-

rally includes totally real decics (r1 = 10), but also cases

in which (T, r1) = (16, 2), (16, 6), (24, 6), (25, 6), (29, 4),

(29, 6), (29, 8), (34, 6), (36, 4), (36, 6), (36, 8), (38, 6).

For example, consider a T 16 decic L with r2 = 2. The

group T 16 has two conjugacy classes of elements of order

2 and cycle type 2216. The unique quintic subfield K has

G(K) = D5, and in the projection T 16→ D5 induced by

the inclusion K ↪→ L, elements of cycle type 2216 map to

the identity. So, for a T 16 decic with r1 = 2, the quintic

subfield is a totally real D5 field.

In these cases, we made use of the quintics computed

in Section 3.1. In each case, we computed decic overfields

of the desired signature, where the quintic had the correct

Galois group, and dL ≤ 1016. In this computation, we

kept track only of fields of minimal discriminant for each

Galois group, since the number of fields in some cases

was so large.

4. TYPE-2–5 DECICS

The simplest case is that in which the decic contains both

a quadratic and quintic subfield. There are eight cor-

responding decic Galois groups. These fields are easily
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Signature

Gal (0, 5) (2, 4) (6, 2) (10, 0)

T1 −119 35119

T2 −475 4015

T3 −35474 74175 554014

T4 28511 2851174

T5 −35176 215510 21574136

T11 −216174 55534 3855734

T12 −210894 283857 28137174

T22 −3511232 55132412 1353472 556123972

TABLE 6. Minimum discriminants of Type-2–5 decics.

generated from tables of quadratics and quintics by form-

ing composita. We used quintics from the Bordeaux FTP

site augmented by the results of our search for totally real

quintics described in Section 3.1 above. Naturally, some

care must be exercised to ensure that one has searched

far enough. Using this method, we were able to find

the minimum discriminants for all the above-mentioned

decics, and for almost all possible signatures, with the

results given in Table 6.
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