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On the punctured torus the number of essential self-intersections
of a homotopy class of closed curves is bounded (sharply) by a
quadratic function of its combinatorial length (the number of let-
ters required for its minimal description in terms of the two gen-
erators of the fundamental group and their inverses). We show
that if a homotopy class has combinatorial length L, then its
number of essential self-intersections is bounded by (L − 2)2/4

if L is even, and (L − 1)(L − 3)/4 if L is odd. The classes at-
taining this bound can be explicitly described in terms of the
generators; there are (L − 2)2 + 4 of them if L is even, and
2(L− 1)(L− 3) + 8 if L is odd. Similar descriptions and counts
are given for classes with self-intersection number equal to one
less than the bound. Proofs use both combinatorial calculations
and topological operations on representative curves.

Computer-generated data are tabulated by counting for each
nonnegative integer how many length-L classes have that self-
intersection number, for each length L less than or equal to 13.
Such experiments led to the results above. Experimental data
are also presented for the pair-of-pants surface.

1. INTRODUCTION

The punctured torus has the homotopy type of a figure-
eight. Its fundamental group is free on two generators:
once these are chosen, say a, b, a free homotopy class
of curves on the surface can be uniquely represented as
a reduced cyclic word in the symbols a, b, A, B (where
A stands for a−1 and B for b−1). A cyclic word w is an
equivalence class of words related by a cyclic permutation
of their letters; we will write w = 〈r1r2 . . . rn〉, where
the ri are the letters of the word, and 〈r1r2 . . . rn〉 =
〈r2 . . . rnr1〉, etc.

The term reduced means that the cyclic word contains
no juxtapositions of a with A and none of b with B. Note
here that we will call a free homotopy class (a reduced
cyclic word) primitive if is not a proper power of an-
other class (another word); and among the imprimitive
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classes are words we will call pure powers: those that are
a proper power of a generator.

The length (with respect to the generating set (a, b))
of a free homotopy class of curves is the number of letters
occurring in the corresponding reduced cyclic word.

This work studies the relation between length and
the self-intersection number of a free homotopy class of
curves: the smallest number of self-intersections among
all general-position curves in the class. (General position
in this context means as usual that there are no tangen-
cies or multiple intersections.) The self-intersection num-
ber is a property of the free homotopy class and hence
of the corresponding reduced cyclic word w; we denote it
by SI(w).

Theorem 1.1. The maximal self-intersection number for a
primitive reduced cyclic word of length L on the punctured
torus is {

(L − 2)2/4 if L is even,
(L − 1)(L − 3)/4 if L is odd.

The words realizing the maximal self-intersection number
are as follows (see Figure 1):

(1) L even:

(i) 〈rL/2sL/2〉, r ∈ {a, A}, s ∈ {b, B},
(ii) 〈risjrL/2−iSL/2−j〉, r ∈ {a, A}, s ∈ {b, B},

S = s−1, and similar configurations interchang-
ing r and s;

(2) L odd:

(i) 〈r(L+1)/2s(L−1)/2〉, r ∈ {a, A}, s ∈ {b, B}, or
vice versa,

(ii) 〈risjr(L+1)/2−iS(L−1)/2−j〉,
〈risjr(L−1)/2−iS(L+1)/2−j〉, r ∈ {a, A}, s ∈
{b, B}, S = s−1, and similar configurations
interchanging r and s.

Elementary counting with Theorem 1.1 yields the next
result:

Theorem 1.2. The number of distinct primitive free
homotopy classes of length L realizing the maximal self-
intersection number is{

(L − 2)2 + 4 if L is even,
2(L − 1)(L − 3) + 8 if L is odd.
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FIGURE 1. Curves of maximal self-intersection on the
punctured torus. I. w = 〈aibj〉 with (i−1)(j−1) inter-
section points, a maximum when i = j (even length) or
i = j±1 (odd length). II. w = 〈aibjakBl〉. Block x has
(k− 1)(j − 1) intersection points; block y has i(j − 1);
block z has l(k−1); block w has i(l−1); and there are
an additional i. The total is (i+k−1)(j+l−1), a max-
imum when i+k = j+l (even length) or i+k = j+l±1
(odd length). Graphic conventions from Section 2.1;
curve II drawn using the algorithm of [Blood 02]. Sim-
ilar diagrams appear in [Chemotti and Rau 04].

Elementary computation with Theorem 1.2 allows the
inequality to be reversed:

Theorem 1.3. Let w be the reduced cyclic word corre-
sponding to a primitive free homotopy class of curves on
the punctured torus. Then if SI(w) ≥ 1, the length of w

is greater than or equal to the smallest integer larger than
2
√

SI(w) + 2. Moreover, this bound is sharp.

Remark 1.4. Pure-power words of length L between 2 and
6 do not fit the pattern of Theorems 1.1–1.3. Namely,
SI(rL) = L− 1 > (L− 2)2/4 and (L− 1)(L− 3)/4 for in-
tegers in that range. But these theorems can be extended
to all words of length seven or more, primitive or not.

Remark 1.5. The length of the word representing a
free homotopy class depends on the choice of generat-
ing set (a, b) for the fundamental group, while its self-
intersection number does not. Since the theorems above
apply to every generating set, they can be rephrased in
terms of the shortest such lengths.

Remark 1.6. The group of automorphisms of the fun-
damental group of the punctured torus acts on the set
of cyclic words with a fixed self-intersection number n.
Words with maximal self-intersection number minimize
length in an orbit of this action. Igor Rivin asked us
whether every orbit contains a word with maximal self-
intersection number for its length. But w = 〈ababAB〉 is
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not in the orbit of such a word (this can be proved using
[Lyndon and Schupp 01, Proposition 4.19]).

Theorems 4.9 and 4.11 treat curves on the punctured
torus of self-intersection number one less than the maxi-
mum for their length; we do not have similar formulas for
the distribution of other self-intersection numbers among
curves of a given length. Here is some numerical evidence,
computed using the algorithm given in [Cohen and Lustig
87]; see [Chas and Krongold 09] for a more detailed pre-
sentation.1 This evidence was in fact the motivation for
the research presented here.

Experimental Theorem 1.7. The number of distinct prim-
itive free homotopy classes with a given number of self-
intersections corresponding to primitive reduced cyclic
words of a given length appears, for length up to 13, in
Table 1. (If one entry of a row of the table is 0, then all
the entries to its right are also 0.)

Experimental Theorem 1.8. Let k ∈ {1, 2, . . . , 30} and let
K be the set of all cyclic reduced words v corresponding
to primitive free homotopy classes of curves on the punc-
tured torus, with SI(v) ≥ k. If w is a word in K with
minimal length, then the following statements hold:

(1) The length of w is equal to the smallest integer
greater than or equal to 2

√
k + 2.

(2) SI(w) = k.

1.1 Related Results

For a reduced cyclic word w written in the symbols
{a, A, b, B}, let α(w) and β(w) denote the total num-
ber of occurrences of a, A and of b, B, respectively. In
[Blood 02] is given a simple construction of a repre-
sentative curve that has at most (α(w) − 1)(β(w) − 1)
intersections; the author also finds some of the words
whose representative curves require this number of self-
intersections, namely those of the form aαbβ. Together,
these two discoveries constitute a different proof of the
first part of our Theorem 1.1 (compare Theorem 1.18). In
addition, [Chemotti and Rau 04] gives elementary proofs
of parts (2), (3), and (4) of our Proposition 3.7. This
unpublished work came to our attention only during the
final editing of this paper.

An algorithm is given in [Birman and Series 84] to de-
cide whether a simple representative exists for a reduced

1The Java program can be found online (http://www.math.
sunysb.edu/∼moira/CLB/CLB09/).

cyclic word in the generators of the fundamental group
of a surface with boundary. These ideas are extended in
[Cohen and Lustig 87] (see also [Chas 04] and [Tan 96]),
which gives an algorithm to compute the self-intersection
of a reduced cyclic word. The program to compute Ta-
ble 1.7 is based on these algorithms.

From the geometric point of view, the punctured torus
can be studied as a manifold with boundary: the comple-
ment in S1×S1 of an open disk. This manifold admits a
complete hyperbolic metric for which the boundary circle
is a geodesic. Since every free homotopy class contains
exactly one geodesic representative, and since a primi-
tive geodesic cannot have excess intersections [Hass and
Scott 85], the results in this section translate into results
about counting geodesics on that Riemann surface.

Result 1.9. It follows from [Cohen and Lustig 87, Main
Theorem] (see also [Chas 04, Proposition 2.9 and Remark
3.10]) that for any surface S with nonempty boundary
and negative Euler characteristic, SI(w) ≤ L(L − 1)/2
(using our notation) for w a primitive word of length L

in the generators (and their inverses) of the fundamental
group of S. For the torus with one boundary compo-
nent, the special case examined here, our upper bound
(Theorem 1.2) is lower.

On the punctured torus choose generators for the fun-
damental group and a metric for which the boundary is
a geodesic. That metric, restricted to closed geodesics,
is quasi-isometric to the word-length metric. (This is an
elementary argument, based on the upper bound K for
the length of geodesics representing the generators and
on the lower bound k for the length of a transversal or
a corner segment in the fundamental polygon; see Sec-
tion 2.1 for this terminology; see also [Milnor 68, Bridson
and Haefliger 91].)

Hence we can refer to word length as combinatorial
length. (Note that the union of the four corner segments
is the boundary, so our quasi-isometry evaporates as the
length of the boundary goes to zero, i.e., as our surface
approaches the torus minus a point. For a hyperbolic
metric on that surface, the relation between length and
self-intersection number can be expected to be quite dif-
ferent.)

Result 1.10. It is proved in [Lalley 96, Theorem 1]
that on a compact hyperbolic closed surface, most closed
geodesics of length approximately � have about C�2 self-
intersections for some positive constant C depending on
the surface. As a consequence of our Theorem 1.1, in the
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Length\ SI 0 1 2 3 4 5 6 7 8 9 10

1 4 0 0 0 0 0 0 0 0 0 0

2 4 0 0 0 0 0 0 0 0 0 0

3 8 0 0 0 0 0 0 0 0 0 0

4 10 8 0 0 0 0 0 0 0 0 0

5 16 8 24 0 0 0 0 0 0 0 0

6 8 16 32 40 20 0 0 0 0 0 0

7 24 16 32 48 112 24 56 0 0 0 0

8 16 24 52 76 116 156 136 104 90 40 0

9 24 32 64 120 144 240 384 208 376 136 304

10 16 32 72 168 272 332 492 628 644 700 700

11 40 48 80 160 272 584 664 1200 1280 1368 1608

12 16 40 104 208 372 660 1048 1408 2044 2696 3088

13 48 48 104 264 456 752 1216 2080 2496 4464 4752

Length\ SI 11 12 13 14 15 16 17 18 19 20

9 48 104 0 0 0 0 0 0 0 0

10 548 464 360 224 160 68 0 0 0 0

11 1368 2048 976 1704 528 1072 264 592 80 168

12 3580 3866 3792 3816 3612 3272 2820 2276 1808 1308

13 7048 6976 8968 8904 9328 10536 7984 10392 5760 8736

Length\ SI 21 22 23 24 25 26 27 28 29 30 31

11 0 0 0 0 0 0 0 0 0 0 0

12 960 680 392 250 104 0 0 0 0 0 0

13 3752 6616 2064 4016 976 2128 432 976 120 248 0

TABLE 1. The i, j entry in this table is the number of distinct reduced primitive cyclic words of length i with exactly
j self-intersections, up to the maximum possible self-intersection number for each length. Boldface numbers and their
location correspond to Theorems 1.1 and 1.2, italic numbers to Theorem 4.11.

case of the torus with one geodesic boundary component,
for each hyperbolic metric there exists a positive con-
stant C′ such that the number of self-intersection points
of every geodesic of length � is less than C′�2. (This fact
also admits an elementary proof, as Lalley pointed out to
us.) Lalley also studies the distribution on the surface of
self-intersection points of a typical geodesic; [Lalley 96,
Theorem 2] may be compared with the patterns in Fig-
ure 1.

Result 1.11. It is proved in [Basmajian 93, Corollary 1.2]
that for any hyperbolic surface there exists an increasing
sequence of constants {Mk}, k ≥ 1, tending to infinity
such that if ω is a closed geodesic with self-intersection
number k, then the hyperbolic length of ω is greater than
Mk. For the punctured torus and combinatorial length,
our Theorem 1.3 gives explicit values for Mk, and our
bounds are sharp.

In view of the quasi-isometry between combinatorial
and hyperbolic length for the punctured torus (as mani-

fold with boundary), the numbers in Experimental The-
orem 1.7 are concordant with numbers or estimates from
several other lines of research:

Result 1.12. It is known that for any hyperbolic surface
the total number of primitive closed geodesics of length
at most L is asymptotic to ehL/L (h is the topological
entropy of the geodesic flow; see [Buser 92] and references
therein; similar results hold for the variable-curvature
case [Lalley 89, Margulis 83, Parry and Pollicott 83]).
On the punctured torus, the number of distinct prim-
itive classes of combinatorial length L at most twelve,
i.e., the sum of the numbers in row L of Table 1, appears
to be very rapidly asymptotic to 3L/L.

Result 1.13. The numbers in the first column of Table 1,
giving the number of simple classes for a given length,
can be compared with the results of [McShane and
Rivin 95] for the punctured torus and [Mirzakhani 08]
for a general surface of negative Euler characteristic (see
also [Rivin 01] for historical background). Mirzakhani,
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McShane, and Rivin prove that the number of simple
closed geodesics of hyperbolic length at most L grows
as a quadratic polynomial in L. (Contrast with Theo-
rem 1.2, where the number of maximal curves of length
exactly L grows quadratically with L.)

For the range of Table 1, we have data consistent with
these: the number of simple curves of length exactly
2n + 1, n ≥ 1, appears to grow more or less linearly
with n; for 2n + 1 a prime, it is exactly 8n.

Result 1.14. For L even, the numbers in the second col-
umn of Table 1 grow as 4(L − 2). This is consistent
with the determination from [Rivin 09] that the number
of single-self-intersection geodesics of length at most L

grows quadratically with L.

Result 1.15. For a closed surface S, [Basmajian 93,
Proposition 1.3] states that there are constants Nk (de-
pending on the genus of S) such that the shortest
geodesic on S with at least k intersection points has
length bounded above by Nk. Experimental Theorem 1.8
gives Nk an explicit value for curves of combinatorial
length less than 13 on the punctured torus.

Result 1.16. It is proved in [Buser 92] that the shortest
nonsimple closed geodesic on a hyperbolic surface has
only one self-intersection; in our notation the shortest
γ with SI(γ) ≥ 1 has SI(γ) = 1. It is shown in [Bas-
majian 93, Corollary 1.4] that there exists an a priori
constant, say Kk, depending on the genus of the surface,
such that the shortest γ with SI(γ) ≥ k has SI(γ) ≤ Kk.
Our Table 1 shows that for k ≤ 30, on the punctured
torus and with respect to combinatorial length, Kk = k.

1.2 Sketch of Proof

The method of proof in this paper keeps track of three
integer parameters of a reduced cyclic word w in the al-
phabet a, b, A, B: along with α(w) and β(w) (see Sec-
tion 1.1) there is h(w), the total number of block-pairs
in w; these are defined as follows:

Definition 1.17. Either a reduced cyclic word w is
a pure power or there exist pairs of positive integers
j1, k1, . . . , jn, kn, n ≥ 1, such that

w =
〈
rj1
1 sk1

1 rj2
2 sk2

2 . . . rjn
n skn

n

〉
,

where r ∈ {a, A} and s ∈ {b, B}. Each of the rji

i ski

i

occurring in this expression is a block-pair; the number

of block-pairs of w is defined to be n in the second case,
and zero in the first.

The main theorem in this paper is Theorem 1.18; it
will be proved in Section 4.

Theorem 1.18. For the punctured torus, let w be the re-
duced cyclic word corresponding to a free homotopy class
of curves with a positive number h of block-pairs. If
h = 1, then SI(w) = (α(w) − 1)(β(w) − 1). If h ≥ 2,
then

SI(w) ≤ (α(w) − 1)(β(w) − 1) − h + 2.

The words w realizing the maximal self-intersection
for non-pure-power words with given α and β (that is,
SI(w) = (α(w) − 1)(β(w) − 1)) have one of the following
forms:

(1) 〈risj〉, r ∈ {a, A}, s ∈ {b, B}; here α(w) = i >

0, β(w) = j > 0.

(2) 〈risjrkSl〉, with all i, j, k, l > 0, where r ∈ {a, A}
(and then i + k = α(w)) and s ∈ {b, B} (and then
j + l = β(w)), or vice versa.

This theorem has two immediate corollaries:

Corollary 1.19. Let w be the reduced cyclic word corre-
sponding to a primitive free homotopy class of curves on
the punctured torus. Then

SI(w) ≤ (α(w) − 1)(β(w) − 1).

Corollary 1.20. Among primitive words, those of max-
imal self-intersection number for their α and β values,
i.e., with SI(w) = (α(w) − 1)(β(w) − 1), have one of the
following forms:

(1) 〈r〉, r ∈ {a, b, A, B}.
(2) 〈risj〉, r ∈ {a, A}, s ∈ {b, B}; here α(w) = i > 0,

β(w) = j > 0.

(3) 〈risjrkSl〉, all i, j, k, l > 0, where r ∈ {a, A} (and
then i + k = α(w)) and s ∈ {b, B} (and then j + l =
β(w)), or vice versa.

Remark 1.21. Since α(w) + β(w) = L, where L is the
length of w, an elementary calculation leads from Corol-
laries 1.19 and 1.20 to Theorem 1.1.
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The next three sections carry the proof of Theo-
rem 1.18. The strategy is to show that only words of the
types listed in the statement of the theorem, i.e., 〈risj〉
and 〈risjrkSl〉, r ∈ {a, A}, s ∈ {b, B}, or vice versa, can
have maximum self-intersection number for their length;
this will be done by exhibiting, for every word that is not
of these types, another word of the same length and with
strictly larger self-intersection number. For most words
w, “cross-corner surgery” (defined below) will produce a
w′ with the same α and β values (and so of the same
length), with SI(w′) > SI(w) and with h(w′) < h(w).

For certain words with two, three, or four blocks, not
candidates for surgery, the self-intersection number will
be computed explicitly by counting “linked pairs” of sub-
words (definition below) and determining that it is indeed
smaller than the self-intersection number of a word of the
same length but of one of the two listed types (whose
self-intersection numbers are also computed by counting
linked pairs).

2. CROSS-CORNER SURGERY

2.1 Preliminaries

Here, let M represent the punctured torus as a topo-
logical space. The choice of generators (a, b) for π1M

naturally implies a fundamental polygon from which M

may be reconstructed by edge-identification. Namely, we
can choose, as representative cycles for the homological
duals a∗, b∗ ∈ H1(M/∂M), two disjoint connected arcs
beginning and ending in ∂M ; slicing M along these arcs
gives a simply connected polygon that can serve as funda-
mental domain (for the action of π1(M) on the universal
cover); for our purposes we will label a the edge keeping
the orientation of a∗, and A its opposite edge with the
opposite orientation (see Figure 2); similarly for b and B.

Lifting a curve in M to this fundamental polygon
means representing the curve as a set of arcs with iden-
tifications; each of these curve segments leads from one
of the edges a, b, A, B to another; the orientation of the
curve defines a cyclic word in the four symbols: one
records the positive intersections as they occur. By con-
struction, this word represents the free homotopy class
of the curve under consideration.

A curve segment is a transversal if it joins opposite
edges of the fundamental domain, and a corner otherwise.
Transversals correspond to consecutive aa, AA, bb, BB in
the word; other combinations give corners. Two corners
are opposite if they are diagonally opposed. Thus ab, ba

and ab, AB correspond to diagonally opposed corners;
ab and ba have the same orientation, whereas ab and

a

a

a

a∗

b

b

b

b∗

A

B

I.

II.

III.

FIGURE 2. The punctured torus as a polygon with
identifications. I, II. The generators a, b and their
inverses A, B can be identified by their intersections
with the dual cycles a∗, b∗, which appear among the
edges of the fundamental polygon. III. When an ori-
ented curve has been lifted to the fundamental poly-
gon, the cyclic word corresponding to its free homo-
topy class can can be obtained by choosing a starting
point and recording in sequence the edges it crosses,
reading their names from inside the polygon. The
lifted curve 〈baBBAba〉, with self-intersection num-
ber 3, is shown as an example.

AB have reversed orientations. In Figure 2 the curve
〈baBBAba〉 has two ba corner segments diagonally op-
posed to an ab (same orientation) and a BA (reversed
orientation); one aB corner diagonally opposed to an ab

(same orientation) and a BA (reversed orientation); one
aB corner diagonally opposed to an Ab corner (reversed
orientations); and one BB transversal.

A curve with only transversal self-intersections and
with the smallest number of self-intersections for its
homotopy class (multiple points count with multiplic-
ity: a multiple intersection of n small arcs counts as(
n
2

)
intersections) is said to be tight (compare “taut” in

[Thurston 10]).
Two-component multiwords [w, w′] enter into the

surgery process. We define the intersection number
IN(w, w′) of two reduced cyclic words w, w′ to be the
minimum number of intersections between a general-
position curve representing w and one representing w′.
The self-intersection number of the multiword [w, w′] is
then SI([w, w′]) = SI(w) + SI(w′) + IN(w, w′), and a pair
of curves with that smallest number of self-intersections
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is also said to be tight. We also extend the α and β no-
tation to multiwords: α(]w′, w′′]) is the total number of
occurrences of a or A in w and w′; β([w′, w′′]), the total
number of occurrences of b or B.

2.2 The Surgery

Whenever a cyclic word w contains a pair of opposite cor-
ners, it may be cut in two places, once in the middle of
each of the corners, to give two linear words. These two
linear words may be reassembled (the corners themselves
are reassembled into transversals) into either a new word
w′ or a new multiword [w′, w′′] (according to the relative
orientation of the corners); if a multiword [v′, v′′] con-
tains a pair of opposite corners, one in each component,
the two corners may be cut and reassembled into two
transversals, yielding a new single word v.

For a picture of the surgery on a curve, see Figure 3;
in terms of the words, the cutting and reassembly take
one of the following forms:

〈xr|sys|rz〉 → [〈xr|rz〉, 〈sys|〉], (2–1)

〈xr|syR|Sz〉 → 〈Xr|rYS|Sz〉, (2–2)

[〈xr|sy〉, 〈zs|rw〉] → 〈xr|rwzs|sy〉, (2–3)

{〈xr|sy〉, 〈zR|Sw〉} → 〈xr|rZXs|sy〉, (2–4)

where x, y, z, w are arbitrary (linear) subwords, and R =
r−1, S = s−1, X = x−1, etc.

Definition 2.1. This cutting and reassembly is called
cross-corner surgery on the word w or the multiword
[v′, v′′].

It seems natural that transversals should contribute,
more than corners, to the self-intersection number of a
curve. Proposition 2.2 makes this quantitative by show-
ing that cross-corner surgery, which eliminates two cor-
ners and adds two transversals, always increases the self-
intersection number by at least one.

Proposition 2.2.

(1) If a word w contains a pair of opposite corners with
reversed orientation, then cross-corner surgery will
produce a new word w′, with

α(w′) = α(w), β(w′) = β(w),

with one fewer block-pair, and with

SI(w′) ≥ SI(w) + 1.

(2) If a word w contains a pair of opposite corners with
the same orientation, then cross-corner surgery will
produce a multiword [w′, w′′], with

α([w′, w′′]) = α(w), β([w′, w′′]) = β(w),

with one fewer block-pair, and with

SI([w′, w′′]) ≥ SI(w) + 1.

(3) If a multiword [v′, v′′] contains a pair of opposite cor-
ners, one in each component, irrespective of orienta-
tion, then cross-corner surgery will produce a single
word v with

α(v) = α([v′, v′′]), β(v) = β([v′, v′′]),

with one fewer block-pair, and with

SI(v) ≥ SI([v′, v′′]) + 1.

This proposition is stated in terms of words, but its
proof, given in the next subsection, works by examining
curves representing the words before and after surgery;
we first must fix a topological procedure for carrying out
cross-corner surgery on a curve. Specifically, given a tight
curve, or a tight pair of curves, representing the candi-
dates w or [v′, v′′] for cross-corner surgery, we need to
establish a systematic way of generating curves repre-
senting the result w′, [w′, w′′] or v of the surgery. We do
this as follows:

Definition 2.3. (Cross-corner surgery on curves.) Sup-
pose r|s and s|r or R|S are the loci (that is, two diago-
nally opposite corners) in the word w (or the multiword
[v′, v′′]) chosen for surgery, and let K and L be the corre-
sponding corners in a tight representative (see Figure 3).

• Preparation for the surgery: If the extension of any
corner segment of the same type as K (i.e., corre-
sponding to the same letter sequence rs or to the
inverse sequence SR) intersects the extension of K

in either direction before diverging, the curve is pre-
pared for surgery by a homotopy sliding that (neces-
sarily single) intersection onto the segment K itself.
This deformation may be carried out by a sequence
of Reidemeister type-III moves without changing the
total number of intersections (see Figure 3, I and II).
A similar operation is carried out on the corner L.

• Cutting and sewing: Corresponding to the word per-
mutation, corners K and L are removed and replaced
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I. II. III.

aaa

bbb

AAA

bbb

LLL

U
V

KKK

FIGURE 3. The cross-corner surgery 〈baBB|Ab|a〉
→ 〈baBB|Ba|a〉 as carried out on a tight represen-
tative curve. I. The corner K corresponds to b|a; L
corresponds to B|A. Note that the extension of K
intersects that of one of its parallel corners (circled
intersection). II. Before surgery, that intersection is
“pushed,” using a Reidemeister type-III move, into
the center of the surgery. III. K and L are excised,
U and V sewn in. The circled intersection migrates
to an intersection with V . The intersection of V with
the original BB spans a bigon with one of the original
vertices (squared intersections); SI(〈baBBBaa〉) = 6.

by transversals U and V . More precisely, a line is
drawn from a point on K to a point on L, in general
position with respect to the rest of the curve, and
cutting any segment no more than once; that line
is expanded into an X -junction: U routes the right
edge of K to the left edge of L, and vice versa for V .

2.3 Proof of Proposition 2.2

We will obtain a lower bound on the increase in self-
intersection number by counting the vertices added and
those possibly annihilated by the surgery. Annihilation
occurs through the creation of a bigon: an immersed
planar polygon with two vertices and with two edges
with disjoint preimages (a “singular 2-gon” in [Hass and
Scott 85]); the bigon defines a homotopy of the curve
leading to the disappearance of its two vertices. An in-
tersection will be called stable if it is not the vertex of a
bigon; a curve is tight if all its self-intersections are stable
[Hass and Scott 85].

Lemma 2.4. Cross-corner surgery does not create any
bigons spanned by a pair of presurgery vertices.

Proof. Since the initial curve is tight, the only way a pair
x, y of curve portions starting from a presurgery (“old”)
vertex P can lead to a bigon with another old vertex is
if one of those curve portions (say x) contains one of the
new segments U and V , say U . Suppose the other one,
i.e., y, enters inside the corner (L in Figure 4). Then
(Figure 4, I) as y follows x across the frame, y must in-
tersect L in an old vertex P ′, canceling P , contradicting

I.

a

b

A

B

B

K U

V

L

P

P ′

x y

Q Q

I I .

a

b

A

B

B

K U

V

L

Q

P

xy

FIGURE 4. Cross-corner surgery cannot produce a
bigon linking two presurgery vertices.

tightness of the original curve. So y must enter outside
L; then running parallel to U across the frame, it must
intersect the opposite corner K in an old vertex Q (Fig-
ure 4, II). Now if x and y meet in an old vertex Q′ so as
to form a bigon canceling P , then Q′ and Q will span
an old-vertex bigon. By tightness, this will require an-
other use of the new segments. Since each of U and V

can be used only once by each of x and y, after at most
four passes through the frame all the possibilities will be
exhausted; no such bigon can exist.

of Proposition 2.2. The curve surgery described in Defi-
nition 2.3 yields one word if it is applied to a word that
contains a pair of opposite corners with reversed orienta-
tion, a multiword if it is applied to a word that contains
a pair of opposite corners with the same orientation, and
a single word if it is applied to a multiword that con-
tains a pair of opposite corners, one in each component,
irrespective of orientation. Thus, to prove (1), (2), and
(3) it is enough to prove that in a cross-corner surgery,
the number of new vertices minus the number of vertices
canceled by new bigons is greater than or equal to one.
We start by classifying the new vertices introduced by
the surgery and the possible bigons in which they may
participate.

Vertices. The surgery creates three types of new ver-
tices, shown as black, grey and white in Figure 5, as
follows:

1. (black) Stable intersections between U and horizon-
tal transversals (i.e., segments corresponding to bb or
BB in the initial word w), between V and vertical
transversals, and (bull’s-eye) the stable intersection
between U and V .

2. (gray) Intersections between U and other vertical
transversals, and between V and other horizon-
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a

b

A

B

K

U

V

L

FIGURE 5. The new vertices created by a cross-corner
surgery.

tal transversals. These are potentially vertices of
bigons.

3. (white) Intersections between U , V , and remaining
corner segments. In Figure 5 only those of type ab

or BA are shown; there is typically another family
in the opposite corner corresponding to type ba or
AB. These are also potentially vertices of bigons.

4. In addition, the circled vertices in Figure 5 are those
inherited by the new curve from the old. These cor-
respond to the intersections between K or L with
other corners of the same type; such a corner is la-
beled J in Figure 6.

Focusing on K, let us label with x and y the two
ends of the segment K, and with w the intersection
point of the new segments U and V . The segment K

and the broken curve uwv are fixed-endpoint homo-
topic; it follows that for any original segment having
exactly one endpoint between u and v (e.g., J), the
intersection with K will migrate to an intersection
with U or V during that homotopy (with V if the
outside end of J is on the B side—as in Figure 6—
and with U if it is on the a side).

Bigons. The only bigons that need to be examined are
those for which one of the spanning vertices is an old
vertex or a type-4 vertex; that is because if two new ver-
tices form a bigon and cancel, that does not affect the
inequality we need to prove. So, letting 1, 2, 3, and 4
represent vertices so labeled above, letting x, x′ repre-
sent self-intersections of the original curve, and keeping
in mind that type-1 vertices are stable and that bigons
of type (x, x′) cannot occur (Lemma 2.4), we need only

J w

a

b

A

B

K

U

V

LP

x y

u

v

FIGURE 6. Vertices inherited by new curve from old;
P is an example of a type-3 vertex.

examine bigons of type (2, x), (2, 4), (3, x), (3, 4), (4, x),
and (4, 4):

(i) (4, x) and (4, 4). A vertex of type 4 can span a bigon
in only one of its quadrants; but in that quadrant a
bigon would imply a bigon with the old vertex from
which the type-4 vertex was inherited; so a (4, x)
would imply an (x′, x), and a (4, 4) would imply a
(4, x); so neither (4, 4) nor (4, x) can occur.

(ii) (2, x) and (2, 4). A type-2 vertex y may span a bigon
with an old vertex x; the type-2 vertex is either the
intersection of U with another vertical transversal,
or V with another horizontal. In the first case (the
second case is similar), that vertical transversal must
also intersect V , creating a new (type-1) stable in-
tersection z. In total we will have added two vertices
(y and z), and lost two vertices (y and x) to a bigon.
The inequality is not affected.

Since, arguing as in (i), a (2, 4) bigon would imply
a (2, x) bigon, the loss of the 4 would be balanced
by the gain of the corresponding new type-1 vertex,
and again the inequality would not be affected.

(iii) (3, x) and (3, 4). Figure 6 shows a typical type-3 ver-
tex P . It can span a bigon in only one quadrant; la-
bel with x and y the two segments issuing from P in
that direction. Because of the way the curve is pre-
pared for surgery, x and y cannot be continued with
old segments to form a bigon canceling P . We need
to discuss the possibility that after surgery their ex-
tensions could incorporate U or V or both and then
form such a bigon. This P , x, and y exactly match
the notation of Lemma 2.4; and the proof of that
lemma applies here as well: no such bigon can exist.
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Since a (3, 4) bigon would imply a (3, x) bigon, no
type-(3, 4) bigons can exist either.

In summary, cross-corner surgery generates one special
stable vertex (the intersection of U and V ) plus other
new vertices of types 1, 2, 3, and displaced vertices of
type 4. Vertices of type 1 are stable. Some of the ver-
tices of types 2 and 3 form bigons with each other and
cancel out. Vertices of types 3 and 4 cannot form bigons
with presurgery vertices, and any old or type-4 vertex
canceled by a type-2 vertex can be replaced in the count
by the corresponding type-1 vertex. It follows that cross-
corner surgery increases the self-intersection number by
at least one.

3. LINKED PAIRS

Ultimately, the calculation of SI(w) or IN([w′, w′′]) can
be made directly from w or [w′, w′′], by counting linked
pairs. In this section we give a simplified definition ap-
propriate for the punctured torus, we list two theorems
from [Chas 04] giving the correspondence between linked
pairs and intersection points, and we summarize explicit
calculations of intersection and self-intersection numbers
for certain families of words with a small number of block-
pairs.

In earlier work, the similar concept of linking pairs
was defined in [Cohen and Lustig 87], and the authors
proved that the intersection and self-intersection num-
bers of primitive words can be calculated by counting
linking pairs. Parts A and B of their main theorem are
equivalent, respectively, to parts 1 and 3 of our Theo-
rem 3.5. The linked pairs of [Chas 04], defined below,
are somewhat better adapted to our purposes and will
be used here. In particular, we need to be able to extend
the calculation to certain imprimitive words.

Notation 3.1. From now on, we will use the symbols
p, q, r, s, p1, q1, etc. to represent letters from the alphabet
a, b, A, B, with P = p−1, etc. The symbols v, w, v′, w′,
etc., will represent cyclic words in that alphabet, e.g.,
w = 〈abbaB〉 = 〈aBabb〉. Sans-serif symbols u, v, y

will represent linear words in the alphabet {a, b, A, B}
with r, s, R, S representing homogeneous blocks of let-
ters rr . . . r, ss . . . s, RR . . .R, SS . . . S respectively. As
before, V = v−1, R = r−1, etc.

Remark 3.2. For the purpose of orientation, we identify
the boundary of our fundamental domain with a clock
face, with a, b, A, B at 3, 6, 9, and 12 o’clock. Given six

letters p, q, r, p′, q′, r′ from the alphabet a, b, A, B, we say
that the triples p, q, r and p′, q′, r′ are similarly oriented
if the arcs pqr and p′q′r′ have the same orientation on
the clock face. This implies that the three points in each
triple are distinct.

Definition 3.3. Let u′ and u′′ be two linear words, both
of the same length ≥ 2. The pair of words {u′, u′′} is a
linked pair if one of the following criteria is satisfied (see
Figure 7):

I. {u′, u′′} is one of the following pairs:
{aa, bb}, {aa, BB}, {AA, bb}, {AA, BB}.

II. (i) (length 3) u′ = p1rp2, u′′ = q1rq2 (same r)
with P1Q1r and p2q2R similarly oriented;

(ii) (length n) u′ = p1yp2, u′′ = q1yq2, y = x1vx2

(v possibly empty) with P1Q1x1 and p2q2X2

similarly oriented.

III. (i) (length 3) u′ = p1rp2, u′′ = q1Rq2 (R = r−1)
with P1q2r and p2Q2R similarly oriented;

(ii) (length n) u′ = p1yp2, u′′ = q1Yq2, y = x1vx2

(v possibly empty) with P1q2x1 and p2Q1X2

similarly oriented.

Let w (respectively [w′, w′′]) be a reduced cyclic word (re-
spectively a multiword with reduced cyclic components),

(a)

P1

Q1

X2

x1

p2

q2

u

u

v

u′

u′

(b)

P1

Q1

X2

x1

p2

q2

u

u

v

u′

u′

FIGURE 7. Linked pairs. Here y = x1vx2. (a)
The linked pair is (p1yp2, q1yq2). Since the orienta-
tions of (P1, Q1, x1) and (p2, q2, X2) are the same, the
curve segments must intersect. (b) The linked pair is
(p1yp2, q2Yq1). Since the orientations of (P1, q2, x1)
and (p2, Q1, X2) are the same, the curve segments
must intersect.
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Words ai+1b bai+1 ai+1B Bai+1 baib ai +2 BaiB

ai+1b = N = Y = = Y
bai+1 N = Y = = = Y
ai+1B = Y = N Y = =
Bai+1 Y = N = Y = =
baib = = Y Y = Y Y
ai+2 = = = = Y = Y
BaiB Y Y = = Y Y =

TABLE 2. Linking of pairs of words with Y = a i . No-
tation is from Definition 3.3. The symbols =, Y, N
are explained in the text.

Words aaibjb baibja baibjb aaibja

aaibjb = N = =
baibja N = = =
baibjb = = = Y
aaibja = = Y =

TABLE 3. Linking of pairs of words with Y = a ibj

(notation as in Definition 3.3).

corresponding to a free homotopy class (respectively a
pair of free homotopy classes) of curves on the punctured
torus. We will say that {u′, u′′} is a linked pair of w (re-
spectively of [w′, w′′]) if u′ ⊂ w and u′′ ⊂ w (respectively
u′ ⊂ w′ and u′′ ⊂ w′′).

Remark 3.4. {u, u′} is a linked pair of type (II) if and
only if {u, U′} is a linked pair of type (III).

Tables 2, 3, and 4 summarize for future reference the
pairing between various subwords of a cyclic word w. In
these tables “=” means that the row word and the col-
umn word have the same first or last letter (so they can-
not form a linked pair); “N” means that there is no end
matching but that the pair fails the orientation criterion;
“Y” means that the row word and the column word form
a linked pair.

The following theorem will be used to compute the
self-intersection numbers of certain words and multi-
words (see Proposition 3.7 and Section 6). This theo-
rem is a direct consequence of [Chas 04, Theorems 3.9

Words aaibjakb baibjaka baibjakb aaibjaka

aaibjakb = N = =
baibjaka N = = =

baibjakb = = = Y

aaibjaka = = Y =

TABLE 4. Linking of pairs of words with Y = a ibjak

(notation as in Definition 3.3).

and 3.10 and Remarks 3.10 and 3.11] and [Chas 04, The-
orem 3.12 and Remark 3.13].

Theorem 3.5. Let v and w be cyclic reduced words in the
alphabet {a, b, A, B}. Suppose that w = 〈uk〉 is the kth
power (k ≥ 0) of the primitive reduced cyclic word u.

(1) If k = 1, so that w is primitive, SI(w) is equal to the
number of linked pairs of w, i.e., the cardinality of
the set of unordered pairs {u, u′}, u and u′ linear sub-
words of w, with u and u′ linked as in Definition 3.3.

(2) In general, SI(w) is less than or equal to (k− 1) plus
the number of linked pairs of w.

(3) IN({v, w}) equals the number of ordered pairs (u, u′)
for which there exist positive integers j and k such
that u is an occurrence of a subword of vj, but not a
subword of vj−1; u′ is an occurrence of a subword of
wk, but not a subword of wk−1; and u, u′ are linked
as in Definition 3.3. (See Remark 3.6.)

In this work, only the following simple instances of
Theorem 3.5(3) will be necessary.

Remark 3.6.

(1) IN(〈aibj〉, 〈akBl〉) equals the number of ordered pairs
(u, u′) such that u is an occurrence of a subword of
〈aibj〉, u′ is an occurrence of a subword of 〈akBl〉,
and u, u′ are linked as in Definition 3.3.

(2) IN(〈aibjakbl〉, 〈amBn〉) equals the number of ordered
pairs (u, u′) such that u is an occurrence of a sub-
word of 〈aibjakbl〉, u′ is an occurrence of a subword
of 〈amBn〉, and u, u′ are linked as in Definition 3.3.

This is because if [v, w] = [〈aibj〉, 〈akBl〉] or (v, w) =
[〈aibjakbl〉, 〈amBn〉], J and K are nonnegative integers,
and u is a linear word that is an occurrence of a subword
of vJ and wK , then u is an occurrence of a subword of v

and w.

In principle, the self-intersection number correspond-
ing to any particular word can be ascertained combina-
torially by a count of linked pairs. The number of steps
in this calculation increases rapidly with the length of
the word, but it can be carried out completely for words
with a small number of block-pairs. The results of these
calculations are given in Proposition 3.7, with the work
itself presented in Section 6.
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Proposition 3.7.

(1) SI(〈aibj〉) = (i − 1)(j − 1).

(2) SI(〈aibjakbl〉)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
≤ (i + k − 2)(j + l − 2) + 1

if k = i and l = j,
= (i + k − 2)(j + l − 2) + |i − k| + |j − l| − 1

otherwise.

(3) SI(〈aibjakBl〉) = (i + k − 1)(j + l − 1).

(4) SI(〈aibjAkBl〉 = (i + k − 1)(j + l − 1) − 1.

(5) SI(〈aibjakblamBn〉) = (i+k+m−1)(j + l+n−1)−
2(k + min(j, l) − 1).

(6) IN(〈aibj〉, 〈akBl〉) = il + kj.

(7) IN(〈aibjakbl〉, 〈amBn〉) = (i + k)n + m(j + l).

Corollary 3.8.

SI(〈aibjakbl〉)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 1
if i = k and j = l and i = 1 or j = 1,

≤ (i + k − 1)(j + l − 1) − 4
if k = i ≥ 2 and l = j ≥ 2,

≤ (i + k − 1)(j + l − 1) − 2
if i 
= k or j 
= l.

Proof. It follows from Proposition 3.7 (2) that if i = k

and j = l and either pair is 1, then SI ≤ 1; and if both
are ≥ 2, then

(i + k − 2)(j + l − 2) + 1

= (i + k − 1)(j + l − 1) − (i + k − 1) − (j + l − 1) + 2

≤ (i + k − 1)(j + l − 1) − 4.

If i 
= k or j 
= l, then Proposition 3.7 (2) gives

SI(〈aibjakbl〉)
= (i + k − 2)(j + l − 2) + |i − k| + |j − l| − 1

= (i + k − 1)(j + l − 1) − (i + k) + 1 − (j + l) + 1 + 1

+ |i − k| + |j − l| − 1

= (i + k − 1)(j + l − 1) − 2 min(i, k) − 2 min(j, l) + 2

≤ (i + k − 1)(j + l − 1) − 2.

The next remark is useful in the proof of Proposi-
tion 6.6.

Remark 3.9. In the punctured torus, it follows from Def-
inition 3.3 that if P = rsusR, where r and s are distinct
letters and u is an arbitrary linear word, then {P, Q} is
not a linked pair for any Q.

4. PROOF OF THEOREM 1.18

4.1 Detailed Strategy of Proof

This subsection amplifies the sketch presented in Sec-
tion 1.2, continuing with the notation from Defini-
tion 1.17 and Section 2.

Given an arbitrary reduced cyclic word, we prove that
its self-intersection number must be less than or equal to
that of a word of the same length with few enough block-
pairs to be amenable to a linked-pair self-intersection-
number calculation.

This “amalgamate and conquer” strategy is imple-
mented by cross-corner surgery, which reduces the num-
ber of block-pairs in w while conserving α(w) and β(w)
and increasing SI(w).

The detailed procedure at each step in the reduction
depends on the number of different letters occurring in
the word (Figure 8). As we will see,
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FIGURE 8. Flow chart of proof. The arrows cor-
respond to possible cross-corner surgeries. Straight-
line arrows: Lemma 4.1; dashed arrows: Lemma 4.2;
dotted arrows: Lemma 4.4. Terminal cases: (a) =
Lemma 4.3; (b) = Proposition 3.7 (5); (c) = Propo-
sition 3.7 (3); (d) = Corollary 3.8; (e) = Proposi-
tion 3.7 (1). Note that the self-intersection number of
a pure power (word with one letter) can be calculated
directly (SI(rk) = k − 1) and then compared with the
maximum for general words of the same length; see
Remark 1.4.
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• a word that uses all four letters is always a candidate
for cross-corner surgery using opposite corners with
reversed orientation; the result will be a single word
with one fewer block-pair (since this surgery reverses
the orientation of part of the word, the number of
different letters may change);

• if a word uses exactly three of the four letters and
has at least five block-pairs, or if it uses only two
of the four letters and has at least three block-pairs,
then two cross-corner surgeries will reduce the num-
ber of block-pairs by two (the intermediate stage is
a two-component multiword) and increase the self-
intersection number by at least two; these surgeries
permute the letters in the word, and so the new word
still uses three letters or two letters if the old one
did.

So the words remaining are

• words with three letters and

(a) four block-pairs (〈rsrsrsrS〉, 〈rsrsrSrS〉, and
〈rsrSrsrS〉),

(b) three block-pairs (〈rsrsrS〉), or

(c) two block-pairs (〈rsrS〉);

• words with two letters and

(d) two block-pairs (〈rsrs〉) or

(e) one block-pair (〈rs〉);

• pure powers.

4.2 Preparatory Lemmas

In these lemmas and their proofs, Notation 3.1 will be
used.

Lemma 4.1. If a reduced cyclic word w contains all four
letters a, A, b, B, then there exists a word w′ with the
same α and β values, with one fewer block-pair, and with
SI(w′) ≥ SI(w) + 1.

Proof. We claim first that such a word must contain two
corners with reverse orientation. In fact, let w be a re-
duced cyclic word that contains all four letters (such a
word must have at least two block-pairs) and that does
not contain two subwords of the form xy and XY , where
x ∈ {a, A} and y ∈ {b, B} or vice versa. Now w must
contain at least one of ab and aB; suppose w contains ab.
Then w does not contain AB. So every B-block must be

preceded by an a. Since there is at least one such block,
w must contain aB, which implies that w does not con-
tain Ab. Since w does not contain AB or Ab, there is no
letter possible after an A-block. Since there is at least
one such block, our hypothesis leads to a contradiction.

The lemma now follows from Proposition 2.2 (1).

Lemma 4.2. Suppose a cyclic word w uses exactly three
distinct letters from the set {a, A, b, B} and has five or
more block-pairs. Then there exists a word w′ with two
fewer block-pairs and with the same α and β values such
that SI(w′) ≥ SI(w) + 2.

Proof. Suppose the three letters are a, b, and B. The
block-pairs are either ab’s or aB’s. We may suppose
there are at least three ab’s. Hence w has the form
〈ab au ab av ab ay〉, where u, v, y represent (possibly
empty) blocks of letters.

We pick two consecutive ab block-pairs and ap-
ply Proposition 2.2 (cross-corner surgery) as follows:
〈a|b au ab|av ab ay〉 → [〈b au ab|〉, 〈a|av ab ay〉] =
[〈baua〉, 〈avabay〉] = [v′, v′′].

We have lost one ab corner and one ba corner, so the
number of block-pairs has gone down by one. On the
other hand, Proposition 2.2 guarantees that SI([v′, v′′]) ≥
SI(w) + 1.

Our consecutive corner condition guarantees that both
v′ and v′′ contain both ab and ba, so the multiword
[v′, v′′] is a candidate for a second surgery, for example:
[〈|baua〉, 〈avab|ay〉] → 〈|baua|ayavab〉 = 〈bauayava〉 = w′.

We have lost another pair of corners, so the num-
ber of block-pairs has gone down by one more; Propo-
sition 2.2 guarantees that SI(w′) ≥ SI([v′, v′′]) + 1, and
thus SI(w′) ≥ SI(w) + 2. The α and β values are clearly
the same.

Lemma 4.3. If w has one of the forms 〈abababaB〉,
〈abaBabaB〉, 〈ababaBaB〉, then there exists a word w′

with two block-pairs and the same α and β as w such
that SI(w′) ≥ SI(w) + 2.

Proof. We give three steps:
Step 1. 〈abababaB〉. We apply cross-corner surgery
(Proposition 2.2) as follows: 〈ab|aba|baB〉 →
[〈ab|baB〉, 〈|aba] = [〈abaB〉, 〈ba] = [v′, v′′]. The multiword
[v′, v′′] has the same α and β values as w. Furthermore,
SI([v′, v′′]) ≥ SI(w) + 1. Another application of Propo-
sition 2.2: [〈a|baB〉, 〈b|a〉] → 〈a|ab|baB〉 = 〈abaB〉 = w′

yields a word w′ with two block-pairs, the same α and β

values as w, and SI(w′) ≥ SI(w) + 2.
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Step 2. 〈abaBabaB〉. Cross-corner surgery 〈abaB|aba|B〉
→ [〈abaB|B〉, 〈aba|〉] = [〈abaB〉, 〈ba〉] leads to the same
half-way step as the previous case.

Step 3. 〈ababaBaB〉. Apply Proposition 2.2:

〈ababa|BaB|〉 → [〈ababa|〉, 〈BaB|〉] = [〈abab〉, 〈aB〉]
= [〈aibjakbl〉, 〈amBn〉],

say, (so α(w) = i + k + m, β(w) = j + l + n), and

SI(w) ≤ SI([〈aibjakbl〉, 〈amBn〉]) − 1.

Now

SI([〈aibjakbl〉, 〈amBn〉])
= SI(〈aibjakbl〉) + SI(〈amBn〉)

+ IN(〈aibjakbl〉, 〈amBn〉).
Because of the format of Corollary 3.8 we need to consider
two cases:

Case (i): i = k and j = l = 1 (by the construction, i

and k cannot be 1). In that case SI(〈aibjakbl〉) = 1. By
Proposition 3.7 (7),

IN(〈aibjakbl〉, 〈amBn〉) = (i + k)n + m(j + l),

and by Proposition 3.7 (1),

SI(〈amBn〉) = (m − 1)(n − 1).

This gives

SI([〈aibaib〉, 〈amBn〉]) = 1 + 2in + 2m + (m − 1)(n − 1)

= (2i − 1)n + m(n + 1) + 2

and
si(w) ≤ (2i − 1)n + m(n + 1) + 1.

On the other hand, the word w′ = 〈a2ib2amBn〉 has
the same α and β values as w and (Proposition 3.7 (3))

SI(w′) = (2i+m−1)(n+1) = (2i−1)n+m(n+1)+(2i−1).

Since as remarked above, i ≥ 2, it follows that SI(w′) ≥
SI(w) + 2.

Case (ii): For all other 〈aibjakbl〉, Corollary 3.8 gives

SI(〈aibjakbl〉) ≤ (i + k − 1)(j + l − 1) − 2,

and

SI([〈aibaib〉, 〈amBn〉])
≤ (i + k − 1)(j + l − 1) − 2 + (i + k)n + m(j + l)

+ (m − 1)(n − 1)

= (i + k + m − 1)(j + l + n − 1) − 1,

so

SI(w) ≤ (i + k + m − 1)(j + l + n − 1) − 2.

Comparing this estimate with

SI(〈ai+kbj+lamBn〉) = (i + k + m − 1)(j + l + n − 1)

(Proposition 3.7 (3) again) completes the proof.

Lemma 4.4. If w uses exactly two letters and w has three
or more block-pairs, then there exists a word w′ with two
fewer block-pairs and with the same α and β values such
that SI(w′) ≥ SI(w) + 2.

Proof. Suppose the two letters are a and b, so
w = 〈ababab . . . 〉. Now proceed as in the proof of
Lemma 4.2.

4.3 End of the Proof

Proposition 4.5. Let w be the reduced cyclic word corre-
sponding to a free homotopy class of curves on the punc-
tured torus, with h(w) = h > 0. Then there exists a word
w′ such that w′ has one or two blocks, α(w′) = α(w) and
β(w′) = β(w), and SI(w′) ≥ SI(w) + h − 2.

Proof. If h = 1 or 2, then taking w′ = w satisfies the
conclusions of the proposition.

For h > 2, we proceed by complete induction, and as-
sume that the result holds for any word with a number
of block-pairs smaller than h. Since h is positive, w con-
tains two, three, or four distinct letters. We consider the
cases separately.

Two letters. Suppose that w contains exactly two
distinct letters. If w has more than two block-pairs,
then by Lemma 4.4 there exists a word v with h − 2
block-pairs and with the same α and β values such that
SI(v) ≥ SI(w) + 2. By the induction hypothesis, there
exists w′ with one or two blocks and the same α and β

as v such that

SI(w′) ≥ SI(v) + (h − 2) − 2 ≥ SI(w) + h − 2,

as desired.

Three letters. Suppose that w contains exactly three
distinct letters. If h > 4, the result follows from com-
bining Lemma 4.2 and the induction hypothesis. If
h = 4 then w must have one of the following forms:
〈abababaB〉, 〈abaBabaB〉, or 〈ababaBaB〉. Lemma 4.3
covers these three cases. In the case h = 3, the
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word can be supposed to be w = 〈aibjakblamBn〉.
Taking w′ = 〈ai+kbj+lamBn〉 and applying Proposi-
tion 3.7 (3), (5) yields the desired result.

Four letters. Suppose that w contains all four letters
a, b, A, B. By Lemma 4.1, there exists a word v with
h − 1 block-pairs, with α(v) = α(w), β(v) = β(w), and
such that SI(v) ≥ SI(w)+1. Now the result follows from
our induction hypothesis. More explicitly, there exists a
word w′ with the same α and β as v and with one or
two block-pairs such that SI(w′) ≥ SI(v) + (h− 1)− 2 ≥
SI(w) + h − 2.

of Theorem 1.18. If h = 1 or 2, the result follows from
Proposition 3.7 (1)–(4). So suppose that h > 2. By
Proposition 4.5, there exists a word w′ with α(w′) =
α(w) and β(w′) = β(w), SI(w) ≤ SI(w′) − h + 2 <

SI(w′), such that w′ has one or two blocks. Refer-
ring to Proposition 3.7 (1)–(4), any such word satisfies
SI(w′) ≤ (α(w′) − 1)(β(w′) − 1). This proves part (1).

Part (2) of the theorem follows also, by inspection,
from Proposition 3.7 (1)–(4).

4.4 Words with Submaximal Intersection Number

Lemma 4.6. If w is one of the words 〈ababAB〉, 〈abAbaB〉,
〈abaBAB〉, and 〈abABaB〉, then

SI(w) ≤ (α(w) − 1)(β(w) − 1) − 2.

Proof. Proposition 3.7 and Corollary 3.8 can be applied
after one or two cross-corner surgeries (Proposition 2.2),
each of which increases the self-intersection number by
at least one:

〈aibjakbl|AmBn|〉
→ 〈aibjakbl|bnam|〉 = 〈ai+mbjakbl+n〉;

〈aibj|AkblamBn|〉
→ 〈aibj|bnAmBlak|〉 = 〈ai+kbn+jAmBl〉;

〈aibjak|BlAmBn|〉
→ [〈aibjak|〉, 〈BlAmBn|〉]

= [〈ai+kbj〉, 〈AmBn+l〉][〈ai+k|bj〉, 〈Am|Bn+l〉]
→ 〈ai+k|ambn+l|bj〉 = 〈ai+k+mbj+n+l〉;

〈ai|bjAk|BlamBn〉
→ 〈ai|akBj |BlamBn〉 = 〈ai+kBl+jamBn〉.

The following lemma will be used in the proof of The-
orem 4.9. Note that the special case it covers admits a

bound for the self-intersection number sharper than that
of Theorem 1.19.

Lemma 4.7. If w is a word with three block-pairs, then
SI(w) ≤ (α(w) − 1)(β(w) − 1) − 2. In particular, if we
have length L = α(w) + β(w), then

SI(w) ≤
{

(L − 2)2/4 − 2 if L is even,
(L − 1)(L − 3)/4 − 2 if L is odd.

Proof. Without loss of generality, we may suppose that
the number N of A and B blocks in w is at most three.

If N = 0, the result follows from Lemma 4.4 and The-
orem 1.19.

If N = 1, we may suppose that w = 〈ababaB〉, which
is covered by Proposition 3.7 (5).

If N = 2, we may suppose that w is one of 〈abAbaB〉
and 〈ababAB〉; if N = 3, we may suppose that w is one
of 〈abaBAB〉 and 〈abABaB〉; for these cases, the result
follows from Lemma 4.6.

Lemma 4.8. Let w be a word with two block-pairs and two
letters, say a and b with length L ≥ 4. Either L = 4 and
w = abab with SI(w) = 1, or

SI(w) ≤
{

(L − 2)2/4 − 2 if L is even,
(L − 1)(L − 3)/4 − 2 if L is odd.

Proof. Refer to Corollary 3.8.
First note that abjabj has length L = 2j + 2, an even

number, and if j ≥ 2, then

(L − 2)2/4 − 2 = j2 − 2 ≥ 1 = SI(abjabj).

So the lemma holds for all words of the form abjabj and
aibaib.

For the rest of the words in question,

SI(w) ≤ (i + k − 1)(j + l − 1) − 2,

so the result follows as in Remark 1.21.

Theorem 4.9. Let w be a primitive reduced cyclic word of
length L > 3 and self-intersection number

SI(w) =

{
(L − 2)2/4 − 1 if L is even,
(L − 1)(L − 3)/4 − 1 if L is odd,

i.e., one less than the maximum possible for its length.
Then if L is odd, w = risjRkSl with i+k = L−1

2 or L+1
2 .

And if L is even, w has one of the following forms:
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(1) 〈rL/2−1sL/2+1〉;
(2) 〈risjRkSl〉, i + k = L

2 ;

(3) 〈risjrkSl〉, i + k = L
2 − 1, or L

2 + 1.

Here r = a or A and s = b or B, or vice versa.

Remark 4.10. The primitive reduced cyclic words of
length L ≤ 3, namely those of the form a, ab, abb, all have
self-intersection number zero, the maximum for those
lengths (cf. Table 1).

of Theorem 4.9. By Proposition 4.5 and Lemma 4.7,
h(w) = 1 or 2 (the only primitive words with zero block-
pairs are singletons, which do not satisfy the hypothesis).

We begin with the case h(w) = 2. By Lemma 4.8, we
can assume that w = 〈abaB〉 or 〈abAB〉.

First suppose w = 〈abaB〉. By Proposition 3.7 (3),
SI(w) = (α(w) − 1)(β(w) − 1).

If L is odd, then SI(w) = (L − 1)(L − 3)/4 − 1. Since
β(w) = L − α(w), it follows that

(L − 1)(L − 3)/4 − 1 = (α(w) − 1)(L − α(w) − 1).

This implies α(w) = (L±√
5)/2, which is not an integer,

a contradiction.
So L is even, and

(L/2 − 1)2 − 1 = (α(w) − 1)(L − α(w) − 1).

This implies α(w) = n
2 − 1 or n

2 + 1, as desired.
Now suppose w = 〈abAB〉. The result follows from

Proposition 3.7 (4). This settles the case h(w) = 2.
If h(w) = 1, then by Proposition 3.7 (1),

SI(w) = (α(w) − 1)(L − α(w) − 1).

The solutions of the equation

(α(w) − 1)(L − α(w) − 1) = (L − 1)(L − 3)/4 − 1

are α(w) = L−√
5

2 and α(w) = L+
√

5
2 . Hence there are no

words of submaximal self-intersection with odd length L

and one block-pair.
On the other hand, the solutions of the equation

(α(w) − 1)(L − α(w) − 1) = (L/2 − 1)2 − 1

are α(w) = L/2 − 1 and L/2 + 1; the result follows.

Theorem 4.11. If L is odd, there are (L − 1)(L − 3) dis-
tinct reduced cyclic words with self-intersection number
one less than the maximum for their length.

If L is even, there are 5(L − 2)2/2 distinct reduced
cyclic words with self-intersection number one less than
the maximum for their length.

Proof. Refer to Theorem 4.9. Suppose L is odd. If
i + k = L−1

2 , there are 1, . . . , L−3
2 possibilities for i, and

1, . . . , L−1
2 possibilities for j. The total is L−3

2
L−1

2 . In-
terchanging the roles of i and j, and those of a and b, we
obtain (L − 1)(L − 3).

Suppose L is even. then there are 8 words of the
form 〈rL/2−1sL/2+1〉, together with 2(L/2 − 1)2 words
of the form 〈risjRkSl〉 and 4L(L/2 − 2) words of the
form 〈risjrkSl〉; the total is

5L2

2
− 10L + 10 =

5(L − 2)2

2
.

Remark 4.12. The leading coefficient of the polyno-
mial expression for the number of maximal words of odd
length is twice that for even length, whereas for submax-
imal words the even leading coefficient is 2.5 times the
odd leading coefficient. The discrepancies balance out to
some extent, when one considers maximal and submax-
imal words together. For odd length L, this number is
3L2−12L+17, while for even length it is 7L2/2−14L+18.

5. EXPERIMENTAL RESULTS AND CONJECTURES FOR
THE PAIR OF PANTS

The “pair of pants” is the usual name for the surface with
boundary obtained by deleting three open disks from the
sphere. The same computational methods that yielded
Experimental Theorem 1.7 suggest that the dependence
of maximum self-intersection number on length for the
pair of pants is quadratic, just as it was for the punctured
torus.

Experimental Theorem 5.1. For L ≤ 18, the maximal
self-intersection number for a primitive reduced cyclic
word of length L on the pair of pants is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(L2 − 1)/4 if L is odd,
L2/4 − 1 if L ≡ 0 (mod 4),
L2/4 − 2 if L > 2 and L ≡ 2 (mod 4),
1 if L = 2.

Moreover, if L is odd, the (primitive) words realizing
the above maximal self-intersection number are r(rs)

L−1
2 ,

where {r, s} = {a, B} or {r, s} = {A, b} (primitive words
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of even length follow a more complicated pattern, which
cannot be easily reduced to a formula).

Removing the restriction “primitive” leads to the fol-
lowing result:

Experimental Theorem 5.2. For L ≤ 17, the maxi-
mal self-intersection number for a reduced cyclic word of
length L on the pair of pants is

{
(L2 − 1)/4 if L is odd,
L2/4 + L/2 − 1 if L is even.

Moreover, if L is even, the words realizing the maxi-
mal self-intersection number are (Ab)

L−1
2 and (aB)

L−1
2 ;

words of odd length L realizing the maximal self-
intersection number can have the form r(rs)

L−1
2 , where

{r, s} = {a, B} or {r, s} = {A, b}; but if L is not prime,
this list of words is not always exhaustive.

The next two experimental theorems show radically
different behavior from what we know for the punctured
torus.

Experimental Theorem 5.3. On the pair of pants, for L ≤
12 the number of distinct free homotopy classes of curves
of length L realizing the maximal self-intersection number
is ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
6 if L = 2,
2 if L is even and L > 2,
4 if L is odd but not a multiple of 3,
8 if L is an odd multiple of 3.

Experimental Theorem 5.4. On the pair of pants, for
L ≤ 15 the minimal self-intersection number for the free
homotopy class representing a primitive reduced cyclic
word of length L is 0 for L = 1, 2 and [L/2] (the integer
part of L/2) for L ≥ 3.

It seems reasonable to conjecture that all this behavior
will persist for higher values of L.

Remark 5.5. Note that an analogue of Proposition 2.2
can be proved for any surface with boundary. So words
with maximal self-intersection number cannot contain
(the generalization of) diagonally opposed corners with
reversed orientations.

6. APPENDIX: PROOF OF PROPOSITION 3.7

The seven parts of Proposition 3.7 correspond to Propo-
sitions 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7. In this appendix,
the proofs of Propositions 6.1, 6.2, and 6.3 are given
in detail; Propositions 6.4, 6.5, and 6.6 can be proved
along the same lines as Proposition 6.4; Proposition 6.7
can be proved like Proposition 6.3; those proofs are omit-
ted here but appear in full in the arXiv version [Chas and
Phillips 09] of this work. The method of proof for each
of these propositions is via Theorem 3.5: a counting of
all occurrences of each of the three types of linked pairs
given in Definition 3.3.

I. These pairs are easy to count. They have the form
{rr, ss}, where r ∈ {a, A} and s ∈ {b, B}.

II. These have the form {p1yp2, q1yq2}, with p1 
= p2

and q1 
= q2. One locates all subwords y with two
occurrences and checks for each pair whether the
corresponding p1yp2 and q1yq2 are linked.

III. Analogously, these pairs are found by locating sub-
words y that occur in our word or multiword along
with their inverses Y. Such a pair will contribute to
the count if the corresponding p1yp2 and q2yq1 are
linked; see Remark 3.4.

Proposition 6.1. SI(〈aibj〉) = (i − 1)(j − 1).

Proof. There are i− 1 occurrences of aa and j − 1 occur-
rences of bb in 〈aibj〉. Thus there are (i − 1)(j − 1) pairs
of type I. There are no pairs of the other two types.

Proposition 6.2. SI(〈aibjakbl〉) = (i+k−2)(j+l−2)+1 if
k = i and j = l; and (i+k−2)(j+l−2)+|i−k|+|j−l|−1,
otherwise.

Proof. I. There are (i + k − 2)(j + l − 2) pairs of this
kind.

II. In this case,

y ∈ {
aK , BK , aKbJ , bKaJ , aKbJaL, bJaKbL

}
for some positive integers J , K, and L.

(i) y = aK . Analysis: Table 5, using Table 2. The
total number is |i − k| − 1 if i 
= k and zero
otherwise.

(ii) y = bK . With similar arguments as in case (i),
it can be shown that the number of pairs here
is |j − l| − 1 if j 
= l and zero otherwise.
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configuration with if add

{ak+2, bakb} ak+2 in ai k + 2 ≤ i i − k − 1

{ai+2, baib} ai+2 in ak i + 2 ≤ k k − i − 1

TABLE 5. Linked pairs in 〈aibjakbl〉 of type II with y = aK .

configuration with if add

{baiblb, aaibla} baiblb in baibj , aaibla in akbla i < k and j > l 1

{bakbjb, aakbja} bakbjb in bakbl, aakbja in aibja k < i and j < l 1

TABLE 6. Linked pairs in 〈aibjakbl〉 of type II with y = aKbJ .

configuration with if add

{bbjaib, abjaia} bbjaib in blaib, abjaia in abjak i < k and j < l 1

{bblakb, ablaka} bblakb in bjakb, ablaka in ablai k < i and j > l 1

TABLE 7. Linked pairs in 〈aibjakbl〉 of type II with y = bKaJ .

configuration with if add

a {aKb, BaK} aKb in aib, BaK in Bam K ∈ {2 . . . min(m, i)} min(m, i) − 1

b {aiB, bai} baK in bai, aKB in amB K ∈ {2 . . . min(m, i)} min(m, i) − 1

c {am+2, BamB} am+2 in ai m + 2 ≤ i i − m − 1

d {am+1b, BamB} am+1 in ai m + 1 ≤ i 1

e {bam+1, BamB} am+1 in ai m < i 1

f {ai+1B, baib} ai+1 in am i < m 1

g {Bai+1, baib} ai+1 in am i < m 1

h {ai+2, baib} ai+2 in am i + 2 ≤ m m − i − 1

i {baib, BamB} i = m 1

TABLE 8. Linked pairs of 〈aibj〉 and 〈amBn〉 of type II with y = aK .

(iii) y = aKbJ . By Table 3, the linked words of
pairs with this y have the form baKbJb and
aaKbJa. Analysis: Table 6. The three types
of linked pairs can be added as follows:

(iv) y =bKaJ . By Table 3, the linked words have
the form abKaJa and bbKaJb. Analysis: Ta-
ble 7.

By (iii) and (iv) we add 1 if k 
= i and j 
= l.

(v) y =aKbJaL. Since y has two occurrences, j =
l. By Table 4, the linked pairs have the form
{aaKbjaLa, baKbjaLb}. There are two pairs
of this kind, namely {aaibjaka, baibjakb} and
{aakblaia, bakblaib}. Each of the possibilities
implies that i < k and k < i. Hence such pairs
are impossible.

(vi) y = bKaJ bL. As in case (v), there are no
linked pairs of this form.

III. There are no pairs of type III because the word
contains no occurrence of a letter and its inverse.

If i = k and j = l add 1, because the word has the
form w2, where w is a primitive word. Adding up all the
contributions completes the proof.

Proposition 6.3. IN(〈aibj〉, 〈amBn〉) = in + mj.

Proof. I. There are (i−1)(n−1)+(j−1)(m−1) linked
pairs of this type.

II. y = aK for some positive integer K. Analysis: Ta-
ble 8, using Table 2. The contributions of the dif-
ferent rows may be grouped in the following way:
(a + c + d) = i − 1, (b + f + h) = m − 1, and
(e + g + i) = 1.

III. y = bK . Combining Remark 3.4 with Table 2, we
analyze these pairs in Table 9. Here (a + c + f) =
n − 1, (b + g + i) = j − 1, and (d + e + h) = 1.

Adding the contributions from each of the three types
yields the result.

Proposition 6.4. SI(〈aibjakBl〉) = (i + k − 1)(j + l − 1).
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configuration with if add

a {abK , aBK} abK in abj , aBK in aBn K ∈ {2, . . . , min(j, n)} min(j, n) − 1

b {bKa, BKa} abK in abj , aBK in aBn K ∈ {2, . . . , min(j, n)} min(j, n) − 1

c {abja, Bj+1a} Bj+1a in Bna j < n 1

d {abja, aBj+1} aBj+1 in aBn j < n 1

e {abja, aBna} j = n 1

f {abja, Bj+2} Bj+2 in Bn j + 2 ≤ n n − j − 1

g {bn+1a, aBna} bn+1a in bja n < j 1

h {abn+1, aBna} abn+1 in abj n < j 1

i {bn+2, aBna} bn+2 in bj n + 2 ≤ j j − n − 1

TABLE 9. Linked pairs of 〈aibj〉 and 〈amBn〉 of type III with y = bK .

Proposition 6.5. SI(〈aibjAkBl〉 = (i+k−1)(j+ l−1)−1.

Proposition 6.6.

SI(〈aibjakblamBn〉) = (i + k + m − 1)(j + l + n − 1)

− 2(k + min(j, l) − 1).

Proposition 6.7. IN(〈aibjakbl〉, 〈amBn〉) = (i + k)n +
m(j + l).
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