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We discuss a comparison of the entropy of pseudo-Anosov maps
and the volume of their mapping tori. Recent study of the Weil–
Petersson geometry of Teichmüller space tells us that the entropy
and volume admit linear inequalities for both directions under
some bounded geometry condition. Based on experiments, we
present various observations on the relation between minimal
entropies and volumes, and on bounding constants for the en-
tropy over the volume from below. We also provide explicit
bounding constants for a punctured torus case.

1. INTRODUCTION

Let Σ = Σg,p be an orientable surface of genus g with
p punctures and M(Σ) the mapping class group of Σ.
Assume that 3g− 3+ p ≥ 1. According to [Thurston 88],
the elements of M(Σ) are classified into three types: pe-
riodic, pseudo-Anosov, and reducible. A pseudo-Anosov
element φ of M(Σ) defines two natural numeric invari-
ants. One is the entropy ent(φ), which is the logarithm
of the stretching factor of the invariant foliation of φ (of-
ten called the dilatation of φ). The other is the volume
vol(φ) of its mapping torus,

T(φ) = Σ × [0, 1]/ ∼

with respect to the hyperbolic metric, whose the exis-
tence is due to [Thurston 98], and the uniqueness, to
Mostow rigidity. Here, ∼ identifies (x, 1) with (f(x), 0)
for some representative f of φ.

Our study is motivated by experiments of the last-
named author, illustrated in Figure 1, in his thesis [Taka-
sawa 00] comparing ent(φ) and vol(φ). To see this more
precisely, we let MpA(Σ) be the set of pseudo-Anosov
mapping classes of M(Σ) and put

E(Σ) = {(vol(φ), ent(φ)) ∈ R
2 | φ ∈ MpA(Σ)}.

Figure 1 is the plot of E(Σ2,0) for all pseudo-Anosov
classes represented by words of length at most 7 with
respect to the Lickorish generators. From this plot, one
might suspect that the ratios ent(φ)/ vol(φ) are bounded
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FIGURE 1. Entropy versus volume for Σ2,0.

for both directions, namely, that there is a constant C

depending only on the topology of Σ satisfying

C−1 vol(φ) ≤ ent(φ) ≤ C vol(φ). (1–1)

However, this is false in general, since it has been known
to the experts from [Long and Morton 86] and [Fathi
87] that there are many families of pseudo-Anosov maps
whose entropies tend to infinity while volumes remain
bounded. We will present more recent plots in which we
can observe this fact in Section 4.

Nevertheless, it is still reasonable to expect un-
der some bounded geometry condition that the ratios
ent(φ)/ vol(φ) are bounded for both directions, because
the families in [Long and Morton 86, Fathi 87] necessar-
ily contain short geodesics asymptotically. As we will
explain in Section 3, our expectation turns out to be a
consequence of the deep results to be found in [Minsky
93], [Brock 03], and the recent work [Brock et al. 09] of
Brock, Mazur, and Minsky.

On the other hand, the theory above does not say
very much about accurate values of bounding constants.
Experiments should provide a more practical working hy-
pothesis. From the computational viewpoint, it is rather
easy to work not with closed surfaces but with punctured
disks, since they have nice descriptions in terms of braid
data. Let Dn be an n-punctured disk. See Figure 2 for
a more accurate plot for the case of D6.

The purpose of this paper is to present various ob-
servations and problems based on our experiments for
the relation between minimal entropies and volumes, and
for constants bounding the ratio ent/vol from below for
pseudo-Anosov maps on punctured disks and tori. More-
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FIGURE 2. Entropy versus volume for D6.

over, we prove in Theorem 6.7 that

ent(φ)
vol(φ)

>
log(3+

√
5

2 )
2v8

≈ 0.1313,

for any φ ∈ MpA(Σ1,1), where v8 ≈ 3.6638 is the volume
of a regular ideal octahedron. This bound is not best
possible, unfortunately. However, restricting our atten-
tion to mapping classes of block length 1, we obtain in
Proposition 6.8 the best possible lower bound

log(3+
√

5
2 )

2v3
≈ 0.4741,

where v3 ≈ 1.0149 is the volume of a regular ideal tetra-
hedron.

The organization of this paper is as follows. After
recalling a basis of pseudo-Anosovs in the next section,
we explain in Section 3 how the linear inequalities (1–1)
are derived from recent studies of the Teichmüller space.
Then choosing preferred generating sets of M(Σ) in Sec-
tion 4 for the experiments, we discuss the relation be-
tween minimal entropies and volumes in Section 5, and
lower bounds for ent/vol together with more accurate
bounds of a special case in Section 6.

2. PSEUDO-ANOSOVS

The mapping class group M(Σ) is the group of isotopy
classes of orientation-preserving homeomorphisms of Σ,
where the group operation is induced by composition
of homeomorphisms. An element of the mapping class
group is called a mapping class.

A homeomorphism Φ : Σ → Σ is said to be pseudo-
Anosov if there exist a constant λ = λ(Φ) > 1, called



Kin et al.: Entropy versus Volume for Pseudo-Anosovs 399

the dilatation of Φ, and a pair of transverse measured
foliations Fs and Fu such that

Φ(Fs) =
1
λ
Fs and Φ(Fu) = λFu.

A mapping class that contains a pseudo-Anosov homeo-
morphism is called pseudo-Anosov. We define the dilata-
tion of a pseudo-Anosov mapping class φ, denoted by
λ(φ), to be the dilatation of a pseudo-Anosov represen-
tative in φ. It can be verified that λ(φ) does not depend
on the choice of representative.

Fixing Σ, the dilatation λ(φ) for φ ∈ MpA(Σ) is
known to be an algebraic integer with a bounded degree
depending only on Σ. Also, the number of conjugacy
classes of MpA(Σ) with dilatations bounded by some
constant is finite. In particular, there exists a pseudo-
Anosov with least dilatation λ(Σ); see [Ivanov 90].

The topological entropy ent(f) of a continuous self-map
f on a compact metric space is a measure of the complex-
ity; see, for instance, [Walters 82]. For a pseudo-Anosov
homeomorphism Φ, the equality ent(Φ) = log(λ(Φ))
holds [Fathi et al. 79] and ent(Φ) attains the minimal
entropy among all homeomorphisms that are isotopic to
Φ. Thus, we denote by ent(φ) this characteristic number
associated to a pseudo-Anosov mapping class φ.

Choosing a representative f : Σ → Σ of φ ∈ M(Σ),
we form a mapping torus

T(φ) = Σ × [0, 1]/ ∼,

where ∼ identifies (x, 1) with (f(x), 0). Then φ is pseudo-
Anosov if and only if T(φ) admits a complete hyperbolic
structure of finite volume [Thurston 98, Otal and Kay
01]. Since such a structure is unique up to isometry by
Mostow rigidity, it makes sense to speak of the volume
vol(φ) of φ, the hyperbolic volume of T(φ).

Remark 2.1. Let φ be a pseudo-Anosov homeomorphism
on Σ. Then the identities

vol(φm) = m vol(φ) and ent(φm) = m ent(φ)

hold for any positive integer m. In particular, the line
with slope ent(φ)/ vol(φ) in R

2 passing through the origin
must intersect E(Σ) in infinitely many points.

3. LINEAR BOUNDS FOR ENTROPY VERSUS
VOLUME

We here briefly describe what can be known about en-
tropy versus volume for MpA(Σ) from the very recent

theory. To see this, we introduce two norms for a pseudo-
Anosov φ. Let ‖φ‖∗ be the minimal translation distance
of the action of φ on the Teichmüller space with respect
to the Teichmüller distance dT or the Weil–Petersson dis-
tance dWP according to whether ∗ = T or WP. Notice
that

ent(φ) = ‖φ‖T.

We start with a result in [Brock 03] showing that there
is a universal constant D depending only on the topology
of Σ such that the inequalities

D−1 vol(φ) ≤ ‖φ‖WP ≤ D vol(φ) (3–1)

hold for any pseudo-Anosov φ on Σ. To get (1–1), we
want to replace ‖ · ‖WP by ‖ · ‖T under some bounded
condition.

The Teichmüller distance is originally defined us-
ing the infimum of dilatations of quasiconformal maps
between two Riemann surfaces. On the other hand,
the Weil–Petersson distance is defined as the associated
distance with the Riemannian part gWP of the Weil–
Petersson metric. Linch succeeded in obtaining a com-
parison of two distances directly; see [Linch 74]. The
modern treatment of the Teichmüller distance, which can
be found, for instance, in [Gardiner and Lakic 00], intro-
duces an infinitesimal interpretation gT of dT. Then the
infinitesimal form of Linch’s inequality,

gWP ≤ −2πχ(Σ)gT, (3–2)

can be derived simply from the Cauchy–Schwarz inequal-
ity between norms whose duals define infinitesimal forms
of two distances; see, for instance, [Royden 74].

Now choose a point x on the Teichmüller geodesic of φ.
Then since x may not be on the Weil–Petersson geodesic
of φ, we have

‖φ‖WP ≤ dWP(x, φ(x)) ≤ −2πχ(Σ) dT(x, φ(x))

= −2πχ(Σ) ‖φ‖T.

This together with the left inequality of (3–1) immedi-
ately implies the left inequality in (1–1).

The right inequality in (1–1) does not hold in general,
as we mentioned in the introduction. However, the deep
analysis carried out for the Teichmüller distance in [Min-
sky 93] and for the Weil–Petersson distance in [Brock et
al. 09] implies, among many others things, the following.

Theorem 3.1. [Minsky 93, Brock et al. 09] For any ε > 0,
there exists δ > 0 such that both the Teichmüller and the
Weil–Petersson geodesics invariant under the action of
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FIGURE 3. Arc ci and positive half-twist hci .

a pseudo-Anosov φ have no intersection with the subset
of the Teichmüller space consisting of hyperbolic surfaces
with closed geodesic of length < δ if T(φ) contains no
closed geodesics of length less than ε.

Now, since the part of the Teichmüller space which
consists of thick surfaces appearing above is invariant un-
der the action of the mapping class group, and moreover,
the quotient is compact by Mumford, we obtain the op-
positely directed inequality to (3–2) within this region.
Namely, there is some constant A such that the inequality

gT ≤ AgWP

holds in the region of the Teichmüller space consisting of
surfaces without closed geodesics of length less than δ.

Choose y on the Weil–Petersson geodesic of φ. Then
we have

‖φ‖T ≤ dT(x, φ(x)) ≤ AdWP(x, φ(x)) = A‖φ‖WP.

This together with the right inequality in (3–1) implies
that of (1–1). Thus we have the following corollary to
[Brock 03, Minsky 93, Brock et al. 09].

Theorem 3.2. There exists a constant B = B(Σ) depend-
ing only on the topology of Σ such that the inequality

B vol(φ) ≤ ent(φ)

holds for any pseudo-Anosov φ on Σ. Furthermore, for
any ε > 0, there exists a constant C = C(ε, Σ) > 1
depending only on ε and the topology of Σ such that the
inequality

ent(φ) ≤ C vol(φ)

holds for any pseudo-Anosov φ on Σ whose mapping
torus T(φ) has no closed geodesics of length less than ε.

Remark 3.3. The later half of Theorem 3.2 says that
a sequence of pseudo-Anosov maps whose entropies di-
verge while volumes remain bounded must contain short

geodesics asymptotically. The sequences found in [Long
and Morton 86, Fathi 87] in fact have this property. The
number of samples in the experiments plotted in Figure 1
was insufficient to exhibit such a sequence.

4. GENERATING SETS OF MAPPING CLASS GROUPS

In this section we shall exhibit a preferred generating set
that we use for the experimental plots of entropy ver-
sus volume for Σ = Dn and Σn,p, where (n, p) = (1, 1)
or (2, 0).

First of all, we introduce a generating set of the map-
ping class group M(Dn) by

{hc1, . . . , hcn−1},

where hci denotes the mapping class that represents the
positive half-twist about the arc ci from the ith puncture
to the (i + 1)st; see Figure 3.

The n-braid group Bn and the mapping class group
M(Dn) are related by the surjective homomorphism

Γ : Bn → M(Dn)

∈ ∈

σi 
→ hci

where σi for i ∈ {1, . . . , n−1} is the Artin generator; see
Figure 4.

The kernel of Γ is the center of Bn, which is gen-
erated by the full-twist braid (σ1σ2 · · ·σn−1)n. Note
that M(Dn) is isomorphic to a subgroup of M(Σ0,n+1)
through identification of the boundary of Dn with the
(n + 1)st puncture.

In the rest of the paper, we regard a mapping class in
M(Dn) as a mapping class in M(Σ0,n+1) by fixing the
(n + 1)st puncture.

We say that a braid b ∈ Bn is pseudo-Anosov if
Γ(b) ∈ M(Dn) is pseudo-Anosov. When this is the case,
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FIGURE 4. Generator σi.

vol(Γ(b)) equals the hyperbolic volume of the link com-
plement S3 \ b in the 3-sphere S3, where b is the braided
link of b that is the union of the closed braid of b and the
braid axis; see Figure 5.

Hereinafter we represent a mapping class in M(Dn)
by a braid, and we denote Γ(b) ∈ M(Dn) by b.

As for Σn,p, where (n, p) = (1, 1) or (2, 0), we choose
the set of Lickorish generators as a preferred generating
set. Let us describe them more precisely. Let τ1 and
τ2 be positive Dehn twists along respectively a meridian
and a longitude for Σ1,1. Then the set

{τ1, τ2}
will be a preferred generating set for M(Σ1,1). The el-
ements τ1, τ2 are related to σ1, σ2 in M(D3) through a
double cover of D3 branched along three punctures and
one hole, where the hole corresponds to the puncture
in Σ1,1.

Let us choose a set of five essential simple closed curves
α1, α2, . . . , α5 on Σ2,0 such that αi ∩ αj is one point if
|i − j| = 1 and is empty otherwise, and τi is a positive
Dehn twist along αi for i = 1, 2, . . . , 5. Then the set

{τ1, τ2, . . . , τ5}
will be our preferred generating set for M(Σ2,0).

Again the elements τ1, τ2, . . . , τ4 are related to
σ1, σ2, . . . , σ4 in M(D5) through a double cover of D5

branched along five punctures and one hole, where the
hole corresponds to some point on Σ2,0.

FIGURE 5. Link b obtained from a braid b.

5. MINIMAL DILATATION AND MINIMAL VOLUME

5.1 Experimental Data

For the exposition of our experimental data, we intro-
duce the notation Ek(Σ) for the subset of E(Σ) formed
by pseudo-Anosovs of word length at most k with respect
to the preferred generating set. Namely,

Ek(Σ) = {(vol(φ), ent(φ)) | φ ∈ MpA(Σ)

of word length ≤ k}.
Figures 6–9 are respectively the plots of E15(D3),
E12(D4), E10(D5), and E11(D6). We use the program
by T. Hall1 for the computation of braid dilatations, and
SnapPea by J. Weeks2 for the computation of volumes of
links in the 3-sphere S3.
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FIGURE 6. E15(D3).
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FIGURE 7. E12(D4).

1Available online (http://www.liv.ac.uk/maths/PURE/MIN
SET/CONTENT/members/T Hall.html).

2Available online (http://www.geometrygames.org/SnapPea/).
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FIGURE 8. E10(D5).
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FIGURE 9. E11(D6).

5.2 Observations

Recall that λ(Σ) represents the minimal dilatation among
λ(φ) for φ ∈ MpA(Σ). In addition to λ(Σ), we introduce
the following further notation for the exposition:

λk(Σ) = min
{
λ(φ) | φ ∈ MpA(Σ) of word length ≤ k

}
,

λ(Σ; c) = min
{
λ(φ) | φ ∈ MpA(Σ), T(φ) has c cusps

}
,

λk(Σ; c) = min
{
λ(φ) | φ ∈ MpA(Σ) of word length

≤ k, T(φ) has c cusps
}
.

When Σ = Dn, the number of cusps of T(b) for b ∈
MpA(Dn) equals the number of the components of the
link b, since T(b) = S3 \ b.

The minimal dilatation λ(Σ) and the minimal entropy
ent(Σ) = log λ(Σ) are known for the surfaces in Table 1.

We now turn to the volume. The set of volumes of
hyperbolic 3-manifolds, called the volume spectrum, is
known to be a well-ordered closed subset in R of order

type ωω; see [Thurston 79]. In particular, any subset of
the volume spectrum achieves its infimum. We set, again
for the exposition,

vol(Σ) = min{vol(φ) | φ ∈ MpA(Σ)},
volk(Σ)

= min{vol(φ) | φ ∈ MpA(Σ) of word length ≤ k},
vol(Σ; c)

= min{vol(φ) | φ ∈ MpA(Σ), T(φ) has c cusps},
volk(Σ; c)

= min{vol(φ) | φ ∈ MpA(Σ) of word length ≤ k,

T(φ) has c cusps}.

To discuss which mapping class reaches λ(Σ) and
which one reaches vol(Σ), we first confirm that there ex-
ists a mapping class simultaneously reaching both λ(Σ)
and vol(Σ) when Σ = D3 or D5. It is shown in [Guéritaud
06, Theorem B.1] that the 3-braid β3 = σ1σ

−1
2 with

the minimal dilatation appearing in Table 1 realizes
vol(D3) ≈ 4.05976. The braided link β5 of the 5-braid
β5 = σ3

1σ2σ3σ4 with minimal dilatation appearing in Ta-
ble 1 equals the (−2, 3, 8)-pretzel link; see Figure 10.
On the other hand, it is shown in [Agol 08] that the
(−2, 3, 8)-pretzel link complement and the Whitehead
link complement have minimal volume among orientable
2-cusped hyperbolic 3-manifolds. Hence β5 also realizes
vol(D5) ≈ 3.66386.

Thus one may ask whether there exists a mapping
class simultaneously reaching both λ(Σ) and vol(Σ).
However, this seems to be false in general. Within our
experiments, vol11(D6) and λ11(D6) are not reached by
the same mapping class. This may be caused by the fact
that the mapping torus reaching vol11(D6) and the one
reaching λ11(D6) have different numbers of cusps. Thus,
we propose a refined problem by taking the number of
cusps into account.

FIGURE 10. Link β5 on the left is equal to the
(−2, 3, 8)-pretzel link on the right.
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Σ λ(Σ) ent(Σ) Mapping Class Realizing λ(Σ) Reference

Σ1,1 ≈ 2.61803 ≈ 0.96242 τ1τ
−1
2 folklore

D3 ≈ 2.61803 ≈ 0.96242 β3 := σ1σ
−1
2 [Matsuoka 86]

D4 ≈ 2.29663 ≈ 0.83144 β4 := σ1σ2σ
−1
3 [Ko et al. 02]

D5 ≈ 1.72208 ≈ 0.54353 β5 := σ3
1σ2σ3σ4 [Ham and Song 07]

Σ2,0 ≈ 1.72208 ≈ 0.54353 τ 3
1 τ2τ3τ4 [Cho and Ham 08]

TABLE 1. Minimal dilatations.
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FIGURE 11. Samples with small entropy and small volume.

Problem 5.1. Does there exist a mapping class in
MpA(Σ) reaching both λ(Σ; c) and vol(Σ; c) simultane-
ously?

To view our experimental data more carefully for ap-
proaching this problem, we exhibit in Figure 11 the plots
of

E15(D3), E12(D4), E10(D5), E11(D6)

restricted to the range of the volume less than 5.334. We
can observe the following supporting evidence for Prob-
lem 5.1:

1a. The 3-braid β3 = σ1σ
−1
2 reaches both λ(D3) ≈

2.61803 and vol(D3) ≈ 4.05976. Thus λ(D3) =
λ(D3; 2) and vol(D3) = vol(D3; 2).

1b. It is easy to verify that the 3-braid σ2
1σ−1

2 reaches
λ(D3; 3). This 3-braid also reaches vol15(D3; 3) =
vol(S3 \ C3) ≈ 5.33348, where C3 is the chain-link
with three components; see Figure 12. Among ori-
entable 3-cusped hyperbolic 3-manifolds, S3 \ C3,
which is called the magic manifold, is the one with
the smallest known volume.

2a. The 4-braid β4 = σ1σ2σ
−1
3 reaches both λ(D4) =

λ(D4; 2) ≈ 2.29663 and vol12(D4; 2) ≈ 4.85117.

2b. The 4-braid σ2
1σ2σ

−1
3 reaches both λ12(D4; 3) ≈

2.61803 and vol12(D4; 3) = vol(S3 \ C3).

3a. The 5-braid β5 = σ3
1σ2σ3σ4 reaches both λ(D5) =

λ(D5; 2) ≈ 1.72208 and vol(D5) = vol(D5; 2) ≈
3.66386.
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FIGURE 12. Chain-link with three components.

3b. The 5-braid σ1σ
2
2σ3σ4 reaches both λ10(D5; 3) ≈

2.08102 and vol10(D5; 3) = vol(S3 \ C3).

4a. The 6-braid σ3
1σ2σ3σ4σ5 reaches both λ11(D6; 2) ≈

1.8832 and vol11(D6; 2) ≈ 4.41533.

4b. The 6-braid σ3
1σ2σ

2
1σ3σ2σ4σ5 reaches both

λ11(D6; 3) = λ(β5) and vol11(D6; 3) = vol(S3 \ C3).

Remark 5.2. There are braids plotted in Figure 11 other
than those we identified in the list of observations above.
We have experimentally verified by SnapPea that all the
3-cusped mapping tori in the plots are homeomorphic to
either S3 \C3 or its mirror image, and the other mapping
tori having two cusps are results of some Dehn surgeries
on S3 \C3. On the other hand, the mapping tori listed in
items 1b, 2b, 3b, and 4b are in fact rigorously shown to
be homeomorphic to S3 \ C3 in [Kin and Takasawa 09].

Remark 5.3. The 5-braids

β5 and β′
5 = σ4

1σ2σ3σ1σ2σ3σ4

realize the minimal dilatation λ(D5), but vol(D5) =
vol(β5) < vol(β′

5). This example says that the mapping
class with minimal dilatation does not always realize the
minimal volume.

6. LOWER BOUNDS FOR ENT/VOL

6.1 More Problems

The first half of Theorem 3.2 shows that there exists
a constant B = B(Σ) such that the inequality B ≤
ent(φ)/ vol(φ) holds for any φ ∈ MpA(Σ). However, it is
not quite obvious how to find an accurate value of B. In
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FIGURE 13. Entropy versus volume for D3, D4, D5, and D6.

this subsection, we formulate a few problems concerning
this constant. Let us set

I(Σ) = inf{ent(φ)/ vol(φ) | φ ∈ MpA(Σ)},
Ik(Σ) = min{ent(φ)/ vol(φ) | φ ∈ MpA(Σ)

of word length ≤ k},

where we fix preferred generating sets as in the previous
section.

When the complexity of Σ goes higher, the minimal
entropy ent(Σ) approaches zero, while the minimal vol-
ume vol(Σ) stays bounded away from zero. Thus the
bounding constant B in Theorem 3.2 for Dn (or Σg,0)
necessarily tends to zero as n (or g) goes to ∞. We si-
multaneously plot the data of {(ent(φ), vol(φ))} for Dn,
3 ≤ n ≤ 6, in Figure 13. It is natural to ask for mono-
tonicity.

Problem 6.1. Is it true that I(Dn) > I(Dn+1) for all
n ≥ 3? Is it true that I(Σg,0) > I(Σg+1,0) for all g ≥ 2?

Normalizing the entropy by multiplying area(Dn) =
2π(n− 1), in Figure 14 we again simultaneously plot the
data up to some word lengths. Looking at this plot, one
may ask the following question.

Problem 6.2. Does the minimal normalized ratio
2π(n − 1)I(Dn) converge to some positive constant as
n goes to ∞?

Also one may ask the following.

Problem 6.3. Does there exist a mapping class φ ∈
MpA(Σ) that attains I(Σ)?
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FIGURE 14. Normalized entropy versus volume for
D3, D4, D5, and D6.

To study Problems 6.1, 6.2, and 6.3, we computed
Ik(Σ) for Σ = Dn, 3 ≤ n ≤ 6 (Figure 15) and their
normalized values (Figure 16). We observe that Ik(D3)
is achieved by the mapping class σ1σ

−1
2 up to k = 15.

On the other hand, Ik(Σ) decreases as k increases for the
other surfaces. We thus propose the following conjecture.

Conjecture 6.4.

1. I(D3) =
ent(σ1σ

−1
2 )

vol(σ1σ
−1
2 )

≈ 0.2370.

2. There are no mapping classes that attain I(Dn) for
n ≥ 4.

In contrast with Problem 6.1, the graph in Figure 16
suggests that the normalized ratio may not be monotone
as n increases.
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FIGURE 16. Minimal normalized ratio.

Remark 6.5. The related normalized quantity
2(n − 1)π ent(Dn) is not monotone. In fact, we see from
Table 1 that if 3 ≤ n ≤ 5, this quantity attains the largest
value at n = 4.

6.2 A Lower Bound for I(Σ1,1)

Recall that we chose a preferred generating set {τ1, τ2}
for M(Σ1,1) in Section 4. The following result is well
known.

Lemma 6.6. Any pseudo-Anosov φ ∈ MpA(Σ1,1) is con-
jugate to a mapping class

τm1
1 τ−n1

2 · · · τm�
1 τ−n�

2 , (6–1)

where , mi, and ni are some positive integers. A presen-
tation of the mapping class τm1

1 τ−n1
2 · · · τm�

1 τ−n�
2 in this

form is unique up to cyclic permutations. Conversely,
every mapping class of the form (6–1) is pseudo-Anosov.

The integer  in the above form is called the block
length of φ.

Theorem 6.7. For each φ ∈ MpA(Σ1,1), we have

ent(φ)
vol(φ)

>
log(3+

√
5

2 )
2v8

≈ 0.1313,

where v8 ≈ 3.6638 is the volume of a regular ideal octa-
hedron.

Proof: It is well known that the mapping class group
M(Σ1,1) is isomorphic to SL(2, Z) and the dilatation of a
pseudo-Anosov map corresponds to the largest real eigen-
value of the matrix representative.
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We set

M1 =
(

1 1
0 1

)
and M2 =

(
1 0
1 1

)
.

These are the matrix representatives for τ1 and τ−1
2 re-

spectively. Suppose that φ = τm1
1 τ−n1

2 · · · τm�
1 τ−n�

2 is a
pseudo-Anosov map of block length . Then

M = Mm1
1 Mn1

2 Mm2
1 Mn2

2 · · ·Mm�
1 Mn�

2

is the matrix representative for φ. Since M ≥ (M1M2)�,
the largest eigenvalue of M is greater than that of
(M1M2)�. We thus have

λ(φ) ≥ λ
(
(τ1τ

−1
2 )�

)
=

(3 +
√

5
2

)�

.

On the other hand, using [Agol 03, Corollary 2.4], we
have

vol(φ) < 2v8. (6–2)

Hence

ent(φ)
vol(φ)

>
 · log(3+

√
5

2 )
2v8

=
log(3+

√
5

2 )
2v8

≈ 0.1313.

With the aid of SnapPea, one can have a more accurate
estimate for some special cases.

Proposition 6.8. For each φ ∈ MpA(Σ1,1) of block
length 1, we have

ent(φ)
vol(φ)

≥ ent(τ1τ
−1
2 )

vol(τ1τ
−1
2 )

=
log(3+

√
5

2 )
2v3

≈ 0.4741. (6–3)

Proof: Let d be the constant on the right-hand side of
(6–3). If ent(φ) ≥ d · 2v8, then ent(φ)/ vol(φ) > d, since
vol(φ) < 2v8 (see (6–2)). Set

Y = {φ ∈ MpA(Σ1,1) of block length 1 |
ent(φ) < d · 2v8 < 3.4748}.

This is a finite set.
When φ = τm

1 τ−n
2 , λ(φ) is the largest eigenvalue of(

1 + mn m
n 1

)
,

that is,

λ(φ) =
2 + mn +

√
4mn + (mn)2

2
.

If τm
1 τ−n

2 ∈ Y , then λ(φ) < e3.4748 < 33. Hence we have
mn ≤ 31. Computing ent(φ)/ vol(φ) for each φ = τm

1 τ−n
2

with mn ≤ 31 by SnapPea, we see that it is greater than
or equal to d.

Remark 6.9. The same strategy in the proof of Propo-
sition 6.8 works for cases with a few more longer block
lengths. However, the computational cost becomes larger
and larger.

We thus make the following conjecture.

Conjecture 6.10.

I(Σ1,1) =
ent(τ1τ

−1
2 )

vol(τ1τ
−1
2 )

≈ 0.4741.

We conclude this paper with the following remark.

Remark 6.11. It is well known that a mapping class φ

of M(D3) can be lifted to φ̃ of M(Σ1,1) and that the
following identities hold:

ent(φ) = ent(φ̃) and vol(φ) = 2 vol(φ̃).

See, for instance, [Guéritaud 06]. Hence Conjecture 6.10
is equivalent to the first statement of Conjecture 6.4.
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