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In this paper we present an algorithm for computing Hecke
eigensystems of Hilbert–Siegel cusp forms over real quadratic
fields of narrow class number one. We give some illustrative
examples using the quadratic field Q(

√
5). In those examples,

we identify Hilbert–Siegel eigenforms that are possible lifts from
Hilbert eigenforms.

1. INTRODUCTION

Let F be a real quadratic field of narrow class number
one and let B be the unique (up to isomorphism) quater-
nion algebra over F that is ramified at both archimedean
places of F and unramified everywhere else. Let GU2(B)
be the unitary similitude group of B⊕2. This is the set of
Q-rational points of an algebraic group GB defined over
Q. The group GB is an inner form ofG := ResF/Q(GSp4)
such that GB(R) is compact modulo its center. These
notions are reviewed at the beginning of Section 2.

In this paper we develop an algorithm that computes
automorphic forms on GB in the following sense: given
an ideal N in OF and an integer k greater than 2, the
algorithm returns the Hecke eigensystems of all automor-
phic forms f of level N and parallel weight k. More pre-
cisely, given a prime p in OF , the algorithm returns the
Hecke eigenvalues of f at p, and hence the Euler fac-
tor Lp(f, s), for each eigenform f of level N and parallel
weight k. The algorithm is a generalization of the one
developed in [Dembélé 05] to the genus-2 case. Although
in this paper we have described the algorithm only in the
case of a real quadratic field, it should be clear from our
presentation that it can be adapted to any totally real
number field of narrow class number one.

The Jacquet–Langlands correspondence of the title
refers to the conjectural map JL : Π(GB) → Π(G) from
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automorphic representations of GB to automorphic rep-
resentations ofG, which is injective, matches L-functions,
and enjoys other properties compatible with the principle
of functoriality; in particular, the image of the Jacquet–
Langlands correspondence is to be contained in the space
of holomorphic automorphic representations. If we admit
this conjecture, then the algorithm above provides a way
to produce examples of cuspidal Hilbert–Siegel modular
forms of genus 2 over F and allows us to compute the L-
factors of the corresponding automorphic representations
for arbitrary finite primes p of F .

In fact, we are also able to use these calculations to
provide evidence for the Jacquet–Langlands correspon-
dence itself by comparing the Euler factors we find with
those of known Hilbert–Siegel modular forms obtained
by lifting. This we do in the final section of the paper,
where we observe that some of the Euler factors we com-
pute match those of lifts of Hilbert modular forms, for
the primes we computed. Although this does not defini-
tively establish that these Hilbert–Siegel modular forms
are indeed lifts, in principle one can establish equality in
this way, using an analogue of the Sturm bound.

The first systematic approach to Siegel modular forms
from a computational viewpoint is due to Skoruppa [Sko-
ruppa 92], who used Jacobi symbols to generate spaces
of such forms. His algorithm, which has been extensively
exploited by Ryan [Ryan 06], applies only to the case
of full level structure. More recently, Faber and van
der Geer [Faber and van der Geer 04a, Faber and van
der Geer 04b] also produced examples of Siegel modular
forms by counting points on hyperelliptic curves of genus
2; again their results are available only in the full-level-
structure case. The most substantial progress toward
the computation of Siegel modular forms for proper level
structure is by Gunnells [Gunnells 00], who extended
the theory of modular symbols to the symplectic group
Sp4/Q. However, this work does not see the cuspidal co-
homology, which is the only part of the cohomology that
is relevant to arithmetic geometric applications.

To the best of our knowledge, there are no numerical
examples of Hilbert–Siegel modular forms for proper level
structure in the literature, with the exception of those
produced from liftings of Hilbert modular forms.

The outline of the paper is as follows. In Section 2
we recall the basic properties of Hilbert–Siegel modular
forms and algebraic automorphic forms together with the
Jacquet–Langlands correspondence. In Section 3 we give
a detailed description of our algorithm. Finally, in Sec-
tion 4 we present numerical results for the quadratic field
Q(

√
5).

2. HILBERT–SIEGEL MODULAR FORMS AND THE
JACQUET–LANGLANDS CORRESPONDENCE

Throughout this paper, F denotes a real quadratic field
of narrow class number one. The two archimedean places
of F and the real embeddings of F will both be denoted
by v0 and v1. For every a ∈ F , we write a0 (respectively
a1) for the image of a under v0 (respectively v1). The
ring of integers of F is denoted by OF . For every prime
ideal p in OF , the completions of F and OF at p will be
denoted by Fp and OFp , respectively.

Let B be the unique (up to isomorphism) totally def-
inite quaternion algebra over F that is unramified at all
finite primes of F . We fix a maximal order OB of B.
Also, we choose a splitting field K/F of B that is Ga-
lois over Q and such that there exists an isomorphism
j : OB ⊗Z OK

∼= M2(OK) ⊕ M2(OK), where M2(A)
denotes the ring of 2 × 2 matrices with entries from a
ring A. For every finite prime p in F , we fix an isomor-
phism Bp

∼= M2(Fp) that restricts to an isomorphism
from OB,p onto M2(OFp).

The algebraic group G = ResF/Q(GSp4) is defined as
follows. For any Q-algebra A, the set of A-rational points
of G is given by

G(A) =
{
γ ∈ GL4(A⊗Q F )

∣∣∣ γJ2γ
t = νG(γ)J2,

νG(γ) ∈ (A⊗Q F )×

}
,

where

J2 =
(

0 12

−12 0

)
.

This group admits an integral model with A-rational
points for every Z-algebra A given by

GZ(A) =
{
γ ∈ GL4(A⊗Z OF )

∣∣∣ γJ2γ
t = νG(γ)J2,

νG(γ) ∈ (A⊗Z OF )×

}
.

For any Q-algebra A, the conjugation on B extends in a
natural way to the matrix algebra M2(B ⊗Q A).

The algebraic group GB/Q is defined as follows. For
any Q-algebra A, the set of A-rational points of GB is
given by

GB(A) =
{
γ ∈ M2(B ⊗Q A)

∣∣∣ γγ̄t = νGB (γ)12,

νGB (γ) ∈ (A⊗Q F )×

}
.

This group also admits an integral model with A-rational
points for every Z-algebra given by

GB
Z (A) =

{
γ ∈ M2(OB ⊗Z A)

∣∣∣ γγ̄t = νGB (γ)12,

νGB (γ) ∈ (A⊗Z OF )×

}
.

The group GB/Q is an inner form of G/Q such that
GB(R) is compact modulo its center.
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Combining the isomorphism j (see above) with con-
jugation by a permutation matrix, we obtain an isomor-
phism GB

Z (OK) ∼= GZ(OK), which we fix from now on.
For every prime ideal p in F , the splitting of GB at p

amounts to the splitting of the quaternion algebra B at
p; we refer to [Dembélé 05] for further details.

By the choice of the quaternion algebra B, we have
GB(Q̂) ∼= G(Q̂). (We denote the finite adeles of Q (re-
spectively Z) by Q̂ (respectively Ẑ).)

2.1 Hilbert–Siegel Modular Forms

We fix an integer k ≥ 3, and for simplicity, we re-
strict ourselves to Hilbert–Siegel modular forms of paral-
lel weight k. The real embeddings v0 and v1 of F extend
to G(Q) = GSp4(F ) in a natural way. We denote by
GSp+

4 (F ) the subgroup of elements γ with totally pos-
itive similitude factor νG(γ). We recall that the Siegel
upper half-plane of genus 2 is defined by

H2 = {γ ∈ GL2(C)
∣∣ γt = γ and Im(γ) is positive definite }.

We also recall that GSp+
4 (F ) acts on H2

2 by(
a b
c d

)
(τ0, τ1) :=

(
(a0τ0 + b0)(c0τ0 + d0)−1,

(a1τ1 + b1)(c1τ1 + d1)−1
)
.

This induces an action on the space of functions f : H2
2 →

C by

∀γ =
(
a b
c d

)
, f |k γ(τ) =

1∏
i=0

νG(γi)k/2

det(ciτi + di)k
f(τ).

Let N be an ideal in OF and set

Γ0(N) =
{(

a b
c d

)
∈ GSp+

4 (OF )
∣∣ c ≡ 0(N)

}
.

A Hilbert–Siegel modular form of level N and parallel
weight k is a holomorphic function f : H2

2 → C such that

∀γ ∈ Γ0(N), f |k γ = f.

The space of Hilbert–Siegel modular forms of parallel
weight k and level N is denoted by Mk(N). Each
f ∈ Mk(N) admits a Fourier expansion, which by the
Koecher principle takes the form

∀τ ∈ H2
2, f(τ) =

∑
{Q}∪{0}

aQe
2πiTr(Qτ),

where Q ∈ M2(F ) runs over all symmetric totally posi-
tive and semidefinite matrices. A Hilbert–Siegel modular
forms f is a cusp form if for all γ ∈ GSp+

4 (F ), the con-
stant term in the Fourier expansion of f |k γ is zero. The
space of Hilbert–Siegel cusp forms is denoted by Sk(N).

2.2 The Hecke Algebra

The space Sk(N) comes equipped with a Hecke action,
which we now recall. Take u ∈ GSp+

4 (F )∩M4(OF ), and
write the finite disjoint union

Γ0(N)uΓ0(N) =
∐

i

Γ0(N)ui.

Then the Hecke operator [Γ0(N)uΓ0(N)] on Sk(N) is
given by

[Γ0(N)uΓ0(N)]f =
∑

i

f |k ui.

Let p be a prime ideal in OF and let πp be a totally
positive generator of p; let T1(p) and T2(p) be the Hecke
operators corresponding to the double Γ0(N)-cosets of
the symplectic similitude matrices⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 πp 0
0 0 0 πp

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 0 0 0
0 πp 0 0
0 0 π2

p 0
0 0 0 πp

⎞
⎟⎟⎠ ,

respectively. (We remind the reader of the symplectic
form J2 fixed at the beginning of Section 2.) The Hecke
algebra Tk(N) is the Z-algebra generated by the opera-
tors T1(p) and T2(p), where p runs over all primes not
dividing N .

2.3 Algebraic Hilbert–Siegel Automorphic Forms

We consider only level structure of Siegel type. Namely,
we define the compact open subgroup U0(N) of G(Q̂) by

U0(N) =
∏
p�N

GSp4(OFp) ×
∏
p|N

U0(pep),

where N =
∏

p|N pep and

U0(pep) :=
{(

a b
c d

)
∈ GSp4(OFp)

∣∣ c ≡ 0 mod pep

}
.

The weight representation is defined as follows: Let
Lk be the representation of GSp4(C) of highest weight
(k − 3, k − 3). We let Vk = Lk ⊗ Lk and define the
complex representation (ρk, Vk) by

ρk : GB(R) −→ GL(Vk),

where the action on the first factor is via v0, and the
action on the second one is via v1.

The space of algebraic Hilbert–Siegel modular forms of
weight k and level N is given by

MB
k (N)

:=
{
f : GB(Q̂)/U0(N) → Vk

∣∣∀γ ∈ GB(Q), f |k γ = f
}
,
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where f |k γ(x) = f(γx)γ for all x ∈ GB(Q̂)/U0(N).
When k = 3, we let

IB
k (N)

:=
{
f : GB(Q)\GB(Q̂)/U0(N) → C

∣∣ f is constant
}
.

Then the space of algebraic Hilbert–Siegel cusp forms of
weight k and level N is defined by

SB
k (N) :=

{
MB

k (N) if k > 3,
MB

k (N)/IB
k (N) if k = 3.

The action of the Hecke algebra on SB
k (N) is given as

follows: For any u ∈ G(Q̂), write the finite disjoint union

U0(N)uU0(N) =
∐

i

uiU0(N),

and define

[U0(N)uU0(N)] : SB
k (N) → SB

k (N),

f �→ f |k [U0(N)uU0(N)],

by

f |k[U0(N)uU0(N)](x) =
∑

i

f(xui), x ∈ G(Q̂).

For any prime p � N , let �p be a local uniformizer at p.
The local Hecke algebra at p is generated by the Hecke
operators T1(p) and T2(p) corresponding to the double
U0(N)-cosets Δ1(p) and Δ2(p) of the matrices⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 �p 0
0 0 0 �p

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 0 0 0
0 �p 0 0
0 0 �2

p 0
0 0 0 �p

⎞
⎟⎟⎠ ,

respectively. We let T B
k (N) be the Hecke algebra gener-

ated by T1(p) and T2(p) for all primes p � N .

2.4 The Jacquet–Langlands Correspondence

The Hecke modules Sk(N) and SB
k (N) are related by the

following conjecture, known as the Jacquet–Langlands
correspondence for symplectic similitude groups.

Conjecture 2.1. The Hecke algebras Tk(N) and T B
k (N)

are isomorphic, and there is a compatible isomorphism
of Hecke modules

Sk(N) ∼−→ SB
k (N).

It is common, but perhaps not entirely accurate, to
attribute this conjecture to Jacquet–Langlands. To the

best of our knowledge, the correspondence in this form
was first discussed in [Ihara 64] in the case F = Q. In
[Ibukiyama 84], the author provided some numerical ev-
idence. On the other hand, it is appropriate to refer
to Conjecture 2.1 as the Jacquet–Langlands correspon-
dence (for GSp(4)), since it is an analogue of the Jacquet–
Langlands correspondence (for GL(2)), which relates au-
tomorphic representations of the multiplicative group of
a quaternion algebra to certain automorphic representa-
tions of GL(2) (see [Jacquet and Langlands 70]). Both
correspondences are, in turn, special consequences of the
principle of functoriality, as expounded by Langlands. Fi-
nally, it appears that Conjecture 2.1 may soon be a theo-
rem due to the work of [Sorensen 08] and the forthcoming
book by James Arthur on automorphic representations of
classical groups.

3. THE ALGORITHM

In this section, we present the algorithm we used in or-
der to compute the Hecke module of (algebraic) Hilbert–
Siegel modular forms. The main assumption in this sec-
tion is that the class number of the principal genus of
GB is 1. (We refer to [Dembélé 09] to see how one can
relax this condition on the class number.) We recall that
since B is totally definite, GB satisfies Proposition 1.4 in
[Gross 99]. Thus the group GB(R) is compact modulo
its center, and Γ = GB

Z (Z)/O×
F is finite.

For any prime p in F , let Fp = OF /p be the residue
field at p and define the reduction map

M2(OB,p) → M4(Fp),

g �→ g̃,

where we use the splitting of OB,p that was fixed at the
beginning of Section 2.

Now choose a totally positive generator πp of p and
put

Θ1(p) := Γ\
{
u ∈ M2(OB)

∣∣ uūt = πp12, rank(g̃) = 2
}
,

Θ2(p) := Γ\
{
u ∈ M2(OB)

∣∣ uūt = π2
p12, rank(g̃) = 1

}
.

We let H2
0(N) = GZ(Ẑ)/U0(N). Then the group Γ acts

on H2
0(N), thus on the space of functions f : H2

0(N) →
Vk by

∀x ∈ H2
0(N), ∀γ ∈ Γ, f |k γ(x) := f(γx)γ.

Theorem 3.1. There is an isomorphism of Hecke modules

MB
k (N) ∼−→

{
f : H2

0(N) → Vk

∣∣ f |kγ = f, γ ∈ Γ
}
,
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where the Hecke action on the right-hand side is given by

f |kT1(p) =
∑

u∈Θ1(p)

f |k u,

f |kT2(p) =
∑

u∈Θ2(p)

f |k u.

Proof: The canonical map

φ : GB
Z (Z)\GB

Z (Ẑ)/U0(N) → GB(Q)\GB(Q̂)/U0(N)

is an injection. Making use of the fact that the class
number in the principal genus of GB is 1 (GB(Q̂) =
GB(Q)GB

Z (Ẑ)), we see that φ is in fact a bijection. Since
each element f ∈MB

k (N) is determined by its values on a
set of coset representatives of GB(Q)\GB(Q̂)/U0(N), the
map φ induces an isomorphism of complex vector spaces

MB
k (N) ∼−→

{
f : H2

0(N) → Vk

∣∣ f |kγ = f, γ ∈ Γ
}
,

f �−→ f ◦ φ.

We make this into a Hecke module isomorphism by defin-
ing the Hecke action on the right-hand side as indicated
in the statement of the theorem.

In the rest of this section, we explain the main steps
of the algorithm provided by Theorem 3.1.

3.1 The Quotient H2
0(N)

Keeping the notation of the previous section, we recall
thatN =

∏
p|N pep . Let p be a prime dividingN and con-

sider the rank-4 free
(
OFp/p

ep
)
-module L =

(
OFp/p

ep
)4

endowed with the symplectic pairing 〈 , 〉 given by the
matrix

J2 =
(

0 12

−12 0

)
,

where 12 is the identity matrix in M2(OFp/p
ep). Let M

be a rank-2
(
OFp/p

ep
)
-submodule that is a direct factor

in L. We say that M is isotropic if 〈u, v〉 = 0 for all
u, v ∈ M . We recall that GSp4(OFp) acts transitively
on the set of rank-2 isotropic

(
OFp/p

ep
)
-submodules of

L and that the stabilizer of the submodule generated by
e1 = (1, 0, 0, 0)T and e2 = (0, 1, 0, 0)T is U0(pep).

The quotient H2
0(p

ep) = GSp4(OFp)/U0(pep) is the set
of rank-2 isotropic

(
OFp/p

ep
)
-submodules of L. Via the

reduction map ÔF → OF /N , the quotient GZ(Ẑ)/U0(N)
can be identified with the product

H2
0(N) =

∏
p|N

H2
0(p

ep).

The cardinality of H2
0(N) is extremely useful and is de-

termined using the following lemma.

Lemma 3.2. Let p be a prime in F and ep ≥ 1 an integer.
Then the cardinality of the set H2

0(p
ep) is given by

#H2
0(p

ep) = N(p)3(ep−1)(N(p) + 1)(N(p)2 + 1).

Proof: For ep = 1, the cardinality of the Lagrange
variety over the finite field Fp = OF /p is given by
(N(p) + 1)(N(p)2 + 1). Proceed by induction on ep.

We shall have more to say about elements of H2
0(p

ep)
in Section 3.5.

3.2 Brandt Matrices

Let F = {x1, . . . , xh} be a fundamental domain for the
action of Γ on H2

0(N), and for each i, let Γi be the stabi-
lizer of xi. Then every element in MB

k (N) is completely
determined by its values on F . Thus there is an isomor-
phism of complex spaces

MB
k (N) →

h⊕
i=1

V Γi

k ,

f �→ (f(xi)),

where V Γi

k is the subspace of Γi-invariants in Vk.
For any x, y ∈ H2

0(N), we let

Θ1(x, y, p) :=
{
u ∈ Θ1(p)

∣∣ ∃γ ∈ Γ, ux = γy
}
,

Θ2(x, y, p) :=
{
u ∈ Θ2(p)

∣∣ ∃γ ∈ Γ, ux = γy
}
.

Proposition 3.3. The actions of the Hecke operators
Ts(p), s = 1, 2, are given by the Brandt matrices Bs(p) =
(bsij(p)), where

bsji(p) : V Γj

k → V Γi

k ,

v �→ v ·
( ∑

u∈Θs(xi,xj ,p)

γ−1
u u

)
.

Proof: The proof of Proposition 3.3 follows the lines of
[Dembélé 05, Section 3].

3.3 Computing the Group GB
Z (Z)

It is enough to compute the subgroup Γ consisting of the
elements in GB

Z (Z) with similitude factor 1. But it is easy
to see that

Γ =
{(

u 0
0 v

) ∣∣∣ u, v ∈ O1
B

}
∪

{(
0 u
v 0

) ∣∣∣ u, v ∈ O1
B

}
,

where O1
B is the group of norm-1 elements.
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3.4 Computing the Sets Θ1(p) and Θ2(p)

Let us consider the quadratic form on the vector space
V = B2 given by

V → F,

(a, b) �→ ‖(a, b)‖ := nr(a) + nr(b),

where nr is the reduced norm on B. This determines an
inner form

V × V → F,

(u, v) �→ 〈u, v〉.

An element of Θ1(p) (respectively Θ2(p)) is a unitary
matrix γ ∈ M2(OB) with respect to this inner form such
that the norm of each row is πp (respectively π2

p) and
the rank of the reduced matrix is 1. So we first start
by computing all the vectors u = (a, b) ∈ O2

B such that
‖u‖ = πp (respectively ‖u‖ = π2

p). And for each such
vector u, we compute the vectors v = (c, d) ∈ O2

B of
the same norm such that 〈u, v〉 = 0. The corresponding
matrix γ =

(
a b
c d

)
belongs to Θ1(p) (respectively Θ2(p))

when its reduction modulo p has the appropriate rank.
We list all these matrices up to equivalence and stop when
we reach the right cardinality.

3.5 The Implementation of the Algorithm

The implementation of the algorithm is similar to that
of [Dembélé 05]. However, it is important to note how
we represent elements in H2

0(N) so that we can retrieve
them easily once stored. As in [Dembélé 05] we choose
to work with the product

H2
0(N) =

∏
p|N

H2
0(p

ep).

Using Plücker coordinates, we can view H2
0(p

ep) as a
closed subspace of P5(OFp/p

ep). We then represent each
element in H2

0(p
ep) by choosing a point

x = (a0 : · · · : a5) = [u ∧ v] ∈ P5(OFp/p
ep)

such that the submodule M generated by u and v is a
Lagrange submodule, and the first invertible coordinate
is scaled to 1.

Remark 3.4. In [Lansky and Pollack 02], the authors
describe an algorithm that computes algebraic modular
forms on the same inner form of GSp4/Q that we use.
We would like to note that there are some differences be-
tween the two algorithms. Although Lansky and Pollack

also use the flag variety H2
0(N) in order to determine the

double coset space GB(Q)\GB(Q̂)/U0(N), they later re-
turn to the adelic setting in order to compute the Brandt
matrices. In contrast, Theorem 3.1 and Proposition 3.3
allow us to avoid that unnecessary step by describing the
Hecke action on the flag variety H2

0(N) directly. As a
result, we obtain an algorithm that is more efficient.

4. NUMERICAL EXAMPLES: F = Q(
√

5) AND
B =

(−1,−1
F

)
In this section, we provide some numerical examples us-
ing the quadratic field F = Q(

√
5). It is proven in

[Hashimoto and Ibukiyama 80] that for the Hamilton
quaternion algebra B over F , the class number of the
principal genus of GB is 1. We use our algorithm to
compute all the systems of Hecke eigenvalues of Hilbert–
Siegel cusp forms of weight 3 and level N that are defined
over real quadratic fields, where N runs over all prime
ideals of norm less than 50. We then determine which
of the forms we obtained are possible lifts of Hilbert
cusp forms by comparing the Hecke eigenvalues for those
primes.

4.1 Tables of Hilbert–Siegel Cusp Forms of Parallel
Weight 3

In Table 1 we list all the systems of eigenvalues of
Hilbert–Siegel cusp forms of weight 3 and level N that
are defined over real quadratic fields, where N runs over
all prime ideals in F of norm less than 50. Here are the
conventions we use in the tables.

1. For a quadratic field K of discriminant D, we let ωD

be a generator of the ring of integers OK of K.

2. The first row contains the level N , given in the for-
mat (Norm(N), α) for some generator α ∈ F of N ,
and the dimensions of the relevant spaces.

3. The second row lists the Hecke operators that have
been computed.

4. For each eigenform f , the Hecke eigenvalues are
given in a row, and the last entry of that row in-
dicates whether the form f is a probable lift.

5. The levels and the eigenforms are both listed up to
Galois conjugation.

For an eigenform f and a given prime p � N , let a1(p, f)
and a2(p, f) be the eigenvalues of the Hecke operators
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N = (4, 2) : dimMB
3 (N) = 2, dim SB

3 (N) = 1

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 −4 0 20 −36 140 580 yes

N = (5, 2 + ω5) : dim MB
3 (N) = 2, dim SB

3 (N) = 1

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 20 15 −5 0 40 −420 yes

N = (9, 3) : dimMB
3 (N) = 3, dim SB

3 (N) = 2

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 25 − 3ω41 40 − 15ω41 30 + 6ω41 24 + 36ω41 −9 0 yes

N = (11, 3 + ω5) : dim MB
3 (N) = 3, dim SB

3 (N) = 2

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 24 35 34 48 88 60 yes

f2 −20 35 −10 4 0 60 no

N = (19, 4 + ω5) : dim MB
3 (N) = 5, dim SB

3 (N) = 4

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 4 11 −20 28 6 76 no

f2 7 −50 15 −66 73 −90 yes

f3 24 + ω161 35 + 5ω161 36 − ω161 60 − 6ω161 98 − 3ω161 160 − 30ω161 yes

N = (29, 5 + ω5) : dim MB
3 (N) = 9, dim SB

3 (N) = 8

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 −4 11 10 20 30 60 no

f2 8 −45 30 24 50 −320 yes

f3 17 0 9 −102 86 40 yes

N = (31, 5 + 2ω5) : dimMB
3 (N) = 12, dimSB

3 (N) = 11

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 13 −20 20 −36 76 −60 yes

N = (41, 6 + ω5) : dim MB
3 (N) = 19, dim SB

3 (N) = 18

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 10 20 −10 29 30 −20 no

f2 −1 1 5 14 −2 −56 no

f3 27 50 40 84 124 420 yes

f4 −12 19 30 65 0 0 no

f5 16 − 2ω21 −5 − 10ω21 21 + 4ω21 −30 + 24ω21 72 − 2ω21 −100 − 20ω21 yes

f6 2 − 6ω5 11 − 2ω5 8 + 4ω5 11 − 4ω5 −12 + 54ω5 160 + 40ω5 no

N = (49, 7) : dim MB
3 (N) = 26, dim SB

3 (N) = 25

T1(2) T2(2) T1(
√

5) T2(
√

5) T1(3) T2(3) Lift?

f1 5 −60 46 120 40 −420 yes

f2 4 + 4ω65 32 + 3ω65 12 − 4ω65 44 − 4ω65 −6 − 12ω65 145 + 8ω65 no

TABLE 1. Hilbert–Siegel eigenforms of weight 3.
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N (4, 2) (5, 2 + ω5) (9, 3) (11, 3 + ω5)

N(p) p a(p, f1) a(p, f1) a(p, f1) a(p, f1)

4 2 −4 0 5 − 3ω41 4
5 2 + ω5 −10 −5 6ω41 4
9 3 50 −50 −9 −2
11 3 + 2ω5 −28 32 −18 − 6ω41 −10
11 3 + ω5 −28 32 −18 − 6ω41 −11
19 4 + 3ω5 60 100 −40 + 24ω41 −94
19 4 + ω5 60 100 −40 + 24ω41 28

N (19, 4 + ω5) (29, 5 + ω5)

N(p) p a(p, f1) a(p, f2) a(p, f1) a(p, f2)

4 2 −13 5 − ω161 −12 −3
5 2 + ω5 −15 5 + ω161 0 −21
9 3 −17 5 + 3ω161 −40 −4
11 3 + 2ω5 −6 2 + 8ω161 −68 37
11 3 + ω5 33 7 − 7ω161 30 −66
19 4 + 3ω5 −139 −15 − 9ω161 −28 −40
19 4 + ω5 19 −19 84 −9

N (31, 5 + 2ω5) (41, 6 + ω5)

N(p) p a(p, f1) a(p, f1) a(p, f2)

4 2 −7 7 −4 − 2ω21

5 2 + ω5 −10 10 −9 + 4ω21

9 3 −14 34 −18 − 2ω21

11 3 + 2ω5 −20 −60 −19
11 3 + ω5 −28 −2 −24 − 4ω21

19 4 + 3ω5 −12 74 4 − 50ω21

19 4 + ω5 28 16 −29 + 44ω21

N (49, 7)

N(p) p a(p, f1) a(p, f2)

4 2 −15 −2
5 2 + ω5 16 −10
9 3 −50 −11
11 3 + 2ω5 −8 −7 − 28ω13

11 3 + ω5 −8 −35 + 28ω13

19 4 + 3ω5 −110 −26 + 14ω13

19 4 + ω5 −110 −12 − 14ω13

TABLE 2. Hilbert eigenforms of weight 4.

T1(p) and T2(p). Then the Euler factor Lp(f, s) is given
(for example, in [Asgari and Schmidt 01, Section 3.4]) by

Lp(f, s) = Qp(q−s)−1,

where

Qp(x) = 1 − a1(p, f)x+ b1(p, f)x2 − a1(p, f)q2k−3x3

+ q4k−6x4,

b1(p, f) = a1(p, f)2 − a2(p, f) − q2k−4,

q = N(p).

4.2 Tables of Hilbert Cusp Forms of Parallel Weight 4

In Table 2, we list all the Hilbert cusp forms of parallel
weight 4 and level N that are defined over real quadratic
fields, with N running over all prime ideals of norm less
than 50. (They are computed using the algorithm in
[Dembélé 05].) We use these data in order to determine
the forms in Table 1 that are possible lifts from GL2.

4.3 Lifts

There are two types of lifts from GL2 to GSp4. The
first corresponds to the homomorphism of L-groups
determined by the long root embedding into GSp4,
and the second by the short root embedding. (See
[Lansky and Pollack 02] for more details.) Let f

be a Hilbert cusp form of parallel weight k and
level N with Hecke eigenvalues a(p, f), where p is
a prime not dividing N . Let φ be the lift of f to
GSp4 via the long root, and ψ the one via the short
root. Then the Hecke eigenvalues of φ are given by

a1(p, φ) = a(p, f)N(p)
4−k
2 + N(p)2 + N(p),

a2(p, φ) = a(p, f)N(p)
4−k
2 (N(p) + 1) + N(p)2 − 1,

and the Hecke eigenvalues of ψ are given by

a1(p, ψ) = a(p, f)3N(p)
6−3k

2 − 2a(p, f)N(p)
4−k
2 ,

a2(p, ψ) = a(p, f)4N(p)4−2k − 3a(p, f)2 N(p)3−k

+ N(p)2 − 1.

The second lift ψ is the so-called symmetric cube lifting.
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Remark 4.1. So far, our algorithm has been implemented
only for congruence subgroups of Siegel type. We in-
tend to improve the implementation in the near future
so as to include more additional level structures such as
that of Klingen type. Indeed, Ramakrishnan and Shahidi
[Ramakrishnan and Shahidi 07] recently showed the ex-
istence of symmetric cube lifts for non-CM elliptic curves
E/Q to GSp4/Q. And their result should hold for other
totally real number fields, with the level structures of
the lifts being of Klingen type. Unfortunately, those lifts
cannot be seen in our current tables. For example, there
are modular elliptic curves over Q(

√
5) whose conductors

have norm 31, 41, and 49, but the corresponding symmet-
ric cubic lifts do not appear in Table 1. We would like to
remedy that in our next implementation.
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