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In this paper we report on massive computer experiments aimed
at finding spherical point configurations that minimize potential
energy. We present experimental evidence for two new uni-
versal optima (consisting of 40 points in 10 dimensions and 64
points in 14 dimensions), as well as evidence that there are no
others with at most 64 points. We also describe several other
new polytopes, and we present new geometrical descriptions of
some of the known universal optima.

[T]he problem of finding the configurations of stable
equilibrium for a number of equal particles acting
on each other according to some law of force. . . is
of great interest in connexion with the relation be-
tween the properties of an element and its atomic
weight. Unfortunately the equations which deter-
mine the stability of such a collection of particles
increase so rapidly in complexity with the number
of particles that a general mathematical investiga-
tion is scarcely possible.

—J. J. Thomson, 1897

1. INTRODUCTION

What is the best way to distribute N points over the unit
sphere Sn−1 in Rn? Of course the answer depends on
the notion of “best.” One particularly interesting case
is energy minimization. Given a continuous decreasing
function f : (0, 4] → R, define the f -potential energy of a
finite subset C ⊂ Sn−1 to be

Ef (C) =
1
2

∑
x,y∈C
x �=y

f
(|x − y|2).

(The domain of f is only (0, 4] because |x − y|2 ≤ 4
when |x|2 = |y|2 = 1. The factor of 1

2 is chosen for
compatibility with the physics literature, while the use of
squared distance is incompatible but more convenient.)
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How can one choose C ⊂ Sn−1 with |C| = N so as to
minimize Ef (C)?

In this paper we report on lengthy computer searches
for configurations with low energy. What distinguishes
our approach from most earlier work on this topic (see
for example [Altschuler and Pérez-Garrido 05, Altschuler
and Pérez-Garrido 06, Altschuler and Pérez-Garrido
07, Altschuler et al. 97, Aste and Weaire 08, Bausch et al.
03, Bowick et al. 02, Bowick et al. 06, Cohn 56, Damelin
and Maymeskul 05, Dragnev et al. 02, Edmundson 92,
Einert et al. 05, Erber and Hockney 91, Föppl 12, Glasser
and Every 92, Hardin and Saff 04, Hardin and Saff
05, Hovinga 04, Katanforoush and Shahshahani 03, Kui-
jlaars and Saff 98, Kottwitz 91, Livshits and Lozovik
99, Mart́ınez-Finkelshtein et al. 04, Melnyk et al. 77, Mor-
ris et al. 96, Pérez-Garrido et al. 97a, Pérez-Garrido et
al. 97b, Pérez-Garrido and Moore 99, Rakhmanov et al.
94, Rakhmanov et al. 95, Saff and Kuijlaars 97, Sloane
00, Thomson 97, Whyte 52, Willie 86]) is that we attempt
to treat many different potential functions on as even a
footing as possible. Much of the mathematical structure
of this problem becomes apparent only when one varies
the potential function f . Specifically, we find that many
optimal configurations vary in surprisingly simple low-
dimensional families as f varies.

The most striking possibility is that the family is a
single point; in other words, the optimum is indepen-
dent of f . Cohn and Kumar [Cohn and Kumar 07] de-
fined a configuration to be universally optimal if it min-
imizes Ef for all completely monotonic f (i.e., f is in-
finitely differentiable and (−1)kf (k)(x) ≥ 0 for all k ≥ 0
and x ∈ (0, 4), as is the case for inverse power laws).
They were able to prove universal optimality only for
certain very special arrangements. One of our primary
goals in this paper is to investigate how common uni-
versal optimality is. Was the limited list of examples
in [Cohn and Kumar 07] an artifact of the proof tech-
niques or a sign that these configurations are genuinely
rare?

Every universally optimal configuration is an optimal
spherical code, in the sense that it maximizes the min-
imal distance between the points. (Consider an inverse
power law f(r) = 1/rs. If there were a configuration
with a larger minimal distance, then its f -potential en-
ergy would be lower when s is sufficiently large.) How-
ever, universal optimality is a far stronger condition than
optimality as a spherical code. There are optimal spher-
ical codes of each size in each dimension, but they are
rarely universally optimal. In three dimensions, the only
universal optima are a single point, two antipodal points,

an equilateral triangle on the equator, or the vertices of
a regular tetrahedron, octahedron, or icosahedron.

The universal optimality of these configurations was
proved in [Cohn and Kumar 07], building on previous
work by Yudin, Kolushov, and Andreev [Yudin 93, Ko-
lushov and Yudin 94, Kolushov and Yudin 97, Andreev
96, Andreev 97], and the completeness of this list follows
from a classification theorem due to Leech [Leech 57].
See [Cohn and Kumar 07] for more details.

In higher dimensions much less is known. Cohn and
Kumar’s main theorem provides a general criterion from
which they deduced the universal optimality of a number
of previously studied configurations. Specifically, they
proved that every spherical (2m−1)-design in which only
m distances occur between distinct points is universally
optimal. Recall that a spherical d-design in Sn−1 is a
finite subset C of Sn−1 such that every polynomial on
Rn of total degree d has the same average over C as over
the entire sphere. This criterion holds for every known
universal optimum except one case, namely the regular
600-cell in R4 (i.e., the H4 root system), for which Cohn
and Kumar proved universal optimality by a special ar-
gument.

A list of all known universal optima is given in Table 1.
Here n is the dimension of the Euclidean space, N is the
number of points, and t is the greatest inner product be-
tween distinct points in the configuration (i.e., the cosine
of the minimal angle). For detailed descriptions of these
configurations, see [Cohn and Kumar 07, Section 1].

Each known universal optimum is uniquely deter-
mined by the parameters listed in Table 1, except for
the configurations listed on the last line. For that case,
when q = p� with p an odd prime, there are at least
�(�−1)/2� distinct universal optima (see [Cameron et al.
78] and [Kantor 86]). Classifying these optima is equiva-
lent to classifying generalized quadrangles with parame-
ters (q, q2), which is a difficult problem in combinatorics.
In the other cases from Table 1, when uniqueness holds,
we use the notation UN,n for the unique N -point univer-
sal optimum in Rn.

Each of the configurations in Table 1 had been studied
before it appeared in [Cohn and Kumar 07], and was
already known to be an optimal spherical code. In fact,
when N ≥ 2n + 1 and n > 4, the codes on this list are
exactly those that have been proved optimal. Cohn and
Kumar were unable to determine whether Table 1 is the
complete list of universally optimal codes, except when
n ≤ 3.

All that is known in general is that any new universal
optimum must have N ≥ 2n + 1 [Cohn and Kumar 07,
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n N t Description

2 N cos(2π/N) N-gon

n N ≤ n+ 1 −1/(N − 1) simplex

n 2n 0 cross polytope

3 12 1/
√

5 icosahedron

4 120 (1 +
√

5)/4 regular 600-cell

5 16 1/5 hemicube/Clebsch graph

6 27 1/4 Schläfli graph/isotropic subspaces

7 56 1/3 equiangular lines

8 240 1/2 E8 root system

21 112 1/9 isotropic subspaces

21 162 1/7 (162, 56, 10, 24) strongly regular graph

22 100 1/11 Higman–Sims graph

22 275 1/6 McLaughlin graph

22 891 1/4 isotropic subspaces

23 552 1/5 equiangular lines

23 4600 1/3 kissing configuration of the following

24 196560 1/2 Leech lattice minimal vectors

q q
3+1
q+1

(q + 1)(q3 + 1) 1/q2 isotropic subspaces (q is a prime power)

TABLE 1. The known universal optima.

Proposition 1.4]. It does not seem plausible that the
current list is complete, but it is far from obvious where
to find any others.

Each known universal optimum is a beautiful math-
ematical object, connected to various important excep-
tional structures (such as special lattices or groups). Our
long-term hope is to develop automated tools that will
help uncover more such objects. In this paper we do
not discover any configurations as fundamental as those
in Table 1, but perhaps our work is a first step in that
direction.

Table 1 shows several noteworthy features. When n ≤
4, the codes listed are the vertices of regular polytopes,
specifically those with simplicial facets. When 5 ≤ n ≤
8, the table also includes certain semiregular polytopes
(their facets are simplices and cross polytopes, with two
cross polytopes and one simplex arranged around each
(n − 3)-dimensional face). The corresponding spherical
codes are all affine cross sections of the minimal vectors of
the E8 root lattice. Remarkably, no universal optima are
known for 9 ≤ n ≤ 20, except for the simplices and cross
polytopes, which exist in every dimension. This gap is
troubling—why should these dimensions be disfavored?
For 21 ≤ n ≤ 24 nontrivial universal optima are known;
they are all affine cross sections of the minimal vectors
of the Leech lattice (and are no longer the vertices of

semiregular polytopes). Finally, in high dimensions a
single infinite sequence of nontrivial universal optima is
known.

It is not clear how to interpret this list. For example,
is the dimension gap real, or merely an artifact of hu-
manity’s limited imagination? One of our conclusions in
this paper is that Table 1 is very likely incomplete but
appears to be closer to complete than one might expect.

1.1 Experimental Results

One outcome of our computer searches is two candidates
for universal optima, listed in Table 2 and described
in more detail in Section 4. These configurations were
located through massive computer searches: for each
of many pairs (n, N), we repeatedly picked N random
points on Sn−1 and performed gradient descent to mini-
mize potential energy. We focused on the potential func-
tion f(r) = 1/rn/2−1, because x 	→ 1/|x|n−2 is the unique
nonconstant radial harmonic function on Rn \ {0}, up to
scalar multiplication (recall that distance is squared in
the definition of Ef ). When n = 3, the f -potential en-
ergy for this function f is the Coulomb potential energy
from electrostatics, and this special case has been exten-
sively studied by mathematicians and other scientists. In
higher dimensions, this potential function has frequently
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n N t References

10 40 1/6 [Sloane 00, Hovinga 04]
14 64 1/7 [Nordstrom and Robinson 67, de Caen and van Dam 99, Ericson and Zinoviev 01]

TABLE 2. New conjectured universal optima.

been studied as a natural generalization of electrostatics;
we call it the harmonic potential function.

Because there are typically numerous local minima
for harmonic energy, we repeated this optimization pro-
cedure many times with the hope of finding the global
minimum. For low numbers of points in low dimensions,
the apparent global minimum occurs fairly frequently.
Figure 1 shows data from three dimensions. In higher
dimensions, there are usually more local minima and the
true optimum can occur very infrequently.

For each conjectured optimum for harmonic energy,
we attempted to determine whether it could be uni-
versally optimal. We first determined whether it is
in equilibrium under all possible force laws (i.e., “bal-
anced” in the terminology of Leech [Leech 57]). That
holds if and only if for each point x in the configu-
ration and each distance d, the sum of all points in
the code at distance d from x is a scalar multiple of
x. If this criterion fails, then there is some inverse
power law under which the code is not even in equilib-
rium, let alone globally minimal, so it cannot possibly
be universally optimal. Most of the time, the code with
the lowest harmonic potential energy is not balanced.
When it is balanced, we compared several potential func-
tions to see whether we could disprove universal opti-
mality. By [Widder 41, Theorem 9b, p. 154], it suf-
fices to look at the potential functions f(r) = (4 − r)k

with k ∈ {0, 1, 2, . . .} (on each compact subinterval of
(0, 4], every completely monotonic function can be ap-
proximated arbitrarily closely by positive linear com-
binations of these potential functions). Because these
functions do not blow up at r = 0, numerical cal-
culations with them often converge more slowly than
they do for inverse power laws (nearby points can ex-
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FIGURE 1. Probabilities of local minima for harmonic
energy in R

3 (based on 1000 trials). White circles
denote the conjectured harmonic optima.

perience only a bounded force pushing them apart),
so they are not a convenient choice for initial experi-
mentation. However, they play a fundamental role in
detecting universal optima.

To date, our search has led us to 58 balanced config-
urations with at most 64 points (and at least 2n + 1 in
dimension n) that appear to minimize harmonic energy
and were not already known to be universally optimal.
In all but two cases, we were able to disprove universal
optimality, but the remaining two cases (those listed in
Table 2) are unresolved. We conjecture that they are in
fact universally optimal.

Figure 2 presents a graphical overview of our data.
The triangle of white circles on the upper left represents
the simplices, and the diagonal line of white circles rep-
resents the cross polytopes. Between them, one can see
that the pattern is fairly regular, but as one moves right
from the cross polytopes all structure rapidly vanishes.
There is little hope of finding a simple method to predict
where balanced harmonic optima can be found, let alone
universal optima. It also does not seem likely that gen-
eral universal optima can be characterized by any variant
of Cohn and Kumar’s criterion.

Besides the isotropic subspace universal optima from
Table 1 and the other universal optima with the same
parameters, we can conjecture only one infinite family
of balanced harmonic optima with more than 2n points
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32

3
2 Number of points 64

FIGURE 2. Status of conjectured harmonic optima
with up to 64 points in at most 32 dimensions: white
circle denotes universal optimum, large gray circle de-
notes conjectured universal optimum, black circle de-
notes balanced configuration that is not universally
optimal, tiny black circle denotes unbalanced configu-
ration.
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n N t

3 32
√

75 + 30
√

5/15

4 10 1/6 or (
√

5 − 1)/4

4 13
(
cos(4π/13) + cos(6π/13)

)
/2

4 15 1/
√

8

4 24 1/2

4 48 1/
√

2

5 21 1/
√

10

5 32 1/
√

5

n ≥ 6 2n+ 2 1/n

6 42 2/5

6 44 1/
√

6

6 126
√

3/8

7 78 3/7

7 148
√

2/7

8 72 5/14

9 96 1/3

14 42 1/10

16 256 1/4

TABLE 3. Conjectured harmonic optima that are bal-
anced, irreducible, and not universally optimal (see
Section 5 for descriptions).

in Rn, namely the diplo-simplices with 2n + 2 points in
Rn for n ≥ 6 (see Section 3.4). Certainly no others are
apparent in Figure 2, but the isotropic subspace optima
from Table 1 are sufficiently large and exotic that it would
be foolish to conjecture that there are no other infinite
families.

Table 3 lists the cases in which we found a balanced
harmonic optimum but were able to disprove univer-
sal optimality, with one systematic exception: we omit
configurations that are reducible, in the sense of being
unions of orthogonal, lower-dimensional configurations
(this terminology is borrowed from the theory of root
systems). Reducible configurations are in no sense less
interesting or fruitful than irreducible ones. For exam-
ple, cross polytopes can be reduced all the way to one-
dimensional pieces. However, including reducible config-
urations would substantially lengthen Table 3 without
adding much more geometrical content.

n N t

7 182 1/
√

3
15 128 1/5

TABLE 4. Unresolved conjectured harmonic optima.

Table 4 lists two more unresolved cases. They both
appear to be harmonic optima and are balanced, and we
have not been able to prove or disprove universal opti-
mality. Unlike the two cases in Table 2, we do not con-
jecture that they are universally optimal, because each is
closely analogous to a case in which universal optimality
fails (182 points in R

7 is analogous to 126 points in R6,
and 128 points in R15 is analogous to 256 points in R16).
On the other hand, each is also analogous to a configura-
tion we know or believe is universally optimal (240 points
in R8 and 64 points in R14, respectively). We have not
been able to disprove universal optimality in the cases in
Table 4, but they are sufficiently large that our failure
provides little evidence in favor of universal optimality.

Note that the data presented in Tables 3 and 4 may
not specify the configurations uniquely. For example, for
48 points in R4 there is a positive-dimensional family of
configurations with maximal inner product 1/

√
2 (which

is not the best possible value, according to Sloane’s tables
[Sloane 00]). See Section 5 for explicit constructions of
the conjectured harmonic optima.

It is worth observing that several famous configura-
tions do not appear in Tables 3 and 4. Most notably,
the cubes in R

n with n ≥ 3, the dodecahedron, the 120-
cell, and the D5, E6, and E7 root systems are suboptimal
for harmonic energy. Many of these configurations have
more than 64 points, but we have included in the tables
all configurations we have analyzed, regardless of size.

In each case listed in Tables 3 and 4, our computer
programs returned floating-point approximations to the
coordinates of the points in the code, but we have been
able to recognize the underlying structure exactly. That
is possible largely because these codes are highly sym-
metric, and once one has uncovered the symmetries the
remaining structure is greatly constrained. By contrast,
for most numbers of points in most dimensions, we can-
not even recognize the minimal harmonic energy as an
exact algebraic number (although it must be algebraic,
because it is definable in the first-order theory of the real
numbers).

1.2 New Universal Optima

Both codes listed in Table 2 have been studied before.
The first code was discovered by Conway, Sloane, and
Smith [Sloane 00] as a conjecture for an optimal spherical
code (and discovered independently by Hovinga [Hovinga
04]). The second can be derived from the Nordstrom–
Robinson binary code [Nordstrom and Robinson 67] or
as a spectral embedding of an association scheme discov-
ered by de Caen and van Dam [de Caen and van Dam 99]
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(take t = 1 in [de Caen and van Dam 99, Theorem 2 and
Proposition 7(i)] and then project the standard orthonor-
mal basis into a common eigenspace of the operators in
the Bose–Mesner algebra of the association scheme). We
describe both codes in greater detail in Section 4.

Neither code satisfies the condition from [Cohn and
Kumar 07] for universal optimality: both are spherical 3-
designs (but not 4-designs), with four distances between
distinct points in the 40-point code and three in the 64-
point code. That leaves open the possibility of an ad
hoc proof, similar to the one Cohn and Kumar gave for
the regular 600-cell, but the techniques from [Cohn and
Kumar 07] do not apply.

To test universal optimality, we have carried out 1000
random trials with the potential function f(r) = (4 −
r)k for each k from 1 to 25. We have also carried out
1000 trials using Hardin and Sloane’s program Gosset
[Hardin and Sloane 03] to construct good spherical codes
(to take care of the case when k is large). Of course these
experimental tests fall far short of a rigorous proof, but
the codes certainly appear to be universally optimal.

We believe that they are the only possible new univer-
sal optima consisting of at most 64 points, because we
have searched the space of such codes fairly thoroughly.
By [Cohn and Kumar 07, Proposition 1.4], any new uni-
versal optimum in R

n must contain at least 2n+1 points.
There are 812 such cases with at most 64 points in di-
mension at least 4. In each case, we have completed at
least 1000 random trials (and usually more). There is
no guarantee that we have found the global optimum in
any of these cases, because it could have a tiny basin of
attraction. However, a simple calculation shows that it
is 99.99% likely that in every case we have found every
local minimum that occurs at least 2% of the time. We
have probably not always found the true optimum, but
we believe that we have found every universal optimum
within the range we have searched.

We have made our tables of conjectured harmonic op-
tima for up to 64 points in up to 32 dimensions available
via the world wide web.1 They list the best energies
we have found and the coordinates of the configurations
that achieve them. We would be grateful for any im-
provements, and we intend to keep the tables up to date,
with credit for any contributions received from others.

In addition to carrying out our own searches for uni-
versal optima, we have examined Sloane’s tables [Sloane
00] of the best spherical codes known with at most 130
points in R

4 and R5, and we have verified that they con-

1Available at http://aimath.org/data/paper/BBCGKS2006/.

tain no new universal optima. We strongly suspect that
there are no undiscovered universal optima of any size in
R4 or R5, based on Sloane’s calculations as well as our
searches, but it would be difficult to give definitive ex-
perimental evidence for such an assertion (we see no con-
vincing arguments for why huge universal optima should
not exist).

In general, our searches among larger codes have been
far less exhaustive than those up to 64 points: we have
at least briefly examined well over four thousand differ-
ent pairs (n, N), but generally not in sufficient depth to
make a compelling case that we have found the global
minimum. (Every time we found a balanced harmonic
optimum, with the exception of 128 points in R15 and
256 points in R16, we completed at least 1000 trials to
test whether it was really optimal. However, we have not
completed nearly as many trials in most other cases, and
in any case 1000 trials is not enough when one is studying
large configurations.) Nevertheless, our strong impres-
sion is that universal optima are rare, and certainly that
there are few small universal optima with large basins of
attraction.

2. METHODOLOGY

2.1 Techniques

As discussed in the introduction, to minimize potential
energy we apply gradient descent, starting from many
random initial configurations. That is an unsophisticated
approach, because gradient descent is known to perform
more slowly in many situations than competing meth-
ods such as the conjugate gradient algorithm. However,
it has performed adequately in our computations. Fur-
thermore, gradient descent has particularly intuitive dy-
namics. Imagine particles immersed in a medium with
enough viscosity that they never build up momentum.
When a force acts on them according to the potential
function, the configuration undergoes gradient descent.
By contrast, for most other optimization methods the
motion of the particles is more obscure, so for example it
is more difficult to interpret information such as sizes of
basins of attraction.

Once we have approximate coordinates, we can use the
multivariate analogue of Newton’s method to compute
them to high precision (by searching for a zero of the
gradient vector). Usually we do not need to do this, be-
cause the results of gradient descent are accurate enough
for our purposes, but it is a useful tool to have available.

Obtaining coordinates is simply the beginning of our
analysis. Because the coordinates encode not only the



Ballinger et al.: Experimental Study of Energy-Minimizing Point Configurations on Spheres 263

FIGURE 3. The Gram matrix for a regular 600-cell
(black denotes 1, white denotes −1, and gray inter-
polates between them), with the points ordered as re-
turned by our gradient descent software.

relative positions of the points but also an arbitrary or-
thogonal transformation of the configuration, interpret-
ing the data can be subtle. A first step is to compute the
Gram matrix. In other words, given points x1, . . . , xN ,
compute the N ×N matrix G whose entries are given by
Gi,j = 〈xi, xj〉. The Gram matrix is invariant under or-
thogonal transformations, so it encodes almost precisely
the information we care about. Its only drawback is that
it depends on the arbitrary choice of how the points are
ordered. That may sound like a mild problem, but there
are many permutations of the points and it is far from
clear how to choose one that best exhibits the config-
uration’s underlying structure: compare Figure 3 with
Figure 4.

With luck, one can recognize the entries of the Gram
matrix as exact algebraic numbers: more frequently than
one might expect, they are rational or quadratic irra-
tionals. Once one specifies the entire Gram matrix, the
configuration is completely determined, up to orthogonal
transformations. Furthermore, one can easily prove that
the configuration exists (keep in mind that it may not
be obvious that there actually is such an arrangement
of points, because it was arrived at via inexact calcula-
tions). To do so, one need only check that the Gram
matrix is symmetric, it is positive semidefinite, and its
rank is at most n. Every such matrix is the Gram matrix
of a set of N points in R

n, and if the diagonal entries are
all 1 then the points lie on Sn−1.

FIGURE 4. The Gram matrix for a regular 600-cell,
with the points ordered so as to display structure.

Unfortunately, the exact Gram matrix entries are not
always apparent from the numerical data. There is also a
deeper reason why simply recognizing the Gram matrix
is unsatisfying: it provides only the most “bare bones”
description of the configuration. Many properties, such
as symmetry or connections to other mathematical struc-
tures, are far from apparent given only the Gram matrix,
as one can see from Figures 3 and 4.

FIGURE 5. An orthogonal projection of the conjec-
tured harmonic optimum with 44 points in R

3 onto a
random plane. Line segments connect points at the
minimal distance.
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FIGURE 6. An orthogonal projection of the conjec-
tured harmonic optimum with 48 points in R

4 onto a
random plane. Line segments connect points at the
minimal distance.

Choosing the right method to visualize the data can
make the underlying patterns clearer. For example, pro-
jections onto low-dimensional subspaces are often illumi-
nating. Determining the most revealing projection can
itself be difficult, but sometimes even a random projec-
tion sheds light on the structure. For example, Figures 5
and 6 are projections of the harmonic optima with 44
points in R

3 and 48 points in R4, respectively, onto ran-
dom planes. The circular outline is the boundary of the
projection of the sphere, and the line segments pair up
points separated by the minimal distance. Figure 5 shows
a disassembled cube (in a manner described later in this
section), while Figure 6 is made up of octagons (see Sec-
tion 3.5 for a description).

The next step in the analysis is the computation of the
automorphism group. In general that is a difficult task,
but we can make use of the wonderful software Nauty
written by McKay [McKay 81]. Nauty can compute the
automorphism group of a graph as a permutation group
on the set of vertices; more generally, it can compute the
automorphism group of a vertex-labeled graph. We make
use of it as follows. Define a combinatorial automorphism
of a configuration to be a permutation of the points that
preserves inner products (equivalently, distances). If one
forms an edge-labeled graph by placing an edge between
each pair of points, labeled by their inner product, then
the combinatorial automorphism group is the automor-
phism group of this labeled graph. Nauty is not directly
capable of computing such a group, but it is straight-
forward to reduce the problem to that of computing the

automorphism group of a related vertex-labeled graph.
Thus, one can use Nauty to compute the combinatorial
automorphism group.

Fortunately, combinatorial automorphisms are the
same as geometric symmetries, provided the configura-
tion spans R

n. Specifically, every combinatorial automor-
phism is induced by a unique orthogonal transformation
of Rn. (When the points do not span Rn, the orthog-
onal transformations are not unique, because there are
nontrivial orthogonal transformations that fix the sub-
space spanned by the configuration.) Thus, Nauty pro-
vides an efficient method for computing the symmetry
group.

Unfortunately, it is difficult to be certain that one has
computed the correct group. Two inner products that
appear equal numerically may differ by a tiny amount,
in which case the computed symmetry group may be too
large. However, that is rarely a problem even with single-
precision floating-point arithmetic, and it is difficult to
imagine a fake symmetry that appears real to one hun-
dred decimal places.

Once the symmetry group has been obtained, many
further questions naturally present themselves. Can one
recognize the symmetry group as a familiar group? How
does its representation on R

n break up into irreducibles?
What are the orbits of its action on the configuration?

Analyzing the symmetries of the configuration fre-
quently determines much of the structure, but usually
not all of it. For example, consider the simplest nontriv-
ial case, namely five points on S2. There are two nat-
ural ways to arrange them: with two antipodal points
and three points forming an equilateral triangle on the
orthogonal plane between them, or as a pyramid with
four points forming a square in the hemisphere opposite
a single point (and equidistant from it). In the first case
everything is determined by the symmetries, but in the
second there is one free parameter, namely how far the
square is from the point opposite it. As one varies the
potential function, the energy-minimizing value of this
parameter will vary. (We conjecture that for every com-
pletely monotonic potential function, one of the config-
urations described in this paragraph globally minimizes
the energy, but we cannot prove it.)

We define the parameter count of a configuration to be
the dimension of the space of nearby configurations that
can be obtained from it by applying an arbitrary radial
force law between all pairs of particles. For example,
balanced configurations are those with zero parameters,
and the family with a square opposite a point has one
parameter.
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To compute the parameter count for an N -point con-
figuration, start by viewing it as an element of (Sn−1)N

(by ordering the points). Within the tangent space of
this manifold, for each radial force law there is a tangent
vector. To form a basis for all these force vectors, look
at all distances d that occur in the configuration, and
for each of them consider the tangent vector that pushes
each pair of points at distance d in opposite directions but
has no other effects. All force vectors are linear combina-
tions of these, and the dimension of the space they span
is the parameter count for the configuration. (One must
be careful to use sufficiently high-precision arithmetic, as
when computing the symmetry group.)

This information is useful because in a sense it shows
how much humanly understandable structure we can ex-
pect to find. For example, in the five-point configura-
tion with a square opposite a point, the distance be-
tween them will typically be some complicated number
depending on the potential function. In principle one
can describe it exactly, but in practice it is most pleas-
ant to treat it as a black box and describe all the other
distances in the configuration in terms of it. The param-
eter count tells how many independent parameters one
should expect to arrive at. When the count is zero or
one, it is reasonable to search for an elegant description,
whereas when the count is twenty, it is likely that the
configuration is unavoidably complex.

Figure 7 shows the parameter counts of the conjec-
tured harmonic optima in R

3 with at most 64 points,
compared with the dimension of the full space of all con-
figurations of their size. The counts vary wildly but are
often quite a bit smaller than one might expect. Two
striking examples are 61 points with 111 parameters, for
which there is likely no humanly understandable descrip-
tion, and 44 points with one parameter. The 44-point
configuration consists of the vertices of a cube and cen-
ters of its edges together with the 24-point orbit (under
the cube’s symmetry group) of a point on a diagonal of
a face, all projected onto a common sphere. The optimal
choice of the point on the diagonal appears complicated.

One subtlety in searching for local minima is that any
given potential function will usually not detect all pos-
sible families of local minima that could occur for other
potential functions. For example, for five points in R

3,
the family with a square opposite a point does not con-
tain a local minimum for harmonic energy. One can
attain a local minimum compared to the other mem-
bers of the family, but it will be a saddle point in the
space of all configurations. Nevertheless, the family does
contain local minima for some other completely mono-
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FIGURE 7. Parameter counts for conjectured har-
monic optima in R

3. Horizontal or vertical lines occur
at multiples of ten, and white circles denote the di-
mension of the configuration space.

tonic potential functions (such as f(r) = 1/rs with
s large).

2.2 Example

For a concrete example, consider Table 5, which shows
the results of 108 random trials for 27 points in R6 (all
decimal numbers in tables have been rounded). These
parameters were chosen because, as shown in [Cohn and
Kumar 07], there is a unique 27-point universal optimum
in R6, with harmonic energy 111; it is called the Schläfli
configuration. The column labeled “frequency” tells how
many times each local minimum occurred. As one can
see, the universal optimum occurred more than 99.97%
of the time, but we found a total of four others.

Strictly speaking, we have not proved that the local
minima listed in Table 5 (other than the Schläfli configu-
ration) even exist. They surely do, because we have com-
puted them to five hundred decimal places and checked
that they are local minima by numerically diagonalizing
the Hessian matrix of the energy function on the space of
configurations. However, we used high-precision floating-
point arithmetic, so this calculation does not constitute
a rigorous proof, although it leaves no reasonable doubt.
It is not at all clear whether there are additional local
minima. We have not found any, but the fact that one
of the local minima occurs only once in every ten mil-
lion trials suggests that there might be others with even
smaller basins of attraction.

The local minimum with energy 112.736 . . . stands out
in two respects besides its extreme rarity: it has many
symmetries and it depends on few parameters. That sug-
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Harmonic Energy Frequency Parameters Maximal Cosine Symmetries

111.0000000000 99971504 0 0.2500000000 51840
112.6145815185 653 9 0.4306480635 120
112.6420995468 22993 18 0.3789599707 24
112.7360209988 10 2 0.4015602076 1920
112.8896851626 4840 13 0.4041651631 48

TABLE 5. Local minima for 27 points in R
6 (with frequencies out of 108 random trials).

gests that it should have a simple description, and in
fact it does, as a modification of the universal optimum.
Only two inner products occur between distinct points
in the Schläfli configuration, namely − 1

2 and 1
4 . In par-

ticular, it is not antipodal, so one can define a new code
by replacing a single point x with its antipode −x. The
remaining 26 points can be divided into two clusters ac-
cording to their distances from −x. Immediately after
replacing x with −x the code will no longer be a local
minimum, but if one allows it to equilibrate, a minimum
is achieved. (That is not obvious: the code could equi-
librate to a saddle point, because it is starting from an
unusual position.) All that changes is the distances of
the two clusters from −x, while the relative positions
within the clusters remain unchanged (aside from rescal-
ing). These two distances are the two parameters of the
code. The symmetries of the new code are exactly those
of the universal optimum that fix x, so the size of the
symmetry group is reduced by a factor of 27.

The Schläfli configuration in R
6 corresponds to the 27

lines on a smooth cubic surface: there is a natural corre-
spondence between points in the configuration and lines
on a cubic surface such that the inner products of − 1

2

occur between points corresponding to intersecting lines.
(This dates back to Schoutte [Schoutte 10]. See also the
introduction to [Cohn and Kumar 07] for a brief sum-
mary of the correspondence.) One way to view the other
local minima in Table 5 is as competitors to this classical
configuration. It would be intriguing if they also had in-
terpretations or consequences in algebraic geometry, but
we do not know of any.

3. EXPERIMENTAL PHENOMENA

3.1 Analysis of Gram Matrices

For an example of how one might analyze a Gram matrix,
consider the case of sixteen points in R

5. This case also
has a universal optimum, which is the smallest known one
that is not a regular polytope (although it is semiregu-
lar). It is the five-dimensional hemicube, which consists
of half the vertices of the cube. More precisely, it con-
tains the points (±1,±1,±1,±1,±1)/

√
5 with an even

number of minus signs. One can recover the full cube
by including the antipode of each point, so the symme-
tries of the five-dimensional hemicube consist of half of
those of the five-dimensional cube (namely, those that
preserve the hemicube, rather than exchanging it with
its complementary hemicube).

It is essentially an accident of five dimensions that
the hemicube is universally optimal. Universal optimal-
ity also holds in lower dimensions, but only because the
hemicubes turn out to be familiar codes (two antipodal
points in two dimensions, a tetrahedron in three dimen-
sions, and a cross polytope in four dimensions). In six
dimensions the hemicube appears to be an optimal spher-
ical code, but it does not minimize harmonic energy and
is therefore not universally optimal. In seven dimensions,
and presumably all higher dimensions, the hemicube is
not even an optimal code.

The five-dimensional hemicube has the same struc-
ture as the Clebsch graph (see Figure 8). The sixteen
points correspond to the vertices of the graph; two dis-
tinct points have inner product − 3

5 if they are connected
by an edge in the graph and 1

5 otherwise. This determines
the Gram matrix and hence the full configuration.

For the harmonic potential energy, the hemicube ap-
pears to be the only local minimum with sixteen points in
R5, but we do not know how to prove that. To construct
another local minimum, one can attempt constructions

FIGURE 8. The Clebsch graph.
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1 a a a a a a b b b b b b b b b

a 1 e e a2 a2 a2 d c c c c d c d c
a e 1 e a2 a2 a2 c d c d c c c c d
a e e 1 a2 a2 a2 c c d c d c d c c

a a2 a2 a2 1 e e d c c c d c c c d
a a2 a2 a2 e 1 e c d c c c d d c c
a a2 a2 a2 e e 1 c c d d c c c d c

b d c c d c c 1 f f f g g f g g
b c d c c d c f 1 f g f g g f g
b c c d c c d f f 1 g g f g g f

b c d c c c d f g g 1 f f f g g
b c c d d c c g f g f 1 f g f g
b d c c c d c g g f f f 1 g g f

b c c d c d c f g g f g g 1 f f
b d c c c c d g f g g f g f 1 f
b c d c d c c g g f g g f f f 1

TABLE 6. Gram matrix for 16 points in R
5; here c = ab + (1/2)

√
(1 − a2)(1 − b2)/2, d = ab − √

(1 − a2)(1 − b2)/2,
e = (3a2 − 1)/2, f = (3b2 − 1)/2, and g = (3b2 + 1)/4.

such as moving a point to its antipode, as in Section 2.2,
but they yield saddle points. However, for other poten-
tial functions one sometimes finds other local minima (we
have found up to two other nontrivial local minima). To
illustrate the techniques from the previous section, we
will analyze one of them here. It will turn out to have
a fairly simple conceptual description; our goal here is
to explain how to arrive at it, starting from the Gram
matrix.

The specific example we will analyze arises as a local
minimum for the potential function r 	→ (4 − r)12. It is
specified by Table 6 with

a ≈ −0.499890010934

and
b ≈ 0.201039702365

(the lines in the table are just for visual clarity).
The first step is to recognize the structure in the Gram

matrix. Table 6 highlights this structure, but of course
it takes effort to bring the Gram matrix into such a sim-
ple form (by recognizing algebraic relations between the
Gram matrix entries and reordering the points so as to
emphasize patterns). The final form of the Gram matrix
exhibits the configuration as belonging to a family spec-
ified by two parameters a and b with absolute value less
than 1. As described in the table’s caption, all the other
inner products are simple algebraic functions of a and b.
To check that this Gram matrix corresponds to an actual
code in S4, it suffices to verify that its eigenvalues are 0
(11 times), 1 + 6a2 + 9b2, and (15 − (6a2 + 9b2))/4 (4
times): there are only five nonzero eigenvalues and they
are clearly positive.

Table 6 provides a complete description of the config-
uration, but it is unilluminating. To describe the code
using elegant coordinates, one must have a more concep-
tual understanding of it. A first step in that direction is
the observation that the first point in Table 6 has inner
product a or b with every other point. In other words, the
remaining 15 points lie on two parallel four-dimensional
hyperplanes, equidistant from the first point. A natu-
ral guess is that as a and b vary, the structures within
these hyperplanes are simply rescaled as the correspond-
ing cross sections of the sphere change in size, and some
calculation verifies that this guess is correct.

To understand these two structures and how they re-
late to each other, set a = b = 0, so that they form
a 15-point configuration in R

4. Its Gram matrix is of
course obtained by removing the first row and column of
Table 6 and setting a = b = 0, e = f = −1/2, g = 1/4,
c =

√
2/4, and d = −√

2/2. The two substructures con-
sist of the first six points and the last nine, among the
fifteen remaining points.

Understanding the 16-point codes in R
5 therefore sim-

ply comes down to understanding this single 15-point
code in R4. (It is also the 15-point code from Table 3. In-
cidentally, Sloane’s tables [Sloane 00] show that it is not
an optimal spherical code.) The key to understanding
it is choosing the right coordinates. The first six points
form two orthogonal triangles, and they are the simplest
part of this configuration, so it is natural to start with
them.

Suppose the points v1, v2, v3 and v4, v5, v6 form two or-
thogonal equilateral triangles in a four-dimensional vec-
tor space. The most natural coordinates to choose for the
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1 c c d b b −2a a a −2a a a
c 1 c b d b a −2a a a −2a a
c c 1 b b d a a −2a a a −2a

d b b 1 c c −2a a a −2a a a
b d b c 1 c a −2a a a −2a a
b b d c c 1 a a −2a a a −2a

−2a a a −2a a a 1 c c d b b
a −2a a a −2a a c 1 c b d b
a a −2a a a −2a c c 1 b b d

−2a a a −2a a a d b b 1 c c
a −2a a a −2a a b d b c 1 c
a a −2a a a −2a b b d c c 1

TABLE 7. Gram matrix for 12 points in R
4; here 0 < a < 1

2
, b = a− 1, c = −3a+ 1, and d = 4a− 1.

vector space are the inner products with these six points.
Of course the sum of the three inner products with any
triangle must vanish (because v1+v2+v3 = v4+v5+v6 =
0), so there are only four independent coordinates, but
we prefer not to break the symmetry by discarding two
coordinates.

The other nine points in the configuration are deter-
mined by their inner products with v1, . . . , v6. Each
of them will have inner product d with one point in
each triangle and c with the remaining two points. As
pointed out above we must have d + 2c = 0, and in fact
d = −√

2/2 and c =
√

2/4 because the points are all unit
vectors. Note that one can read off all this information
from the c and d entries in Table 6.

There is an important conceptual point in the last
part of this analysis. Instead of focusing on the internal
structure among the last nine points, it is most fruitful
to study how they relate to the previously understood
subconfiguration of six points. However, once one has
a complete description, it is important to examine the
internal structure as well.

The pattern of connections among the last nine points
in Table 6 is described by the Paley graph on nine ver-
tices, which is the unique strongly regular graph with
parameters (9, 4, 1, 2). (The Paley graph is isomorphic
to its own complement, so the edges could correspond
to inner product either f or g.) Strongly regular graphs,
and more generally association schemes, frequently occur
as substructures of minimal-energy configurations. It is
remarkable to see such highly ordered structures sponta-
neously occurring via energy minimization.

3.2 Other Small Examples

To illustrate some of the other phenomena that can oc-
cur, in this subsection we will analyze the case of 12
points in R

4. We have observed two families of local

minima, both of which are slightly more subtle than the
previous examples.

For 0 < a < 1
2 , set b = a − 1, c = −3a + 1, and

d = 4a − 1, and consider the Gram matrix shown in
Table 7 (its nonzero eigenvalues are 12a and 6−12a, each
with multiplicity 2). Unlike the example in Section 3.1,
the symmetry group acts transitively on the points, so
there are no distinguished points to play a special role in
the analysis. Nevertheless, one can analyze it as follows.

Let v1, v2, v3 ∈ S1 be the vertices of an equilateral
triangle in R2, and let v4 and v5 be unit vectors that
are orthogonal to each other and to each of v1, v2, and
v3. For 0 < α < 1, consider the twelve points αvi ±√

1 − α2v4 and −αvi ±
√

1 − α2v5 with 1 ≤ i ≤ 3. If
one sets a = α2/2 then they have Table 7 as a Gram
matrix.

The Gram matrix shown in Table 8 is quite different.
There, 0 < a < 1

3 , b = 1 − 12a2, c = 6a2 − 1, and
d = 18a2 − 1. The nonzero eigenvalues are 4

3 + 24a2

(with multiplicity 3) and 8 − 72a2, which are positive
because a < 1

3 .
In this Gram matrix the first four points form a distin-

guished tetrahedron, and the remaining eight points form
two identical tetrahedra. They lie in hyperplanes parallel
to and equidistant from the (equatorial) hyperplane con-
taining the distinguished tetrahedron. If one sets a = 1

3 ,
then all three tetrahedra lie in the same hyperplane, with
b = − 1

3 , c = − 1
3 , d = 1, and −3a = −1. In particular,

one can see that the two parallel tetrahedra are in dual
position to the distinguished tetrahedron. As the param-
eter a varies, all that changes is the distance between the
parallel hyperplanes. (As a tends to zero some points
coincide. One could also use a between 0 and − 1

3 , but
that corresponds to using parallel tetrahedra oriented the
same way, instead of dually, which generally yields higher
potential energy.)
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1 − 1
3

− 1
3

− 1
3

−3a a a a −3a a a a
− 1

3
1 − 1

3
− 1

3
a −3a a a a −3a a a

− 1
3

− 1
3

1 − 1
3

a a −3a a a a −3a a
− 1

3
− 1

3
− 1

3
1 a a a −3a a a a −3a

−3a a a a 1 b b b d c c c
a −3a a a b 1 b b c d c c
a a −3a a b b 1 b c c d c
a a a −3a b b b 1 c c c d

−3a a a a d c c c 1 b b b
a −3a a a c d c c b 1 b b
a a −3a a c c d c b b 1 b
a a a −3a c c c d b b b 1

TABLE 8. Gram matrix for 12 points in R
4; here 0 < a < 1

3
, b = 1 − 12a2, c = 6a2 − 1, and d = 18a2 − 1.

This sort of layered structure occurs surprisingly often.
One striking example is 74 points in R5. The best such
spherical code known consists of a regular 24-cell on the
equatorial hyperplane together with two dual 24-cells on
parallel hyperplanes as well as the north and south poles.
If one chooses the two parallel hyperplanes to have inner
products ±

√√
5 − 2 with the poles, then the cosine of

the minimal angle is exactly (
√

5 − 1)/2. That agrees
numerically with Sloane’s tables [Sloane 00] of the best
codes known, but of course there is no proof that it is
optimal.

There is almost certainly no universally optimal 12-
point configuration in R

4. Aside from some trivial exam-
ples for degenerate potential functions, the two cases we
have analyzed in this subsection are the only two types
of local minima we have observed. For f(r) = (4 − r)k

with k ∈ {1, 2} they both achieve the same minimal en-
ergy (along with a positive-dimensional family of other
configurations). For 3 ≤ k ≤ 9 the first family appears
to achieve the global minimum, while for k ≥ 10 the
second appears to. As k tends to infinity the energy
minimization problem turns into the problem of finding
the optimal spherical code. That problem appears to be
solved by taking a = 1

4 in the second family, so that the
minimal angle has cosine 1

4 , which agrees with Sloane’s
tables [Sloane 00].

We conjecture that one or the other of these two fami-
lies minimizes each completely monotonic potential func-
tion. This conjecture is somewhat difficult to test, but
we are not aware of any counterexamples.

The examples we have analyzed so far illustrate three
basic principles:

1. Small or medium-sized local minima tend to occur in
low-dimensional families as one varies the potential
function. The dimension is not usually as low as
in these examples, but it is typically far lower than

the dimension of the space of all configurations (see
Figure 7).

2. These families frequently contain surprisingly sym-
metrical substructures (such as regular polytopes or
configurations described by strongly regular graphs
or other association schemes).

3. The same substructures and construction methods
occur in many different families.

3.3 2n + 1 Points in R
n

Optimal spherical codes are known for up to 2n points in
Rn (see [Böröczky 04, Theorem 6.2.1]), but not for 2n+1
points, except in R2 and R3. Here we present a natural
conjecture for all dimensions.

These codes consist of a single point we call the north
pole together with two n-point simplices on hyperplanes
parallel to the equator; the simplices are in dual position
relative to each other. Each point in the simplex closer to
the north pole will have inner product α with the north
pole, and the inner product between any two points in the
further simplex will be α. The number α can be chosen
so that each point in either one of the simplices has inner
product α with each point in the other simplex except
the point furthest from it. To achieve that, α must be
the unique root between 0 and 1/n of the cubic equation

(n3 − 4n2 + 4n)x3 − n2x2 − nx + 1 = 0.

As n → ∞, α = 1/n −√
2/n3/2 + O(1/n2).

Let Cn ⊂ Sn−1 be this spherical code, with α chosen
as above. The cosine of the minimal angle in Cn is α.

Conjecture 3.1. For each n ≥ 2, the code Cn is an optimal
spherical code. Furthermore, every optimal (2n+1)-point
code in Sn−1 is isometric to Cn.
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On philosophical grounds it seems reasonable to ex-
pect to be able to prove this conjecture: most of the
difficulty in packing problems comes from the idiosyn-
crasies of particular spaces and dimensions, so when a
phenomenon occurs systematically one expects a concep-
tual reason for it. However, we have made no serious
progress toward a proof.

One can also construct Cn as follows. Imagine adding
one point to a regular cross polytope by placing it in the
center of a facet. The vertices of that facet form a simplex
equidistant from the new point, as do the vertices of the
opposite facet. The structure is identical to the code
Cn, except for the distances from the new point, and the
proper distances can be obtained by allowing the code to
equilibrate with respect to increasingly steep potential
functions.

It appears that for n > 2 these codes do not mini-
mize harmonic energy, so they are not universally opti-
mal. When n = 4, something remarkable occurs with the
(conjectured) minimum for harmonic energy. That con-
figuration consists of a regular pentagon together with
two pairs of antipodal points that are orthogonal to each
other and the pentagon. If one uses gradient descent
to minimize harmonic energy, it seems to converge with
probability 1 to this configuration, but the convergence
is very slow, much slower than for any other harmonic
energy minimum we have found. The reason is that this
configuration is a degenerate minimum for the harmonic
energy, in the sense that the Hessian matrix has more
zero eigenvalues than one would expect.

Each of the nine points has three degrees of free-
dom, so the Hessian matrix has twenty-seven eigenvalues.
Specifically, they are 0 (ten times), 4, 7/4 (twice), 9/2
(four times), 9 (twice), 25/8±√

209/8 (twice each), and
31/8 ± √

161/8 (twice each). Six of the zero eigenvalues
are unsurprising, because they come from the problem’s
invariance under the six-dimensional Lie group O(4), but
the remaining four are surprising indeed.

The corresponding eigenvectors are infinitesimal dis-
placements of the nine points that produce only a fourth-
order change in energy, rather than the expected second-
order change. To construct them, do not move the an-
tipodal pairs of points at all, and move the pentagon
points orthogonally to the plane of the pentagon. Each
must be displaced by (1 − √

5)/2 times the sum of the
displacements of its two neighbors. This yields a four-
dimensional space of displacements, which are the sur-
prising eigenvectors.

This example is noteworthy because it shows that har-
monic energy is not always a Morse function on the space

of all configurations. One might hope to apply Morse the-
ory to understand the relationship between critical points
for energy and the topology of the configuration space,
but the existence of degenerate critical points could sub-
stantially complicate this approach.

3.4 2n + 2 Points in R
n

After seeing a conjecture for the optimal (2n + 1)-point
code in Sn−1, it is natural to wonder about 2n+2 points.
A first guess is the union of a simplex and its dual sim-
plex (in other words, the antipodal simplex), which was
named the diplo-simplex by Conway and Sloane [Conway
and Sloane 91]. One can prove using the linear program-
ming bounds for real projective space that this code is
the unique optimal antipodal spherical code of its size
and dimension (see [Conway and Sloane 99, Chapter 9]),
but for n > 2 it is not even locally optimal as a spherical
code (see Section 7) and we do not have a conjecture for
the true answer.

For the problem of minimizing harmonic energy, the
diplo-simplex is suboptimal for 3 ≤ n ≤ 5 but appears
optimal for all other n.

One particularly elegant case is n = 4. The midpoints
of the edges of a regular simplex form a 10-point code in
S3 with maximal inner product 1

6 , and Bachoc and Val-
lentin [Bachoc and Vallentin 09] have proved that it is
the unique optimal spherical code. It is also the kissing
configuration of the five-dimensional hemicube (the uni-
versally optimal 16-point configuration in R5). In other
words, it consists of the ten nearest neighbors of any point
in that code. This code appears to minimize harmonic
energy, but it is not the unique minimum: two orthogonal
regular pentagons have the same harmonic energy.

FIGURE 9. The Petersen graph.
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As pointed out in the introduction of [Cohn and Ku-
mar 07], this code is not universally optimal, but it nev-
ertheless seems to be an exceedingly interesting configu-
ration. Only the inner products − 2

3 and 1
6 occur (besides

1, of course). If one forms a graph whose vertices are the
points in the code and whose edges correspond to pairs
of points with inner product − 2

3 , then the result is the
famous Petersen graph (Figure 9).

Like the nontrivial universal optima in dimensions 5
through 8, this code consists of the vertices of a semireg-
ular polytope that has simplices and cross polytopes as
facets, with a simplex and two cross polytopes meeting
at each face of codimension 3. Its kissing configuration is
also semiregular, with square and triangular facets, but
it is a suboptimal code (specifically, a triangular prism).

3.5 48 Points in R
4

One of the most beautiful configurations we have found is
a 48-point code in R4. The points form six octagons that
map to the vertices of a regular octahedron under the
Hopf map from S3 to S2. Recall that if we identify R4

with C2 using the inner product 〈x, y〉 = Re x̄ty on C2,
then the Hopf map sends (z, w) to z/w ∈ C∪{∞}, which
we can identify with S2 via stereographic projection to
a unit sphere centered at the origin. The fibers of the
Hopf map are the circles given by intersecting S3 with
the complex lines in C2.

Sloane, Hardin, and Cara [Sloane et al. 03] found a
spherical 7-design of this form, consisting of two dual
24-cells, and it has the same minimal angle as our code
(which is the minimal angle in an octagon), but it is a
different code. In C

2, the Sloane–Hardin–Cara code is
the union of the orbits under multiplication by eighth
roots of unity of the points (1, 0), (0, 1), (±1, 1)/

√
2, and

(±i, 1)/
√

2. Our code is the union of the orbits of (1, 0),
(0, 1), (±ζ, ζ)/

√
2, and (±iζ2, ζ2)/

√
2, where ζ = eπi/12.

Each octagon has been rotated by a multiple of π/12
radians. Because a regular octagon is invariant under
rotation by π/4 radians, there are only three distinct ro-
tations by multiples of π/12. Each such rotation occurs
for the octagons lying over two antipodal vertices of the
octahedron in the base space S2 of the Hopf fibration.

It is already remarkable that performing these rota-
tions yields a balanced configuration with lower harmonic
energy than the union of the 24-cell and its dual, but
the structure of the code’s convex hull is especially note-
worthy. The facets can be computed using the program
Polymake [Gawrilow and Joswig 00]. The facets of the
dual 24-cell configuration are 288 irregular tetrahedra,
all equivalent under the action of the symmetry group

(and each possessing eight symmetries). By contrast,
our code has 128 facets forming two orbits under the
symmetry group: one orbit of 96 irregular tetrahedra
and one of 32 irregular octahedra. The irregular octa-
hedra are obtained from regular ones by rotating one of
the facets, which are equilateral triangles, by an angle
of π/12. We will use the term “twisted facets” to de-
note the rotated facet and its opposite facet (by symme-
try, either one could be viewed as rotated relative to the
other).

The octahedra in our configuration meet other octahe-
dra along their twisted facets and tetrahedra along their
other facets. Grouping the octahedra according to adja-
cency therefore yields twisted chains of octahedra. Each
chain consists of eight octahedra, and they span the 3-
sphere along great circles. The total twist amounts to
8π/12 = 2π/3, from which it follows that the chains close
with facets aligned correctly. The 32 octahedra form four
such chains, and the corresponding great circles are fibers
in the same Hopf fibration as the vertices of the configu-
ration. These Hopf fibers map to the vertices of a regular
tetrahedron in S2. It is inscribed in the cube dual to the
octahedron formed by the images of the vertices of the
code.

Another way to view the facets of this polytope, or
any spherical polytope, is as holes in the spherical code.
More precisely, the (outer) facet normals of any full-
dimensional polytope inscribed in a sphere are the holes
in the spherical code (i.e., the points on the sphere that
are local maxima for distance from the code). The nor-
mals of the octahedral facets are the deep holes in this
code (i.e., the points at which the distance is globally
maximized). Notice that these points are defined using
the intrinsic geometry of the sphere, rather than relying
on its embedding in Euclidean space.

The octahedral facets of our code can be thought of
as more important than the tetrahedral facets. The oc-
tahedra appear to us to have prettier, clearer structure,
and once they have been placed, the entire code is de-
termined (the tetrahedra simply fill the gaps). This idea
is not mathematically precise, but it is a common theme
in many of our calculations: when we examine the facet
structure of a balanced code, we often find a small num-
ber of important facets and a large number of less mean-
ingful ones.

3.6 Hopf Structure

As in the previous example, many notable codes in
S3, S7, or S15 can be understood using the complex,
quaternionic, or octonionic Hopf maps (see for example
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FIGURE 10. The 60-point polytope in R
3 over which

the regular 120-cell fibers.

[Dixon 95] and [Altschuler and Pérez-Garrido 07]). In
this subsection, we describe this phenomenon for the reg-
ular 120-cell and 600-cell in S3. The Hopf structure on
the 600-cell is mathematical folklore, but we have not
been able to locate it in the published literature, while
the case of the 120-cell is more subtle and may not have
been previously examined.

The H4 reflection group (which is the symmetry group
of both polytopes) contains elements of order 10 that
act on R4 with no eigenvalues other than primitive tenth
roots of unity. If one chooses such an element, then R

4

has the structure of a two-dimensional complex vector
space such that this element acts via multiplication by
a primitive tenth root of unity. The orbits are regular
10-gons lying in Hopf fibers. In the case of the regular
600-cell, this partitions the 120 vertices into 12 regular
10-gons lying in Hopf fibers over the vertices of a reg-
ular icosahedron in S2. For the regular 120-cell (with
600 vertices), the corresponding polyhedron in S2 has
60 vertices, but it is far from obvious what it is. We
know of no way to determine it without calculation, but
computing with coordinates reveals that it is a distorted
rhombicosidodecahedron, with the square facets replaced
by golden rectangles. Specifically, its facets are 12 reg-
ular pentagons, 20 equilateral triangles, and 30 golden
rectangles. The golden rectangles meet pentagons along
their long edges and triangles along their short edges.
Figure 10 shows the orthogonal projection into the plane
containing a pentagonal face (gray vertices and edges are
on the far side of the polyhedron).

3.7 Facet Structure of Universal Optima
The known low-dimensional universal optima (through
dimension 8) are all regular or semiregular polytopes,
whose facets are well known to be regular simplices or
cross polytopes. However, there seems to have been lit-
tle investigation of the facets of the higher-dimensional
universal optima from Table 1. In this subsection we will
look at the smallest higher-dimensional cases: U100,22,
U112,21, U162,21, U275,22, U552,23, and U891,22 (recall that
UN,n denotes the N -point code in Rn from Table 1, when
it is unique). Each of the first four is a two-distance
set given by a spectral embedding of a strongly regular
graph. (Recall that a spectral embedding is obtained by
orthogonally projecting the standard orthonormal basis
into an eigenspace of the adjacency matrix of the graph.)
The last two have three distances between distinct
points.

These codes have enormous numbers of facets (more
than seventy-five trillion for U552,23), so it is not fea-
sible to find the facets using general-purpose methods.
Instead, one must make full use of the large symmetry
groups of these configurations. With Dutour Sikirić’s
package Polyhedral [Dutour Sikirić 06] for the program
GAP [GAP Group 06], this can be done for these config-
urations. We have used it to compute complete lists of
orbits of facets under the action of the symmetry group.
(The results are rigorous, because we use exact coordi-
nates for the codes. In particular, when necessary we use
the columns of the Gram matrices to embed scalar mul-
tiples of these codes isometrically into high-dimensional
spaces using only rational coordinates.) Of course, the
results of this computation then require analysis by hand
to reveal their structure.

For an introductory example, it is useful to review the
case of the five-dimensional hemicube (see Section 3.1).
It has ten obvious facets contained in the ten facets of
the cube. Each is a four-dimensional hemicube, i.e., a
regular cross polytope. The remaining facets are regular
simplices (one opposite each point in the hemicube).

One can view the five-dimensional hemicube as an
antiprism formed by two four-dimensional cross poly-
topes in parallel hyperplanes. The cross polytopes are
arranged so that each one’s vertices point toward deep
holes of the other. (The deep holes of a cross polytope are
the vertices of the dual cube, and in four dimensions the
vertices of that cube consist of two cross polytopes. The
fact that the deep holes of a four-dimensional cross poly-
tope contain another such cross polytope is crucial for
this construction to make sense.) Of course, the distance
between the parallel hyperplanes is chosen so as to max-
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imize the minimal distance. What is remarkable about
this antiprism is that it is far more symmetrical than one
might expect: normally the two starting facets of an an-
tiprism play a very different role from the facets formed
by taking the convex hull, but in this case extra symme-
tries occur. The simplest case of such extra symmetries
is the construction of a cross polytope as an antiprism
made from two regular simplices in dual position.

The three universal optima U100,22, U112,21, and
U162,21 are each given by an unusually symmetric an-
tiprism construction analogous to that of the hemicube.
In each case, the largest facets (i.e., those containing the
most vertices) contain half the vertices. These facets
are themselves spectral embeddings of strongly regu-
lar graphs (the Hoffman–Singleton graph, the Gewirtz
graph, and the unique (81, 20, 1, 6) strongly regular
graph). Within the universal optima, the largest facets
occur in pairs in parallel hyperplanes, and the vertices
of each facet in a pair point toward holes in the other.
These holes belong to a single orbit under the symmetry
group of the facet, and that orbit is the disjoint union
of several copies of the vertices of the facet: two copies
for the Hoffman–Singleton and Gewirtz cases and four in
the third case. These holes are the deepest holes in the
Hoffman–Singleton case; in the other two cases, they are
not quite the deepest holes (there are not enough deep
holes for the construction to work using them).

Brouwer and Haemers [Brouwer and Haemers 92,
Brouwer and Haemers 93] discovered the underlying com-
binatorics of these constructions (i.e., that the strongly
regular graphs corresponding to the universal optima can
be naturally partitioned into two identical graphs). How-
ever, the geometric interpretation as antiprisms appears
to be new.

The universal optima U100,22, U112,21, and U162,21 are
antiprisms, but that cannot possibly be true for U275,22,
because 275 is odd. Instead, the McLaughlin config-
uration U275,22 is analogous to the Schläfli configura-
tion U27,6. Both are two-distance sets. In the Schläfli
configuration, the neighbors of each point form a five-
dimensional hemicube and the nonneighbors form a five-
dimensional cross polytope. Both the hemicube and the
cross polytope are unusually symmetric antiprisms, and
their vertices point toward each other’s deep holes. (The
deep holes of the hemicube form a cross polytope, and
those of the cross polytope form a cube consisting of two
hemicubes.) The McLaughlin configuration is completely
analogous: the neighbors of each point form U162,21 and
the nonneighbors form U112,21. They point toward each
other’s deep holes; this is possible because the deep holes

of U112,21 consist of four copies of U162,21, and its deep
holes consist of two copies of U112,21. Furthermore, the
deep holes in these two universal optima are of exactly
the same depth (i.e., distance to the nearest point in the
code), as is also the case for the five-dimensional cross
polytope and hemicube used to form the Schläfli config-
uration.

The Schläfli and McLaughlin configurations both have
the property that their deep holes are the antipodes of
their vertices. Thus, it is natural to form antiprisms from
two parallel copies of them, with vertices pointed at each
other’s deep holes. That yields antipodal configurations
of 54 points in R

7 and 550 points in R
23. If one also

includes the two points orthogonal to the parallel hyper-
planes containing the original two copies, then this con-
struction gives the universal optima U56,7 and U552,23.

Each high-dimensional universal optimum has many
types of facets of different sizes. For example, the facets
of the Higman–Sims configuration U100,22 form 123 or-
bits under the action of the symmetry group (see Ta-
ble 9). The largest facets, which come from the Hoffman–
Singleton graph as described above, are by far the most
important, but each type of facet appears to be of inter-
est. They are often more subtle than one might expect.
For example, it is natural to guess that the facets with
42 vertices would be regular cross polytopes, based on
the number of vertices, but they are not. Instead, when
rescaled to the unit sphere they have the following struc-
ture:

The facets with 42 vertices are two-distance sets on
the unit sphere in R

21, with inner products 1/29 and
−13/29. If we define a graph on the vertices by letting
edges correspond to pairs with inner product −13/29,
then this graph is the bipartite incidence graph for points
and lines in the projective plane P2(F4). To embed this
graph in R21, represent the 21 points in P2(F4) as the
permutations of (a, b, . . . , b), where a2 + 20b2 = 1 and
2ab + 19b2 = 1/29. Specifically, take a = 0.9977 . . . and
b = 0.0151 . . . (these are fourth-degree algebraic num-
bers). Choose c and d so that 5c2 + 16d2 = 1 and
8cd+ c2 +12d2 = 1/29 (specifically, take c = −0.4362 . . .

and d = 0.0550 . . . ). Then embed the 21 lines into R21 as
permutations of (c, c, c, c, c, d, . . . , d), where the five c en-
tries correspond to the points contained in the line. This
embedding gives the inner products of 1/29 and −13/29,
as desired (and in fact those are the only inner products
for which a construction of this form is possible).

As shown in Table 9, there are 92 different types of
simplicial facets in the Higman–Sims configuration. One
orbit consists of regular simplices: for each point in the
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Vertices Number of Orbits

22 92
23 13
24 6
25 3
27 3
28 1
30 1
31 1
36 1
42 1
50 1

TABLE 9. Number of orbits of facets of different sizes
in the Higman–Sims configuration U100,22 .

configuration, the 22 points at the furthest distance from
it form a regular simplex. All the other simplices are
irregular. Nine orbits consist of simplices with no sym-
metries whatsoever, and the remaining ones have some
symmetries but not the full symmetric group.

The universal optima U552,23 and U891,22 have more
elaborate facet structures, but we have completely clas-
sified their facets (which form 116 and 422 orbits, re-
spectively). The facets corresponding to their deep holes
form single orbits, consisting of U100,22 in the first case
and U162,21 in the second. These results can all be un-
derstood in terms of the standard embeddings of these
configurations into the Leech lattice, as follows:

Let v be any vector with norm 6 in the Leech lattice
Λ24. Among the 196,560 minimal vectors in Λ24 (those
with norm 4), there are 552 minimal vectors w satisfy-
ing |w − v|2 = 4, and they form a copy of the 552-point
universal optimum. This shows that U552,23 is a facet
of U196560,24. Taking kissing configurations shows that
U275,22 is a facet of U4600,23 and that U162,21 is a facet
of U891,22. We conjecture that each of these facets corre-
sponds to a deep hole in the code, and that all of the deep
holes arise in this way, but we have not proved this con-
jecture beyond U891,22 (the U196560,24 case has since been
proved in [Dutour Sikirić et al. 09]). The U100,22 facets of
U552,23 can also be seen in this picture: given two vectors
v1, v2 ∈ Λ24 with |v1|2 = |v2|2 = 6 and |v1 − v2|2 = 4,
the corresponding U552,23 facets of U196560,24 intersect in
a U100,22 facet of U552,23, which corresponds to a deep
hole.

3.8 96 Points in R
9

Another intriguing code that arose in our computer
searches is a 96-point code in R9 (see Table 3). This code
was known previously: it is mentioned but not described
in [Conway and Sloane 99, Table 9.2], which refers to a

paper in preparation that never appeared, and it is de-
scribed in [Ericson and Zinoviev 01, Appendix D]. Here
we describe it in detail, with a different approach from
that in [Ericson and Zinoviev 01].

The code is not universally optimal, but it is balanced
and it appears to be an optimal spherical code. What
makes it noteworthy is that the cosine of its minimal an-
gle is 1

3 . Any such code corresponds to an arrangement of
unit balls in R10 that are all tangent to two fixed tangent
balls, where the interiors of the balls are not allowed to
overlap (this condition forces the cosine of the minimal
angle between the sphere centers to be at most 1

3 when
the angle is centered at the midpoint between the fixed
balls). The largest such arrangement most likely consists
of 96 balls.

To construct the code, consider three orthogonal tetra-
hedra in R9. Call the points in the first v1, v2, v3, v4,
in the second v5, v6, v7, v8, and in the third v9, v10, v11,
v12. Within each of these tetrahedra, all inner products
between distinct points are − 1

3 , and between tetrahedra
they are all 0. Call these tetrahedra the basic tetrahedra.

The points ±v1, . . . ,±v12 will all be in the code, and
we will identify 72 more points in it. Each of the ad-
ditional points will have inner product ± 1

3 with each
of v1, . . . , v12, and we will determine them via those in-
ner products. Because v1 + · · · + v4 = v5 + · · · + v8 =
v9 + · · · + v12 = 0, the inner products with the elements
of each basic tetrahedron must sum to zero. In particu-
lar, two must be 1

3 and the other two − 1
3 . That restricts

us to
(
4
2

)
= 6 patterns of inner products with each basic

tetrahedron, so there are 63 = 216 points satisfying all
the constraints so far. We must cut that number down
by a factor of 3.

The final constraint comes from considering the inner
products between the new points. A simple calculation
shows that one can reconstruct a point x from its inner
products with v1, . . . , v12 via

x =
3
4

12∑
i=1

〈x, vi〉vi,

and inner products are computed via

〈x, y〉 =
3
4

12∑
i=1

〈x, vi〉〈y, vi〉.

In other words, if x and y have identical inner prod-
ucts with one of the basic tetrahedra, that contributes
1
3 to their own inner product. If they have opposite in-
ner products with one of the basic tetrahedra, that con-
tributes − 1

3 . Otherwise the contribution is 0.
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Vertices Automorphisms Orbit Size

9 16 27648
9 48 13824
9 48 4608
9 96 18432
9 1440 4608
12 1024 864
12 31104 512
16 10321920 18

TABLE 10. Facets of the convex hull of the configu-
ration of 96 points in R

9, modulo the action of the
symmetry group.

We wish to avoid the situation in which x and y have
identical inner products with two basic tetrahedra, or
opposite inner products with both, and neither identical
nor opposite inner products with the third. In that case,
〈x, y〉 = ± 2

3 .
To rule out this situation, we assign elements of Z/3Z

to quadruples by

±
(

1
3
,
1
3
,−1

3
,−1

3

)
	→ 0,

±
(

1
3
,−1

3
,
1
3
,−1

3

)
	→ 1,

and

±
(

1
3
,−1

3
,−1

3
,
1
3

)
	→ −1.

Consider the 72 points with inner products ± 1
3 with each

of v1, . . . , v12 such that exactly two inner products with
each basic tetrahedron are 1

3 and furthermore the ele-
ments of Z/3Z coming from the inner products with the
basic tetrahedra sum to 0. Given any two such points, if
they have identical or opposite inner products with two
basic tetrahedra, then the same must be true with the
third. Thus, we have constructed 24 + 72 = 96 points
in R

9 such that all the inner products between them are
±1, ± 1

3 , or 0.
The facets of this code form eight orbits under the

action of its symmetry group; they are listed in Table 10.
The most interesting facets are those with 16 vertices,
which form regular cross polytopes. These facets and
the two orbits with 12 vertices all correspond to deep
holes.

3.9 Distribution of Energy Levels

Typically, there are many local minima for harmonic en-
ergy. One intriguing question is how the energies of the
local minima are distributed. For example, Table 11

Energy Frequency

5395.000000 186418
5398.650556 4393
5398.687876 2356
5400.842726 18
5400.880057 149
5400.890460 47
5400.894513 26
5400.928674 25
5400.936106 41
5400.940237 28
5400.940550 7
5400.943094 38
5402.029556 7
5402.088248 3
5402.093726 10
5402.116636 1
5402.152619 1
5402.213231 2
5402.366164 1
5402.922701 1
5403.091064 111
5403.115123 1
5403.129076 108
5403.271100 66
5403.319898 157
5403.326719 84
5403.347209 24
5403.455701 7
5403.462898 8
5403.488923 4

TABLE 11. Thirty lowest harmonic energies observed
for local minima with 120 points on S3 (2 · 105 trials,
5223 different energy levels observed).

shows the thirty lowest energies obtained in 2 · 105 tri-
als with 120 points in R4, together with how often they
occurred. The regular 600-cell is the unique universal op-
timum (with energy 5395), but we found 5223 different
energy levels. This table is probably not a complete list
of the lowest thirty energies (five of them occurred only
once, so it is likely there are more to be found), but we
suspect that we have found the true lowest ten.

The most remarkable aspect of Table 11 is the three
gaps in it. There are huge gaps from 5395 to 5398.65,
from 5398.69 to 5400.84, and from 5400.95 to 5402.02.
Each gap is far larger than the typical spacing between
energy levels. Perhaps one of these gaps contains some
rare local minima, but they appear to be real gaps.

What could cause such gaps? We do not have a com-
plete theory, but we believe the gaps reflect bottlenecks
in the process of constructing the code by gradient de-
scent. Figure 11 is a graph of energy as a function of
time for gradient descent, starting at a random configu-
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FIGURE 11. Energy as a function of time under gra-
dient descent.

ration of 120 points in S3. (The figure represents a single
run of the optimization procedure, so it should be viewed
as a case study, not a statistical argument.) The graph
begins when the energy has just reached 5405 and ends
once convergence to the universal optimum is apparent.
Of course the convergence is monotonic, but its speed
varies dramatically. The rate of decrease is slowest near
energy 5398.66, which is indicated by a horizontal line.
We do not believe it could be a coincidence that that
is very nearly the energy of the two lowest-energy local
minima in Table 11: the slowdown probably occurs be-
cause of a bottleneck. More precisely, in order to achieve
the ground state the system must develop considerable
large-scale order and symmetry. Probably short-range
order develops first and then slowly extends to long-range
order. During this process there may be bottlenecks in
which different parts of the system must come into align-
ment with each other. The local minima correspond to
the rare cases in which the system gets stuck in the mid-
dle of a bottleneck, but even when it does not get stuck
it still slows down.

It is not completely clear why the gaps are separated
by several energy levels that are surprisingly close to each
other. The most likely explanation is that there are sev-
eral slightly different ways to get stuck during essentially
the same bottleneck, but we have no conceptual under-
standing of what these ways are. It would be very inter-
esting to have a detailed theory of this sort of symmetry
breaking.

4. CONJECTURED UNIVERSAL OPTIMA

4.1 40 Points in R
10

The 40-point code from Table 2 consists of 40 points on
the unit sphere in R10. The only inner products that
occur are 1, − 1

2 , − 1
3 , 0, and 1

6 ; each point has these in-
ner products with 1, 8, 3, 4, and 24 points, respectively.
Grouping pairs of points according to their inner product
yields a 4-class association scheme, which Bannai, Ban-
nai, and Bannai [Bannai et al. 08] have recently shown is
uniquely determined by its intersection numbers.

The 40 points form 10 regular tetrahedra, and more
specifically 5 orthogonal pairs of tetrahedra. That ac-
counts for all the inner products of 1, − 1

3 , and 0. Each
point has inner product − 1

2 with one point in each of the
other 9 tetrahedra, except for the tetrahedron orthogonal
to the one containing it. All remaining inner products are
1
6 . The configuration is chiral (i.e., not equivalent to any
reflection of itself under the action of SO(10)) and has
a symmetry group of order 1920. Specifically, the sym-
metry group is the semidirect product of the symmetric
group S5 with the subgroup of (Z/2Z)5 consisting of all
vectors that sum to zero, where S5 acts by permuting the
five coordinates.

We conjecture that this code is the unique 40-point
code in R10 with maximal inner product 1

6 , but that
appears difficult to prove. For example, it is an even
stronger assertion than optimality as a spherical code.
We are unaware of any occurrence of this code in the
published literature, but it appears in Sloane’s online ta-
bles [Sloane 00] with the annotation that it was found by
Smith and “beautified” by Conway and Sloane (in the
sense of recognizing it using elegant coordinates). It also
appears in Hovinga’s online report [Hovinga 04].

Conway, Sloane, and Smith construct the code as an
explicit list of 40 vectors with entries −1/

√
6, 0, or 1/

√
6.

Here we explain the combinatorics underlying this con-
struction. That may well be how Conway and Sloane
beautified the code, but [Sloane 00] presents no details
about the construction beyond the list of vectors.

Consider the 10-dimensional vector space V spanned
by the orthonormal basis vectors v{i,j} for all two-element
subsets {i, j} ⊂ Z/5Z with i �= j. Say a vector in V has
type i if for every basis vector vS , its coefficient vanishes
if and only if i ∈ S. Each vector in the code will have
type i for some i ∈ Z/5Z, and the six nonzero coefficients
will equal ±1/

√
6. Given such a vector, define a graph

on the vertex set (Z/5Z) \ {i} by connecting j to k if the
coefficient of v{j,k} is −1/

√
6. If the graph has e edges

and vertex j has degree dj , then the vector is in the code if
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and only if di+1 ≡ di+2 ≡ e (mod 2) and di−1 ≡ di−2 �≡ e

(mod 2) (where i is the type of the vector).
The facet structure of this code seems surprisingly

unilluminating compared to the others we have analyzed.
There are 24 orbits of facets: 21 orbits of irregular sim-
plices (with symmetry groups ranging from 2 to 768 in
size), one orbit of 11-vertex facets, and two orbits of 12-
vertex facets. The most symmetrical facets are those
in one of the two orbits of 12-vertex facets. They have
3072 symmetries and are given by the orthogonal union
of three identical irregular tetrahedra in R3 (with eight
symmetries).

Our confidence in this code’s universal optimality is
based on detailed numerical experiments. One reason a
configuration could be universally optimal is that it has
no competitors (i.e., except in degenerate cases there are
no other local minima). That is not true for the 40-point
code, but there are remarkably few competitors. In par-
ticular, it appears to have only one “serious” competitor.
We have found five other families of local minima, but
four of them are rare and never seem to come close to
beating our conjectured universal optimum. The best
experimental evidence we can imagine for universal op-
timality would be to describe explicitly each competing
family that has been observed and prove that it never
contains the global energy minimum. That might be pos-
sible for this code, but we have not completed it. The four
rare families are sufficiently complicated that we have not
analyzed them explicitly (under the circumstances it did
not seem worth the effort). However, we have a complete
description of the serious competitor.

That family depends on a parameter α that must sat-
isfy 0 < α2 ≤ 1/27. The configuration always contains a
fixed 16-point subset with the following structure. If we
call the 16 points wi,j with i, j ∈ {1, 2, 3, 4}, then

〈wi,j , wk,�〉 =

⎧⎪⎨
⎪⎩

1 if (i, j) = (k, �),
− 1

3 if i = k or j = � but not both, and
1
9 otherwise.

In other words, if we arrange the points in a 4 × 4 grid,
then the rows and columns are regular tetrahedra and all
other inner products are 1

9 . To construct such a configu-
ration, take the tensor product in R3 ⊗R R3 = R9 of two
regular tetrahedra in R

3.
To describe the remaining 24 points, we will specify

their inner products with the first 16 points. That will
determine their projections into the 9-dimensional sub-
space containing the 16 points, so the only additional in-
formation needed to pin them down will be whether they

are above or below that hyperplane (relative to some ori-
entation).

Each of the 24 points will have inner product −3α

with four of the first 16 points and α with each of the
others. The only constraint is that it must have inner
product −3α with exactly four points, one in each of
the eight tetrahedra (i.e., one in each row and column
of the 4 × 4 grid). The 4 × 4 grid exhibits a one-to-
one correspondence with permutations of four elements,
so there are 4! = 24 ways to satisfy these constraints.
The points corresponding to even permutations will be
placed above the 9-dimensional hyperplane, and those
corresponding to odd permutations will be placed below
it. This construction yields a 40-point code in R

10 pro-
vided that 0 < α2 ≤ 1/27. (When α = 0 some points
coincide, and when α2 > 1/27 the inner products cannot
be achieved by unit vectors.)

We have not proved that the codes in this family never
improve on the conjectured universal optimum, but we
are confident that it is true. The best spherical code in
the family occurs when α = (

√
109− 1)/54 = 0.1748 . . . ;

in this special case, α is also the maximal inner product,
which is quite a bit larger than the maximal inner prod-
uct 1

6 in the conjectured universal optimum. That implies
that when k is sufficiently large, the conjectured opti-
mum is better for the potential function f(r) = (4 − r)k

(because the energy is dominated asymptotically by the
contribution from the minimal distance). In principle one
could verify the finitely many remaining values of k by a
finite computation. We have done enough exploration to
convince ourselves that it is true, but we have not found
a rigorous proof.

4.2 64 Points in R
14

The simplest construction we are aware of for the 64-
point configuration in R14 uses the Nordstrom–Robinson
binary code [Nordstrom and Robinson 67, Griess 08].
Shortening that code twice yields a binary code of length
14, size 64, and minimal distance 6, which is known to
be unique [MacWilliams and Sloane 77, pp. 74–75]. One
can view it as a subset of the cube {−1, 1}14 instead of
{0, 1}14. Then after rescaling by a factor of 1/

√
14 to

yield unit vectors, this code is the 64-point configuration
in R14 that we conjecture is universally optimal. The
same process with less shortening yields the codes from
Tables 3 and 4 with 128 points in R

15 and 256 points
in R16; the 64-point and 128-point codes have previously
appeared in [Ericson and Zinoviev 01, Appendix D] via
the same approach, as conjectures for optimal spherical
codes.
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Inner Product Condition

1 (x1, x2) = (y1, y2)

− 1
7

x1 = y1 but x2 �= y2

− 3
7

x1 �= y1 and x2 + y2 ∈ {(x1 + y1)
3, x1y1(x1 + y1)}

1
7

otherwise

TABLE 12. The inner products for the 64-point code.

This construction makes some of the facet structure
of the code clear. There are 28 facets with 32 vertices
that come from the facets of the cube containing the
code. In fact, the code is obtained from exactly the same
antiprism construction as described in Section 3.7 (the
vertices of these facets point toward deep holes of the
opposite facets). There are also 66 other orbits of facets
under the action of the symmetry group, but those orbits
seem to be less interesting.

An alternative construction of the code is by describ-
ing its Gram matrix explicitly. As mentioned above, this
construction amounts to forming an association scheme
by taking t = 1 in [de Caen and van Dam 99, Theorem 2
and Proposition 7(i)], and then performing a spectral em-
bedding. Bannai, Bannai, and Bannai [Bannai et al. 08]
have shown that this association scheme is uniquely de-
termined by its intersection numbers.

More concretely, the points correspond to elements of
F

2
8, where F8 is the finite field of order 8, and the inner

products are determined by Table 12. The Gram matrix
has 14 eigenvalues equal to 32/7 and the others equal to
0, so it is indeed the Gram matrix of a 14-dimensional
configuration.

Unfortunately, this 64-point code has many competi-
tors. We have found over two hundred local minima for
harmonic energy and expect that the total number is
much larger. That makes it difficult to imagine an iron-
clad experimental argument for universal optimality. We
suspect that the code is universally optimal for two rea-
sons: we have failed to find any counterexample, and
during the process no competitor came close enough to
worry us. (By contrast, in many cases in which one can
disprove universal optimality, one finds worrisomely close
competitors before tweaking the construction to complete
the disproof.) However, we realize that the evidence is
far from conclusive.

5. BALANCED IRREDUCIBLE HARMONIC OPTIMA

In this section we briefly describe each of the configura-
tions in Tables 3 and 4.

32 points in R
3: The union of a regular icosahedron

and its dual dodecahedron.

10 points in R4: Both configurations are described in
Section 3.4.

13 points in R
4: In C

2 with the inner product 〈x, y〉 =
Re x̄ty, the points are (ζ/

√
2, ζ5/

√
2), where ζ runs

over all 13th roots of unity. This code was discovered
by Sloane, Hardin, and Cara [Sloane et al. 03].

For a less compact description, view R4 as the or-
thogonal direct sum of two planes, and let R be the
operation of rotating the first plane by 2π/13 and
the second by five times that angle. The unit sphere
in R4 contains the direct product of the circles of ra-
dius 1/

√
2 in the two planes, and the 13-point code

is the orbit of a point in this direct product under
the group generated by R.

The factor of 5 is special because 52 ≡ −1 (mod 13).
In particular, R8 rotates the second plane by 2π/13
and the first by 8 times that amount, which is the
same as 5 times it in the opposite direction. In other
words, the two planes play the same role, if one ig-
nores their orientations. Only the square roots of −1
modulo 13 (or, trivially, the square roots of 1) have
that property.

For all the points in this configuration, both complex
coordinates have absolute value 1/

√
2. Therefore the

configuration is contained in a flat two-dimensional
torus sitting inside S3 (namely, the product of the
circles of radius 1/

√
2 in the two complex coordinate

axes). Figure 12 shows the complex phases of the 13
points. For each N we can ask whether there is an
N -point harmonic optimum in S3 that is contained
in such a torus. For 1 ≤ N ≤ 10 it seems that there
is. We conjecture that N = 13 is the only larger
value of N for which this happens.

For other potential functions, similar phenomena
can occur in more cases. For example, for the log-
arithmic potential function f(r) = − log r, Jaron
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FIGURE 12. The 13-point harmonic optimum in S3,
drawn on a torus by plotting (φ, ψ) for the point
(eiφ/

√
2, eiψ/

√
2).

Lanier has conjectured in a private communication
that the minimal-energy configuration of 11 points
on S3 also lies on a flat torus. In C2, the points are
(αζ,

√
1 − α2ζ4), where ζ runs over all 11th roots of

unity and α is the unique root between 0 and 1 of

5α8 − 36α6 + 51α4 − 4α2 − 7 = 0.

15 points in R4: Described in Section 3.1.

24 points in R4: The regular 24-cell (equivalently, the
D4 root system).

48 points in R4: Described in Section 3.5.

21 points in R5: The edge midpoints and face centers
of a regular simplex (rescaled to lie on the same
sphere).

32 points in R5: Start with a regular simplex v1, . . . , v6

in R5. The 32 points will be these six points and
their negatives, along with 20 points determined
as follows by their inner products with v1, . . . , v6.
Each will have inner product ±1/

√
5 with each of

v1, . . . , v6, with three plus signs and three minus
signs. There are

(
6
3

)
= 20 ways to choose these signs.

2n + 2 points in Rn (for n ≥ 6): Described in Sec-
tion 3.4.

42 points in R6: The edge midpoints of a regular sim-
plex and their antipodes.

44 points in R
6: This code contains plus or minus an

orthonormal basis of R6 together with the 32 vec-
tors whose coordinates with respect to that basis
are ±1/

√
6 and where the number of minus signs is

even. It other words, it consists of a cross polytope
and a hemicube within the cube dual to the cross
polytope. This code was previously conjectured to
be an optimal spherical code (see [Ericson and Zi-
noviev 01, Table D.6]).

126 points in R
6: The union of the minimal vectors of

the E6 and E∗
6 lattices (rescaled to lie on the same

sphere). Equivalently, one can project the E7 root
system orthogonally to a minimal vector in E∗

7 , fol-
lowed by rescaling as in the first construction.

78 points in R
7: Like the 44 points in R

6, this code
consists of a cross polytope and a hemicube within
the cube dual to the cross polytope.

148 points in R7: The points are all the permutations
of

(±1,±1, 0, 0, 0, 0, 0)√
2

and the hemicube consisting of the points

(±1,±1,±1,±1,±1,±1,±1)√
7

that have an even number of minus signs. This is a
seven-dimensional analogue of a construction of the
E8 root system, but it is less symmetric, because
the two types of points form distinct orbits under
the action of the symmetry group. This code was
previously conjectured to be an optimal spherical
code (see [Ericson and Zinoviev 01, Table D.7]).

182 points in R7: The union of the minimal vectors of
the E7 and E∗

7 lattices (rescaled to lie on the same
sphere). Equivalently, one can project the E8 root
system orthogonally to any root; 126 roots are un-
changed, 112 project to 56 nonzero points, and 2
project to the origin. Rescaling the nonzero projec-
tions to lie on the unit sphere yields the 182-point
configuration.

72 points in R
8: The edge midpoints of a regular sim-

plex and their antipodes. This code was previously
conjectured to be an optimal spherical code (see [Er-
icson and Zinoviev 01, Table D.8]).

96 points in R9: Described in Section 3.8.
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42 points in R14: This code consists of seven disjoint
five-dimensional regular simplices, whose vertices
have inner products − 1

5 with each other. Each point
has inner product − 1

2 with a unique point in each
simplex other than the one containing it, and all
other inner products between points in different sim-
plices are 1

10 . Grouping pairs of points according
to their inner product yields a three-class associa-
tion scheme that can be derived from the Hoffman–
Singleton graph (see [van Dam 99, Section 5.1]). Let
G be the Hoffman–Singleton graph, and let H be
its second subconstituent. In other words, take any
vertex v in G, and let H be the vertices not equal
to or adjacent to v. The vertices in H correspond
to points in the 14-dimensional configuration, with
inner product − 1

2 between adjacent vertices, − 1
5 be-

tween nonadjacent vertices with no common neigh-
bor, and 1

10 between nonadjacent vertices with one
common neighbor. This code was previously conjec-
tured to be an optimal spherical code (see [Ericson
and Zinoviev 01, Table D.14]).

128 points in R15: Described in Section 4.2.

256 points in R
16: Described in Section 4.2.

6. CHALLENGES

We conclude with a list of computational and theoretical
challenges:

1. How often do 196,560 randomly chosen points on S23

converge to the Leech lattice minimal vectors un-
der gradient descent for harmonic energy? For 240
points on S7, one frequently obtains the E8 root sys-
tem (855 times out of 1000 trials), and the Higman–
Sims configuration of 100 points on S21 occurs fairly
often (257 times out of 1000 trials); by contrast, the
universal optimum with 112 points on S20 occurs
rarely (once in 1000 trials). This approach could be
an intriguing construction of the Leech lattice, but
we have no intuition for how likely it is to work.

2. What are the potential energy barriers that sepa-
rate the local minima in Table 5 (or any other case)?
In other words, if one continuously transforms one
configuration into another, how low can one make
the greatest energy along the path connecting them?
The lowest possible point of greatest energy will al-
ways be a saddle point for the energy function.

3. How many harmonic local minima are there for 120
points on S3 (Table 11), or even 64 points on S13? Is
the number small enough that one could conceivably
compile a complete list? Is the list for 27 points on
S5 in Table 5 complete?

4. For large numbers of points, what can one say (ex-
perimentally, heuristically, or rigorously) about the
distribution of energy levels for local minima, or
about the gaps in the distribution?

7. APPENDIX: LOCAL NONOPTIMALITY
OF DIPLO-SIMPLICES

In this appendix we prove that (above dimension two)
diplo-simplices are not even locally optimal as spherical
codes. The motivation behind the calculations is the case
of n = 3, where the diplo-simplex is a cube. One can im-
prove this spherical code by rotating one face relative
to the opposite face while moving them slightly closer
together. To carry out this approach in higher dimen-
sions, we must understand the faces of the diplo-simplex
(which is in general quite different from the hypercube).
The diplo-simplex in R

n is the orthogonal projection of
the vertices of the cross polytope in Rn+1 onto the hy-
perplane on which the sum of the coordinates is zero.
Its dual polytope is therefore the cross section of the hy-
percube in Rn+1 by that hyperplane. The vertices of
the cross section differ depending on whether n is odd or
even: (1, . . . , 1,−1, . . . ,−1) is a vertex when n+1 is even,
and (1, . . . , 1, 0,−1, . . . ,−1) is when n + 1 is odd. That
leads to the following description of the diplo-simplex,
based on identifying its faces using this correspondence.

Let v1, . . . , vk and w1, . . . , wk be unit vectors forming
two orthogonal (k−1)-dimensional regular simplices, and
let t be a unit vector orthogonal to both simplices. The
(2k − 1)-dimensional diplo-simplex consists of the points

±
(
αvi +

√
1 − α2t

)

and
±

(
αwi +

√
1 − α2t

)
,

where α =
√

(2k − 2)/(2k − 1). To improve its minimal
angle, use the points

αvi +
√

1 − α2t,

αwi +
√

1 − α2t,

−
(
α

(
βvi +

√
1 − β2wi

)
+

√
1 − α2t

)
,

−
(
α

(√
1 − β2vi − βwi

)
+

√
1 − α2t

)
,
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with β a small positive number and α slightly greater
than

√
(2k − 2)/(2k − 1). When k = 1, choosing α and

β optimally leads to the optimal 8-point code in R3, but
when k = 3, Sloane’s tables [Sloane 00] show that this
approach is suboptimal.

The situation is slightly more complicated for even-
dimensional diplo-simplices. Again, let v1, . . . , vk and
w, . . . , wk be unit vectors forming two orthogonal (k−1)-
dimensional simplices. Let t and z be two unit vectors
orthogonal to both simplices and each other. The 2k-
dimensional diplo-simplex consists of the points z, −z,

±
(
αvi + βz +

√
1 − α2 − β2t

)
,

and
±

(
αwi − βz +

√
1 − α2 − β2t

)
,

where α =
√

(2k + 1)(2k − 2)/(2k) and β = 1/(2k).
Note that α vanishes when k = 1 and our construction
below will not work. Indeed the hexagon, which is the
diplo-simplex in the plane, is an optimal spherical code.
To improve the minimal angle for k ≥ 2 use the points
z, −z,

αvi + βz +
√

1 − α2 − β2t,

αwi − βz +
√

1 − α2 − β2t,

−
(
α

(
γvi +

√
1 − γ2wi

)
− βz +

√
1 − α2 − β2t

)
,

−
(
α

(√
1 − γ2vi − γwi

)
+ βz +

√
1 − α2 − β2t

)
,

with γ a small positive number, α slightly larger than√
(2k + 1)(2k − 2)/(2k), and β slightly less than 1/(2k).

The numbers α and β should be chosen such that α2+2β2

increases from its original value of (2k − 1)/(2k).
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son, and M. Moore. “Influence of Dislocations in Thomson’s
Problem.” Phys. Rev. B 56 (1997), 3640–3643.

[Rakhmanov et al. 94] E. A. Rakhmanov, E. B. Saff, and Y.
M. Zhou. “Minimal Discrete Energy on the Sphere.” Math.
Res. Lett. 1 (1994), 647–662.

[Rakhmanov et al. 95] E. A. Rakhmanov, E. B. Saff, and Y.
M. Zhou. “Electrons on the Sphere.” In Computational
Methods and Function Theory, edited by R. M. Ali, S.
Ruscheweyh, and E. B. Saff, pp. 111–127. River Edge, NJ:
World Scientific, 1995.

[Saff and Kuijlaars 97] E. B. Saff and A. B. J. Kuijlaars.
“Distributing Many Points on a Sphere.” Math. Intelli-
gencer 19 (1997), 5–11.

[Schoutte 10] P. H. Schoutte. “On the Relation between the
Vertices of a Definite Six-Dimensional Polytope and the
Lines of a Cubic Surface.” Proc. Roy. Acad. Amsterdam 13
(1910), 375–383.

[Sloane 00] N. J. A. Sloane, with the collaboration of R. H.
Hardin, W. D. Smith, and others. “Tables of Spherical
Codes.” Available online (http://www.research.att.com/
∼njas/packings/), 2000.

[Sloane et al. 03] N. J. A. Sloane, R. H. Hardin, and P. Cara.
“Spherical Designs in Four Dimensions.” In Proceedings of
the 2003 IEEE Information Theory Workshop, pp. 253–
258. Los Alamitos: IEEE, 2003.

[Thomson 97] J. J. Thomson. “Cathode Rays.” Phil. Mag. 44
(1897), 293–316.

[Whyte 52] L. L. Whyte. “Unique Arrangements of Points on
a Sphere.” Amer. Math. Monthly 59 (1952), 606–611.

[Widder 41] D. V. Widder. The Laplace Transform. Prince-
ton: Princeton University Press, 1941.

[Willie 86] L. T. Willie. “Searching Potential Energy Surfaces
by Simulated Annealing.” Nature 324 (1986), 46–48.

[Yudin 93] V. A. Yudin. “Minimum Potential Energy of
a Point System of Charges” (Russian). Diskret. Mat. 4
(1992), 115–121; translation in Discrete Math. Appl. 3
(1993), 75–81.

Brandon Ballinger, Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 (brandonb@google.com)

Grigoriy Blekherman, Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399 (grrigg@gmail.com)

Henry Cohn, Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142 (cohn@microsoft.com)

Noah Giansiracusa, Department of Mathematics, Brown University, Providence, RI 02912 (noahgian@math.brown.edu)

Elizabeth Kelly, Department of Mathematics, University of Washington, Seattle, WA 98195 (thebethkelly@gmail.com)
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