
On the Absolute Trace of Polynomials Having
All Zeros in a Sector
V. Flammang

CONTENTS

1. Introduction
2. The Explicit Auxiliary Functions
3. Auxiliary Functions and Integer Transfinite Diameter
4. Construction of the Auxiliary Functions
5. Conclusion
Acknowledgments
References

2000 AMS Subject Classification: Primary 11R04, 11Y40, 12D10

Keywords: Algebraic integer, trace, explicit auxiliary functions,
integer transfinite diameter

Let α be an algebraic integer all of whose conjugates lie in a sec-
tor | arg z| ≤ θ with 0 ≤ θ < 90◦. Using the method of explicit
auxiliary functions, we compute the greatest lower bound v(θ)

of the absolute trace of α, for θ belonging to seven subintervals
of [0, 90◦). The polynomials involved in the auxiliary functions
are found by Wu’s algorithm.

1. INTRODUCTION

Let α be a nonzero algebraic integer of degree d ≥ 1
whose conjugates are α1 = α, . . . , αd.

The Mahler measure of α is

M(α) =
d∏

i=1

max(1, |αi|),

and the absolute Mahler measure of α is Ω(α) = M(α)1/d.
Another well-known representation for the Mahler mea-
sure is

h(α) =
1
d

log M(α) = log Ω(α),

where h(α) is the Weil height of α.
The set of algebraic numbers equipped with the Weil

height satisfies the Northcott property: there are only
finitely many algebraic numbers with bounded degree
and bounded height (for more details, see the survey
[Bombieri 08]). It is interesting to study the points of
this set of small height (or “small points”).

The well-known Lehmer’s question is the following:
Does there exist a positive constant c > 1 such that
M(α) > c for α a nonzero algebraic number not a root
of unity? The smallest known value for M(α) > 1
was found by D. H. Lehmer himself [Lehmer 33] and is
M(α) = 1.176280 . . . , where the minimal polynomial of
α is P = X10 + X9 −X7 −X6 −X5 −X4 −X3 + X + 1.

In 1971, C. J. Smyth [Smyth 71] solved Lehmer’s ques-
tion in the special case of nonreciprocal algebraic num-
bers. Recall that an algebraic number is reciprocal if
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its minimal polynomial P is a reciprocal polynomial:
P (X) = Xdeg(P )P

(
1
X

)
. He proved that if the algebraic

number α �= 0, 1 is not reciprocal, then M(α) ≥ θ0, where
θ0 = 1.324717 . . . is the smallest Pisot number that is the
real root of X3 − X − 1 = 0.

Lower bounds have also been found for special alge-
braic numbers. We say that an algebraic integer α is
totally positive if α and all its conjugates are real pos-
itive numbers. A. Schinzel [Schinzel 73] proved that if
α is a totally positive algebraic integer, α �= 0, 1, then
M(α) ≥

(
1+

√
5

2

)d.
In another direction, F. Amoroso and R. Dvorni-

cich [Amoroso and Dvornicich 00] proved that if α is
an algebraic number of degree d, not a root of unity,
whose splitting field is an abelian extension of Q, then
M(α) ≥ 5d/12.

Schinzel’s result above gives the smallest point of the
set of totally positive algebraic integers equipped with
the Mahler measure. In 1981, C. J. Smyth [Smyth 81b]
gave the three smallest points. The author gave two more
points [Flammang 96]. In both cases, heuristic methods
were used to find these points.

Then the study of “small points” was extended to the
sets Eθ of algebraic integers α all of whose conjugates lie
in a sector Sθ = {z ∈ C : |arg z| ≤ θ} with 0 ≤ θ <

180◦. Here we need to define the transfinite diameter of
a compact subset K of C:

t(K) = lim inf
n≥1

n→+∞
inf

P∈C[X]
P monic

deg(P )=n

|P |1/n
∞,K ,

where we set |P |∞,K = supz∈K |P (z)| for P ∈ C[X ].
In this definition, if we replace P ∈ C[X ], P monic, by

P ∈ Z[X ], we get the definition of the integer transfinite
diameter of K.

A theorem of M. Langevin [Langevin 86] based on
the fact that for θ < 180◦, the transfinite diameter of
S(θ) ∩ {z ∈ C : |z| ≤ 1} is less than 1 proves that
there exists a function c(θ) on [0, 180◦), always greater
than 1, such that if α �= 0 is not a root of unity all of
whose conjugates lie in Sθ, then Ω(α) ≥ c(θ). Note that
this result is not numerical. G. Rhin and C. J. Smyth
[Rhin and Smyth 95] gave a lower bound for c(θ). More-
over, they succeeded in finding the exact value of c(θ) for
θ in nine subintervals of [0, 120◦] and conjectured that
c(θ) is a step function of θ that is constant except for
finitely many left discontinuities in any closed subinterval
of [0, 180◦). Their method uses explicit auxiliary polyno-
mials A(X) = XaR(X), where R is a reciprocal polyno-
mial in Z[X ], found by heuristic methods.

More recently, Q. Wu [Wu 03] developed an algo-
rithm to obtain explicit upper bounds for the norm of
polynomials related to the integer transfinite diameter
and thus to find polynomials that must be involved in
such auxiliary functions. Hence, instead of a heuristic
search, he used a systematic search of suitable polynomi-
als. His algorithm allowed him and G. Rhin [Rhin and
Wu 04] to compute polynomials with minimal norm on
S(θ) ∩ {z ∈ C : |z| ≤ 1}. They gave the exact value of
c(θ) for four new intervals of [0, 140◦] and extended four
existing intervals.

Throughout this paper, we will consider another
height function, the trace, defined as follows: let α be
an algebraic integer of degree d ≥ 1, and P its minimal
polynomial:

P = Xd + a1X
d−1 + · · · + ad =

d∏
i=1

(X − αi).

The trace of α (and of P ) is trace(α) =
∑d

i=1 αi =
−a1, and the absolute trace of α (and of P ) is T (α) =
trace(α)/d.

Then any set Eθ with 0 ≤ θ < 90◦ equipped with
the trace satisfies the Northcott property, and we will be
interested in studying its small points.

First, we summarize the known results for the trace
when θ = 0 (for a complete survey, see [Aguirre and
Peral 08]). Then we explain how we have extended the
study of T for 0 < θ < 90◦. The functions Ω and T are of
different natures (Ω is multiplicative and T is additive),
but their behavior in their domains of definition is very
similar: see [Rhin and Smyth 95] and Theorem 1.2 below.

1.1 The Case θ = 0

The case θ = 0 is known as the Schur–Siegel–Smyth trace
problem.

Problem 1.1. Fix ρ < 2. Then show that all but finitely
many totally positive algebraic integers α have T (α) > ρ.

Following work of I. Schur [Schur 18] and C. L. Siegel
[Siegel 45], C. J. Smyth [Smyth 84b] proved that T (α) >

1.7719 with a finite set of exceptions. More recently, this
bound was raised to 1.7783786 by J. F. McKee and C.
J. Smyth [McKee and Smyth 04] in 2004, to 1.784109
by J. Aguirre and J. C. Peral [Aguirre and Peral 08] in
2006, and then to 1.78702 by the author [Flammang 08]
in 2007. In contrast to the previous works, in which
the authors used heuristic methods involving only to-
tally positive polynomials, this last result was obtained
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with a more sophisticated version of Wu’s algorithm and
involved several polynomials with complex roots. The
set of exceptions is composed of the roots of the poly-
nomials X , X − 1, X2 − 3X + 1, X3 − 5X2 + 6X − 1,
X4−7X3+13X2−7X+1, and X4−7X3+14X2−8X+1.
In this paper the usual integer transfinite diameter was
replaced by a generalized integer transfinite diameter.
This method was first used in [Flammang et al. 06].

The Case θ > 0. All these results lead us naturally to
seek a lower bound for the absolute trace of algebraic
integers all of whose conjugates lie in a sector Sθ with
0 < θ < 90◦.

We prove the following theorem.

Theorem 1.2. There exist a left discontinuous, strictly
positive step function g on [0, 90◦) and a positive, con-
tinuous, monotonically decreasing function f on [0, 90◦)
such that for θ ∈ [0, 90◦), if α is a nonzero algebraic
integer whose conjugates all lie in Sθ, then

T (α) ≥ min(f(θ), g(θ)), (1–1)

unless the minimal polynomial of α is equal to one of X,
X − 1, X2 − 3X + 1, X3 − 5X2 + 6X − 1.

Moreover, the exact value of v(θ) = inf |arg α|≤θ T (α)
is known on seven subintervals of [0, 90◦).

These intervals are given in Table 1.
Let (Pi)1≤i≤21 be the polynomials given in Table 2

and θi = minθ>0{Pi ∈ Sθ}. The function g is defined by

g(θ) = T (Pi),

for 1 ≤ i ≤ 21, θi ≤ θ < θi+1, where θ22 = 90◦.
The function f(θ) is given by f(θ) = max1≤i≤7(fi(θ)),

and the functions fi(θ) are defined by

fi(θ) = min
z∈Sθ

(
�(z) −

∑
1≤j≤J

cij log |Qij(z)|
)
,

where the polynomials Qij and the real numbers cij are
read off from Table 3, using polynomials of Table 4.

Remark 1.3. We give a numerical example for the func-
tion g. If 21.64038404 ≤ θ ≤ 24.07, then f3(θ) =
1.33333584 > g(θ) = 4

3 , so that v(θ) = g(θ) = 4
3 =

T (P8). For θ > 24.07, then 4
3 = g(θ) > f3(θ), so that

v(θ) ≥ f3(θ).

In Section 2, we explain the method of explicit auxil-
iary functions used to obtain inequality (1–1). In Section

i v(θ) θi θ′
i P

1 1.75000000 0.00000000 2.58 P1 or P ′
1

2 1.33333333 21.64038404 24.07 P8

3 1.25000000 26.40874008 27.9 P9

4 1.00000000 38.66828249 39.42 P11

5 0.75000000 49.35368062 52.04 P13

6 0.50000000 60.00000000 65.17 P16

7 0.25000000 76.79562995 77.58 P19

TABLE 1. Intervals [θi, θ
′
i] where v(θ) is known ex-

actly. Here v(θ) = v(θi) = T (P ) for θ ∈ [θi, θ
′
i]. The

polynomials P are read off from Table 2. The angles
are given in degrees.

3, we link explicit auxiliary functions to a generalization
of the classical integer transfinite diameter. In Section 4,
we explain how Wu’s algorithm is used to produce the
polynomials Qij that appear in the functions fi.

All the computations were done on an iBook Macin-
tosh with the languages Pascal and Pari.

2. THE EXPLICIT AUXILIARY FUNCTIONS

The method of auxiliary functions was introduced by C.
J. Smyth [Smyth 81a, Smyth 81b] and is based on the
fact that the resultant of two polynomials in Z[X ] with
no common roots is a nonzero integer. For simplicity, we
explain the method of auxiliary functions in the case of
the Schur–Siegel–Smyth trace problem.

Suppose that we are able to find a polynomial Q ∈
Z[X ] and real constants a > 0 and b such that

x − a log |Q(x)| ≥ b for x > 0.

Then, if α is a totally positive algebraic integer with
minimal polynomial P , we have

1
d

trace(α) ≥ b + a log |res(P, Q)|. (2–1)

If we suppose that Q(α) �= 0, then | res(P, Q)| ≥ 1,
and the inequality (2–1) gives the lower bound b for the
absolute trace of α.

C. J. Smyth [Smyth 84b] computed explicitly a poly-
nomial Q ∈ Z[X ] and a constant a > 0 such that

x − a log |Q(x)| ≥ 1.7719 for x > 0.

The function x−a log |Q(x)| is called an explicit auxiliary
function.

If we replace x by log max(1, |x|), we obtain a lower
bound for the Weil height of an algebraic integer. For
examples of applications of this method to other height
functions, see [Rhin and Wu 06].
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T (P ) θ P

P1 1.75000000 0.00000000 1 − 7x + 13x2 − 7x3 + x4

P ′
1 1.75000000 0.00000000 1 − 8x + 14x2 − 7x3 + x4

P2 1.71428571 4.68737270 −1 + 15x − 69x2 + 133x3 − 121x4 + 55x5 − 12x6 + x7

P3 1.66666666 10.91503368 −1 + 18x − 116x2 + 357x3 − 590x4 + 551x5 − 298x6 + 92x7 − 15x8 + x9

P4 1.62500000 12.29344727 1 − 17x + 100x2 − 244x3 + 293x4 − 191x5 + 69x6 − 13x7 + x8

P5 1.60000000 13.52174930 −1 + 10x − 25x2 + 22x3 − 8x4 + x5

P6 1.57142857 14.12571478 −1 + 13x − 60x2 + 115x3 − 104x4 + 48x5 − 11x6 + x7

P7 1.50000000 17.77114822 1 − 18x + 128x2 − 455x3 + 904x4 − 1065x5 + 774x6 − 351x7 + 97x8 − 15x9 + x10

P8 1.33333333 21.64038404 −1 + 5x − 4x2 + x3

P9 1.25000000 26.40874008 1 − 5x + 9x2 − 5x3 + x4

P10 1.16666666 32.56993995 1 − 8x + 25x2 − 32x3 + 21x4 − 7x5 + x6

P11 1.00000000 38.66828249 1 − 4x + 7x2 − 4x3 + x4

P12 0.83333333 47.94143201 1 − 5x + 13x2 − 17x3 + 13x4 − 5x5 + x6

P13 0.75000000 49.35368062 1 − 3x + 5x2 − 3x3 + x4

P14 0.66666666 59.01576957 −1 + 3x − 2x2 + x3

P15 0.62500000 59.36024037 1 − 5x + 16x2 − 29x3 + 37x4 − 29x5 + 16x6 − 5x7 + x8

P16 0.50000000 60.00000000 1 − x + x2

P17 0.37500000 73.00145189 1 − 3x + 10x2 − 14x3 + 20x4 − 14x5 + 10x6 − 3x7 + x8

P18 0.33333333 76.25367928 1 − 3x + 7x2 − 6x3 + 6x4 − 2x5 + x6

P19 0.25000000 76.79562995 1 − x + 3x2 − x3 + x4

P20 0.16666666 84.84160375 1 − x + 5x2 − 3x3 + 5x4 − x5 + x6

P21 0.12500000 85.94398603 1 − x + 7x2 − 4x3 + 13x4 − 4x5 + 7x6 − x7 + x8

TABLE 2. Polynomials used in the function g of Theorem 1.2.

i θ′
i Qij cij

1 2.58 Q0 Q1 Q2 Q3 Q4 Q5 0.56284363 0.50408065 0.08166128 0.20590509 0.09015004 0.02224684
Q6 Q7 Q8 Q10 Q11 Q12 0.03236765 0.00649871 0.00145134 0.01170589 0.00369868 0.01800095
Q13 Q14 Q15 Q16 Q17 0.00402967 0.00791983 0.00286599 0.00225963 0.01031189

2 24.07 Q0 Q1 Q18 Q19 0.54006460 0.68965168 0.06390586 0.00197963
Q20 Q21 Q24 0.00491943 0.03327370 0.01811781

3 27.9 Q0 Q1 Q18 Q20 0.50621857 0.67788105 0.05256367 0.01508746
Q21 Q22 Q23 Q25 0.04076393 0.00857661 0.00568225 0.00367281

4 39.42 Q0 Q1 Q26 Q27 0.44972962 0.60721238 0.01919192 0.00387718
Q28 Q29 Q32 Q37 0.02639647 0.01309434 0.00189094 0.00334521

5 52.04 Q0 Q30 Q31 Q33 Q34 0.39607424 0.01895977 0.01051677 0.05454688 0.00445482
Q35 Q36 Q37 Q38 0.00801740 0.00023269 0.00766288 0.10140545

6 65.17 Q0 Q38 Q39 Q40 0.29210698 0.07386767 0.00160050 0.02498593
Q41 Q42 Q43 0.00544326 0.00560379 0.00704141

7 77.58 Q0 Q44 Q45 Q46 0.13924563 0.01356400 0.00064003 0.00895138
Q47 Q48 Q49 Q50 0.00327017 0.00245762 0.00084550 0.00488970

TABLE 3. The auxiliary functions fi, 1 ≤ i ≤ 7.
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T (Q) ϕ(Q) Q
Q0 0.00000000 0.00000000 x
Q1 1.00000000 0.00000000 −1 + x
Q2 2.00000000 0.00000000 −2 + x
Q3 1.50000000 0.00000000 1 − 3x + x2

Q4 1.66666666 0.00000000 −1 + 6x − 5x2 + x3

Q5 1.75000000 0.00000000 1 − 7x + 13x2 − 7x3 + x4

Q6 1.75000000 0.00000000 1 − 8x + 14x2 − 7x3 + x4

Q7 1.80000000 0.00000000 −1 + 12x − 31x2 + 27x3 − 9x4 + x5

Q8 1.80000000 0.00000000 −1 + 13x − 32x2 + 27x3 − 9x4 + x5

Q9 2.00000000 0.00000000 1 − 4x + x2

Q10 2.00000000 0.00000000 2 − 4x + x2

Q11 1.83333333 3.17650728 1 − 29x + 318x2 − 1726x3 + 5233x4 − 9481x5 + 10709x6 − 7760x7

+3652x8 − 1107x9 + 208x10 − 22x11 + x12

Q12 1.71428571 4.68737270 −1 + 15x − 69x2 + 133x3 − 121x4 + 55x5 − 12x6 + x7

Q13 1.75000000 5.69698026 1 − 27x + 281x2 − 1470x3 + 4336x4 − 7742x5 + 8750x6 − 6430x7

+3102x8 − 972x9 + 190x10 − 21x11 + x12

Q14 1.75000000 6.23618248 1 − 19x + 111x2 − 277x3 + 339x4 − 221x5 + 78x6 − 14x7 + x8

Q15 1.75000000 6.42782898 1 − 21x + 120x2 − 289x3 + 345x4 − 222x5 + 78x6 − 14x7 + x8

Q16 1.75000000 10.23941165 1 − 27x + 283x2 − 1483x3 + 4372x4 − 7789x5 + 8780x6 − 6439x7

+3103x8 − 972x9 + 190x10 − 21x11 + x12

Q17 1.60000000 13.52174930 −1 + 10x − 25x2 + 22x3 − 8x4 + x5

Q18 1.33333333 21.64038404 −1 + 5x − 4x2 + x3

Q19 1.37500000 25.19411073 1 − 13x + 62x2 − 146x3 + 181x4 − 127x5 + 51x6 − 11x7 + x8

Q20 1.40000000 25.53545872 −1 + 7x − 18x2 + 17x3 − 7x4 + x5

Q21 1.25000000 26.40874008 1 − 5x + 9x2 − 5x3 + x4

Q22 1.33333333 27.82114255 1 − 9x + 31x2 − 41x3 + 26x4 − 8x5 + x6

Q23 1.00000000 28.62953072 1 − 6x + 12x2 − 8x3 + 2x4

Q24 1.28571428 32.42286109 −1 + 10x − 39x2 + 72x3 − 67x4 + 34x5 − 9x6 + x7

Q25 1.16666666 32.56993995 1 − 8x + 25x2 − 32x3 + 21x4 − 7x5 + x6

Q26 1.00000000 38.66828249 1 − 4x + 7x2 − 4x3 + x4

Q27 0.93750000 40.46899673 1 − 9x + 38x2 − 88x3 + 122x4 − 102x5 + 52x6 − 15x7 + 2x8

Q28 1.00000000 40.89484445 −1 + 4x − 3x2 + x3

Q29 1.00000000 41.92031705 1 − 7x + 20x2 − 25x3 + 17x4 − 6x5 + x6

Q30 1.00000000 45.00000000 2 − 2x + x2

Q31 1.00000000 45.17331986 1 − 6x + 17x2 − 22x3 + 16x4 − 6x5 + x6

Q32 0.75000000 45.65507052 1 − 4x + 8x2 − 6x3 + 2x4

Q33 0.75000000 49.35368062 1 − 3x + 5x2 − 3x3 + x4

Q34 0.80000000 51.65190097 −1 + 5x − 9x2 + 9x3 − 4x4 + x5

Q35 0.83333333 52.16543234 1 − 5x + 14x2 − 18x3 + 13x4 − 5x5 + x6

Q36 0.68750000 52.92437629 1 − 7x + 26x2 − 53x3 + 70x4 − 59x5 + 33x6 − 11x7 + 2x8

Q37 0.75000000 53.35032016 1 − 6x + 20x2 − 38x3 + 48x4 − 38x5 + 20x6 − 6x7 + x8

Q38 0.50000000 60.00000000 1 − x + x2

Q39 0.50000000 62.67373071 1 − 5x + 17x2 − 31x3 + 42x4 − 35x5 + 22x6 − 8x7 + 2x8

Q40 0.50000000 64.08635381 1 − 2x + 4x2 − 2x3 + x4

Q41 0.50000000 66.90163222 1 − 3x + 9x2 − 9x3 + 8x4 − 3x5 + x6

Q42 0.50000000 67.87659748 1 − 4x + 13x2 − 22x3 + 29x4 − 22x5 + 13x6 − 4x7 + x8

Q43 0.50000000 69.29518894 2 − x + x2

Q44 0.25000000 76.79562995 1 − x + 3x2 − x3 + x4

Q45 0.33333333 77.57978776 1 − 2x + 6x2 − 5x3 + 6x4 − 2x5 + x6

Q46 0.25000000 78.65759095 1 − 2x + 8x2 − 9x3 + 15x4 − 9x5 + 8x6 − 2x7 + x8

Q47 0.33333333 81.60136144 −1 + 3x − 11x2 + 17x3 − 24x4 + 22x5 − 16x6 + 9x7 − 3x8 + x9

Q48 0.36363636 81.61660173 −1 + 3x − 15x2 + 28x3 − 52x4 + 60x5 − 62x6 + 46x7 − 28x8 + 13x9 − 4x10 + x11

Q49 0.30000000 86.19355737 1 − 2x + 11x2 − 16x3 + 32x4 − 30x5 + 32x6 − 18x7 + 11x8 − 3x9 + x10

Q50 0.00000000 90.00000000 1 + x2

TABLE 4. Polynomials used in the auxiliary functions fi where ϕ(Q) = max{|argz| : Q(z) = 0}.

In our case, the explicit auxiliary functions fi are of
the following type (θ ∈ [0, 90◦) fixed): for z ∈ Sθ,

fθ(z) = �(z) − a log |Q(x)| (2–2)

= �(z) −
∑

1≤j≤J

cj log |Qj(z)| ≥ mθ,

where the polynomials Qj are the irreducible factors of
the polynomial Q. Therefore, we have T (α) ≥ mθ, and
we get a lower bound for the absolute trace of α.

The main problem is then to find a good list of poly-
nomials Qj that gives a value of mθ as large as possible.
Thus, we link the auxiliary function (2–2) with a gener-
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alization of the integer transfinite diameter in order to
find our polynomials Qj by Wu’s algorithm.

3. AUXILIARY FUNCTIONS AND INTEGER
TRANSFINITE DIAMETER

In this section, we will need the following definition:

Definition 3.1. Let K be a compact subset of C. The
integer f -transfinite diameter of K, where f : K → R+

is an upper semicontinuous function, is defined by

tZ,f(K) = lim inf
n≥1

n→+∞
inf

P∈Z[X]
deg(P )=n

sup
z∈K

(
|P (z)|1/n f(z)

)
.

This weighted version of the integer transfinite diame-
ter was introduced by F. Amoroso [Amoroso 93] and is an
important tool in the study of rational approximations of
logarithms of rational numbers.

Let θ be a fixed angle in [0, 90◦). Here, we deal with
the compact K replaced by the unbounded subset Sθ

of C. So we choose a weight ϕ such that tZ,ϕ(Sθ) is a
finite number, which allows us to define the integer ϕ-
transfinite diameter of the sector Sθ.

Inside the auxiliary function (2–2) we replace the num-
ber a by a rational number. So we may write that for
z ∈ Sθ,

fθ(z) = �(z) − t

r
log |Q(z)| ≥ mθ,

where Q ∈ Z[X ] is of degree r and t is a positive real
number. We want to get a function fθ whose minimum
mθ in the sector Sθ is as large as possible. Thus we search
for a polynomial Q ∈ Z[X ] such that

sup
z∈Sθ

|Q(z)|t/re−
(z) ≤ e−mθ .

If we suppose that t is fixed, we need to get an effective
upper bound for the quantity

tZ,ϕ(Sθ) = lim inf
r≥1

r→+∞
inf

P∈Z[X]
deg(P )=r

sup
z∈Sθ

(
|P (z)|t/r ϕ(z)

)
,

where we use the weight ϕ(z) = e−
(z). It is clearly a
generalization of the integer f -transfinite diameter of a
compact set of C.

4. CONSTRUCTION OF THE AUXILIARY
FUNCTIONS

4.1 How to Find the Polynomials Qj

Let θ be a fixed angle in [0, 90◦). The auxiliary function
fθ is harmonic outside a finite set containing the roots

of the polynomials Qj , and so it takes its minimum in
the sector Sθ on the boundary of Sθ. It is clear that
fθ(z) → ∞ as z → ∞. So since fθ(z) = fθ(z̄), it is
sufficient to search for the minimum of f on the upper
edge of the sector Sθ where z = xeiθ with x > 0.

We take an initial value of t, say t0 = 1, and a finite
set F0 of control points on the edge of Sθ. After several
numerical attempts, it appears that the set

F0 ={xeiθ : x belongs to a set of 50 points

uniformly distributed on [0, 2.5]}

gives good results.
The idea is to use Wu’s algorithm [Wu 03] to compute

a polynomial Q(z) =
∑d

k=0 akzk in Z[z] that is small on
F0, and then take its irreducible factors as polynomials
Qj. We usually take d = 15.

In order to use LLL in this algorithm, for any xeiθ in
F0, we replace the quantity

∑d
k=0 akxeiθ, which is not

a real linear form in the unknown coefficients ak, by its
real and imaginary parts. Therefore, we search for a
polynomial Q such that these two quantities are small
on F0. We define Q1 as the irreducible factor of Q of
smallest degree, and we take the best value of c1 to get
the best auxiliary function fθ,1. We deduce from this the
value t1 = c1 deg(Q1).

We add to the set F0 the points for which fθ,1 has a
local minimum (including those where x is greater than
2.5) to get a new set F1 of control points. With Wu’s al-
gorithm we compute a polynomial Q of degree d+deg Q1

that is a multiple of Q1 of small norm on F1 and take Q2

as another irreducible factor of Q. We optimize (c1, c2)
to get the best function fθ,2. This gives t2.

We get the set F2 from F1 by adding the local minima
of fθ,2. Then we search for a polynomial Q that is a
multiple of Q1Q2 of degree d + deg Q1 + deg Q2, and we
continue this process until two consecutive steps produce
no new polynomial.

4.2 Optimization of the cj

Let θ be a fixed angle in [0, 90◦). For the optimization
of the auxiliary function fθ we use the semi-infinite lin-
ear programming method introduced into number theory
by Smyth [Smyth 84b]. We recall it briefly. We define
by induction a sequence of finite sets Xn, n ≥ 0, with
Xn ⊂ Sθ. We start with an arbitrary set of points X0

of cardinality greater than J . At each step n ≥ 0, we
compute the best values for cj by linear programming on
the set Xn.

We get a function fθ,n whose minimum mθ,n =
minx∈Xn fθ,n(x) is greater than m′

θ,n = minx∈Sθ
fθ,n(x).
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We add to Xn the points of Sθ for which fθ,n has a local
minimum smaller than mθ,n + εn, where (εn)n≥0 is a de-
creasing sequence of positive numbers tending to 0 when
n is increasing and chosen such that the set Xn does
not increase too quickly. We stop, for instance, when
mθ,n − m′

θ,n < 10−6. If k steps are necessary, we take
mθ = m′

θ,k.

5. CONCLUSION

It seems reasonable to think that the method described
above, which allows us to find “small points” for sev-
eral sets Eθ equipped with the trace, can be applied to
other sets of algebraic numbers that satisfy the Northcott
property.
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57045 Metz cedex 01, France (flammang@univ-metz.fr)

Received November 12, 2007; accepted in revised form April 29, 2008.


