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Recently, Friedman proved Alon’s conjecture for many families
of d-regular graphs, namely that given any ε > 0, “most” graphs
have their largest nontrivial eigenvalue at most 2

√
d − 1+ε in ab-

solute value; if the absolute value of the largest nontrivial eigen-
value is at most 2

√
d − 1, then the graph is said to be Ramanu-

jan. These graphs have important applications in communica-
tion network theory, allowing the construction of superconcen-
trators and nonblocking networks, as well as in coding theory
and cryptography. Since many of these applications depend on
the size of the largest nontrivial positive and negative eigenval-
ues, it is natural to investigate their distributions. We show that
these are well modeled by the β = 1 Tracy–Widom distribution
for several families. If the observed growth rates of the mean and
standard deviation as a function of the number of vertices hold
in the limit, then in the limit, approximately 52% of d-regular
graphs from bipartite families should be Ramanujan, and about
27% from nonbipartite families (assuming that the largest posi-
tive and negative eigenvalues are independent).

1. INTRODUCTION

1.1 Families of Graphs

In this paper we investigate the distribution of the largest
nontrivial eigenvalues associated to d-regular undirected
graphs.1 A graph G is bipartite if the vertex set of G can
be split into two disjoint sets A and B such that every
edge connects a vertex in A with one in B, and G is d-
regular if every vertex is connected to exactly d vertices.
To any graph G we may associate a real symmetric ma-
trix, called its adjacency matrix, by setting aij to be the
number of edges connecting vertices i and j. Let us write
the eigenvalues of G as λ1(G) ≥ · · · ≥ λN (G), where G

1An undirected graph G is a collection of vertices V and edges
E connecting pairs of vertices. A graph G is simple if there are
no multiple edges between vertices; G has a self-loop if a vertex is
connected to itself, and G is connected if given any two vertices u
and w there is a sequence of vertices v1, . . . , vn such that there is
an edge from vi to vi+1 for i ∈ {0, . . . , n + 1} (where v0 = u and
vn+1 = w).
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has N vertices. We call any eigenvalue equal to ±d a triv-
ial eigenvalue (there is an eigenvalue of −d if and only
if the graph is bipartite), and all other eigenvalues are
called nontrivial.

The eigenvalues of the adjacency matrix provide much
information about the graph. We give two such prop-
erties to motivate investigations of the eigenvalues; see
[Davidoff et al. 03, Sarnak 90] for more details.

First, if G is d-regular, then λ1(G) = d (the corre-
sponding eigenvector is all 1’s); further, λ2(G) < d if and
only if G is connected. Thus if we think of our graph as a
network, λ2(G) tells us whether all nodes can communi-
cate with each other. For network purposes, it is natural
to restrict to connected graphs without self-loops.

Second, a fundamental problem is to construct a well-
connected network such that each node can communicate
with any other node “quickly” (i.e., there is a short path
of edges connecting any two vertices). While a simple
solution is to take the complete graph as our network,
these graphs are expensive: there are N vertices and(
N
2

)
= N(N −1)/2 edges. We want a well-connected net-

work in which the number of edges grows linearly with
N . Let V be the set of vertices for a graph G, and E its
set of edges. The boundary ∂U of a vertex set U ⊆ V is
the set of edges connecting U to V \ U . The expanding
constant h(G) is

h(G) := inf
{ |∂U |

min(|U |, |V \ U |) : U ⊂ V, |U | > 0
}

.

It measures the connectivity of G. If {Gm} is a fam-
ily of connected d-regular graphs, then we call {Gm}
a family of expanders if limm→∞ |Gm| = ∞ and there
exists an ε > 0 such that for all m, h(Gm) ≥ ε. Ex-
panders have two very important properties: they are
sparse (|E| grows at most linearly with |V |), and they
are highly connected (the expanding constants have a
positive lower bound). These graphs have important ap-
plications in communication network theory, allowing the
construction of superconcentrators and nonblocking net-
works [Bien 89, Pippenger 77], as well as applications to
coding theory [Sipser and Spielman 96] and cryptogra-
phy [Goldreich et al. 90]; see [Sarnak 04] for a brief intro-
duction to expanders. The Cheeger–Buser inequalities2

[Alon and Milman 85, Dodziuk 84] give upper and lower
bounds for the expanding constant of a finite d-regular
connected graph in terms of the spectral gap (the separa-
tion between the largest and second-largest eigenvalues)

2The name is from an analogy with the isoperimetric constant
of a compact Riemann manifold.

d − λ2(G):

d − λ2(G)
2

≤ h(G) ≤ 2
√

2d(d − λ2(G)).

Thus we have a family of expanders if and only if there
exists an ε > 0 such that for all m, d − λ2(Gm) ≥ ε.
Finding graphs with small λ2(G) leads to large spectral
gaps and thus sparse, highly connected graphs.

For many problems, the behavior is controlled by the
largest absolute value of a nontrivial eigenvalue. We
write λ+(G) (respectively λ−(G)) for the largest non-
trivial positive eigenvalue (respectively the most neg-
ative nontrivial eigenvalue) of G, and set λ(G) =
max (|λ+(G)|, |λ−(G)|). Alon–Boppana, Burger, and
Serre proved that for any family {Gm} of finite con-
nected d-regular graphs with limm→∞ |Gm| = ∞, we
have lim infm→∞ λ(Gm) ≥ 2

√
d − 1; in fact, Friedman

[Friedman 93] proved that if G is a d-regular (d ≥ 3)
graph with n vertices, then

λ(G) ≥ 2
√

d − 1
(

1 − 2π2

(logd−1 n)2
+ O

(
1

(logd−1 n)4

))
.

(1–1)
Thus we are led to search for graphs with λ(G) ≤
2
√

d − 1; such graphs are called Ramanujan graphs.3 See
[Murty 03] for a nice survey. Explicit constructions are
known when d is 3 [Chiu 92] or q+1, where q is either an
odd prime [Lubotzky et al. 88, Margulis 88] or a prime
power [Morgenstern 94].

Alon [Alon 86] conjectured that as N → ∞, for d ≥ 3
and any ε > 0, “most” d-regular graphs on N vertices
have λ(G) ≤ 2

√
d − 1 + ε; it is known that the bound

2
√

d − 1 cannot be improved. Upper bounds on λ(G) of
this form give a good spectral gap. Recently, Friedman
[Friedman 03] proved Alon’s conjecture for many models
of d-regular graphs.

Our goal in this work is to investigate the distribu-
tion of λ±(G) and λ(G) numerically for these and other
families of d-regular graphs. By identifying the limiting
distribution of these eigenvalues, we are led to the con-
jecture that for many families of d-regular graphs, in the
limit as the number of vertices tends to infinity, the prob-
ability that a graph in the family has λ(G) ≤ 2

√
d − 1

tends to approximately 52% if the family is bipartite, and
about 27% otherwise.

3Lubotzky, Phillips, and Sarnak [Lubotzky et al. 88] construct
an infinite family of (p + 1)-regular Ramanujan graphs for primes
p ≡ 1 mod 4. Their proof uses the Ramanujan conjecture for
bounds on Fourier coefficients of cusp forms, which led to the name
Ramanujan graphs.
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Specifically, consider a family FN,d of d-regular graphs
on N vertices. For each G ∈ FN,d, we study

λ̃±(G) =
|λ±(G)| − 2

√
d − 1 + cμ,N,d,±Nm±(FN,d)

cσ,N,d,±Ns±(FN,d)
;

(1–2)
we use m for the first exponent, since it arises from study-
ing the means, and s for the second, since it arises from
studying the standard deviations. Our objective is to see
whether as G varies in a family FN,d, λ̃±(G) converges
to a universal distribution as N → ∞. We therefore sub-
tract off the sample mean and divide by the standard
deviation to obtain a mean-0, variance-1 data set, which
will facilitate comparisons to candidate distributions. We
write the subtracted mean as a sum of two terms. The
first is 2

√
d − 1, the expected mean as N → ∞. The

second is the remaining effect, which has been observed
to be negative (see the concluding remarks in [Friedman
03] and [Hoory et al. 06]), and was found to be negative
in all our experiments. We shall assume in our discus-
sions below that cμ,N,d,± < 0. Of particular interest is
whether m±(FN,d) − s±(FN,d) < 0. If this is negative
(for both λ±(G)), if λ̃±(G) converges to a universal dis-
tribution, and if λ+(G) and λ−(G) are independent for
the nonbipartite families, then in the limit, a positive
percentage of graphs in FN,d are not Ramanujan. This
follows from the fact that for |λ±(G)|, in the limit a neg-
ligible fraction of the standard deviation suffices to move
beyond 2

√
d − 1; if m±(FN,d) − s±(FN,d) > 0, then we

may move many multiples of the standard deviation and
still be below 2

√
d − 1 (see Remark 2.1 for a more de-

tailed explanation).

Remark 1.1. (Families of d-regular graphs.) We describe
the families we investigate. For convenience in our stud-
ies we always take N to be even. Friedman [Friedman
03] showed that for fixed ε, for the families GN,d, HN,d,
and IN,d defined below, as N → ∞ “most” graphs4 have
λ(G) ≤ 2

√
d − 1 + ε:

• BN,d. We let BN,d denote the set of d-regular
bipartite graphs on N vertices. We may model
these by letting π1 denote the identity permuta-
tion and choosing d−1 independent permutations of
{1, . . . , N/2}. For each choice we consider the graph

4Friedman shows that given ε > 0, with probability at least
1 − cFd

N−τ(Fd) we have λ(G) ≤ 2
√

d − 1 + ε for G ∈ FN,d, and

with probability at least c̃Fd
N−τ̃(Fd) we have λ(G) > 2

√
d − 1;

see [Friedman 03] for the values of the exponents.

with edge set

E :
{
(i, πj(i) + N/2) : i ∈ {1, . . . , N/2},
j ∈ {1, . . . , d}}.

• GN,d. For d even, let π1, . . . , πd/2 be chosen indepen-
dently from the N ! permutations of {1, . . . , N}. For
each choice of π1, . . . , πd/2 form the graph with edge
set

E :
{
(i, πj(i)), (i, π−1

j (i)) : i ∈ {1, . . . , N},
j ∈ {1, . . . , d/2}}.

Note that GN,d can have multiple edges and self-
loops, and a self-loop at vertex i contributes 2 to aii.

• HN,d. These are constructed in the same manner as
GN,d, with the additional constraint that the permu-
tations are chosen independently from the (N − 1)!
permutations whose cyclic decomposition is one cy-
cle of length N .

• IN,d. These are constructed similarly, except that
instead of choosing d/2 permutations, we choose
d perfect matchings; the d matchings are indepen-
dently chosen from the (N −1)!! perfect matchings.5

• Connected and simple graphs. If FN,d is any of the
families above (BN,d, GN,d, HN,d, IN,d), let CFN,d

denote the subset of graphs that are connected, and
SCFN,d the subset of graphs that are simple and
connected.

Remark 1.2. The eigenvalues of bipartite graphs are sym-
metric about zero. We sketch the proof. Let G be a bi-
partite graph with 2N vertices. Its adjacency matrix is
of the form A(G) =

(
Z
B

B
Z

)
, where Z is the N × N zero

matrix and B is an N × N matrix. Let J =
(

Z
−I

I
Z

)
,

where I is the N × N identity matrix. Simple calcula-
tions show that J−1 = −J and J−1A(G)J = −A(G).
Noting that similar matrices have the same eigenvalues,
we see that the eigenvalues of A(G) must be symmetric
about zero.

5For example, if d = 3 and N = 8, our three permutations
might be (43876152), (31248675), and (87641325). Each permu-
tation generates 8/2 = 4 edges. Thus the first permutation gives
edges between vertices 4 and 3, between 8 and 7, between 6 and 1,
and between 5 and 2. A permutation whose cyclic decomposition is
one cycle of length N can be written in N different ways (depend-
ing on which element is listed first). This permutation generates
two different perfect matchings, depending on where we start. Note
that there are no self-loops.
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1.2 Tracy–Widom Distributions
We investigate in detail the distribution of λ±(G) for
d-regular graphs related to two of the families above:
the perfect-matching family IN,d and the bipartite family
BN,d (by Remark 1.2 we need to study λ+(G) for only
the bipartite family). Explicitly, for N even, we study
CIN,d, SCIN,d, CBN,d, and SCBN,d; we restrict to con-
nected graphs, since d is a multiple eigenvalue for discon-
nected graphs. As d and N increase, so too does the time
required to choose uniformly a simple connected graph
from our families; we concentrate on d ∈ {3, 4, 7, 10} and
N ≤ 20000.

Since there are known constructions of Ramanujan
graphs for d equal to 3 or q + 1 (where q is either an
odd prime or a prime power), d = 7 is the first instance
for which there is no known explicit construction to pro-
duce Ramanujan graphs. In the interest of space, we
report in detail on the d = 3 computations for λ+(G).
We remark briefly on the other computations and results,
which are similar and are available from the authors on
request; much of the data and programs used are avail-
able online (http://www.math.princeton.edu/mathlab/
ramanujan/).

We conjecture that the distributions of λ±(G) are in-
dependent in nonbipartite families and that each con-
verges to the β = 1 Tracy–Widom distribution (see
Conjecture 1.3 for exact statements). We summarize
our numerical investigations supporting this conjecture
in Section 1.3, and content ourselves here with describ-
ing why it is natural to expect the β = 1 Tracy–
Widom distribution to be the answer. The Tracy–
Widom distributions model the limiting distribution of
the normalized largest eigenvalues for many ensembles
of matrices. There are three distributions fβ(s): (i)
β = 1, corresponding to orthogonal symmetry (GOE);
(ii) β = 2, corresponding to unitary symmetry (GUE);
(iii) β = 4, corresponding to symplectic symmetry
(GSE). These distributions can be expressed in terms
of a particular Painlevé II function, and are plotted in
Figure 1.

We describe some of the problems in which the Tracy–
Widom distributions arise, and why the β = 1 distri-
bution should describe the distributions of λ±(G). The
first is in the distribution of the largest eigenvalue (as
N → ∞) in the N × N Gaussian orthogonal, unitary,
and symplectic ensembles [Tracy and Widom 96]. For
example, consider the N×N Gaussian orthogonal ensem-
ble. From the scaling in Wigner’s semicircle law [Mehta
91, Wigner 57], we expect the eigenvalues to be of order√

N . With λmax(A) denoting the largest eigenvalue of A,

-6 -4 -2 2 4
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FIGURE 1. Plots of the three Tracy–Widom distri-
butions: f1(s) has the smallest maximum amplitude,
then f2(s), and then f4(s).

the normalized largest eigenvalue λ̃max(A) satisfies

λmax(A) = 2σ
√

N +
λ̃max(A)

N1/6
; (1–3)

here σ is the standard deviation of the Gaussian distri-
bution of the off-diagonal entries, and is often taken to
be 1 or 1/

√
2. As N → ∞, the distribution of λ̃max(A)

converges to f1(s).
The Tracy–Widom distributions also arise in combi-

natorics in the analysis of the length of the largest in-
creasing subsequence of a random permutation and the
number of boxes in rows of random standard Young
tableaux [Baik et al. 99, Borodin et al. 00, Baik and
Rains 01a, Baik and Rains 01b, Johansson 01], in growth
problems [Baik and Rains 00, Gravner et al. 01, Jo-
hansson 02b, Prähofer and Spohn 00a, Prähofer and
Spohn 00b], random tilings [Johansson 02a], the largest
principal component of covariances matrices [Soshnikov
08], queuing theory [Baryshnikov 01, Gravner et al. 01],
and superconductors [Vavilov et al. 01]; see [Tracy and
Widom 02] for more details and references.

It is reasonable to conjecture that appropriately nor-
malized, the limiting distributions of λ±(G) in the fami-
lies of d-regular graphs considered by Friedman converges
to the β = 1 Tracy–Widom distribution (the largest
eigenvalue is always d). One reason for this is that to
any graph G we may associate its adjacency matrix A(G),
where aij is the number of edges connecting vertices i and
j. Thus a family of d-regular graphs on N vertices gives
us a subfamily of N × N real symmetric matrices, and
real symmetric matrices typically have β = 1 symmetries.
While [McKay 81] showed that for fixed d, the density
of normalized eigenvalues is different from the semicircle
found for the GOE (though as d → ∞ the limiting dis-
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tribution does converge to the semicircle), [Jakobson et
al. 99] experimentally found that the spacings between
adjacent normalized eigenvalues agree with the GOE.

Since the spacings in the bulk agree in the limit, it is
plausible to conjecture that the spacings at the edge agree
in the limit as well, in particular, that the density of the
normalized second largest eigenvalue converges to f1(s).

1.3 Summary of Experiments, Results, and Conjectures

We numerically investigated the eigenvalues for the fam-
ilies CIN,d, SCIN,d, CBN,d, and SCBN,d. Most of the
simulations were performed on a 1.6-GHz Centrino pro-
cessor running version 7 of matlab over several months;
the data indicate that the rate of convergence is prob-
ably controlled by the logarithm of the number of ver-
tices, and thus there would not be significant gains in
understanding the limiting behavior by switching to more
powerful systems.6 The data are available online (http:
//www.math.princeton.edu/mathlab/ramanujan/).

We varied N from 26 up to 50,000. For each N we
randomly chose 1000 graphs G from the various ensem-
bles, and calculated λ±(G). Letting μsample

FN,d,± and σsample
FN,d,±

denote the mean and standard deviation of the sample
data (these are functions of N and limN→∞ μsample

FN,d,± =
2
√

d − 1), we studied the distribution of(
λ±(G) − μsample

FN,d,±

) /
σsample
FN,d,± . (1–4)

This normalizes our data to have mean 0 and variance 1,
which we compared to the β = 1 Tracy–Widom distribu-
tion; as an additional test, we also compared our data to
β = 2 and 4 Tracy–Widom distributions, as well as the
standard normal.

Before stating our results, we comment on some of
the difficulties of these numerical investigations.7 If g(s)
is a probability distribution with mean μ and variance
σ2, then σg(σx + μ) has mean 0 and variance 1. Since
we do not know the normalization constants in (1–2) for

6In fact, many quantities and results related to these families of
graphs are controlled by the logarithm of the number of vertices.
For example, a family of graphs is said to have large girth if the
girths are greater than a constant times the logarithm of the num-
ber of vertices [Davidoff et al. 03, p. 10]. For another example,
see (1–1).

7Another difficulty is that the matlab code was originally writ-
ten to investigate bipartite graphs. The symmetry of the eigenval-
ues allowed us to look at just the second-largest eigenvalue; when
we ran the code for nonbipartite graphs, we originally did not real-
ize that this had been hardwired. Thus we were implicitly assuming
λ(G) = λ+(G), which is frequently false for nonbipartite graphs.
This error led us initially to conjecture that 52% of these graphs
are Ramanujan in the limit, instead of the 27% that we discuss
later.

the second-largest eigenvalue, it is natural to study (1–4)
and compare our sample distributions to the normalized
β = 1 Tracy–Widom distribution.8 In fact, even if we
did know the constants it would still be worth normaliz-
ing our data in order to determine whether other distri-
butions, appropriately scaled, provide good fits as well.
As remarked in Section 1.2, there are natural reasons
to suspect that the β = 1 Tracy–Widom is the limiting
distribution; however, as Figure 2 shows, if we normal-
ize the three Tracy–Widom distributions to have mean 0
and variance 1, then they are all extremely close to the
standard normal.

The fact that several different distributions can pro-
vide good fits to the data is common in random matrix
theory. For example, Wigner’s surmise9 for the spacings
between adjacent normalized eigenvalues in the bulk of
the spectrum is extremely close to the actual answer (and
in fact, Wigner’s surmise is often used for comparison
purposes, since it is easier to plot than the actual an-
swer).10 While the two distributions are quite close (see
[Gaudin 61, Mehta 60, Mehta 91]) and both often pro-
vide good fits to data, they are unequal, and it is the
Fredholm determinant that is correct.11 We see a similar

8The Tracy–Widom distributions [Tracy and H. Widom 94]
could have been defined in an alternative way as mean-zero dis-
tributions if lower-order terms had been subtracted off; since these
terms were kept, the resulting distributions have nonzero means.
These correction factors vanish in the limit, but for finite N ,
they result in an N-dependent correction (we divide by a quantity
with the same N-dependence, so the resulting answer is a nonzero
mean). This is similar to other situations in number theory and
random matrix theory. For example, originally “high” critical zeros
of ζ(s) were shown to be well modeled by the N → ∞ scaling limits
of the N×N GUE ensemble [Odlyzko 87, Odlyzko 01]; however, for
zeros with imaginary part about T , a better fit is obtained using
finite N (in particular, N ∼ log T ; see [Keating and Snaith 00]).

9Wigner conjectured that as N → ∞, the spacing between ad-
jacent normalized eigenvalues in the bulk of the spectrum of the
N × N GOE ensemble tends to pW (s) = (πs/2) exp

(−πs2/4
)
. He

was led to this by assuming that (1) given an eigenvalue at x, the
probability that another one lies s units to its right is proportional
to s; (2) given an eigenvalue at x and I1, I2, I3, . . . any disjoint
intervals to the right of x, then the events of observing an eigen-
value in Ij are independent for all j; (3) the mean spacing between
consecutive eigenvalues is 1.

10The distribution is (π2/4)d2Ψ/dt2, where Ψ(t) is (up to con-

stants) the Fredholm determinant of the operator f 	→ ∫ t
−t K ∗ f

with kernel K = 1
2π

(
sin(ξ−η)

ξ−η
+

sin(ξ+η)
ξ+η

)
.

11While this is true for number-theoretic systems with large num-
bers of data points, there is often not enough data for physical sys-
tems to make a similar claim. The number of energy levels from
heavy nuclei in nuclear physics is typically between 100 and 2000,
which can be insufficient to distinguish between GOE and GUE be-
havior (while we expect GOE from physical symmetries, there is a
maximum of about a 2% difference in their cumulative distribution
functions). Current research in quantum dots (see [Alhassid 00])
shows promise for obtaining sufficiently large data sets to detect
such subtle differences.
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FIGURE 2. Plots of the three Tracy–Widom distribu-
tions, normalized to have mean 0 and variance 1, and
the standard normal.

phenomenon, since for many of our data sets we obtain
good fits from the three normalized Tracy–Widom distri-
butions and the standard normal. It is therefore essential
that we find a statistic sensitive to the subtle differences
among the four normalized distributions.

We record the mean, standard deviation, and the per-
centage of the mass to the left of the mean for the three
Tracy–Widom distributions (and the standard normal)
in Table 1. The fact that the four distributions have dif-
ferent percentages of their mass to the left of the mean
gives us a statistical test to determine which of the four
distributions best models the observed data.

Thus, in addition to comparing the distribution of the
normalized eigenvalues in (1–4) to the normalized Tracy–
Widom distributions, we also computed the percentage
of time that λ±(G) was less than the sample mean. We
compared this percentage to the three different values for
the Tracy–Widom distribution and the value for the stan-
dard normal (which is just 0.5). Since the four percent-
ages are different, this comparison provides evidence that
of the four distributions, the second-largest eigenvalues
are modeled only by a β = 1 Tracy–Widom distribution.

Mean μ Std. Dev. σ Fβ(μβ)

TW(β = 1) −1.2065 1.26798 0.519652
TW(β = 2) −1.7711 0.90177 0.515016
TW(β = 4) −2.3069 0.71953 0.511072

Standard Normal 0.0000 1.00000 0.500000

TABLE 1. Parameters for the Tracy–Widom distribu-
tions (before being normalized to have mean 0 and
variance 1). Here Fβ is the cumulative distribution
function for fβ , and Fβ(μβ) is the mass of fβ to the
left of its mean.

We now briefly summarize our results and the conjec-
ture what they suggest. We concentrate on the families
(see Remark 1.1 for definitions) CIN,d, SCIN,d, CBN,d,
and SCBN,d with d ∈ {3, 4}, as well as CIN,7 and CIN,10.
For each

N ∈ {26, 32, 40, 50, 64, 80, 100, 126, 158, 200, 252, 316,

400, 502, 632, 796, 1002, 1262, 1588, 2000, 2516,

3168, 3990, 5022, 6324, 7962, 10022, 12618, 15886,

20000},

we randomly chose 1000 graphs from each family. We
analyze the data for the 3-regular graphs in Section 2.
Since the results are similar, the data and analysis for
the other families are available online (http://www.math.
princeton.edu/mathlab/ramanujan/), where we include
our data for d = 3 as well.

1.3.1 Chi-squared tests for goodness of fit. Chi-
squared tests show that the distribution of the nor-
malized eigenvalues λ±(G) are well modeled by a β =
1 Tracy–Widom distribution, although the other two
Tracy–Widom distributions and the standard normal
also provide good fits; see Tables 2 and 3.

The χ2 values are somewhat large for small N ≤ 100,
but once N ≥ 200, they are small for all families except
for the connected bipartite graphs, indicating good fits.
For the connected bipartite graphs, the χ2 values are
small for N large. This indicates that perhaps the rate
of convergence is slower for connected bipartite graphs;
we shall see additional differences in behavior for these
graphs below.

Further, on average, the χ2 values are lowest for the
β = 1 case. While this suggests that the correct model

N TWnorm
1 TWnorm

2 TWnorm
4 N(0, 1)

mean (all N) 27.0 24.5 24.0 29.4
median (all N) 21.2 19.1 20.0 26.5
mean (last 10) 21.7 22.2 23.7 35.0

median (last 10) 21.2 20.9 22.4 35.4

TABLE 2. Summary of χ2 values: each set is 1000 random
3-regular graphs from CIN,3 with N ∈ {26, 32, 40, 50, 64,
80, 100, 126, 158, 200, 252, 316, 400, 502, 632, 796, 1002,
1262, 1588, 2000, 2516, 3168, 3990, 5022, 6324, 7962,
10022, 12618, 15886, 20000}. The sample distribution
in each set is normalized to have mean 0 and variance
1, and is then compared to normalized Tracy–Widom
distributions TWnorm

β (β ∈ {1, 2, 4}, normalized to have
mean 0 and variance 1) and the standard normal N(0, 1).
There are 19 degrees of freedom, and the critical values
are 30.1435 (for α = 0.05) and 36.1908 (for α = 0.01).
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N CIN,3 SCIN,3 CBN,3 SCBN,3

mean (all N) 27 19 78 19
s.d. (all N) 21 8 180 7

mean (last 10) 22 18 44 17
s.d. (last 10) 11 6 37 8

mean (last 5) 23 18 32 14
s.d. (last 5) 13 8 23 1

TABLE 3. Summary of χ2 values: each set is 1000 random
3-regular graphs with N vertices from our families, with
N ∈ {26, 32, 40, 50, 64, 80, 100, 126, 158, 200, 252, 316,
400, 502, 632, 796, 1002, 1262, 1588, 2000, 2516, 3168,
3990, 5022, 6324, 7962, 10022, 12618, 15886, 20000}.
The sample distribution in each set is normalized to have
mean 0 and variance 1, and is then compared to the nor-
malized β = 1 Tracy–Widom distributions. There are
19 degrees of freedom, and the critical values are 30.1435
(for α = 0.05) and 36.1908 (for α = 0.01).

is a β = 1 Tracy–Widom distribution, the data are not
conclusive.

1.3.2 Percentage of eigenvalues to the left of the mean.
As remarked, the four distributions, while close, differ in
the percentage of their mass to the left of the mean. By
studying the percentage of normalized eigenvalues in a
sample less than the sample mean, we see that the β = 1
distribution provides a better fit to the observed results;
however, with sample sizes of 1000, all four distributions
provide good fits (see Table 4).

We therefore increased the number of graphs in the
samples from 1000 to 100,000 for N ∈ {1002, 2000, 5002}
for the four families; increasing the sample size by a fac-
tor of 100 gives us an additional decimal digit of accuracy
in measuring the percentages. See Table 5 for the results;
this is the most important experiment in the paper, show-
ing that for the families CIN,d, SCIN,d, and SCBN,d, the
β = 1 Tracy–Widom distribution provides a significant
fit, but the other three distributions do not.

Thus we have found a statistic that is sensitive to very
fine differences among the four normalized distributions.
However, none of the four candidate distributions pro-
vides a good fit for the family CBN,d for these values
of N . For this family the best fit is still with β = 1,
but the z statistics are high (between 3 and 4), which
suggests either that the distribution of eigenvalues for
d-regular connected bipartite graphs might not be given
by a β = 1 Tracy–Widom distribution or that the rate of
convergence is slower; note that our χ2 tests suggest that
the rate of convergence is indeed slower for the connected
bipartite family. In fact, upon increasing N to 10,022,
we obtain a good fit for connected bipartite graphs; the
z statistic is about 2 for β = 1, and almost 5 or larger

1.5 2.5 3 3.5 4
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0.1

0.15

0.2

0.25

FIGURE 3. Sample correlation coefficients of λ±(G):
each set is 1000 random 3-regular graphs with N ver-
tices, chosen according to the specified construction.
We plot the sample correlation coefficient versus the
logarithm of the number of vertices. The CIN,3 are
stars and SCIN,3 are triangles.

for the other three distributions. We shall see below that
there are other statistics for which this family behaves
differently from the other three, strongly suggesting that
its rate of convergence is slower.

1.3.3 Independence of λ±(G). A graph is Ramanu-
jan if |λ±(G)| ≤ 1. For bipartite graphs it suffices to
study λ+(G), since λ−(G) = −λ+(G). For the nonbi-
partite families, however, we must investigate both. For
our nonbipartite families we computed the sample cor-
relation coefficient12 for λ+(G) and λ−(G) as G varied
through our random sample of 1000 graphs with N ver-
tices. For the SCIN,d families we found the correlation
coefficients to be quite small; when d = 3 they were in
[−.0355, 0.0827]. For the CIN,d the values were larger,
but still small. When d = 3, the correlation coefficients
were in [−0.0151, 0.2868], and all but two families with at
least 5000 vertices had a correlation coefficient less than
0.1 in absolute value (and the values were generally de-
creasing with increasing N); see Figure 3 for the values.
Thus the data suggest that the λ±(G) are independent
(for nonbipartite families).

1.3.4 Percentage of graphs that are Ramanujan. Ex-
cept occasionally for the connected bipartite families, al-
most always s±(FN,d) > m±(FN,d). Recall our normal-
ization of the eigenvalues from (1–2):

λ̃±(G) =
λ±(G) − 2

√
d − 1 + cμ,N,d,±Nm±(FN,d)

cσ,N,d,±Ns±(FN,d)
;

12The sample correlation coefficient rxy is Sxy/
√

SxxSyy, where
Suv =

∑n
i=1(ui − u)(vi − v) (with u the mean of the ui’s). By

Cauchy–Schwarz, |rxy| ≤ 1. If the xi and yi are independent, then
rxy = 0, though the converse need not hold.
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N Observed mass zTW,1 zTW,2 zTW,4 zStdNorm

26 0.477 −2.700 −2.405 −2.155 −1.455
100 0.522 0.149 0.442 0.691 1.391
400 0.522 0.149 0.442 0.691 1.391

1588 0.526 0.402 0.695 0.944 1.644
6324 0.524 0.275 0.568 0.818 1.518

20000 0.551 1.984 2.277 2.526 3.226

mean (last 10) 0.519 0.861 0.873 0.960 1.341
median (last 10) 0.519 0.696 0.758 0.854 1.170

mean (last 5) 0.514 1.186 1.126 1.076 1.138
median (last 5) 0.508 1.434 1.140 0.890 0.506

TABLE 4. The mass to the left of the sample mean for λ+(G) from each set of 1000 3-regular graphs from CIN,3 and the
corresponding z statistics comparing that to the mass to the left of the mean of the three Tracy–Widom distributions
(0.519652 for β = 1, 0.515016 for β = 2, 0.511072 for β = 4) and the standard normal (0.500). We use the absolute value
of the z statistics for the means and medians. For a two-sided z test, the critical thresholds are 1.96 (for α = 0.05) and
2.575 (for α = 0.01). For brevity we report only some of the values for N ∈ {26, 32, 40, 50, 64, 80, 100, 126, 158, 200,
252, 316, 400, 502, 632, 796, 1002, 1262, 1588, 2000, 2516, 3168, 3990, 5022, 6324, 7962, 10022, 12618, 15886, 20000},
but list the mean and medians for the last five and last ten values of N .

CIN,3 zTW,1 zTW,2 zTW,4 zStdNorm Dis.
1002 1.2773 4.2103 6.7044 13.7053 0
2000 0.9671 3.9002 6.3944 13.3954 0
5022 0.3152 3.2485 5.7428 12.744 0

SCIN,3 zTW,1 zTW,2 zTW,4 zStdNorm Dis.
1002 −0.7481 2.1855 4.6801 11.6815 0
2000 −0.5899 2.3437 4.8382 11.8396 0
5022 −1.0456 1.8881 4.3827 11.3842 0
CBN,3 zTW,1 zTW,2 zTW,4 zStdNorm Dis.
1002 3.151 6.083 8.577 15.577 0
2000 3.787 6.719 9.213 16.213 1
5022 3.563 6.495 8.989 15.989 4
10022 2.049 4.982 7.476 14.477 0
SCBN,3 zTW,1 zTW,2 zTW,4 zStdNorm Dis.

1002 −1.963 0.971 3.465 10.467 0
2000 −0.767 2.167 4.661 11.663 2
5022 −0.064 2.869 5.364 12.365 4

TABLE 5. The mass to the left of the sample mean of
λ+(G) for each set of 100,000 3-regular graphs from our
four families (CIN,3, SCIN,3, CBN,3 and SCBN,3), and
the corresponding z statistics comparing that to the mass
to the left of the mean of the three Tracy–Widom distri-
butions (0.519652 for β = 1, 0.515016 for β = 2, 0.511072
for β = 4) and the standard normal (0.500). The ab-
breviation Dis., for “discarded,” refers to the number of
graphs for which matlab’s algorithm to determine the
second largest eigenvalue did not converge; this was never
greater than 4 for any data set. For a two-sided z test,
the critical thresholds are 1.96 (for α = 0.05) and 2.575
(for α = 0.01).

Log-log plots of the differences between the sample means
and the predicted values together with standard devi-
ations yield behavior that is approximately linear as a
function of log N , supporting the claimed normalization.
Further, the exponents appear to be almost constant in
N , depending mostly only on d (see Figure 4).
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FIGURE 4. Sample means of λ+(G): each set is 1000
random 3-regular graphs with N vertices, chosen ac-
cording to the specified construction. The first plot
is the mean versus the number of vertices; the second
plot is a log-log plot of the mean and the number of
vertices; CIN,3 are stars, SCIN,3 are triangles, CBN,3

are diamonds, SCBN,3 are boxes; the dashed line is
2
√

2 ≈ 2.8284.

If this behavior holds as N → ∞, then in the
limit, approximately 52% of the time we have λ+(G) ≤
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FIGURE 5. Percentage Ramanujan: each set is 1000 ran-
dom 3-regular graphs with N vertices, chosen according
to the specified construction. The first plot is the per-
centage versus the number of vertices; the second plot is
the percentage versus the logarithm of the number of ver-
tices. Here CIN,3 are stars, SCIN,3 are diamonds, CBN,3

are triangles, SCBN,3 are boxes.

2
√

d − 1 (and similarly, about 52% of the time, |λ−(G)| ≤
2
√

d − 1). Since λ−(G) = −λ+(G) for bipartite graphs,
this implies that about 52% of the time, bipartite graphs
will be Ramanujan. Nonbipartite families behave differ-
ently. Assuming that λ+(G) and λ−(G) are independent,
the probability that both are at most 2

√
d − 1 in absolute

value is about 27% (52% · 52%). See Figure 5 for plots of
the percentages and Conjecture 1.3 for exact statements
of these probabilities. Unfortunately, the rate of conver-
gence is too slow for us to see the conjectured limiting
behavior.

1.3.5 Conjecture. Based on our results, we are led to
the following conjecture.

Conjecture 1.3. Let FN,d be one of the following families
of d-regular graphs: CIN,d, SCIN,d, SCBN,d (see Remark
1.1 for definitions). The distribution of λ±(G), appro-
priately normalized as in (1–2), converges as N → ∞
to the β = 1 Tracy–Widom distribution (and not to

a normalized β = 2 or β = 4 Tracy–Widom distribu-
tion or the standard normal distribution). For nonbi-
partite graphs, λ+(G) and λ−(G) are statistically inde-
pendent. The normalization constants have cμ,N,d,± < 0
and s±(FN,d) > m±(FN,d), implying that in the limit
as N → ∞, approximately 52% of the graphs in the bi-
partite families and 27% otherwise are Ramanujan (i.e.,
λ(G) ≤ 2

√
d − 1); the actual percentage for the bipar-

tite graphs is the percentage of mass in a β = 1 Tracy–
Widom distribution to the left of the mean (to six digits,
it is 51.9652%), and the square of this otherwise.

Remark 1.4. The evidence for the above conjecture is
very strong for three families. While the conjecture is
likely to be true for the connected bipartite graphs as
well, different behavior is observed for smaller N , though
this may simply indicate a slower rate of convergence. For
example, when we studied the percentage of eigenvalues
to the left of the sample mean, this was the only family
for which we did not obtain good fits to the normalized
β = 1 Tracy–Widom distribution for N ≤ 5002, though
we did obtain good fits at N = 10022 (see Table 5).

2. RESULTS FOR 3-REGULAR GRAPHS

For

N ∈ {26, 32, 40, 50, 64, 80, 100, 126, 158, 200, 252, 316,

400, 502, 632, 796, 1002, 1262, 1588, 2000, 2516,

3168, 3990, 5022, 6324, 7962, 10022, 12618, 15886,

20000},

we randomly chose 1000 3-regular graphs from the fami-
lies CIN,3, SCIN,3, CBN,3, and SCBN,3. We analyzed the
distributions of λ±(G) for each sample using matlab’s
eigs function and investigated whether it is well mod-
eled by the β = 1 Tracy–Widom distribution. Further,
we calculated what percentage of graphs were Ramanu-
jan as well as what percentage of graphs had |λ±(G)| less
than the sample mean; these statistics help elucidate the
behavior as the number of vertices tends to infinity.

2.1 Distribution of λ±(G)

In Figure 6 we plot the histogram distribution of λ+(G)
for CIN,3; the plots for the other families and for λ−(G)
are similar. This is a plot of the actual eigenvalues. To
determine whether the β = 1 Tracy–Widom distribution
(or another value of β or even a normal distribution)
gives a good fit to the data, we rescale the samples to
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FIGURE 6. Distribution of λ+(G) for 1000 graphs ran-
domly chosen from the ensemble CIN,3 for various N .
The vertical line is 2

√
2 and N ∈ {3990, 5022, 6324,

7962, 10022, 12618}. The curve with the lowest maxi-
mum value corresponds to N = 3990, and as N increases,
the maximum value increases (so N = 12618 corresponds
to the curve with greatest maximum value).

have mean 0 and variance 1, and then compare the re-
sults to scaled Tracy–Widom distributions (and the stan-
dard normal). In Table 2 we study the χ2 values for the
fits from the three Tracy–Widom distributions and the
normal distribution.

As Table 2 shows, the three normalized Tracy–Widom
distributions all give good fits, and even the standard
normal gives a reasonable fit.13 We divided the data into
20 bins and calculated the χ2 values; with 19 degrees of
freedom. The α = 0.05 threshold is 30.1435, and the
α = 0.01 threshold is 36.1908.14 We investigate below
another statistic that is better able to distinguish the
four candidate distributions. We note that the normal-
ized β = 1 distribution gives good fits as N → ∞ for all
the families, as indicated by Table 3. The fits are good
for modest N for all families but the connected bipar-
tite graphs; there the fit is poor until N is large. This
indicates that the connected bipartite graphs may have
slower convergence properties than the other families.

In Table 1 we have listed the mass to the left of the
mean for the Tracy–Widom distributions; it is 0.519652
for β = 1, 0.515016 for β = 2, and 0.511072 for β = 4
(note that it is 0.5 for the standard normal). Thus look-

13While the data displayed above are for λ+(G), the χ2 values
for λ−(G) are comparable.

14We could use the (pessimistic) Bonferroni adjustments for
multiple comparisons (for ten comparisons these numbers become
38.5822 and 43.8201); we do not do this, because the fits are already
quite good.

ing at the mass to the left of the sample mean provides
a way to distinguish the four candidate distributions; we
present the results of these computations for each set of
1000 graphs from CIN,3 in Table 4 (the other families
behave similarly). If θobs is the observed percentage of
the sample data (of size 1000) below the sample mean,
then the z statistic

z = (θobs − θpred)
/√

θpred · (1 − θpred)/1000

measures whether the data support that θpred is the per-
centage below the mean.

While the data in Table 4 suggest that the β = 1
Tracy–Widom is the best fit, the other three distribu-
tions provide good fits as well. Since we expect the fit
to improve as N increases, the last few rows of the ta-
ble are the most important. In five of the last ten rows,
the smallest z statistic is with the β = 1 Tracy–Widom
distribution. Further, the average of the absolute values
of the z-values for the last ten rows are 0.861 (β = 1),
0.873 (β = 2), 0.960 (β = 4), and 1.341 (for the standard
normal), again supporting the claim that the best fit is
from the β = 1 Tracy–Widom distribution.

In order to obtain more-conclusive evidence as to
which distribution best models the second-largest nor-
malized eigenvalue, we considered larger sample sizes
(100,000 instead of 1000) for all four families; see Ta-
ble 5 for the analysis. While there is a sizable increase
in run time (it took on the order of a few days to run
the simulations for the three different values of N for the
four families), we gain a decimal digit of precision in esti-
mating the percentages. This will allow us to statistically
distinguish the four candidate distributions.

This is the most important test in the paper. The
results are striking, and strongly support that only the
β = 1 Tracy–Widom distribution models λ±(G) (the re-
sults for λ−(G) were similar to those for λ+(G)). Except
for SCB1002,3, for each of the families and each N , the
z statistic increases in absolute value as we move from
β = 1 to β = 2 to β = 4 to the standard normal. Fur-
ther, the z-values indicate excellent fits with the β = 1
distribution for all N and all families except the 3-regular
connected bipartite graphs; no other value of β or the
standard normal gives as good a fit. In fact, the other
fits are often terrible. The β = 4 and standard normal
typically have z-values greater than 4; β = 2 gives a bet-
ter fit, but it is significantly worse than β = 1.

Thus, except for 3-regular connected bipartite graphs,
the data are consistent only with a β = 1 Tracy–Widom
distribution. In the next subsections we shall study the
sample means, standard deviations, and percentage of
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graphs in a family that are Ramanujan. We shall see
that the 3-regular connected bipartite graphs consistently
behave differently from the other three families (see in
particular Figure 5).

2.2 Means and Standard Deviations

In Figure 4 we have plotted the sample means of sets of
1000 3-regular graphs chosen randomly from CIN,3 (con-
nected perfect matchings), SCIN,3 (simple connected
perfect matchings), CBN,3 (connected bipartite), and
SCBN,3 (simple connected bipartite) against the num-
bers of vertices.

Because of analogies with similar systems whose
largest eigenvalue satisfies a Tracy–Widom distribution,
we expect the normalization factor for the second-largest
eigenvalue to be similar to that in (1–3). Since we do not
expect that the factors will still be N1/2 and N1/6, we
consider the general normalization given in (1–2); for a
3-regular graph in one of our families, we study

λ̃±(G) =
|λ±(G)| − 2

√
2 + cμ,N,3,±Nm±(FN,3)

cσ,N,3,±Ns±(FN,3)
.

Remark 2.1. The most important parameters are the ex-
ponents m±(FN,3) and s±(FN,3); previous work [Fried-
man 03] (and our investigations) suggests that cμ,N,3,± <

0. Let us assume that in the limit as the number of
vertices tends to infinity, the distributions of |λ±(G)|
converge to the β = 1 Tracy–Widom distribution and
that cμ,N,3,± < 0. If s±(FN,3) > m±(FN,3), then in
the limit we expect about 52% of the graphs to have
λ+(G) ≤ 2

√
2 (and similarly for |λ−(G)|), since this

is the mass of the β = 1 Tracy–Widom distribution
to the left of the mean. To see why this is true, note
that if μFN,3,+

and σFN,3,+
are the mean and standard

deviation of the data set of λ+(G) for all G ∈ FN,3,
then μFN,3,+

≈ 2
√

2 − cμ,N,d,+Nm+(FN,3) and σFN,3,+
≈

cσ,N,3,+Ns+(FN,3), so

2
√

2 ≈ μFN,3,+ +
cμ,N,3,+

cσ,N,3,+
·Nm+(FN,3)−s+(FN,3) ·σFN,3,+ .

Thus the Ramanujan threshold, 2
√

2, will fall approx-
imately cμ,N,3,+

cσ,N,3,+
Nm+(FN,3)−s+(FN,3) standard deviations

away from the mean. In the limit as N goes to infin-
ity, we see that the threshold falls to zero to the right of
the mean if m+(FN,3) < s+(FN,3), but infinitely many
standard deviations if m+(FN,3) > s+(FN,3).

We record (some of) the best-fit exponents in Table 6;
the remaining values are similar. To simplify the calcu-
lations, we changed variables and did a log-log plot.

Several trends can be seen from the best-fit exponents
in Table 6. Most of the time, s±(FN,3) > m±(FN,3),
which indicates that it is more likely in the limit that
52% (and not all) of the bipartite graphs are Ramanu-
jan (and about 27% of the nonbipartite). Except for
CBN,3 (connected bipartite graphs), only once do we have
s+(FN,3) < m+(FN,3); for CBN,3, we have s+(FN,3) <

m+(FN,3) approximately half of the time. Further, the
best-fit exponents s+(FN,3) and m+(FN,3) are mostly
monotonically increasing with increasing N (recall that
all exponents are negative), and cμ,N,3,+ and cσ,N,3,+ do
not seem to get too large or small (these are the least
important of the parameters, and are dwarfed by the ex-
ponents).

This suggests that either the relationship is more com-
plicated than we have modeled, or N is not large enough
for us to see the limiting behavior. While our largest
N is 20,000, log(20000) is only about 10. Thus we may
not have gone far enough to see the true behavior. If
the correct parameter is log N , it is unlikely that larger
simulations will help.

In Figure 7 we have plotted the N -dependence of the
logarithm of the difference of the mean from 2

√
2 ver-

sus the logarithm of −cμ,N,3,+Nm+(CIN,3), as well as the
best-fit lines obtained using all the data and just the
last ten data points. As the plot shows, the slope of the
best-fit line (the key parameter for our investigations)
noticeably changes in the region we investigate, suggest-
ing either that we have not gone high enough to see the
limiting, asymptotic behavior or that it is not precisely
linear.
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FIGURE 7. Dependence on N of the logarithm of the

mean of λ+(G) versus log
(
−cμ,N,3,+Nm+(CIN,3)

)
, show-

ing the best-fit lines using all 30 values of N as well as
just the last 10 values.
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N CIN,3 SCIN,3 CBN,3 SCBN,3 CIN,3 SCIN,3 CBN,3 SCBN,3

{26, . . . , 20000} −0.792 −0.830 −0.723 −0.833 −0.718 −0.722 −0.709 −0.729

{80, . . . , 20000} −0.756 −0.790 −0.671 −0.789 −0.701 −0.700 −0.697 −0.706

{252, . . . , 20000} −0.727 −0.761 −0.638 −0.761 −0.695 −0.688 −0.688 −0.696

{26, . . . , 64} −1.045 −1.097 −1.065 −1.151 −0.863 −0.906 −0.794 −0.957

{80, . . . , 200} −0.887 −0.982 −0.982 −0.968 −0.769 −0.717 −0.719 −0.750

{232, . . . , 632} −0.801 −0.885 −0.737 −0.842 −0.688 −0.713 −0.714 −0.734

{796, . . . , 2000} −0.771 −0.819 −0.649 −0.785 −0.606 −0.719 −0.705 −0.763

{2516, . . . , 6324} −0.745 −0.788 −0.579 −0.718 −0.714 −0.671 −0.770 −0.688

{7962, . . . , 20000} −0.719 −0.692 −0.584 −0.757 −0.592 −0.707 −0.671 −0.648

TABLE 6. The graph sizes are chosen from {26, 32, 40, 50, 64, 80, 100, 126, 158, 200, 252, 316, 400, 502, 632, 796,
1002, 1262, 1588, 2000, 2516, 3168, 3990, 5022, 6324, 7962, 10022, 12618, 15886, 20000}. The first four columns are
the best-fit values of m(FN,3); the last four columns are the best-fit values of s(FN,3). Bold entries are those for which
s(FN,3) < m(FN,3); all other entries are for s(FN,3) > m(FN,3).

2.3 Independence of λ±(G) in Nonbipartite Families

In determining what percentage of graphs in a nonbi-
partite family is Ramanujan, it is important to know
whether λ+(G) and λ−(G) are statistically independent
as G varies in a family. For example, if they are perfectly
correlated, the percentage could be 100%, while if they
are perfectly anticorrelated, it could be 0%.

In Figure 3 we have plotted the sample correlation
coefficient for λ±(G) for the nonbipartite families. For
CIN,3 the values are generally positive and decreasing
with increasing N ; for SCIN,3 the data appear uncorre-
lated, with very small coefficients oscillating about zero.
As another test we compared the product of the observed
probabilities that λ+(G) < 2

√
2 and |λ−(G)| < 2

√
2 to

the observed probability that λ(G) < 2
√

2; these values
were virtually identical, which is what we would expect
if λ±(G) are statistically independent.

2.4 Percentage of Graphs That Are Ramanujan

In Figure 5 we have plotted the percentage of graphs
in each sample of 1000 from the four families that are
Ramanujan (the first plot is the percentage against the
number of vertices; the second is the percentage against
the logarithm of the number of vertices). The most in-
teresting observation is that for the most part, the prob-
ability that a random graph from the bipartite families is
Ramanujan decreases as N increases, while the probabil-
ity that a random graph from the nonbipartite families
is Ramanujan oscillates in the range.
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