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We analyze properties of the 2-adic valuations of S(n, k), the
Stirling numbers of the second kind. For fixed k ∈ N, a conjec-
tured pattern for the valuation is provided in terms of the dyadic
format of n. This conjecture is established for k = 5.

1. INTRODUCTION

Divisibility properties of integer sequences have long been
objects of interest. In contemporary language these are
expressed in terms of p-adic valuations: given a prime
p and a positive integer m, there exist unique integers
a, n, with a not divisible by p and n ≥ 0, such that
m = apn. The number n is called the p-adic valuation
of m. We write n = νp(m). Thus, νp(m) is the highest
power of p that divides m. The graph in Figure 1 shows
the function ν2(m). Here and elsewhere in this paper we
connect successive points in the graph in order to visually
convey the rises and drops of the sequence.

A celebrated example is due to Legendre [Legendre
30], who established

νp(m!) =
m− sp(m)
p− 1

.
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FIGURE 1. The 2-adic valuation of m.
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FIGURE 2. The 2-adic valuation of m!.

Here sp(m) is the sum of the base-p digits of m. In
particular,

ν2(m!) = m− s2(m). (1–1)

The reader will find in [Graham et al. 94] details about
this identity. Figure 2 shows the graph of ν2(m!), ex-
hibiting its linear growth with some oscillatory behavior.
If m = a0 +a1 ·2+a2 ·22 + · · ·+ar ·2r, with aj ∈ { 0, 1 },
so that 2r ≤ m ≤ 2r+1, then s2(m) = O(log2(m)) and
we also have

lim
m→∞

ν2(m!)
m

= 1.

Figure 3 shows the error term s2(m) = m− ν2(m!).
Legendre’s result (1–1) provides an elementary proof

of Kummer’s identity

ν2

((
m

k

))
= s2(k) + s2(m− k)− s2(m).

Not many explicit identities of this type are known.
The function νp is extended to Q by defining νp

(
a
b

)
=

νp(a)− νp(b). The p-adic metric is then given by

|r|p := p−νp(r).

It satisfies the ultrametric inequality

|r1 + r1|p ≤ max
{ |r1|p , |r2|p }

. (1–2)
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FIGURE 3. The error m− ν2(m!).

The completion of Q under this metric, denoted by
Qp, is the field of p-adic numbers. The set Zp := { x ∈
Qp : |x|p ≤ 1 } is the ring of p-adic integers.

Our interest in 2-adic valuations began with the se-
quence

bl,m :=
m∑

k=l

2k

(
2m− 2k
m− k

)(
m+ k

m

)(
k

l

)
, (1–3)

for m ∈ N and 0 ≤ l ≤ m. This sequence appears in the
evaluation of the definite integral

N0,4(a;m) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
.

In [Boros and Moll 99], it was shown that the polynomial

Pm(a) := 2−2m
m∑

l=0

bl,ma
l

satisfies

Pm(a) = 2m+3/2(a+ 1)m+1/2N0,4(a;m)/π.

The reader will find in [Boros and Moll 04] more details
on this integral.

The results on the 2-adic valuations of bl,m are ex-
pressed in terms of

Al,m :=
l!m!
2m−l

bl,m. (1–4)

The coefficients Al,m can also be written as

Al,m = αl(m)
m∏

k=1

(4k − 1)− βl(m)
m∏

k=1

(4k + 1),

for some polynomials αl, βl, with integer coefficients and
of degree l and l − 1, respectively. The next remarkable
property was conjectured in [Boros et al. 01] and estab-
lished by J. Little in [Little 05].

Theorem 1.1. All the zeros of αl(m) and βl(m) lie on the
vertical line Rem = − 1

2 .

The next theorem [Amdeberhan et al. 08] gives 2-adic
properties of Al,m.

Theorem 1.2. The 2-adic valuation of Al,m satisfies

ν2(Al,m) = ν2((m+ 1− l)2l) + l,

where (a)k = a(a+1)(a+2) · · · (a+k−1) is the Pochham-
mer symbol.
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FIGURE 4. The 2-adic valuation of C1(n).

The formula

(a)k =
(a+ k − 1)!

(a− 1)!

and Legendre’s identity (1–1) yield the following expres-
sion for ν2(Al,m).

Corollary 1.3. The 2-adic valuation of Al,m is given by

ν2(Al,m) = 3l − s2(m+ l) + s2(m− l).

There are many other examples of 2-adic valuations
considered in the literature. Henri Cohen [Cohen 99] has
discussed the sum1

Ck(n) :=
n∑

j=1

2j

jk
.

These are the partial sums of the polylogarithmic series

Lik(x) :=
∞∑

j=1

xj

jk
.

The series converges in Q2, provided that ν2(x) ≥ 1.
Cohen proves that

ν2(C1(2m)) = 2m + 2m− 4, for m ≥ 4,

and
ν2(C2(2m)) = 2m +m− 1, for m ≥ 4.

The graph in Figure 4 shows the linear growth of
ν2(C1(n)), and Figure 5 presents the error term
ν2(C1(n))− n.

In this paper we analyze the 2-adic valuation of the
Stirling numbers of the second kind S(n, k), defined for

1Cohen uses the notation sk(n), employed here in a different
context.
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FIGURE 5. The error ν2(C1(n)) − n.
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FIGURE 6. The data for S(n, 5).

n ∈ N and 0 ≤ k ≤ n as the number of ways to parti-
tion a set of n elements into exactly k nonempty subsets.
Figures 6 to 8 show the function ν2(S(n, k)) for fixed
k. These graphs indicate the complexity of the problem
considered here.

Section 7 gives a larger selection of such pictures. In
this paper we describe an algorithm that leads to a first
description of the function ν2(S(n, k)) as depicted in the
figures.
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FIGURE 7. The data for S(n, 75).
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FIGURE 8. The data for S(n, 195).

2. DYADIC m-LEVELS AND CONSTANT CLASSES
FOR STIRLING NUMBERS

In this section we introduce the concept of m-level that
will be used in the description of our main conjecture,
Conjecture 2.4.

Definition 2.1. Let k ∈ N be fixed and m ∈ N. Then for
0 ≤ j < 2m define

Cm,j := { 2mi+ j : i ∈ N }.

The first value of the index i ∈ N in the definition of Cm,j

is the smallest one that yields 2mi+ j ≥ k. For example,
for k = 5 and m = 6, we have

C6,28 = { 26i+ 28 : i ≥ 0 }.

We use the notation

ν2(Cm,j) = { ν2 (S(2mi+ j, k)) : i ∈ N }.

The classes Cm,j form a partition of N into classes
modulo 2m. For example, for m = 2, we have the four
classes

C2,0 = { 22i : i ∈ N },
C2,1 = { 22i+ 1 : i ∈ N },
C2,2 = { 22i+ 2 : i ∈ N },
C2,3 = { 22i+ 3 : i ∈ N }.

The class Cm,j is called constant if ν2(Cm,j) consists of
a single value. This single value is called the constant of
the class Cm,j .

For example, Corollary 4.2 shows that

ν2(S(4i+ 1, 5)) = 0,

independently of i. Therefore, the class C2,1 is constant.
Similarly, C2,2 is constant with ν2(C2,2) = 0.

Remark 2.2. Observe that the constant class and its con-
stant value depend on the index k. This has been omitted
in the notation for the class.

We now introduce inductively the concept of m-level.
For m = 1, the 1-level consists of the two classes

C1,0 = { 2i : i ∈ N } and C1,1 = { 2i+ 1 : i ∈ N },

that is, the even and odd integers. Assume that the
(m − 1)-level has been defined and that it consists of
the s classes

Cm−1,i1 , Cm−1,i2 , . . . , Cm−1,is
.

Each class Cm−1,ij
splits into two classes modulo 2m,

namely, Cm,ij
and Cm,ij+2m−1 . The m-level is formed by

the nonconstant classes modulo 2m.

Example 2.3. We describe the case of Stirling numbers
S(n, 10). Start with the fact that the 4-level consists of
the classes C4,7, C4,8, C4,9, and C4,14. These split into
the eight classes

C5,7, C5,23, C5,8, C5,24, C5,9, C5,25, C5,14, C5,30,

modulo 32. Then one checks that C5,23, C5,24, C5,25, and
C5,30 are all constant (with constant value 2 for each of
them). The other four classes form the 5-level:

{C5,7, C5,8, C5,9, C5,14 }.

We are now ready to state our main conjecture.

Conjecture 2.4. Let k ∈ N be fixed. Then we conjecture
that

(a) there exist a level m0(k) and an integer µ(k) such
that for any m ≥ m0(k), the number of nonconstant
classes of level m is µ(k), independently of m;

(b) moreover, for each m ≥ m0(k), each of the µ(k)
nonconstant classes splits into one constant and one
nonconstant subclass. The latter generates the next
level set.

Example 2.5. The conjecture is illustrated for k = 11.
We claim that m0(11) = 3 and µ(11) = 4. The predic-
tion is that for levels m ≥ 3, we have four nonconstant
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classes. Indeed, the classes C2,0, C2,1, C2,2, C2,3, have
nonconstant 2-adic valuation. Thus, every class in the
2-level splits according to the diagram. To compute the
next step, we observe that

ν2(C3,3) = ν2(C3,5) = { 0 },
ν2(C3,4) = ν2(C3,6) = { 1 },

so there are four constant classes. The remaining four
classes C3,0, C3,1, C3,2, and C3,7 form the 3-level. Ob-
serve that each of the four classes from the 2-level splits
into a constant class and a class that forms part of the
3-level.

This process continues. At the next step, the classes
of the 3-level split in two, giving a total of eight classes
modulo 24. For example, C3,2 splits into C4,2 and C4,10.
The conjecture states that exactly one of these classes has
constant 2-adic valuation. Indeed, the class C4,2 satisfies
ν2(C4,2) ≡ 2, and ν2(C4,10) is not constant.

Example 2.6. Figure 9 illustrates this process in the case
k = 7. The first row of the figure shows the classes at level
2. The class C2,0 has constant valuation ν2(C2,0) = 2,
and the class C2,3 satisfies ν2(C2,3) = 0. The remain-
ing two classes, namely C2,1 and C2,3, form the second
level, whose members split into the pairs {C3,1, C3,5 }
and {C3,2, C3,6 }. In each pair we find a class of con-
stant valuation and one, nonconstant, that will be split
to proceed with the diagram. The diagram shows that
m0(7) = 2 and µ(7) = 2.

Example 2.7. A case with a twist is k = 13. Level 3
has eight classes, and only three of them are constant
(one expects half of them to be so). The five remaining
classes split into ten classes, with six of them constant.
At the next splitting, that is, at level 5, we return to
the expected count with eight classes, half of which are
nonconstant. Thus, in this case, we have m0(13) = 5 and
µ(13) = 4.

Elementary Formulas. Throughout the paper we will
use several elementary properties of S(n, k):

• relation to Pochhammer:

xn =
n∑

k=0

S(n, k)(x− k + 1)k;

• an explicit formula:

S(n, k) =
1
k!

k−1∑
i=0

(−1)i

(
k

i

)
(k − i)n; (2–1)

FIGURE 9. The splitting for k = 7.

• the generating function

1
(1− x)(1− 2x)(1− 3x) · · · (1− kx) =

∞∑
n=1

S(n, k)xn;

• the recurrence

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (2–2)

Lengyel [Lengyel 94] conjectured, and De Wan-
nemacker [De Wannemacker 05] proved, a special case
of the 2-adic valuation of S(n, k):

ν2 (S(2n, k)) = s2(k)− 1, (2–3)

independently of n. Here s2(k) is the sum of the binary
digits of k. A numerical experiment suggests that

ν2 (S(2n + 1, k + 1)) = s2(k)− 1 (2–4)

is a companion of (2–3). In the general case, De Wan-
nemacker [De Wannemacker 07] established the inequal-
ity

ν2 (S(n, k)) ≥ s2(k)− s2(n), 0 ≤ k ≤ n. (2–5)

The difference in (2–5) is more regular if k−1 is close to a
power of 2. Figure 10 shows the (irregular) case k = 101,
and Figure 11 shows the smoother case k = 129.
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FIGURE 10. De Wannemacker difference for k = 101.
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FIGURE 11. De Wannemacker difference for k = 129.

3. THE ELEMENTARY CASES 1 ≤ k ≤ 4

This section presents, for the sake of completeness, the
2-adic valuation of S(n, k) for 1 ≤ k ≤ 4. The arguments
are all elementary.

Lemma 3.1. The Stirling numbers of order 1 are given by
S(n, 1) = 1, for all n ∈ N. Therefore

ν2(S(n, 1)) = 0.

Proof: There is a unique way to partition a set of n
elements into one nonempty set: take them all.

Lemma 3.2. The Stirling numbers of order 2 are given by
S(n, 2) = 2n − 1, for all n ∈ N. Therefore

ν2(S(n, 2)) = 0.

Proof: The formula for S(n, 2) comes from (2–1). It can
also be established by induction. Using the recurrence

(2–2) and Lemma 3.1, we have

S(n, 2) = S(n− 1, 1) + 2S(n− 1, 2)

= 1 + 2(2n−1 − 1) = 2n − 1,

completing the proof.

Lemma 3.3. The Stirling numbers of order 3 are given by

S(n, 3) =
1
2
(3n−1 − 2n + 1).

Moreover,

ν2(S(n, 3)) =

{
0 if n is odd,
1 if n is even.

Proof: The expression for S(n, 3) comes from (2–1). An
inductive proof also follows directly from the recurrence
(2–2),

S(n, 3) = S(n− 1, 2) + 3S(n− 1, 3), (3–1)

and Lemma 3.2. To prove the expression for ν2(S(n, 3))
we iterate the recurrence and obtain

2n − 1 = S(n, 3)−
N−1∑
k=1

3k(2n−k − 1)− 3NS(n−N, 3),

and with N = n− 1 we have

S(n, 3) = 2n − 1−
n−2∑
k=1

3k(2n−k − 1).

If n is odd, then S(n, 3) is odd and ν2(S(n, 3)) = 0.
For n even, the recurrence (3–1) yields

S(n, 3) = 2n−1 + 3 · 2n−2 − 4 + 32S(n− 2, 3). (3–2)

As an inductive step, assume that S(n − 2, 3) = 2Tn−2,
with Tn−2 odd. Then (3–2) yields

1
2
S(n, 3) = 2n−2 + 3 · 2n−3 + 32Tn−2 − 2,

and we conclude that S(n, 3)/2 is an odd integer. There-
fore ν2(S(n, 3)) = 1 as claimed.

We now present a second proof of this result using
elementary properties of the valuation ν2. In particular,
we use the ultrametric inequality

ν2(x1 + x2) ≥ min { ν2(x1), ν2(x2) } . (3–3)
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The inequality is strict unless ν(x1) = ν2(x2). This in-
equality is equivalent to (1–2).

Second proof of Lemma 3.3: The powers of 3 modulo 8
satisfy

3m + 1 ≡ 2 + (−1)m+1 mod 8,

because 32k ≡ 1 mod 8. Therefore 3m + 1 = 8t + 3 +
(−1)m+1, for some t ∈ Z. Now

ν2(8t) = 3 + ν2(t) > ν2(3 + (−1)m+1),

and the ultrametric inequality (3–3) yields

ν2(3m + 1) = ν2(3 + (−1)m+1) =

{
2 if m is odd,
1 if m is even.

(3–4)

The Stirling numbers S(n, 3) are given by

2S(n, 3) = 3n−1 + 1− 2n

and ν2(2n) = n > 2 ≥ ν2(3n−1 + 1). We conclude that

ν2(S(n, 3)) = ν2(3n−1 + 1− 2n)− 1 = ν2(3n−1 + 1)− 1.

The result now follows from (3–4). �

We now discuss the Stirling number of order 4.

Lemma 3.4. The Stirling numbers of order 4 are given by

S(n, 4) =
1
6
(4n−1 − 3n − 3 · 2n+1 − 1).

Moreover,

ν2(S(n, 4)) =

{
1 if n is odd,
0 if n is even.

That is, ν2(S(n, 4)) = 1− ν2(S(n, 3)).

Proof: The expression for S(n, 4) comes from (2–1). To
establish the formula for ν2(S(n, 4)) we use the recur-
rence (2–2) in the case k = 4:

S(n, 4) = S(n− 1, 3) + 4S(n− 1, 4). (3–5)

For n even, the value S(n − 1, 3) is odd, so that S(n, 4)
is odd and ν2(S(n, 4)) = 0. For n odd, S(n, 4) is even,
since S(n − 1, 3) is even. The recurrence (3–5) is now
written as

1
2
S(n, 4) =

1
2
S(n− 1, 3) + 2S(n− 1, 4).

The value ν2(S(n− 1, 3)) = 1 shows that the right-hand
side is odd, yielding ν2(S(n, 4)) = 1.
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FIGURE 12. The 2-adic valuation of S(n, 5).

4. THE STIRLING NUMBERS OF ORDER 5

The elementary cases discussed in the previous sec-
tion are the only ones for which the 2-adic valuation
ν2(S(n, k)) is easy to compute. The first nontrivial case
occurs when k = 5. The graph in Figure 12 gives
ν2(S(n, 5)), and we now explore its properties.

The 1-level consists of the two classes

{C1,0, C1,1 }.

These two classes split into {C2,0, C2,1, C2,2, C2,3 } mod-
ulo 4. The parity of S(n, 5) determines two of them.

Lemma 4.1. The Stirling numbers S(n, 5) are given by

S(n, 5) =
1
24

(5n−1 − 4n + 2 · 3n − 2n+1 + 1).

They satisfy

S(n, 5) ≡
{

1 mod 2 if n ≡ 1 or 2 mod 4,
0 mod 2 if n ≡ 3 or 0 mod 4.

Proof: The explicit formula (2–1) yields the expression
for S(n, 5). The recurrence

S(n, 5) = S(n− 1, 4) + 5S(n− 1, 5)

and the parity

S(n, 4) ≡
{

1 mod 2 if n ≡ 0 mod 2,
0 mod 2 if n ≡ 1 mod 2,

give the result by induction.

Corollary 4.2. The Stirling numbers S(n, 5) satisfy

ν2(S(4n+ 1, 5)) = ν2(S(4n+ 2, 5)) = 0, for all n ∈ N.
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The corollary states that the classes C2,1 and C2,2 are
constant, so the 2-level is

{C2,0, C2,3 }.
This confirms part of the main conjecture; herem0 = 3

in view of 22 < 5 ≤ 23, and the first level at which we
find constant classes is m0 − 1 = 2.

Remark 4.3. Corollary 4.2 reduces the discussion of
ν2(S(n, 5)) to the indices n ≡ 0 or 3 mod 4. These two
branches can be treated in parallel. Introduce the nota-
tion

qn := ν2(S(n, 5)),

and consider the table of values

X := { q4i, q4i+3 : i ≥ 2 }.
This begins

X = { 1, 1, 3, 3, 1, 1, 2, 2, 1, 1,6,7, 1, 1, . . . },
and after a while it continues as

X = { . . . , 1, 1, 2, 2, 1, 1,11,6, 1, 1, 2, 2, . . . }.
We observe that q4i = q4i+3 for most indices.

Definition 4.4. The index i is called exceptional if q4i �=
q4i+3.

The first exceptional index is i = 7, where q28 = 6 �=
q31 = 7. The list of exceptional indices continues as
follows: { 7, 39, 71, 103, . . . }.

Conjecture 4.5. The set of exceptional indices is { 32j +
7 : j ≥ 1 }.

We now consider the class

C2,0 := { q4i = ν2(S(4i), 5) : i ≥ 2 },
where we have omitted the first term S(4, 5) = 0. The
class C2,0 begins

C2,0 = { 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, . . . },
and it splits according to the parity of the index i into

C3,4 = { q8i+4 : i ≥ 1 } and C3,0 = { q8i : i ≥ 1 }.
The data suggest that C3,0 is constant. This is easy to
check.

Proposition 4.6. The Stirling numbers of order 5 satisfy

ν2(S(8i, 5)) = 1, for all i ≥ 1.

Proof: We analyze the identity

24S(8i, 5) = 58i−1 − 48i + 2 · 38i − 28i+1 + 1

modulo 32. Using 58 ≡ 1 and 57 ≡ 13, we obtain 58i−1 ≡
13. Also, 48i ≡ 28i+1 mod 0. Finally, 38i ≡ 812i ≡ 172i ≡
1. Therefore

58i−1 − 48i + 2 · 38i − 28i+1 + 1 ≡ 16 mod 32.

We obtain that 24S(8i, 5) = 32t + 16 for some t ∈
N, and this yields 3S(8i, 5) = 2(2t + 1). Therefore
ν2(S(8i, 5)) = 1.

We now consider the class C3,4.

Proposition 4.7. The Stirling numbers of order 5 satisfy

ν2(S(8i+ 4, 5)) ≥ 2, for all i ≥ 1.

Proof: We analyze the identity

24S(8i+ 4, 5) = 58i+3 − 48i+4 + 2 · 38i+4 − 28i+5 + 1

modulo 32. Using 58 ≡ 1, 53 ≡ 29, 38 ≡ 1, 34 ≡ 17, and
24 ≡ 16 modulo 32, we obtain

24S(8i+ 4, 5) ≡ 0 mod 32.

Therefore 24S(8i + 4, 5) = 32t for some t ∈ N, and this
yields ν2(S(8i+ 4, 5) ≥ 2.

Note 4.8. In [Lengyel 94] it is established that

ν2(k!S(n, k)) = k − 1,

for n = a2q, a odd, and q ≥ k − 2. In the special case
k = 5 this yields ν2(S(n, 5)) = 1 for n = a2q and q ≥ 3.
These values of n have the form n = 8a · 2q−3, so this is
included in Proposition 4.6.

Remark 4.9. A similar argument yields

ν2(S(8i+ 3, 5)) = 1 and ν2(S(8i+ 7, 5)) ≥ 2.

We conclude that the 3-level is

{C3,4, C3,7 }.

This confirms the main conjecture: each of the classes of
the 2-level produces a constant class and a second one in
the 3-level.
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We now consider the class C3,4 and its splitting as C4,4

and C4,12. The data for C3,4 begin

C3,4 = { 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 11,

2, 3, 2, . . . }.
This suggests that the values with even index are all 2.
This can be verified.

Proposition 4.10. The Stirling numbers of order 5 satisfy

ν2(S(16i+ 4, 5)) = 2, for all ≥ 1.

Proof: We analyze the identity

24S(16i+ 4, 5) = 516i+3 − 416i+4 + 2 · 316i+4 − 216i+5 + 1

modulo 64. Using 516 ≡ 1, 53 ≡ 61, 316 ≡ 1, and 34 ≡ 17,
we obtain

516i+3 − 416i+4 + 2 · 316i+4 − 216i+5 + 1 ≡ 32 mod 64.

Therefore 24S(16i + 4, 5) = 64t + 32 for some t ∈ N.
This gives 3S(16i+ 4, 5) = 4(2t+ 1), and it follows that
ν2(S(16i+ 4, 5)) = 2.

Note 4.11. A similar argument shows that

ν2(S(16i+ 12, 5)) ≥ 3

and also

ν2(S(16i+ 7, 5)) = 2 and ν2(S(16i+ 15, 5)) ≥ 3.

Therefore the 4-level is {C4,12, C4,15 }.

This splitting process of the classes can be continued,
and according to our main conjecture, the number of el-
ements in the m-level is always constant. To prove the
statement similar to Propositions 4.6 and 4.10 requires
us to analyze the congruence

24S(2mi+ j, 5) ≡ 52mi+j−1 − 42mi+j + 2 · 32mi+j

− 22mi+j+1 + 1 mod 2m+2.

This can be done for specific choices of j, namely those
giving the indices at the m-level. At the moment we can-
not predict which values of j will appear at the m-level.
In the next section we present a proof of this conjecture
for the special case k = 5.

Problem 4.12. Is there a combinatorial mechanism that
enables us to make such a binary choice for each m-level
split class?

In [Lundell 78], the Stirling-like numbers

Tp(n, k) =
k∑

j=0

(−1)k−j

(
k

j

)
jn

are studied, where the prime p is fixed and the index j is
omitted in the sum if it is divisible by p. Clarke [Clarke
95] conjectured that

νp(k!S(n, k)) = νp(T (n, k)). (4–1)

From this conjecture he derives an expression for
ν2(S(n, 5)) in terms of the zeros of the form f0,5(x) =
5 + 10 · 3x + 5x in the ring of 2-adic integers Z2.

Theorem 4.13. Let u0 and u1 be the 2-adic zeros of the
function f0,5. Then, under the assumption that conjec-
ture (4–1) holds, we have

ν2(S(n, 5)) =

{
−1 + ν2(n− u0) if n is even,
−1 + ν2(n− u1) if n is odd.

Here u0 is the unique zero of f0,5 that satisfies u0 ∈ 2Z2,
and u1 is the other zero of f0,5; it satisfies u1 ∈ 1 + 2Z2.

Clarke [Clarke 95] also obtained similar expressions
for ν2(S(n, 6)) and ν2(S(n, 7)) in terms of zeros of the
functions

f0,6 = −6− 20 · 3x − 6 · 5x

and
f0,7 = 7 + 35 · 3x + 21 · 5x + 7x.

5. PROOF OF THE MAIN CONJECTURE FOR k = 5

The goal of this section is to prove the main conjecture
in the case k = 5. The parameter m0 is 3 in view of
22 < 5 ≤ 23. In the previous section we verified that
m0− 1 = 2 is the first level for constant classes. We now
prove this splitting of classes.

Theorem 5.1. Assume m ≥ m0. Then the m-level con-
sists of exactly two split classes: Cm,j and Cm,j+2m−1 .
They satisfy

ν2(Cm,j) > m− 3 and ν2(Cm,j+2m−1) > m− 3.

Then exactly one, call it C1, satisfies

ν2(C1) = {m− 2 },

and the other one, call it C2, satisfies

ν2(C2) > m− 2.
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The proof of this theorem requires several elementary
results on 2-adic valuations.

Lemma 5.2. For m ∈ N we have ν2
(
52m − 1

)
= m+ 2.

Proof: Start at m = 1 with ν2(24) = 3. The inductive
step uses

52m+1 − 1 = (52m − 1) · (52m

+ 1).

Now 5k + 1 ≡ 2 mod 4, so that 52m

+ 1 = 2α1 with α1

odd. Thus

ν2(52m+1 − 1) = ν2(52m − 1) + ν2(52m

+ 1)

= (m+ 2) + 1 = m+ 3,

completing the proof.

The same type of argument produces the next lemmas.

Lemma 5.3. For m ∈ N, we have ν2(32m − 1) = m+ 2.

Lemma 5.4. For m ∈ N, we have ν2(52m − 32m

) = m+3.

Proof: The inductive step uses

52m+1−32m+1
=

(
52m − 32m

)
×

((
52m − 1

)
+

(
32m

+ 1
))

.

Therefore ν2(52m − 1) = m + 2 and 32m ≡ 1 mod 4,
whence ν2(32m

+ 1) = 1. We conclude that

ν2

((
52m − 1

)
+

(
32m

+ 1
))

= min{m+ 2, 1 } = 1.

We obtain

ν2(52m+1 − 32m+1
) = m+ 4,

and this concludes the inductive step.

The recurrence (2–2) for the Stirling numbers S(n, 5)
is

S(n, 5) = 5S(n− 1, 5) + S(n− 1, 4).

Iterating this result yields the next lemma.

Lemma 5.5. Let t ∈ N. Then

S(n, 5)− 5tS(n− t, 5) =
t−1∑
j=0

5jS(n− j − 1, 4).

Proof of Theorem 5.1: We have already checked the con-
jecture for the 2-level. The inductive hypothesis states
that the (m− 1)-level survivor has the form

Cm,k = { ν2(S(2mn+ k, 5)) : n ≥ 1 }

and that ν2(S(2mn + k, 5)) > m − 2. At the next level
this class splits into the two classes

Cm+1,k = { ν2(S(2m+1n+ k, 5)) : n ≥ 1 }
and

Cm+1,k+2m = { ν2(S(2m+1n+ k + 2m, 5)) : n ≥ 1 },
and every element of each of these two classes is greater
than or equal to m− 1.

We now prove that one of these classes reduces to the
singleton {m − 1 } and that every element in the other
class is strictly greater than m− 1.

The first step is to use Lemma 5.5 to compare the val-
ues of S(2m+1n+k, 5) and S(2m+1n+k+2m, 5). Define

M = 2m − 1 and N = 2m+1n+ k;

then we have

S(2m+1n+ k + 2m, 5)− 52m

S(2m+1n+ k, 5)

=
M∑

j=0

5M−jS(N + j, 4).

Proposition 5.6. With the notation as above,

ν2

( M∑
j=0

5M−jS(N + j, 4)
)

= m− 1.

Proof: The explicit formula (2–1) yields

6S(n, 4) = 4n−1 + 3 · 2n−1 − 3n − 1.

Thus

6
M∑

j=0

5M−jS(N + j, 4)

= 4N−1
(
5M+1 − 4M+1

)
+ 2N−1

(
5M+1 − 2M+1

)
− 3N × 1

2
(
5M+1 − 3M+1

)− 1
4

(
5M+1 − 1

)
.

The results in Lemmas 5.2, 5.3, and 5.4 yield

6
M∑

j=0

5M−jS(N + j, 4)

= 4N−1α1 + 2N−1α2 − 3N · 2m+2α3 − 2mα4

with αj odd integers. Write this as

6
M∑

j=0

5M−jS(N + j, 4)

= 2N−1
(
2N−1α1 + α2

)− 2m
(
4α33N + 1

)
≡ T1 + T2.
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Then ν2(T1) = N − 1 > m = ν2(T2), and we obtain

ν2

( M∑
j=0

5M−jS(N + j, 4)
)

= m− 1.

We conclude that

S(2m+1n+ k + 2m, 5)− 52m

S(2m+1n+ k, 5) = 2m−1α5,

with α5 odd. Define

X := 2−m+1S(2m+1n+ k + 2m, 5),

Y := 2−m+1S(2m+1n+ k, 5).

Then X and Y are integers and X − Y ≡ 1 mod 2, so
that they have opposite parity. If X is even and Y is
odd, we obtain

ν2
(
S(2m+1n+ k + 2m, 5)

)
> m− 1

and
ν2

(
S(2m+1n+ k, 5)

)
= m− 1.

The case X odd and Y even is similar. This completes
the proof.

6. SOME APPROXIMATIONS

In this section we present some approximations to the
function ν2(S(n, 5)). These approximations were derived
empirically, and they support our belief that 2-adic val-
uations of Stirling numbers can be well approximated by
simple integer combinations of the most basic 2-adic val-
uations, that is, of the integers.

For each prime p, define

λp(m) =
1
2

(
1− (−1)m mod p

)
.

First approximation. Define

f1(m) :=
⌊
m+ 1

2

⌋
+ 112λ2(m) + 50λ2(m+ 1).

Then ν2(S(m, 5)) and ν2(f1(m)) agree for most values.
The first time they differ is at m = 156, where

ν2(S(156, 5))− ν2(f1(156)) = 4.

The first few indices for which ν2(S(m, 5)) �= ν2(f1(m))
are { 156, 287, 412, 668, 799, . . . }.

Conjecture 6.1. Define

x1(m) = 156 + 125
⌊

4m
3

⌋
+ 6

⌊
2m+ 1

3

⌋

and
I1 = {x1(m) : m ≥ 0 }. (6–1)

Then ν2(S(m, 5)) = ν2(f1(m)) unless m ∈ I1.

The parity of the exceptions in I1 is easy to establish:
every third element is odd, and the even indices of I1 are
in the arithmetic progression 256m+ 156.
Second approximation. We now describe a new ap-
proximation to the error

err2(m, 5) := ν2(S(m, 5))− ν2(f1(m)).

Define

m3(m) := (m+ 2) mod 3,

αm := λ3(m+ 2) (1 + λ3(m)) + λ2(m+ 1)λ3(m).

Now define

f2(m) =
(

2m3

m3

)⌊
m+ 2

3

⌋
+ 208λ3(m+ 1)

+ 27λ2(m)λ3(m).

The next conjecture improves the prediction of Con-
jecture 6.1.

Conjecture 6.2. Define

err2(x1(m)) := ν2(S(x1(m), 5)− (−1)αmν2(f2(m))

and

x2(m) = 109 + 107
⌊

4m+ 2
3

⌋
+ 85

⌊
4m+ 1

3

⌋
.

Finally, let I2 = {x2(m) : m ≥ 0 }. Then err2(m) = 0
unless m ∈ I2.

There is single class per level, which we write as

Cm,j = { q2mi+j : i ∈ N }, (6–2)

where j = j(m) is the index that corresponds to the
nonconstant class at the m-level. The first few examples
are listed below:

C2,4 = { q4i+4 : i ∈ N },
C3,4 = { q8i+4 : i ∈ N },
C4,12 = { q16i−4 : i ∈ N },
C5,28 = { q32i−4 : i ∈ N },
C6,28 = { q64i−36 : i ∈ N },
C7,156 = { q128i−100 : i ∈ N },
C8,156 = { q256i−100 : i ∈ N },
C9,156 = { q512i−356 : i ∈ N },
C10,156 = { q1024i−868 : i ∈ N }.
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We have observed a connection between the indices
j(m) and the set of exceptional indices I1 in (6–1).

Conjecture 6.3. Construct a list of numbers { ci : i ∈ N }
according to the following rules. Let c1 = 8 (the first
index in the class C2,4), and then define cj as the first
value on Cm,j that is strictly bigger than cj−1. The set
C begins

C = { 8, 12, 28, 60, 92, 156, 412, 668, 1180, . . . }.

Then, starting at 156, the number ci belongs to I1.

7. A SAMPLE OF PICTURES

In this section we present, in Figures 13 to 23, data that
illustrate the wide variety of behavior for the 2-adic val-
uation of Stirling numbers S(n, k).
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FIGURE 13. The data for S(n, 80).
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FIGURE 14. The data for S(n, 126).
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FIGURE 15. The data for S(n, 146).
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FIGURE 16. The data for S(n, 195).
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FIGURE 17. The data for S(n, 252).
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FIGURE 18. The data for S(n, 260).
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FIGURE 19. The data for S(n, 279).
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FIGURE 20. The data for S(n, 324).
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FIGURE 21. The data for S(n, 465).
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FIGURE 22. The data for S(n, 510).
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FIGURE 23. The data for S(n, 512).
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