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This study describes the program bTd, which was developed for
the decomposition of any n-tangle with 1 < n < 10 into base
n-tangles using the Skein relation. The program enables us to
compute HOMFLY polynomials of knots and links with a large
number of crossing points within a matter of hours (see Exam-
ples 4.4 and 4.5). This contrasts with the results of attempting
computations using Hecke algebras H(q, n) with 18 ≥ n. Such
a computation did not complete even after a period of thirty days
in a recent examination by the first author and F. Kako [Imafuji

and Ochiai 02, Murakami 89, Ochiai and Murakami 94, Ochiai

and Kako 95]. In this paper, we first introduce two new con-
cepts: an oriented ordered tangle and a subdivision of a tangle.
We then present some examples of base-tangle decompositions
achieved using the present program along with the correspond-
ing computational times.

1. INTRODUCTION

Let T be a 2-string tangle with four endpoints 0, 1, 2, 3
as shown in Figures 1 and 3 [Conway 70, Murasugi 96].
Then T is said to be a base tangle if the following condi-
tions are satisfied:

1. Every string of T is a line segment connecting its
endpoints.

2. Every crossing point is a double point.

3. If any crossing points exist, they have a plus sign.

For example, all the 2-tangles shown in Figure 1 are
base tangles.

Let T be a 2-string tangle. Then T has a base-tangle
decomposition by the following Skein relation [Freyd et
al. 85, Imafuji and Ochiai 02]:

xP (T+;x, y) + yP (T−;x, y) = P (T∞;x, y).

Let P (T ;x, y) = αA + βB be a base-tangle decomposi-
tion, where A and B are base tangles and α and β are
HOMFLY polynomials obtained by the Skein relation.
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FIGURE 1. Base 2-tangles.
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FIGURE 2. A resolution tree.

For example, Figure 2 gives a resolution tree of a
2-string tangle T1, where p is the resolution point in
each step. Furthermore, (1) in the figure denotes 1/x,
while (3), (6), (8), (10) denote 1/y and (2), (4), (7), (9),
(11) denote −x/y; finally, (5) denotes P (K3l;x, y)(1/y2−
x2/y2− 2x/y), where P (K3l;x, y) is the HOMFLY poly-
nomial of the clover knot.

Let Kcw be the Conway knot and Kcw = T1 + T2 a
2-tangle decomposition of Kcw given by Figure 3.

Then we have

P (T1;x, y) = α1A1 + β1B1,

where A1 is a base tangle of type 0, B1 is a base tangle
of type 4,

α1 = 2 +
1
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FIGURE 3. Conway knot.

and
P (T2;x, y) = α2A2 + β2B2,

where A2 is a base tangle of type 4, B2 is a base tangle
of type 0,

α2 =
1

x2 y2
− 1
x y
− x

y
, β2 =

1
x
− 1
x y2

+
2
y
− 1
x2 y

,

and

P (Kcw;x, y) = α1α2(A1 ∪A2) + α2β1(A2 ∪B1)

+ α1β2(A1 ∪B2) + β1β2(B1 ∪B2),

where A1 ∪ A2 , A2 ∪ B1, A1 ∪ B2, and B1 ∪ B2 are
links obtained by attaching two base tangles along their
endpoints in the standard manner.

This leads to the following result:

P (Kcw;x, y)(x+ y)α1α2 + α2β1 + α1β2

+
(

1
x
− y (x+ y)

x

)
β1β2

= 7− 3
x2

+ y−4 − 1
x2 y4

− 1
x3 y3

+
6
x y3

− 3x
y3

− 11
y2

+
6

x2 y2
+

2x2

y2
+

1
x3 y

− 11
x y

+
6x
y

+
2 y
x
.

2. ORIENTED ORDERED TANGLES

A general base-tangle decomposition is considered in this
section. An oriented ordered tangle is defined as an n-
tangle with n ordered oriented strings s1, s2, . . . , sn, each
of which has two endpoints p2(i−1) and p2(i−1)+1, i =
1, 2, . . . , n, with

min{p2(j−1), p2(j−1)+1} < min{p2j , p2j+1},
j = 1, 2, . . . , n− 1.
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FIGURE 4. An ordered 3-tangle.

Let T be an oriented ordered n-tangle. Then we
may represent T by [T ; p0, p1, p2, p3, . . . , p2n−2, p2n−1],
or, more simply, [p0, p1, p2, p3, . . . , p2n−2, p2n−1].

Figure 4 depicts an example of an ordered 3-tangle T .
If the first string in the figure is directed from 0 to 4, then
the second goes from 1 to 3, the third goes from 2 to 5,
and the oriented ordered tangle is [T ; 0, 4, 1, 3, 2, 5]. But if
the first string has the opposite direction, namely from 4
to 0, then the oriented ordered tangle is [T ; 4, 0, 1, 3, 2, 5].

An n-tangle T is a base n-tangle if it satisfies the fol-
lowing conditions:

1. Every string of T is a line segment connecting its
endpoints.

2. Every crossing point is a double point.

3. Each string si has only overcrossing points or only
undercrossing points to sj , i = 1, . . . , n − 1, j = i +
1, . . . , n.

It may therefore be noted that in particular, every base
n-tangle has at most n(n− 1)/2 crossing points.

An oriented ordered tangle T has a base-tangle de-
composition given by the Skein relation

P (T ;x, y) =
n!∑

i=1

αiAi,

where αi is a 2-variable polynomial determined by the
resolution and Ai is a base tangle.

If the first string of every base tangle Ai always has
only overcrossing points (or undercrossing points), then
we say that the resolution has 0-baserule (1-baserule).
For example, the 2-tangle of type 4 in Figure 1 is a base
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FIGURE 5. An unreduced 6-tangle.

tangle having 0-baserule but not 1-baserule. The base-
tangle decomposition in Figure 2 is also a base-tangle
decomposition according to the above definition, having
0-baserule.

When a base n-tangle decomposition is carried out via
a computer program, the following problems need to be
solved:

1. recognizing whether a tangle is a base tangle;

2. reconstructing a base tangle from an ordered number
sequence of length 2n.

For example, the 6-tangle shown in Figure 5 is equiv-
alent to the base 6-tangle shown in Figure 6, because the
former can be transformed into the latter by Reidemeis-
ter moves keeping its endpoints fixed.

Those transformations, however, can never be com-
pletely implemented by a computer program [Ochiai 90].
When the i-th string si in a tangle T has only over-
crossings (or undercrossings) other than its nontrivial
self-intersections (that is, local knots K), K can be re-
moved from si by P (T ;x, y) = P (T ′;x, y) P (K;x, y),
where T ′ is a tangle obtained by removing K from T . As
a result, si can be deleted from T to avoid Reidemeister
moves by maintaining {p2i−2, p2i−1} for later reconstruc-
tions of base tangles, where p2i−2 and p2i−1 are end-
points of si. Following the completion of a base-tangle
decomposition, at most n! oriented ordered base tangles
[p0, p1, p2, p3, . . . , p2n−2, p2n−1] are obtained as number
sequences. Suppose that 2n endpoints, 0, 1, . . . , 2n − 1
are equidistantly positioned in counterclockwise order on
a unit circle.
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FIGURE 6. A reduced base 6-tangle.
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FIGURE 7. A 4-multiple point.

On connecting these endpoints with line segments ac-
cording to the number sequences

{p0, p1, p2, p3, . . . , p2n−2, p2n−1},

an oriented ordered base n-tangle is obtained. In most
cases, more than two strings cross at one point. In
other words, r-multiple crossing points with r > 2 oc-
cur. In order to reconstruct a base tangle, each r-
multiple crossing point must be transformed into r(r −
1)/2 double points. For example, a base 6-tangle
[0, 9, 1, 5, 2, 6, 3, 8, 4, 11, 7, 10] has a line-segment diagram
as depicted in Figure 7. There is a 4-multiple point P in
the segment, which can be locally transformed into six
double points under 0-baserule, as seen in Figure 8.

A substitute model of r(r− 1)/2 double points is cre-
ated beforehand for each r-multiple crossing point with
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FIGURE 8. A 4-tangle with baserule 0.
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FIGURE 9. A mapping of a 4-multiple point.

r ≥ 3. The model is locally mapped on each r-multiple
crossing point as illustrated in Figure 9.

3. SUBDIVISIONS OF TANGLES

Generally, constructing base-tangle decompositions of n-
tangles possessing many crossing points using the method
described above is difficult: it is very time-consuming.
Thus the subdivision of a tangle is now considered in
more detail.

It is well known that HOMFLY polynomials of 3-
parallel versions of knots can usually distinguish two dis-
tinct mutant knots [Imafuji and Ochiai 02, Ochiai and
Murakami 94, Ochiai and Kako 95].

Let L3
15 be a link with 135 crossing points (see Figure

10). It will be noticed that L3
15 is a link 3-paralleled along

a knot with 15 crossings.
First, L3

15 is decomposed into two 6-tangles T1 and
T2. While a base-tangle decomposition of T2 is achieved
relatively easily, that of T1 is difficult. For this reason, T1

is subdivided into three tangles T11 +T12 +T13 such that
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FIGURE 10. A subdivision.
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T11, T12, and T13 are respectively a 6-tangle, a 6-tangle,
and a 9-tangle.

These three base-tangle decompositions are easily ac-
complished. A base-tangle decomposition of T1 is ob-
tained as T11 + (T12 + T13) by attaching (1) each base
6-tangle and base 9-tangle along the original nine at-
tachment points between T12 and T13 and (2) each base
6-tangle of T11 and base 6-tangle of T12 + T13 along the
original six attachment points between T11 and T13, as
shown in Figure 11.

It may be noted that when composing two base tangles
along a subset of their endpoints, a tangle may occur with
free loops. The notation (s, t;u) denotes that a tangle is
subdivided into an s-tangle and a t-tangle along u cutting
points. This subdivision can be carried out as many times
as desired. The following describes subdivisions of n-
string tangles in the current version of bTd, where n is
6, 8, 9:

(6, 6; 12), (6, 9; 6), (6, 9; 9), (6, 6; 6), (9, 9; 18), (9, 9; 12),

(9, 9; 9), (8, 8; 16), (8, 8; 8).

Any knot K can generally be decomposed into two n-
tangles subdividing K into 2n points on K, and similarly,
those two tangles can be divided into smaller pieces. The
value of n, however, should be no more than 9 from a
practical point of view. Note that the time complexity
of decompositions depends on string numbers but not on
crossing numbers if subdivisions are small enough.

4. COMPUTATIONAL RESULTS

This section shows some examples of base-tangle decom-
positions using the present software bTd along with the
corresponding computational times. We used Linux ma-
chines running on 3.0-GHz Pentium-4 hardware. In or-
der to speed up the computation, our software uses a
first-string selection strategy for the baserule. First, the
number c0 of overcrossings and the number c1 of under-
crossings other than self-intersections on the first string
are compared. If c0 ≥ c1, then the 0-baserule must be se-
lected; otherwise, the 1-baserule. Then, applying Skein’s
relation reduces the number of crossing points under the
same baserule. Note that at the beginning of a base-
tangle decomposition, the user can also impose a change
to a baserule.

Example 4.1. Let K2
T be a link 2-paralleled along the

Kinoshita–Terasaka knot shown in Figure 12. It can cal-
culate P (K2

T ;x, y) within a time on the order of tens
of seconds, and of course it is found to be equal to
P (K2

cw;x, y), where K2
cw is a link 2-paralleled along the

Conway knot [Lickorish and Lipson 87].

Example 4.2. Let K2
O be a link 2-paralleled along the

trivial knot shown in Figure 13 [Ochiai 90]. The present
program can also calculate P (K2

O;x, y) within the same
time scale. It may be noted that obtaining P (K2

O;x, y)
using only Skein’s relation would, in contrast, be difficult,
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FIGURE 12. A tangle decomposition of 2-paralleled
version of Kinoshita–Terasaka knot.

FIGURE 13. A tangle decomposition of the trivial knot.

requiring a significantly higher computational time than
that required by our software.

Example 4.3. Let K3
T be a link 3-paralleled along the

Kinoshita–Terasaka knot [Imafuji and Ochiai 02, Ochiai
and Murakami 94, Ochiai and Kako 95]. It can calculate
the first tangle in about 2120 seconds, the second one in
about 1940 seconds, and P (K3

T ;x, y) from these results
in a further 2000 seconds. It is found that P (K3

T ;x, y)
is not equal to P (m(K3

K);x, y), where m(K3
T ) is a 180-

mutant link of K3
T [Ochiai and Murakami 94, Ochiai and

Kako 95].

Example 4.4. Let L3
15 be the link mentioned in the previ-

ous section. Let m(L3
15) denote a 180-mutant link of L3

15,
and let h(L3

15) and v(L3
15) denote a horizontal-mutant

and vertical-mutant link respectively. Note that the base-
tangle decomposition of T2 (respectively h(T2)) accords
exactly with that of m(T2) (respectively v(T2)) under the
same baserule, but the base-tangle decompositions of T2

and h(T2) are not equal.

As seen in Thistlethwaite’s knot table,1 there exist two
distinct knots with fifteen crossing points whose HOM-
FLY polynomials are P (L15;x, y). The computation time
for P (L3

15;x, y) was almost the same as for P (K3
T ;x, y),

1Available at http://www.math.utk.edu/∼morwen/download.

whereas it would take around 12 days using only a base-
tangle decomposition of T1. The following are the com-
putational times required for each step of base-tangle de-
composition and tangle composition in order to obtain
P (L3

15;x, y):

• T12: a few seconds,

• T13: a few seconds,

• T23 = T12 + T13: about ten minutes,

• T11: a few seconds,

• T1 = T11 + T23: about 21 minutes,

• T2: about 28 minutes,

• T1 + T2: about 118 minutes.

Example 4.5. Let L3
151

be the link shown in Figure 14,
let L3

151
= T1 +T2 be a tangle decomposition of this link,

and let T1 = T11 + T12 be a subdivision of T1. Then
the following times are necessary for the calculation of
P (L3

151
;x, y):

• T11: about 38 minutes,

• T12: a few seconds,

• T1 = T11 + T12: about ten minutes,

• T2: about 19 minutes,

• T1 + T2: about 120 minutes.

0

1

2

3

0

1

2

3

1

2

3

0

1

23

4

5

T2

T

T

T

1

1

11

2

FIGURE 14. A subdivision.
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FIGURE 15. The placement of the working directory.

It will be noticed that P (L3
151

;x, y) is shown to be not
equal to P (m(L3

151
);x, y) by our software.

Figure 15 indicates the flow of data through subdivi-
sions due to the application of the present software. For
example, the computational results of two base-tangle de-
compositions are stored in the directory /decomposition

as two files: BASETANGLE1.DAT and BASETANGLE2.DAT.
These two files must then be moved to the directory
/composition0 to obtain a HOMFLY polynomial using
(6, 6; 12).

5. FINAL REMARKS

The first author together with N. Imafuji developed a
program, K2K, that assists research in knot theory. We
introduced this program at the international symposium
KNOT2000, held in Korea [Imafuji and Ochiai 02]. One
year later, a revised version of K2K with a function of
base 2-tangle decompositions2 was made available to the
public.

In 2003, we presented work relating to base 3-tangle
decompositions, and in 2004, work relating to base n-
tangle decompositions with 6 ≥ n, both in seminars at
the Tokyo Institute of Technology.

2Available at http://amadeus.ics.nara-wu.ac.jp/∼ochiai/.

Tangle decomposition K=T1+T2

subdivision

T1
T2

T11

T12

T1=T11+T12

m(T1)=T12+T11

0
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2 3

01

2

3

FIGURE 16. A mutant knot.

In 2005, we introduced a new program, bTd, for base n-
tangle decompositions with 9 ≥ n in a seminar in Osaka.
Version 1.0 of this program was made available to the
public on the web site mentioned above in January 2006.

The current version, 1.1, can subdivide an n-tangle
into two tangles along only six, eight, nine, or twelve
cutting points. The next version, 2.0, will be able to
compute base-tangle decompositions using PVM, a soft-
ware tool for parallel networking of computers, which
was developed by the University of Tennessee and Oak
Ridge National Laboratory [Ochiai and Kadobayashi 07].

Recently, the first author discovered a 2-tangle T1 with
4n + 2, n > 0, crossings such that its mutation image is
in agreement with its mirror image and such that a base-
tangle decomposition of a 6-tangle T 3

1 3-paralleled along
T1 completely agrees with that of a 6-tangle m(T 3

1 ) 3-
paralleled along m(T1) (see Figure 16).

Let T r be a 2r-tangle r-paralleled along a 2-tangle T ,
and let B(T r;x, y : b) be a base-tangle decomposition of
T r under a baserule b. We verified by computations that

B(T 3
1 ;x, y : 0) = B(m(T 3

1 );x, y : 0),

B(T 3
1 ;x, y : 0) = B(m(T 3

1 ); y, x : 1),

B(T 4
1 ;x, y : 0) = B(m(T 4

1 ); y, x : 1),

but B(T 4
1 ;x, y : 0) �= B(m(T 4

1 );x, y : 0). In particular,
B(T 4

1 ;x, y : 0) and B(m(T 4
1 );x, y : 0) have 40320 bases,

and they are different in only 5420 bases. For exam-
ple, the difference B(m(T 4

1 );x, y : 0) − B(T 4
1 ;x, y : 0)

has as part x2y−8 − xy−9 − y−6 + x−1y−7 about a base
(0, 15, 1, 13, 2, 11, 3, 10, 4, 9, 5, 14, 6, 8, 7, 12).



8 Experimental Mathematics, Vol. 17 (2008), No. 1

It may be noted that P (T 3
1 +T 3

2 ;x, y) and P (m(T 3
1 )+

T 3
2 ;x, y) agree, even though T1 + T2 and m(T1) + T2 are

different knots by Thistlethwaite’s knot table.3

Note that the latest version of bTd can calculate

P (T 3
1 ;x, y), P (m(T 3

1 );x, y)

in a few minutes, and P (T 4
1 ;x, y), P (m(T 4

1 );x, y) in
around ten days using subdivisions and base conversions,
while the latest version of K2K can calculate only cer-
tain one-variable polynomials, which are induced from
HOMFLY polynomials of closed braids by restricting W-
graphs to their subgraphs, but not P (T 3

1 + T 3
2 ;x, y) and

P (m(T 3
1 )+T 3

2 ;x, y) themselves [Murakami 89, Ochiai and
Kako 95].

Unfortunately, bTd failed also to calculate B(T 4
2 ;x, y :

b), because we need huge memory to store 12! base 12-
tangles in the worst case of subdivisions of T 4

2 .
We remark further that K. Murasugi asked the first

author whether there is any periodicity in n to satisfy
the equality B(Tn

1 ;x, y : 0) = B(m(Tn
1 );x, y : 0), n ≥ 3.

Though this is a very interesting problem, there appears
to be no tool to calculate it at present.
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