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There are many examples of self-similar tiles that are connected,
but whose interior is disconnected. For such tiles we show that
the boundary of a component of the interior may be decom-
posed into a finite union of pieces, each similar to a subset
of the outer boundary of the tile. This is significant because
the outer boundary typically has lower dimension than the full
boundary. We describe a method to realize the outer bound-
ary as the invariant set of a graph-directed iterated function sys-
tem. The method works under a certain “finiteness” assump-
tion. While it is not clear that this assumption always holds,
and it is problematic to give a rigorous proof that it holds even
in cases where it is “visually clear” that it holds, we give some
examples where the method yields clear and nontrivial results.
Details concerning the algorithms may be found at the website
www.math.cornell.edu/∼sld32/Tiles.html.

1. INTRODUCTION

We begin by discussing the simplest type of self-similar
tile in the plane R

2. Let T denote the tile and Ti = T + i

denote its lattice translates, i ∈ Z
2. We assume

R
2 =

⋃
i∈Z2

Ti (1–1)

with disjoint interiors. We also assume there is a digit
set D ⊆ Z

2 of cardinality m2 so that⋃
d∈D

Td = mT (1–2)

(m denotes a positive integer, m ≥ 2, and mT is just the
dilation of T by the factor m). We assume that D is a
complete set of residues for Z

2/mZ
2, and we may assume

without loss of generality (just translate T ) that 0 ∈ D.
The self-similarity condition (1–2) implies that the whole
tiling (1–1) is self-similar, since⋃

d∈D
T(d+mi) = mTi = mT + mi (1–3)

and
R

2 =
⋃

i∈mZ2

(mT + i) (1–4)
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is a tiling of the plane by mZ
2 translates of mT . More

generally, for every integer � there exists a tiling, which
we will call the level � tiling,

R
2 =

⋃
i∈m−�Z2

(m−�T + i) (1–5)

by m−�
Z

2 translates of m−�T . We will refer to the sets
(m−�T + i) as tiles of level �, and denote the collection
of these by T�.

Our main interest is the geometry of T . Many papers
have already addressed this issue (see the references).
The motivating question that we pose is the following: if
T is connected, but int(T ) (the interior) is disconnected,
what can be said about the connected components of
int(T )? In studying this question we were led to inves-
tigate the outer boundary of T . Let B(T ) denote the
boundary of T . The outer boundary b(T ) (a subset of
B(T )) is defined to be the boundary of the unbounded
component of the complement of T . We will show that
the geometry of b(T ) “contains” the geometry of the
boundary of any component C of int(T ), in the sense
that B(C) can be written as a finite union of sets, each
similar to a subset of b(T ). In particular, this implies that
the dimension (in any sense) of B(C) is bounded above
by the dimension of b(T ). This is a significant estimate
because in many cases b(T ) has a considerably smaller
dimension than B(T ). We actually believe that the di-
mensions of B(C) and b(T ) are equal and that the subsets
of b(T ) needed to construct B(C) may be described ex-
plicitly. We also believe that b(T ) may be decomposed
into a finite collection of subsets that form the invariant
set for a graph-directed iterated function system (IFS)
with open set condition. This means in particular, that
we can compute the dimension (box and Hausdorff are
equal) of b(T ). We will examine in detail some examples
where these expectations are satisfied.

Our approach might be described as “quasi-
algorithmic.” We construct certain “algorithms,” but at
certain places these algorithms require human interven-
tion. First, we describe an honest algorithm to approx-
imate T . If we multiply Equation (1–2) by m−1 and
iterate we obtain

T =
⋃

d∈D�

(m−�T + d), (1–6)

where

D� =
�∑

k=1

m−kD =
{ �∑

k=1

m−kdk : dk ∈ D
}
. (1–7)

We interpret Equation (1–6) as a decomposition of T into
tiles of level �. Let S denote the unit square. We take

T (�) =
⋃

d∈D�

(m−�S + d) (1–8)

for our level � approximation to T . Note that T (�) is a
union of squares of side length m−�, so it is geometrically
a very simple object. It is easy to see that lim

�→∞
T (�) = T

in the Hausdorff metric, but it is not true that b(T (�))
converges to b(T ). What can go wrong is that a “bay”
becomes an “inland sea” in the limit. In other words,
portions of b(T (�)) may belong to the outer boundary
thanks to a path to infinity that slips through a narrow
opening, but in the limit this narrow opening gets choked
off.

For this reason we also consider another approxima-
tion to T . Let S̃ denote the union of all squares (S + i)
for i ∈ Z

2 that intersect T , so T ⊆ S̃. It is not difficult to
compute S̃ exactly, or at least get an outer approximation
(which will do as well). Let

T̃ (�) =
⋃

d∈D�

(m−�S̃ + d). (1–9)

Note that T ⊆ T̃ (�), so we are approximating T from the
outside, and we still have T = lim

�→∞
T̃ (�). In this case we

have
b(T ) = lim

�→∞
b(T̃ (�)), (1–10)

and points in B(T ) \ b(T ) will never be approximated by
points in b(T̃ (�)). Of course, we don’t know a priori how
large we have to take � before b(T̃ (�)) gives a reasonable
approximation of b(T ). As a practical matter we will con-
sider b(T̃ (�)) to be a good approximation when it is indis-
tinguishable from b(T̃ (�−1)). Because T̃ (�) is just a union
of squares, it is easy to give an algorithm to find b(T̃ (�))
simply by “tracing” around T̃ (�) counterclockwise.

In order to describe b(T ) as the invariant set of an IFS,
we need to decompose it into a finite union of basic pieces.
There are several ways to approach this task. We will use
a method based on “configurations.” Let A ⊆ Z

2 be any
finite set containing 0. The associated configuration CA

is defined to be
CA =

⋃
i∈A

Ti (1–11)

(note that T ⊆ CA). The associated subset b(T )A of b(T )
is defined to be

b(T )A = b(T ) ∩ b(CA) = T ∩ b(CA). (1–12)
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Informally, b(T )A is the part of b(T ) that is not “blocked
off” by the other tiles in the configuration. We say
two configurations CA and CA′ are equivalent if b(T )A =
b(T )A′ . In general, we have not been able to find an algo-
rithm to determine whether or not two configurations are
equivalent. In the examples we have looked at, it is easy
to decide this, although it would be extremely tedious to
prove equivalences. So this is the part of our work that
requires “human intervention.”

A tile will be said to satisfy the finiteness condition if
there is only a finite set of equivalence classes of config-
urations. All the examples we have looked at satisfy this
condition, and it is difficult to imagine a tile that does
not. For the remainder of this section, we will discuss
only tiles that satisfy it. Let {b(T )Ak

}k=1,...,N denote a
complete set of configuration pieces of b(T ). It is then
easy to describe a graph-directed IFS that has this as
an invariant set. The idea is to use Equation (1–3) to
replace each tile in CAk

by a union of tiles of level 1. In
particular,

T =
⋃

d∈D
m−1Td

so that
b(T )Ak

=
⋃

d∈D
b(T )Ak

∩ m−1Td.

Of course we can write m−1Td = Fd(T ) for Fd(x) =
m−1(x + d). Then b(T )Ak

∩ m−1Td = Fd(T ∩
F−1

d (b(T )Ak
)). The claim is that T ∩ F−1

d (b(T )Ak
) is

just b(T )Aj
for some j (depending on k and d). Indeed

T ⊆ F−1
d T so T ∩ F−1

d (b(T )Ak
) = T ∩ b(F−1

d CAk
) and

F−1
d CAk

is another configuration that must be equivalent
to some CAj

. Thus we have

b(T )Ak
=

⋃
d∈D

Fd(b(T )Aj(k,d)) (1–13)

as desired. Since many of the pieces b(T )Aj(k,d) appearing
in Equation (1–13) may be the empty set, we may safely
omit them from the union. (Also, Equation (1–13) may
contain some redundancy which may be pared away if
desired.) It is also easy to see that the open set condition
holds, as we may take int(T ) as the open set associated
with each piece, so in place of Equation (1–13) we have⋃

d∈D
Fd(int(T )) ⊆ int(T ),

and the union is disjoint. Since each mapping Fd in Equa-
tion (1–13) has the same contraction ratio m−1 we may
also use Equation (1–13) to compute the dimension of
b(T ). We form the N × N matrix M by setting

Mkj = #{d : j(k, d) = j}. (1–14)

Then

dim b(T ) = log spec.rad.(M)/ log m. (1–15)

Moreover, if M is irreducible (it may require pruning,
such as the removal of the empty set, to achieve this)
then the pieces b(T )Ak

all have finite positive Hausdorff
measure, and the eigenvector associated to the largest
eigenvalue of M gives the relative measures of the pieces.

The pieces b(T )Ak
may not be the most natural from

a geometric point of view. In some examples we have
examined they turn out to be disconnected (with infi-
nitely many components), whereas it is possible to find
(by careful inspection) a decomposition of b(T ) into con-
nected pieces governed by a different graph directed IFS.

In Section 2, we prove that the boundary of any com-
ponent of the interior decomposes into pieces similar to
subsets of the outer boundary. In Section 3, we present
several interesting examples of tiles satisfying the finite-
ness condition and show how to carry out the configura-
tion method explicitly.

Theorem 2.1 and the configuration algorithm extend
to more general self-similar tilings that involve rotations
as well as homotheties in describing the self-similar iden-
tity. One example, the Lévy dragon [Lévy 38] (translated
into English in [Edgar 93]), was in fact the motivating ex-
ample for this work. In [Bailey et al. 02] it was noted
that the boundaries of components of the interior have
dimension one, despite the fact that the whole boundary
has dimension ≈ 1.934007, and in fact that component
boundaries are infinite polygons. It is clear from inspec-
tion that the outer boundary is just an infinite polygon.

We note some interesting questions for future research:

(1) Does the finiteness condition always hold?

(2) What is the nature of the subsets of b(T ) in Theorem
2.1?

(3) Is there a computable upper bound for the number
of similarity equivalence classes of components of the
interior?

(4) Is there a construction of examples where the dimen-
sion of b(T ) gets arbitrarily close to 2? In [Kenyon
et al. 99] examples are given where dim B(T ) ap-
proaches 2, but these examples will not suffice.

(5) Is it always true that each point of b(T ) may be
connected by a path to infinity in the complement
of T? This appears to be true for all our examples.



202 Experimental Mathematics, Vol. 14 (2005), No. 2

More detailed results and code for the pro-
grams we used may be found on the website
www.math.cornell.edu/∼sld32/Tiles.html.

2. BOUNDARIES OF COMPONENTS
OF THE INTERIOR

Let C denote any component of int(T ).

Theorem 2.1. B(C) =
N0⋃
i=1

Bi where each Bi is similar to

a subset of b(T ).

Proof: Consider the tiling (1–5) of level �. Each point of
B(C) must belong to at least one tile m−�T + i for i not
in D�. By compactness, the number of such tiles is finite.
Set Bi = B(C) ∩ (m−�T + i) (slight abuse of notation).
Clearly each point of Bi belongs to B(m−�T +i). To com-
plete the proof we need to show that, for � large enough,
Bi ⊆ b(m−�T + i). Since i is not in D�, C is disjoint from
m−�T + i. Since C is connected it belongs to one compo-
nent of the complement of m−�T + i. Which component?
If we choose � large enough, then m−�T + i will be small
relative to C, so the answer has to be the unbounded
component. For a more quantitative statement, let A be
an upper bound for the areas of the bounded components
of the complement of T . Then m−�A < area(C) implies
that C is not in any bounded component of the comple-
ment of m−�T + i. This shows Bi ⊆ b(m−�T + i).

3. EXAMPLES

3.1 The “Pinwheel”

The “pinwheel” is generated by nine similarities with
contraction ratios 1/3. Figure 1 shows T (1), which con-
sists of nine images of the unit square. This may be
described succinctly as reflecting out the four corner sub-
squares, one in each edge direction in a rotation invari-
ant pattern (there are two possible chiralities). Figure
2 shows T (2) and Figure 3 shows T (5). Because T (1) is
connected and contains all four corners of the square, it
follows by induction that each T (m) is connected, hence
T is connected. It is easy to see that the convex hull

of T is a square of side length
√

10
4 , so the area of T is

at most 2.5. However, routine estimates show that the
area is less than 2, hence the area must equal 1 and T

tiles with Z
2 [B]. It is natural to conjecture from Figure

3 that all components of the interior of T are similar to
the single shape, shown in Figure 4.

FIGURE 1. “Pinwheel” with T (1).

FIGURE 2. “Pinwheel” with T (2).

FIGURE 3. “Pinwheel” with T (5).

FIGURE 4. The components of the interior of T are sim-
ilar to this shape.
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FIGURE 5. Decomposition of a side of b into b1 and b2.

(a) (b)

FIGURE 6. (a) Decomposition of b1. (b) Decomposition of b2. Both according to Equation (3–1).

To describe the outer boundary of T we will exploit
the rotational symmetry. We will need to use just two
pieces, denoted b1 and b2. For b1 we take b(T )A for the
configuration shown in Figure 5, and we will identify the
other three rotations of b1 with b1. The complement of
the four copies of b1 in b clearly breaks into four isometric
pieces, which we will call b2. Note that if we think of b(T )
as being made up of four sides, then each side is made
up of b1 ∪ b2, with the intersection b1 ∩ b2 consisting of
a single point. Both b1 and b2 are connected. (Neither
the sides nor the b2 pieces can be described as b(T )A for
any configuration.) If we denote by b′1 and b′2 images of
b1 and b2 on level 1, then

{
b1 = b′1 ∪ b′1 ∪ b′2 ∪ b′1
b2 = b′2 ∪ b′1 ∪ b′2 ∪ b′1 ∪ b′1 ∪ b′1 ∪ b′2

(3–1)

is a decomposition analogous to Equation (1–13). Figure
6 illustrates this decomposition. The matrix (1–14) is
then (

3 1
4 3

)

with spectral radius 5 and associated eigenvalue
(1
2

)
.

Thus dim b(T ) = log 5/ log 3 by Equation (1–15), and
the piece b2 has twice the measure of b1. The boundary
of the component of the interior shown in Figure 4 de-
composes into four copies of b′1 and four copies of b′2, as
the reader may verify.

3.2 The “Badge and Hydrant”

The “badge and hydrant” tile is generated by 16 simi-
larities with contraction ratio 1/4. Figure 7 shows T (1),
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FIGURE 7. “Badge and Hydrant” with T (1). FIGURE 8. “Badge and Hydrant” with T (2).

FIGURE 9. “Badge and Hydrant” with T (5). FIGURE 10. b1, b2, and b3 identified with b(T )A.

FIGURE 11. Schematic illustration of the decomposition of b1, b2, and b3 according to Equation (3–2).
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FIGURE 12. Actual boundary sets and their decomposition.

which consists of 16 images of the unit square. The cor-
ner and interior subsquares are retained, while the other
edge subsquares are reflected out across the edge. Fig-
ure 8 shows T (2) and Figure 9 shows T (5). By the same
reasoning as in Section 3.1, we may conclude that T is
connected and tiles with Z

2. In Figure 9 we see two
similarity types of interior components, the “badge” at
the center and the “hydrants” (appearing in two distinct
orientations).

We consider three pieces of the outer boundary b1,
b2, b3, each identified with b(T )A for the configurations
shown in Figure 10. We identify rotated copies of the bj .
The entire outer boundary decomposes into four copies
of b′1 and eight copies of b′2 consisting of the intersec-
tion of b(T ) with the 12 level 1 tiles FjT lying along the
outer edge (all except the four interior tiles in Figure 7).
Figure 11 illustrates schematically the decomposition

b1 = b′3 ∪ b′2 ∪ b′1 ∪ b′2 ∪ b′3
b2 = b′3 ∪ b′2 ∪ b′1 ∪ b′2 ∪ b′2 ∪ b′3
b3 = b′3 ∪ b′2 ∪ b′3.

(3–2)

The actual sets and their decompositions are shown in
Figure 12. Here the matrix (1–14) is

1 2 2
1 3 2
0 1 2


with spectral radius 5+

√
17

2 , so the dimension is
log(5+

√
17

2 )/ log 4 ≈ 1.0947625.
The boundary of the badge component is made up

of eight copies of b′3, each one corresponding to one of
the eight level one tiles in the complement of T (clearly
visible in Figure 7). To see the boundary of the hydrant
schematically we have to look at level two (Figure 8).
There we see four copies of b′′2 and 12 copies of b′′3 . We
could also consolidate using Equation (3–2) to have four
copies of b′3 and four copies of b′′3 .

3.3 The “Bug”

The “bug” tile is generated by nine similarities with con-
traction ratio 1

3 . Figures 13–15 show T (1), T (2), and T (5).
In Figure 16 we show the outer boundary extracted from
T̃ (5). This gives a much clearer notion of what the outer
boundary actually looks like. This tile has only one sym-
metry, a reflection in the vertical axis. It appears that
there are three distinct shapes among the components
of the interior, one of which appears in two chiralities.
These are shown in Figure 17.

To decompose the outer boundary into pieces b(T )A

associated with different configurations A, we were ini-
tially led to a set of 19 configurations. We then were able
to consolidate the list to 11 pieces, shown in Figure 18
together with the associated configuration and the de-
composition on the next level. Note that the decomposi-
tion of piece 11 includes two copies of piece 7 contracted
twice. To do the dimension computation we add piece 12
which is just 7′, and we obtain the 12× 12 matrix (1–14)
to be

     1     1     1     0     0     0     0     2     0     1     2     4
     1     0     1     1     0     0     0     0     0     0     0     0
     1     0     1     1     0     0     0     0     0     1     0     0
     0     0     0     1     0     1     0     0     0     0     0     0
     1     1     1     1     0     0     0     2     2     1     0     0
     1     1     1     2     0     0     0     1     2     0     0     0
     0     0     0     0     0     0     1     2     0     0     2     2
     1     0     1     0     0     0     0     1     0     1     0     0
     0     0     0     0     0     0     0     2     3     0     0     0
     0     0     0     0     1     0     0     0     1     0     0     0
     0     0     0     0     0     0     0     1     0     0     2     2
     0     0     0     0     0     0     1     0     0     0     0     0

The spectral radius is ≈ 4.5007735787273 so the dimen-
sion of the outer boundary is ≈ 1.3692267089143.

We note that the pieces in the decomposition are not
connected. It is possible to obtain a decomposition into
connected pieces by ad hoc means, but the pieces are not
associated with configurations. For example, a pair of
pieces of type 7 gives a connected set (see the decompo-
sition of piece 11 in Figure 18), but this new set is is not
given by any configuration.
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FIGURE 13. The “bug” with T (1). FIGURE 14. The “bug” with T (2).

FIGURE 15. The “bug” with T (5). FIGURE 16. The outer boundary of the “bug” extracted from T̃ (5).

FIGURE 17. Shapes among the components of the interior of the “bug.”
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FIGURE 18. Decomposition of the “bug.”
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FIGURE 18. (continued.)
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