Construction of the Fourfold Cover of the Mathieu Group M_{22}

Ibrahim A. I. Suleiman and Robert A. Wilson

CONTENTS

Introduction

Construction
Acknowledgements
References

We give an explicit construction for the two faithful, irreducible, 16-dimensional representations of $4 \cdot M_{22}$ over the field $\operatorname{GF}(49)$. Then we extend them to the 32 -dimensional representation of $4 \cdot M_{22}: 2$ over $\mathrm{GF}(7)$. Explicit matrices are given on page 14.

INTRODUCTION

At one time [Burgoyne and Fong 1968] it was believed that the Schur multiplier of the Mathieu group M_{22} was 3 . Later this was amended to 6 , which was believed for several years to be the correct answer. Now there are several independent proofs that the answer is 12 . For example, it was noted in [Gagola and Garrison 1982] that the standard construction of a spin representation gives an easy proof of the existence of a proper fourfold cover $4 \cdot M_{22}$. Namely, $2 \cdot M_{22}$ has a 210-dimensional faithful irreducible real orthogonal representation, in which the central involution obviously has 210 eigenvalues -1 . Since the number of eigenvalues -1 is congruent to $2(\bmod 4)$, this element lifts to elements of order 4 in the spin group $\operatorname{Spin}(210, \mathbf{R})$, giving rise to a proper 4 -fold cover $4 \cdot M_{22}$.

In this paper we describe an explicit construction of this group, in its 16-dimensional representation over GF(49). The existence of such a representation is easy to prove from the ordinary character table, as there is only one possibility for the Brauer tree of the faithful 7 -block of defect 1 for $4 \cdot M_{22}$, shown here (see also [Parker et al.]):

For the computations we used R. A. Parker's Meataxe programs [Parker 1984], together with arithmetic subroutines written by M. van Meegen of RWTH, Aachen. The programs ran on a SUN SPARCstation, whose purchase was assisted by a grant from the SERC Computational Science Initiative. The general method we adopt is that described in [Parker and Wilson 1990].

CONSTRUCTION

The generating subgroups

We note first of all that $4 \cdot M_{22}$ may be generated by subgroups $2 \cdot L_{2}(11)$ and $2 \cdot A_{6}$ intersecting in $2 \cdot A_{5}$. This follows from the fact that M_{22} is generated by subgroups $L_{2}(11)$ and A_{6} intersecting in A_{5}. Specifically, $L_{2}(11)$ is the stabilizer of an endecad (marked $*$ in the diagram below: see [Curtis 1976] for the notation) and A_{6} is the stabilizer of a hexad (marked \bigcirc) and a point outside it (marked \times).

As these subgroups have order prime to 7 , the representation restricts to each as a direct sum of ordinary irreducibles reduced modulo 7. In Atlas notation [Conway et al. 1985], the representation of $2 \cdot L_{2}(11)$ is $6 b \oplus 10 c$ (that is, $\chi_{10} \oplus \chi_{11}$), while that of $2 \cdot A_{6}$ is $8 c \oplus 8 d$ (again, coincidentally, $\chi_{10} \oplus \chi_{11}$). The restriction to $2 \cdot A_{5}$ is $6 a \oplus 6 a \oplus 2 a \oplus 2 b$, or $\chi_{6} \oplus \chi_{7} \oplus 2 \chi_{9}$.

Constructing $2 \cdot L_{2}(11)$
From $\mathrm{SL}_{2}(11) \cong 2 \cdot L_{2}(11)$ written as 2×2 matrices over $\mathrm{GF}(11)$ it is easy to obtain a faithful permutation action on 24 points, for example generated by the two permutations
(23456789101112)(1415161718192021222324)
and
(121314)(3121524)(741916)
(591721)(6101822)(1182320).

Writing this as a 24 -dimensional matrix representation over GF(49) we can use the Meat-axe to chop out a copy of the representation $6 b$. The exterior square of $6 b$ is $5 a+10 b$, and $5 a \otimes 6 b=$ $10 c+10 d+10 e$, so we can obtain the desired representation $6 b \oplus 10 c$ over GF (49).

Constructing $2 \cdot A_{6}$

From $\mathrm{SL}_{2}(9) \cong 2 \cdot A_{6}$ written as 2×2 matrices over GF(9), we obtain a faithful permutation action on the 80 nonzero vectors. Writing this over GF(49), we can chop out copies of $5 a$ and $10 b$, and then chop $8 c \oplus 8 d$ from $5 a \otimes 10 b$.

Restricting to $2 \cdot A_{5}$

Finding subgroups $2 \cdot A_{5}$ in $2 \cdot A_{6}$ and $2 \cdot L_{2}(11)$ is straightforward. For example, if all else fails, we can search at random for elements x and y satisfying $x^{2}=-1$ and $y^{3}=(x y)^{5}=1$. We arrange that in both cases the group $2 \cdot A_{5}$ is represented by block diagonal matrices, with blocks of sizes 6,6 , 2, 2. Moreover we use the Standard Base program of the Meat-axe to find bases with respect to which the two copies of $2 \cdot A_{5}$ are represented by the same matrices. We write each of the groups $2 \cdot L_{2}(11)$ and $2 \cdot A_{6}$ with respect to the corresponding such basis.

Checking the cases

We now have matrices generating the two groups $H \cong 2 \cdot L_{2}(11)$ and $K \cong 2 \cdot A_{6}$, intersecting in a group $L \cong 2 \cdot A_{5}$. We can conjugate either H or K by any matrix commuting with L, and the same situation will obtain, although the group generated by these two groups may change. Now $\left\langle H^{g}, K\right\rangle \cong$ $\left\langle H, K^{g^{-1}}\right\rangle$, so it does not matter whether we conjugate H or K. Moreover, matrices commuting with H will have no effect on H, and similarly for K. Thus the cases we need to consider correspond to the double cosets of $C(H)$ and $C(K)$
in $C(L)$, where the centralizers are computed in $\mathrm{GL}_{16}(49)$. We have $C(H) \cong C(K) \cong 48^{2}$ and $C(L) \cong 48^{2} \times \mathrm{GL}_{2}(49)$. More precisely, $C(L)$ consists of all invertible block matrices of the shape

$$
\left(\begin{array}{cccc}
A & B & 0 & 0 \\
C & D & 0 & 0 \\
0 & 0 & E & 0 \\
0 & 0 & 0 & F
\end{array}\right)
$$

while $C(H)$ consists of all diagonal matrices of the form $\operatorname{diag}(P, Q, Q, Q)$ and $C(K)$ consists of those of shape $\operatorname{diag}(R, S, R, S)$. Since conjugation by a scalar matrix has no effect, we need only consider elements with $F=1, Q=1$, and $S=1$. Then we can choose double coset representatives with $E=F=1$, by putting $R=E^{-1}$. Thus we need to compute the $48 \times 49 \times 50=117600$ cosets in $\mathrm{GL}_{2}(49)$ of the subgroup of all matrices of the form $\left(\begin{array}{cc}P & 0 \\ 0 & 1\end{array}\right)$. Finally, we eliminate 117599 of the cases by showing that the group so generated contains elements of order greater than 44 . Thus the remaining case must generate the group $4 \cdot M_{22}$.

Extending to $4 \cdot M_{22}: 2$

The representation we have constructed is not invariant under the outer automorphism of $4 \cdot M_{22}$, but is taken to its dual. Therefore, in order to construct the holomorph $4 \cdot M_{22}: 2$, we must begin by taking the direct sum of these two representations. Then we find "standard generators" for the group: for our purposes that means finding elements $x \in 2 A$ and $y \in 4 A$ with $x y$ of order 11 . We put the representation into a "standard basis" defined by (x, y). Then we find words in x and y that give us a new pair of generators $\left(x^{\prime}, y^{\prime}\right)$, which we guess to be automorphic to (x, y). We prove this isomorphism using the standard basis algorithm, as described in [Parker 1984]. The algorithm produces a matrix P which conjugates (x, y) to $\left(x^{\prime}, y^{\prime}\right)$. Furthermore, by applying the algorithm to the irreducible representations we can tell whether the isomorphism between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ is realized by an inner or an outer automorphism, so we can ensure that it is outer. Now adjoining P to $4 \cdot M_{22}$
gives a group which is isoclinic to $4 \cdot M_{22}$:2. There are 48 such matrix groups in this isoclinism class, two of which are isomorphic to $4 \cdot M_{22}: 2$. They can all be obtained by multiplying P by a matrix which acts trivially on one of the 16 -dimensional constituents, and as a scalar on the other. Moreover, it is easy to identify the two cases which are $4 \cdot M_{22}: 2$ simply by looking at the orders of elements.

The matrices

The sidebar on the next page exhibits two matrices generating $4 \cdot M_{22}: 2$.

ACKNOWLEDGEMENTS

The authors would like to thank the British Council and the Universities of Birmingham and Mu'tah for their support. This research is part of a British Council Link Project in Algebra and Computing set up between the two universities.

REFERENCES

[Burgoyne and Fong 1968] N. Burgoyne and P. Fong, "The Schur multipliers of the Mathieu groups", Nagoya Math. J. 27 (1966), 733-745. Correction, ibid. 31 (1968), 297-304.
[Conway et al. 1985] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Oxford, 1985.
[Curtis 1976] R. T. Curtis, "A new computational approach to $M_{24} "$, Math. Proc. Cambridge Philos. Soc. 79 (1976), 25-42.
[Gagola and Garrison 1982] S. Gagola and S. Garrison, "Real characters, double covers and the multiplier", J. Algebra 74 (1982), 20-51.
[Parker 1984] R. A. Parker, "The computer calculation of modular characters (The 'Meat-axe')", pp. 267274 in Symposium on Computational Group Theory, edited by M. D. Atkinson, Academic Press, Orlando (FL), 1984.
[Parker et al.] R. A. Parker et al., An Atlas of Modular Character Tables, in preparation.

31016140536455125545244104440135 24055433536566163525136625460051 54501456403534166341302530641616 42404046122154563416403063341500 42150541036606455211556213364013 66426641622405362122011063620516 61031114410026051514121231632616 63254311031531205053163030432246 46540062432402221426302613655421 40314444221141105434650443041532 64101001134406350545435635544246 26513300120464662525265542134131 40262304315161515263425235060654 53136505535333364526451432452143 31400346342046242501240333001111 60063403353331625226630655356224 01465553114404500633352445203542 64026110465003355502106064644134 50303642403352260016561015361055 22420131404220424604340536126300 43240114145301333243166032110042 03551334011504635210331030305606 14453406305135026031244425025551 01023062321631360533443003621503 51333630523516454342204401200516 30103560200202332625021022114046 12462150654253243330141252323663 02603430444625524344005400124532 26041244244060511120301016013662 24452424003142033553314464364420 65105060325335443166106033333052 23635515203140246655504166052210

43115343416240230465444044163051 43613126253222305324544254153130 15126352211346433256221125612234 44446662116444324653052016012320 55264233302625242424620121630521 31632532410214052506200641611606 01060063211322335532025554650422 55030353306563262323300102411610 32633633530501355063011352130013 41155314212311540060302210263261 14125453261555445325610504305652 53336460134444536351640562614620 00120522312623313505054564304526 12452542466134604131564523036416 50542242031210335062442132265466 45135311462612662552223053246252 56636300323411533522024466530004 36646345603245215265351554424266 63446660256411355115411362052554 22251165464056634330235016666410 40631201641161546402614051235231 02506102200102405310050513314043 20644062315622040636456300300666 60064226343553045032632415504101 30141013332445615154231504332625 06643551451535666105036343326404 42364464623562451326232531124651 13330146326110511651113002534331 51360402105002062545234366432430 43666001621465425133546165105014 50305103030010211165513551204366 50026050314523455204352243315660

Generators for $4 \cdot M_{22}: 2$, in the 32 -dimensional representation over GF(7).
[Parker and Wilson 1990] R. A. Parker and R. A. Wilson, "The computer construction of matrix representations of finite groups over finite fields", J. Symb. Comp. 9 (1990), 583-590.
[Suleiman and Wilson 1992] I. A. I. Suleiman and R. A. Wilson, "Computer construction of matrix representations of the covering group of the HigmanSims group", J. Algebra 148 (1992), 219-224.

Ibrahim A. I. Suleiman, Department of Mathematics and Statistics, Mu'tah University, Al-Karak, P.O. Box 7, Jordan

Robert A. Wilson, School of Mathematics and Statistics, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Received February 24, 1993; accepted June 6

