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We investigate the effects of round-off errors on quasi-periodic
motions in a linear symplectic planar map. By discretizing co-
ordinates uniformly we transform this map into a permutation
of Z?, and study motions near infinity, which correspond to a
fine discretization. We provide numerical evidence that all or-
bits are periodic and that the average order of the period grows
linearly with the amplitude. The discretization induces fluctu-
ations of the invariant of the continuum system. We investigate
the associated transport process for time scales shorter than the
period, and we provide numerical evidence that the limiting
behaviour is a random walk where the step size is modulated
by a quasi-periodic function. For this stochastic process we
compute the transport coefficients explicitly, by constructing
their generating function. These results afford a probabilistic
description of motions on a classical invariant torus.

1. INTRODUCTION

In this paper we consider the effects of discretiz-
ing the phase space of a smooth area-preserving
planar mapping that supports quasi-periodic mo-
tions, and we study the statistical properties of the
resulting discrete representations of invariant tori.

Discretization of the phase space can be achieved
in many ways, and the most natural ones amount
to restricting the dynamics to discrete subsets of
the phase space, most notably those containing
periodic orbits. For instance, in the case of the
Anosov diffeomorphisms of the torus—a class of
strongly chaotic systems—the periodic orbits cor-
respond to points with rational coordinates, which
can be effectively represented as algebraic num-
bers in the field generated over the rationals by
the eigenvalues of the mapping [Percival and Vi-
valdi 1987; Bartuccelli and Vivaldi 1989; Keating
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1991]. In the case of polynomial mappings over the
complex field, the relevant discrete sets are tow-
ers of algebraic number fields containing the pe-
riodic and eventually periodic orbits [Vivaldi and
Hatjispyros 1992; Bousch 1992; Morton and Patel
1994]. The thermodynamical formalism and the
apparatus of dynamical zeta functions provide a
link between the dynamics over these discrete sets
and the statistics of their continuous counterpart
(see [Ruelle 1978; Artuso et al. 1990; Artuso 1991]
and references therein).

The discretization introduced by round-off is sig-
nificantly more difficult to deal with. In this case
the discrete and continuous systems are related
only weakly, the discrete phase space does not have
any useful algebraic structure, there is no frame-
work for relating periodicity to the statistics of
fluctuations, and the limit of fine discretization
is plagued by singularities and slow convergence.
(For a survey on this issue from an ergodic-theory
angle, see [Blank 1989; 1994]. Some aspects of
the relationship between exact and computed or-
bits are addressed by shadowing theory; see, for
example, [Hammel et al. 1987; Blank 1991b].)

Computers make routine use of the floating-point
representation of the reals, which consists of a finite
subset of the rationals [Knuth 1981, Vol. 2, Ch. 4].
This set is not closed under any of the four arith-
metical operations (even if we ignore overflow and
underflow), so the dynamics does not restrict nat-
urally to it. Moreover, the floating-point numbers
cluster exponentially about zero, so that as a rule
the floating-point dynamics is not a permutation,
even when the map being represented is invertible.

Yet every symplectic map is a permutation, and
any discrete model that is to be consistent with
symplectic geometry must possess this property.
Permutations can sometimes be constructed by dis-
cretizing coordinates uniformly, that is, by replac-
ing the reals with the integers. In this case arith-
metical errors may result only from division.

The uniform discretization of a symplectic map
was first studied in [Rannou 1974]. This device was
subsequently used in order to mimic quantum ef-
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fects [Chirikov et al. 1981], to achieve invertibility
in a delicate numerical experiment [Karney 1983],
to represent maps as cellular automata [Kaneko
1988], and to construct numerically reversible sym-
plectic integrators [Scovel 1991]. A detailed numer-
ical study of computer dynamics in the standard
map was performed in [Earn and Tremaine 1992],
where both reversible and floating-point discretiza-
tions were considered.

The statistical effects of round-off are sometimes
likened to those of a small stochastic perturbation,
and as such can be expected to generate a diffusive
process, which interacts with the dynamics in a
complicated manner.

However, this picture requires careful verifica-
tion [Blank 1989; 1994]. The very fact that the
computer arithmetic is well-defined implies that
the round-off errors have null Kolmogorov com-
plexity, that is, they have a nonrandom depen-
dence on coordinates [Alexeev and Yakobson 1981;
Ford 1983]. Thus, along any nonrandom (non-
chaotic) orbit, the round-off perturbation cannot
depend randomly on time, which hardly justifies
the stochastic model. Of equal significance is the
fact that round-off alone cannot induce exponential
instability, since the error per iteration is bounded
by the size of the discretization. Thus it is a matter
of both theoretical and practical significance to as-
certain what kind of statistical behaviour round-off
perturbations can generate.

In this work we consider the simple setting of
a uniform discretization of the phase space of a
linear planar mapping that supports quasi-periodic
motions. The continuous mapping is discretized in
such a way as to become a permutation of Z?. In
this model the size of the discretization is fixed, and
the asymptotics of fine discretization correspond
to motions near infinity. Because the continuous
motions are regular and very well understood, the
effect of round-off will be isolated quite clearly.

In Section 2 we introduce our model (2.1) and in-
vestigate the asymptotics of its periodic behaviour.
We show that the period of the orbits must diverge
at infinity, and derive a lower bound for its growth



rate as a function of the amplitude (Theorem 2.1).
We then provide numerical evidence that the av-
erage order of the period grows linearly with the
amplitude, that is, with the inverse of the discret-
ization length (a comparison with the dissipative
case is instructive; see [Beck and Roepstorff 1987]).

In Sections 3 and 4 we deal with the transport
problem. We analyze the dynamical evolution of
the unperturbed (continuum) invariant, and show
that its irregular behaviour originates from the in-
teraction between two frequencies whose ratio be-
comes singular in the limit. We then investigate
the associated transport process for time scales
shorter than the period, and provide evidence that
its asymptotic behaviour is that of a random walk
whose step size is modulated by a quasi-periodic
function. For this stochastic process we compute
the transport coefficients by constructing their gen-
erating function (Theorem 4.1), and we conjecture
that this function is the correct one for the round-
off problem as well.

Section 5 contains concluding remarks.

The results presented here suggest a probabilis-
tic characterization of motions on a classical invari-
ant torus. All reported computations refer to the
golden mean rotation number, but we have occa-
sionally tested other diophantine cases. We make
no claim for frequencies that are well approximated
by rationals, such as Liouville numbers.

We remark that the choice of the model (2.1)
was dictated by mathematical considerations, not
by a desire to simulate round-off errors in actual
numerical experiments. For instance, we insist
that the discrete mapping be a permutation, which
is seldom the case in practice. For this reason,
the question of the applicability of our results to
more general situations should be considered with
care.

2. PERIODICITY

We consider the following mapping ® : Z* — Z2:

@(m,y) = (LAZEJ -, ZE), (2.1
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where |[z] is the largest integer smaller or equal
to = and A is a real parameter. This mapping is
a permutation of 7Z?, as easily verified. Defining
¥ : R? — R? by

\I/(J;,y) = ()\.Z‘ - Y :13)

and setting e(z) = Az — | Az, we may view ® as
a discrete approximation of ¥, that is, ® = ¥ —¢.
This interpretation becomes meaningful at large
amplitudes, since ¢ remains bounded: 0 < ¢ <
1. This asymptotic regime corresponds to a fine
discretization.

The dependence of € on z is periodic if A is ra-
tional, and quasi-periodic otherwise. In the former
case €(Z) is a finite subset of rationals, uniformly
spaced in the unit interval. In the latter, ¢(Z) con-
sists of the number zero and a set of irrationals
dense in the unit interval.

The mapping ¥ admits the invariant quadratic
form

Q(z,y) = 2° — Azy + 1, (2.2)

whose level sets are symmetrical with respect to
the axes © = +y. We are interested in bounded
quasi-periodic motions, corresponding to |A| < 2
and an irrational rotation number; the rotation
number v is related to A by A = 2 cos(27v). All or-
bits of the continuous system are dense on ellipses,
and the stability problem for its discrete counter-
part arises naturally. Combinatorially speaking,
stability amounts to nonexistence of cycles of infi-
nite length, which would correspond to orbits es-
caping to infinity in both time directions.

A few values of \ lead to trivial dynamics. For
A =1, 0 and —1, we have ¢(z) = 0 for all z,
the mapping ® is a restriction of ¥ to Z*, and all
orbits are periodic with minimal period six, four
and three, respectively. From cyclotomy one knows
that for |A| < 2 these are the only cases in which
both v and A are rational (see [Marcus 1977, Ch. 2],
for example), and for all other rational rotation
numbers, A\ is irrational and algebraic.

The set of v that corresponds to rational (non-
integer) A is more difficult to characterize (it is
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tempting to conjecture that any such v must be
transcendental, although this issue seems difficult
to settle). Letting A, = 2cos(2mnv), for n =
1,2,..., one sees that A\; = X and A, = 2C,(3),
where C,(z) is the n-th Chebyshev polynomial of
the first kind. Since the latter has integral coef-
ficients, all numbers A, belong to the same field
as A.

If the rotation number is irrational, an invariant
torus is typically represented by a cloud of points
irregularly arranged along an unperturbed invari-
ant set: see Figure 1 and [Earn and Tremaine 1992,
Fig. 7].

In this case the period must diverge at infinity,
as established by the following result:

Theorem 2.1. Let T'(z,y) be the (possibly infinite)
period of the orbit of ® through the point (z,y),
and let

7(r) = min{T(z,y) : (z,y) € Z* and Q(z,y) > r*}.

Then, if v is irrational, lim,_, . 7(r) = co. More-
over, for almost all values of v and any 6 > 0, there
exists a positive constant ¢ such that

7(r) > cr'/10), (2.3)

Proof. Let v be irrational, and let p,/q, be a con-
vergent of its continued fraction expansion. The
following inequality holds [Khinchin 1964, Theo-
rem 13]:

Pn ‘ 1

—_ =V > —— (2.4)

qn Qn(qn + Qn+1)
forn=0,1,.... Let w = (u,v) € Z*. Now conver-

gents of continued fractions are the best rational
approximants of the second kind [Khinchin 1964,
theorem 17]. Therefore, if J is the Jordan form of
W—that is, a rotation by 2wrv—the point Jow is
the closest to w among the first ¢, points in the
orbit. Letting 7> = u? + v?, the estimate (2.4)
yields

Hﬁw—w“>——g—— (2.5)

dn + dn+1
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FIGURE 1. A discrete representation of an invari-

ant torus of golden mean rotation number, by a
periodic orbit of period 1927.

forn=0,1,...and t =1,...,qn, where || - || is the
euclidean metric on the plane.

Let M be a linear conjugacy between ¥ and its
Jordan form, so that ¥ = MJM !, and let Mw =
z = (z,y). We have

17w — w]| = | M~ (M J'w — Mw)]|
= M1 (T'z - 2)]|
< k|| P2 — 2|, (2.6)

where & is the norm of M 1. Without loss of gen-
erality we may assume that M is chosen so as to
preserve the value of the corresponding form, that
is, u? + v? = Q(z,y) = r%. Then, combining (2.5)
and (2.6), we obtain

4 1
|tz — z|| > el — (2.7)
K Qn+qn+1
forn =0,1,...and t = 1,...,q,. Let u; be the

norm of ¥*, and let p = sup,c; pe. Then p < oo



because the motion is bounded, and the following
estimate holds:

@'z — Ul2|| < ut for ¢t > 1. (2.8)
Indeed this inequality holds for ¢t = 1, because
| @z — Pz < 1

for all z € 7?, and p > 1 since ¥ is area-preserving.
Assuming (2.8) to be true for some ¢t > 1, we have

@z — Wz
< [|@ 2 — Uidz|| + [Tz — WDz
= [|®'Pz — U'Pz| + || T (T2 — P2)|
<tp+ p||®z — Uz|| < (t+ 1)p,

which completes the induction. Using the trian-
gular inequality we conclude from (2.7) and (2.8)

that
4r 1

D'z —z|| > ————— — g,

| > PR——
forn=0,1,...and t = 1,...,q,. The right-hand
side of this inequality is positive (implying that
T(z,y) > gn) for all sufficiently large r—more pre-
cisely, for

r> iH,u’(qZ + ann+1)-

This shows that 7(r) > g, for such values of . The
first assertion of the theorem now follows from the
fact that ¢, — oc.

To prove the estimate (2.3) we note that the con-
vergence of the integral

o 0

(where @ > 0 and § > 0) implies that, for almost
all rotation numbers v, there exists a constant ¢’
such that the inequality

q

is satisfied for all positive integers p and ¢ [Khin-
chin 1964, Theorem 32|. Replacing (2.4) with this
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inequality and repeating the above argument, we
conclude that 7 > g, for

KEE 216
T > Eqn )

from which the desired result follows. O

The bound (2.3) is too weak for an effective compu-
tation of the function 7. For this reason, in place of
7 we consider the simpler function f(r) = 7'(r,0),
which measures 1" on a single representative point
of the level set Q(z,y) = r?, for integer r. Clearly,
f(r) > 7(r). This simplification is not as crude as
it may seem: we have found numerically, by sam-
pling a few rotation numbers, that some two-thirds
of the orbits have a representative point on the z-
axis (which is not a symmetry axis).

A log-log plot of f(r) for the golden mean rota-
tion number v = 1(1++/5) is displayed in Figure 2.
The large fluctuations are not unexpected, given
the arithmetical nature of f. The lower envelope
represents a lower bound of the form ¢r?/?, which
suggest that the bound (2.3) can be improved. The
upper bound is somewhat greater than linear (the

10° ¢

10° ¢

1 . M . M . PP
1050 102 10° 10

r

FIGURE 2. The period f(r) of the orbits through
the points (z,y) = (r,0). The solid curve repre-
sents the average order of f. The lower and upper

envelopes have slope % and %.
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exponent is equal to i5). The thick solid curve

represents the average order F' of f, given by

F(r) = %—jgz,f(k), (2.9)

k<r

which is introduced to suppress fluctuations.

Figure 3 plots F(r)/r for the same rotation num-
ber. Comparison between domain and range shows
that, asymptotically, F' is dominated by a linear
term, but the persisting fluctuations leave doubts
about the existence of a limit.

6.8 L. ‘ ‘
0 100000

200000 300000

FIGURE 3. The function F(r)/r for the golden
mean, where F' is the average order of f, given
by (2.9).

3. DIFFUSION

We consider variations of the W-invariant form @
defined in (22) Let (fl}'t+1,yt+1) = @(fl}'t,yt). We
have

Q(ze11,Ye+1) = Q(24, ye) + AQ (24, i),
where
AQ(ze,yr) = (2ys — Amy)e(xy) + ()
= (¢ — Te+1)e(@0)

In place of AR we consider the normalized function
O(z,y) = e(x)n(x,y), where

2y — Az

77(7773/) = m

21 August 1996 at 14:34

We have |n(z,y)| < 1 because

|2y - )\$| < 2\/ Q(may)a

and, since |e(z)| < 1, the function © is normalized:
©(z,y)| < 1.

For the continuum map ¥, the function n = n(t)
can be computed explicitly, giving

n(t) = cos(2mvt + 0),

where 0 is a constant depending on A as well as on
the initial conditions. Thus, if v is irrational, 7 is
quasi-periodic, with invariant density

1
= 3.1
po(2) = —— (3.1

for z = n(x,y), |2| < 1. This distribution, which
is independent of A, is well approximated by that
computed on a sufficiently long discrete orbit (see
Figure 4, top left).

Our ¢ is the source of fluctuations. When A is
irrational, the values of € are distributed uniformly
in the unit interval, although the fluctuations are
larger that those of n (Figure 4, top right). As-
suming € and 7 to be independent, one finds that
O has density

(3.2)
0

1 (]_+-V/1737§5>

pe(z) = —In
2]

for z = O(x,y), |2| < 1, which is compared with
the density computed on a discrete orbit in Figure
4, bottom, showing a good agreement. This result
verifies numerically the independence of ¢ and 7.
(Adapting the above consideration to the case of
rational A is not difficult, but we shall not do it
here.)

The normalized variation x(t) of @ after ¢ itera-
tions is defined by

t—1
X(ta Zo, Z/o) - Z ®($k7 yk)
k=0

~ Q(mtayt) B Q($07y0) .

(3.3)
2 Q(:L'Oa yO)
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2
Pe
1
07 1

FIGURE4. Probability distributions computed along an orbit of period 25805783. Top left: distribution for the
variable 7. The solid curve represents the estimate (3.1). Top right: distribution for . Bottom: Distribution
for ©. The solid curve represents the estimate (3.2).
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A typical evolution of x over a time interval shorter
than the period is displayed in Figure 5, which
suggests that this process possesses nontrivial sta-
tistical properties. Because the period of the or-
bits diverges at infinity, it is possible to investigate
the long-time asymptotics of (3.3) on suitable se-
quences of periodic orbits.

6
4
X
2
0
—2
0 200 400 . 600 800 1000
FIGURE 5. A typical evolution of x(¢), computed

along an orbit of period 7553.

We are interested in the long-time behaviour of
the cumulants ki (t) of the distribution of x(t),
computed according to some average (-) (to be
defined below) with respect to the initial point
(z0,Y0). First we write the (as yet formal) ex-
ponential generating function for the cumulants
[David and Barton 1962, Ch. 3]:

Ki(z) = ln<exp(z . X(t))> = Z ’ik(t)%

for t = 1,2,.... We then define [Artuso 1991,
Wang and Hu 1993]

P(z) = lim Kt = hm Z ot
t—oo —00 o1
= thf?o Zpk o (3.4)

where py(t) = ki(t)/t. If K, is analytic at zero for
all ¢, and if the limit (3.4) exists for all k, then P
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is analytic at zero, and it becomes the exponential
generating function of the transport coefficients py,

e k
z
k=1

If the limit (3.4) does not exist for some k, one
speaks of anomalous transport (see, for example,
[Wang and Hu 1993; Artuso et al. 1992] and refer-
ences therein).

We are interested in the behaviour of py(t) for
small values of k. Letting s, = (x(¢)*) be the k-
th moment of x, standard theory gives [David and
Barton 1962, p. 43|

K1 = H1,

K2 = 2 — #f,

K3 = 3 — 31 iz + 113,

Ka = fug — 33 — dpa pis + 1203 — 6y,

K5 = s — Spaps — 10papa +20p3pu + 30u3u1 — 60p2p3
+2443,

K6 = fte — 651 — 15114 p2 + 30papi — 10p3 +120p3 201

—120psp3 4 30p3 — 2702 p2 + 360papt — 12048,

We have computed the functions py(¢) for the
process (3.3), for 1 < k < 6 and ¢t < 200. For each
value of ¢, the phase averaging was done over the
points of a single orbit of period 1128946 (Figure
6, top) and 116803411 (bottom). (A more rigor-
ous averaging procedure will be discussed below.)
Although all functions pj(t) are necessarily peri-
odic, with period equal to that of the orbit, we
are only interested in the very early part of the pe-
riod, which corresponds to relaxation to the regime
of infinite period.

For the first three odd values of k, the function
pr, was found to vanish identically within numer-
ical accuracy, as expected from the symmetry of
the ©-distribution. In both panels of Figure 6 we
have plotted the first three even transport func-
tions p2(t), ps(t) and pe(t). The dotted lines rep-
resent their conjectured limiting values

1 1

D2 = 57> P4:—ﬁ,

_i (3.6)
24 Ps = .

4032



(see next section); p, is the diffusion coefficient and
py is the Burnett coefficient. For fixed ¢, the con-
vergence of pog(t), in terms of the size of the av-
eraging sample, becomes quickly troublesome as
k increases. Within the relatively limited statis-
tics of Figure 6 (top), only the diffusion coefficient
(k = 2) appears to relax to some limiting value,
while the other coefficients fluctuate wildly. The
improved statistics of Figure 6 (bottom) confirms

0.08

0.06

0.04} 7
Pk
0.02

0.00

—0.02 L, ‘ y ‘ ‘
0 50 100 150 200

0.08

0.06

0.04
Pk
0.02

0.00

—0.02 t, , , : .
0 50 100 150 200
t
FIGURE6. The transport functions p(t), for k = 2,
4 and 6, computed by averaging over all points
of a periodic orbit of period 1128946 (top) and
116803411 (bottom).
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the convergence of p,. The behaviour of the other
coefficients is consistent with convergence to the
limits (3.6), although at this stage the evidence
is rather weak. In Section 4, we shall strengthen
this argument by analyzing the asymptotics of a
stochastic process closely related to (3.3), which is
amenable to analytical investigation.

From a theoretical angle, the averaging over a
single long orbit adopted above is unsatisfactory.
A firmer procedure could consist in first averaging
over all lattice points belonging to sufficiently long
periodic orbits, and then letting the period go to
infinity. More precisely, let W = W (t) be the set
of lattice points z = (z,y) € Z? for which T'(z) > t,
and let V(r,t) be the intersection of W (t) with the
solid ellipses Q(z) < r?. For a lattice function g
we define the average

) 1
(ghe = lim —— > g(2)
r—oo |V(r,1)]
z e V(rt)
assuming that the limit exists. Because the com-
plement of W in Z? is finite (from Theorem 2.1),
the set W(¢) will include the exterior of a suffi-
ciently large ellipses, whence |V (r,t)| ~ r?. Finally

(9) = lim (g)..

We conjecture that for all positive integers k£ and
s, the functions py(s) converge with respect to this
average.

4. A STOCHASTIC PROCESS

In order to strengthen the case for a probabilistic
interpretation of the round-off fluctuations, and to
support the interpretation of the results presented
in the previous section, we compare the determin-
istic process (3.3) with the stochastic process

t
x(t) = Z €, sin(2mvs), (4.1
s=1

where the £, are random variables uniformly dis-
tributed in the unit interval. The key assumptions
behind the introduction of (4.1) as a model for
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(3.3) are the randomness of € and its independence
from 7.

The long-time statistical behaviour of the pro-
cess (4.1) is described by the following result:

Theorem 4.1. Let x(t) be given by (4.1) and let v be
irrational. Then, for |z| < 2w, we have

P(z) = lim %ln<exp(z -x(1))

t—oo
[e*S)
O
22n+1n(n!)2 )
n=1

where By, is the k-th Bernoulli number.

A comparison of the right-hand side of this equa-
tion with (3.5) yields at once the transport coeffi-
cients

(2n — 1)! By,
Pon = —5 7o
22n(n!)2
for n = 1,2,..., which is the formula used to ob-
tain (3.6).

Before proving the theorem, we estimate the er-
rors in the numerical evaluation of py(t) (for fixed
t) that result from the finiteness of the averag-
ing sample. The data displayed in Figure 7 were
obtained by averaging over 100 million values of the

0.08

0.06 |

0.04 ¢

0.02 1

0.00 |

—0.02 t, ‘ ‘ ‘ ‘
0 50 100 150 200

FIGURE?7. The transport functions of the stochas-
tic process (4.1), computed by averaging over 100
million data.
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random variable £(k) produced by a random num-
ber generator, so as to obtain a statistics similar
to that of Figure 6 (bottom). The difference be-
tween the behaviour of (3.3) and (4.1) was found
to be comparable with the fluctuations observed
by changing random sequence. On this basis, we
conclude that these results are consistent with the
hypothesis that the two processes share not only
the same asymptotics, but also all functions py(t).
Proof of Theorem 4.1. Let 7, = sin(27vs). Then
o0, = €7, is a random variable, with density

Al ee0)
s(xr) = 4.2)
ps(2) {0 otherwise

Because the variables ©, are independent, the cu-
mulants of x(¢) are the sum of the cumulants of
the ©, that is,

From (4.2) we compute

Sk\ N
(00) = k+1’

which, combined with (4.4), yields

<exp(z . (:)S)> - o (e — 1)
Thus (4.3) becomes
_ 1 ¢ 2Ms _ 1
P(z)=lim = ) In S
t—oo t 1 ZMs

For irrational v, the sequence s — 27vs mod 27
is uniformly distributed in the interval [0, 27]. Be-
cause the logarithmic function in this last expres-



sion is continuous in that interval, we obtain, from
the ergodic theorem,

e? sin(z) 1

_ 1 [
P(z) = %/" In ~ein() dzx.

Let y = zsin(x). We rewrite the integrand above
as

e —1 sinh y - Y\ 2
In =y+In =y+ ln(1+<—> )
2y Y kz_:l wk
The first term is odd in = and integrates to zero,

and we get
B 1 /2 O y 2
pa=1 S (2
(2) 7r/ Z ot wk v
2 [ z \2
== (14 (5 ) sin’(e))da.
- kz_:l/o n(l+ (5 ) sin (x) )dz

—7/2 =1
Integrating we obtain (see [Gradshteyn and Ryzhik
1980, Eq. 4.399], for example):

_ 2 14+ /1+ (2/27k)?
P(z)z2§ln 5 .

Next we expand the logarithmic function [Grad-
shteyn and Ryzhik 1980, Eq. 1.515] to obtain, for
|z| < 2m,

- E S (L
— 2 (n)2 \27k

o_o ot 2(2n —1)! o
2 T n') 2y O (212

where ( is the Riemann zeta function. For any
positive integer n we have [Apostol 1984, Theo-
rem 12.17]

(271')2”

S 2(2n)! "

¢(2n) =

where the B; are the Bernolﬂli numbers. Combin-
ing this with the value of P(z) yields the desired
formula. O
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5. DISCUSSION

In this work we have explored the dynamical and
statistical effects of round-off errors, in a model
problem where the coordinates of a regular dy-
namical system—Ilinear quasi-periodic motions on
tori—are discretized uniformly.

As it is frequently the case in discrete dynamics,
obstructions to predictability originate from com-
putational difficulties of the time complexity type
(programs take too long to run). This is in sharp
contrast with the case of continuum systems, where
randomness and unpredictability are rooted in the
positive algorithmic complexity of the orbits (pro-
grams are too large) [Alexeev and Yakobson 1981;
Ford 1983].

The problem of predicting the period of an orbit
(which was found to depend irregularly on coordi-
nates) serves as an illustration. Specifying a lattice
point near the invariant curve Q(z,y) = r? requires
O(log,(r)) bits of information, with which we can
generate an orbit whose period grows faster than
logarithmically. Thus the algorithmic complexity
of any orbit is zero.

On the other hand, the mechanism that causes
an orbit to become periodic has a strong probabilis-
tic flavour. Even though the period—particularly
when small—tends to be the denominator of a good
rational approximant of the rotation number (of-
ten a convergent of its continued fractions), the
sheer size of the fluctuations raises the question
of whether or not a polynomial-time algorithm for
computing the period exists. Without that, the
only computational strategy would be essentially
“wait and see”, which would make this problem
intractable. For instance, the computation of Fig-
ure 3, based on direct iteration, required some 600
hours of CPU time on a Sun Sparcstation 2.

A natural question concerns the existence of a
“continuum limit”, which can be defined, for in-
stance, in terms of convergence of discrete invari-
ant measures to the continuum ones [Blank 1989].
This question is closely related to the growth rate
of the period of the orbits. Indeed in order to en-
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sure that, asymptotically, the discrete torus has
zero relative “thickness”, one must establish that
the period of the orbits grows slower than 72. Our
results lead us to conjecture that such bound exists
for (almost all) irrational rotation numbers. How-
ever, we have also found strong indications that
for some rational rotation numbers the continuum
limit—in the sense indicated above—may not ex-
ist. (The boundedness of all orbits of a uniform
discretization of an irrational symplectic rotation
was first conjectured in [Blank 1991al.)

The main open question on the transport prob-
lem is to decide whether or not the generating func-
tion (3.4) is actually given by the function P of
Theorem 4.1. We believe this to be the case, al-
though the evidence presented here is not conclu-
sive. In particular, one cannot rule out nonanalytic
behaviour for P, that is, anomalous transport.

These problems are currently under investiga-
tion.
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