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The existence of an invariant surface in high-dimensional sys-
tems greatly influences the behavior in a neighborhood of the
invariant surface. We prove theorems that predict the behav-
ior of periodic orbits in the vicinity of an invariant surface on
which the motion is conjugate to a Diophantine rotation for
symplectic maps and quasiperiodic perturbations of symplec-
tic maps. Our results allow for efficient numerical algorithms
that can serve as an indication for the breakdown of invariant
surfaces.

1. INTRODUCTION

Periodic orbits have long served as tools to study
the long-term behavior of dynamical systems (as in
[Poincaré 1892], for example). In 1979, Greene pro-
posed a numerical criterion, based on the behavior
of periodic orbits, to determine the parameter val-
ues at which breakdown of certain invariant circles
of twist maps of the annulus occurs. Greene’s cri-
terion (see [Greene 1979] for a precise formulation)
is remarkably accurate and has provided valuable
intuition that led to the formulation of a renormal-
ization group theory for the breakdown of invari-
ant circles for twist maps of the annulus [MacKay
1982].

The determination of the parameter values at
which breakdown of invariant surfaces occurs has
significant practical importance, as invariant sur-
faces present barriers to phase-space diffusion. One
part of Greene’s criterion, initially conjectured in
[Greene 1979] and later proved in [MacKay 1992;
Falcolini and Llave 1992], says that in twist maps of
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the annulus that admit an invariant circle with dio-
phantine rotation number, a certain limit—taken
along periodic orbits in the neighborhood of the in-
variant circle and based on their stability proper-
ties—is equal to zero. Moreover, if the invariant
circle is analytic, the limit is reached exponentially
fast. Such behavior can be, and has been, effi-
ciently investigated numerically.

We present a similar result in higher dimensions
for certain symplectic maps and quasiperiodic per-
turbations of symplectic maps, satisfying nonde-
generacy assumptions. If an invariant surface I’
exists and is analytic, or sufficiently differentiable,
and motion on I' is conjugate to rigid rotation with
a diophantine rotation vector, we show that all the
eigenvalues of the derivative of the map along peri-
odic orbits in a neighborhood of T' tend to 1 (expo-
nentially, if the invariant surface is analytic) as the
periodic orbit approaches I'. A precise statement
is given in Section 2.

Our results are of a local nature and involve only
a neighborhood of the invariant surface. Existence
of an invariant surface imposes severe restrictions
for the map in a neighborhood of the surface. In-
deed, we show that in an appropriate neighborhood
of the invariant surface the map is close to inte-
grable, and using a perturbative argument one can
control the behavior of periodic orbits. In this set-
ting the distance from the invariant surface plays
the role of a small parameter, and one can deduce
that periodic orbits with rotation vectors close to
the rotation vector of the invariant surface exist
close to the surface. In [Perry and Wiggins 1994]
similar ideas were used to deduce long-term stabil-
ity for orbits that come close to an invariant sur-
face.

2. NOTATION AND STATEMENT OF RESULTS

We will study two distinct cases: symplectic maps
and quasiperiodic perturbations of such maps (that
is, skew-products of symplectic maps and quasi-
periodic rotation—a particular case of volume-pre-
serving maps).

In the first case we consider maps f, either C"
or analytic, from the space T¢ x R? to itself, such
that

(i) f preserves the natural symplectic two-form w =
Zle dp; N dA;, and
(ii) ¢’ /OA is a nonsingular d x d matrix,

where ¢ the first coordinate of f(p,A), for f a
lift of f. We will call such an f a 2d-dimensional
nonsingular symplectic map. C™ maps of this type
for d = 1 are called (positive or negative) twist
maps of the annulus.

In the second case we consider maps f : T¢"¢ x
R? — Tdéte x R? that are periodic or quasiperiodic
skew-products on T¢ where f|rixpas : T¢ X R? —
T¢ x R? is a 2d-dimensional nonsingular symplectic
map.

Let ¢ = d in the case of the symplectic maps and
¢ = d+e in the case of quasiperiodic perturbations
of symplectic maps. We say that = is a periodic
orbit of type (P/N), for P € Z° and N a positive
integer, if fN(x) = x and fN(&) = & + (P,0),
where f,& are (fixed) lifts of f, 2 to the universal
cover of T° x R?. We will call N the period of the
orbit. Notice that only periodic skew-products can
have periodic orbits. For c-vectors we will use the
norm [lw. = Y20, [l )

We define the rotation vector of an orbit of f as
the c-dimensional vector

ey @) —a

17— 00 1

if the limit exists, where m; the projection on the
first ¢ (angle) coordinates: m(x,y) = x. For a
periodic orbit of type (P/N) the rotation vector is
w=P/N.

We will consider sets with rotation vectors that
are not well approximated by rational vectors. We
define a c-dimensional vector to be (diophantine)
of type (K, 1) if

K
Prw]> o

TR for P€Z, P#£0, K >0. (2.1)
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It is known [Arnol’d 1988] that if 7 > ¢ — 1 the
set of vectors of type (K, 7) has positive Lebesgue
measure in the unit c-dimensional cube.

We now state our results for periodic orbits that
approach invariant sets of f.

Theorem 2.1. Let f be a 2d-dimensional nonsin-
gular symplectic map of class C”, where r > 1.
Suppose f admits a C™ invariant surface L', homo-
topic to T x {0}, on which the motion is C" con-
Jugate to rigid rotation with rotation vector w of
type (K, 7). Moreover assume that in a neighbor-
hood of ' there are periodic orbits x(p/n) of type
(P/N) for ||[Nw — Pl||4 small enough. Then, for
any nonnegative integer k < (r —1)/7, we can find
D, > 0 such that the eigenvalues Ay, ..., A2q of the
derivative D fN(x(p/n)) satisfy

X\ —1| < Dy||Nw = P|I¥*N  fori=1,...,2d.

In the case where the map f and the invariant
surface are analytic in a polystrip Is around the
invariant surface I' and analytically conjugate to
rigid rotation, we can compute the coefficients D,
and choose the k that gives the best bound.

Theorem 2.2. Let f: T¢ x R — T x R? be an an-
alytic 2d-dimensional nonsingular symplectic map.
Suppose [ admaits an analytic invariant surface T,
homotopic to T x {0}, on which the motion is an-
alytically conjugate, with conjugacy vy, to rigid ro-
tation with rotation vector w of type (K, ). More-
over, assume that in a neighborhood of ' there are
periodic orbits x(p/ny of type (P/N) for [|[Nw—Pl|4
small enough. If f and v are bounded in a neigh-
borhood of the invariant surface, the eigenvalues
ALy ..., Aoq of the derivative D fY (xp/n)) satisfy

I\ —1| < D,N eXP(—ﬁzHNw _ PH;l/(2(1+T)))7

where Dy, Dy depend on the width of the domain of
analyticity of f and -y, on the properties of w (i.e.,
K and 1), and on the dimension d.

In the case d = 1, the behavior of the eigenvalues is
completely determined by the trace of the deriva-
tive along the periodic orbit. In analogy with that

case, we define the residue of a periodic orbit with
period N as

R(x) 2d — Tr(DfV (x))) . (2.2)

=1 (

4d
Our definition is an extension of the one used in
[Greene 1979] for two-dimensional twist maps of
the annulus. The factor (4d)™' ensures that the
residue of elliptic periodic orbits (orbits for which
the eigenvalues of Df" lie on the unit circle) is
between zero and one.

Greene formulated a criterion for the breakdown
of invariant curves of twist maps based on the be-
havior of the residue of periodic orbits [Greene
1979]. As indicated by Theorem 2.2, an analog
of the criterion in higher dimensions should con-
sider the behavior of additional quantities, other
than the residue, such as the eigenvalues of DfN
along periodic orbits.

Notice that, due to invariance under cyclic per-
mutations, the residue of a periodic orbit is the
same for all the points of the orbit. Also, since the
definition only involves derivatives, the residue is
invariant under C* changes of variables. For inte-
grable maps—that is, maps conjugate to §(z,y) =
(x + h(y), y), for h : R — R*—the residue of all
periodic orbits is zero. From Theorems 2.1 and 2.2
we have the following corollary:

Corollary 2.3. Let f be a 2d-dimensional nonsin-
gular symplectic map of class C”, where r > 1.
Suppose f admits a C" invariant surface T, homo-
topic to T%x {0}, on which the motion is C" conju-
gate to rigid rotation with rotation vector w of type
(K, 7). Moreover assume that in a neighborhood of
' there are periodic orbits x(p/ny of type (P/N) for
INw— P||; small enough. Then, for any nonnega-
tive integer k < (r—1)/7, we can find Cy > 0 such
that
|R(x)| < Ci|Nw — P|[/*N.

If f, T, and the conjugacy to rigid rotation are
analytic, we can find Cy,Cy > 0 such that

|R(z)| < CN exp(—Cy|[Nw — PI| /).
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Remark. In the case d = 1 the continued-fraction
convergents to w provide integer sequences { M},
and {V;}, such that

lw— M;/N;| < KN 2 (2.3)

for all + and w. In that case it is possible to show
that if an analytic invariant curve exists then

lim sup |R(z;)|"/" < 1,

where the limit is taken along continued fraction
convergents. Unfortunately, in higher dimensions,
there is not, to our knowledge, an efficient approxi-
mation scheme that can produce convergents to an
arbitrary rotation vector with d components that
satisfy an inequality similar to (2.3). Such schemes
do exist for certain classes of rotation vectors, such
as golden vectors of the Jacobi-Perron algorithm
for d = 2 [Kosygin 1991].

Remark. Theorems 2.1 and 2.2 are local results that
apply in a neighborhood of the invariant surface.
Thus, assumptions (i) and (ii) at the beginning of
this section can be relaxed to hold only in a neigh-
borhood of the invariant surface I'.

We turn to the case of volume-preserving maps
that are quasiperiodic skew-products of symplec-
tic maps over T¢, that is, maps of the form

f(g,(p,A) = (fl(gagpaA)a © + wa, f2(97<)07A))

for fi : Tt x R — T4, f, : T4 x R — R,
0 € T, ¢ € T and w, € T¢ an irrational vector.
We introduce the extension f* : T¢t¢ x Réte —
Td+e X Rd+e by

[0, 0, A1, As)
= (fl(easoaAl)a 50+A27 f2(97§07A1)a A2)7

which at A; = wy reduces to f. If f admits an in-
variant surface [ then f* admits an invariant sur-
face I'* at Ay = wy. Moreover, for w € T¢, we in-
troduce the restriction f*: T? x R* — Té+e x R?
by

fo(0,0,4) = (0,0, A, w).

If f* admits a periodic orbit z of type ((Py, P,)/N)
then f7, v admits a periodic orbit  of the same
type.

Theorem 2.4. Let f : T9te x R — Tite x R? be
a quastperiodic skew-product of a 2d-dimensional
nonsingular symplectic map over T¢ such that f|r.
15 Tigid rotation with o diophantine rotation vector.
Assume that f is of class C”, where r > 1, and that
it admits a C” invariant surface I', homotopic to
T x {0}, on which the motion is C™ conjugate to
rigid Totation with rotation vector w of type (K, ).
Moreover, assume that in the extension f* of f
there is a metghborhood of I'* where there are pe-
riodic orbits x(p/ny (P = (P1, Py) € Z°) of type
(P/N) for |Nw — P|| 4+ small enough. Then, for
any nonnegative integer k < (r —1)/7, we can find
Dy > 0 such that 2d of the eigenvalues A1, ..., Ay
of the derivative D((f;;Z/N)N)(j(P/N)) satisfy

A —1| < Dy|Nw = P|IY2N  fori=1,...,2d,
the remaining e eigenvalues being identically 1.

If f, T, and the conjugacy to rigid rotation are
analytic, we can find Cy,Cy > 0 such that

A — 1] < Dy N exp(—Dy||Nw — P|7/ ),
Our results cover the case where f admits an in-
variant surface on which motion is conjugate to ro-
tation. In [Falcolini and Llave 1992] it was shown
that if f admits an invariant set on which motion
is semi-conjugate to rotation, there are periodic
orbits approaching the invariant set under certain
conditions on the Lyapunov exponents of f on the
invariant set. We quote these results for complete-
ness:

Theorem 2.5 [Falcolini and Llave 1992, Theorem 2.3].
Assume ' is a hyperbolic set of rotation vector w
and that {x,} is a sequence of periodic points of
type (M,,/N,,) such that the orbit of =, converges
to L. Then, for sufficiently large n, |R(x,)|*/" >
A > 1. Actually, if the hyperbolic set has mazimum
Lyapunov exponent vy, then lim, R(z,)"/" = e7.
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Theorem 2.6 [Falcolini and Llave 1992, Theorem 4.3].
Let f : M — M be a C* diffeomorphism leav-
ing invariant the ergodic measure p. Assume that,
with respect to this measure, f has no zero Lya-
punov exponents. Then, for almost every point
o wn the support of w, it is possible to find a se-
quence {x,}>°, of periodic points that converges to
xo. Moreover, the sequence of orbits can be chosen
in such a way that the Lyapunov exponents of x,
converge to the Lyapunov exponents of xg.

3. PROOF OF THE RESULTS

The C" Case for Symplectic Maps

We turn to the proof of Theorem 2.1, which con-
sists of three parts. First, in Proposition 3.2, we
construct a normal form in the neighborhood of the
invariant surface and approximate the map in that
neighborhood with an integrable mapping. The
distance between our map and the integrable map
can be made O(||H||%), where H are the actions in
an appropriate coordinate system, for k£ depending
on the smoothness of the invariant surface and the
type of the rotation vector.

In the second part of the proof we show that in a
small enough neighborhood of the invariant surface
the rotation vector of periodic orbits that stay in
the neighborhood cannot differ from the rotation
vector of the invariant surface by more than the
size of the neighborhood.

Finally, the last part is a perturbation argument
that allows us to estimate the eigenvalues of the
derivative along periodic orbits that stay close to
the invariant surface (Lemma 3.3).

Before introducing the normal form we make a
change of variables that makes it more convenient
to study a neighborhood of the invariant surface.

Proposition 3.1. Let f be a 2d-dimensional nonsin-
gular symplectic map of class C”, admitting o C”
invariant surface T' (which is a graph of a C" func-
tion v : T* — R*Y) with f|r C™ conjugate to rigid
rotation with rotation vector w. Then we can find a
symplectic C™* mapping h defined in a neighbor-

hood of T' and having a C"™™' inverse in a neigh-
borhood of I', and C"~1 functions v : T* x R? — T¢
and u: T x R? — RY, such that
hofoh™(p,A)

= (p+w+ Av(p, 4), A+ A%u(p, A)), G.1)

where A? implies all quadratic combinations of the
various A’s.

Proof. We first shift the action coordinates so that

(p,0) becomes the invariant surface, then we use

the conjugacy to rigid rotation to deduce (3.1).
Define h; : T x R* — T¢ x R by

hi(p, A) = (0, A+7(p))-

Then h, is of class C”, symplectic and sends T¢ x
{0} to the graph of v. Thus hy o f o hy' leaves
the surface T* x {0}* invariant; in other words,
there exist C™ functions v; : T¢ x R — T¢ and
uy : T? x R — R? such that

hio fo h1_1(<)05A> = (”1(50714), AUl(SDaA»-

Since the motion on the surface is C" conjugate
to rigid rotation, there is a C" function § : T¢ — T¢
with a C" inverse such that v, (6(¢),0) = é(p+w).
In particular, (D)™ exists.

We introduce (for » > 1) the C"~! symplectic
transformation

ha (0, A) = (6(0), (DS) "+ A)
with
hytohyofohitohy(p,A)
= (p+w+ Avy(p, 4), Aus(p, 4)), 3.2)
where vy : T¢ x RY — T¢ and uy : T¢ x RY — R?
are C"~! functions with
va(ip, A) = A7H (67 (01 (6(p), (D6)~' A))
— 6 H(v1(8(),0))),
u2(907 A) = Uy (6(90)7 (Dé)_lA)

For A = 0, we have 0A]/0A; = 0¢;/0p; = 0 for
i # j, 09, /0p; =1 for all i, and 0A/dp; = 0 for
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all 4,7. Since the map is symplectic, we conclude
that

0A!

8Ai A=0

for all 7. Moreover, from condition (ii) in the defini-
tion of a nonsingular symplectic map, we conclude
that 0p!/0A; # 0 or vz(p,0) # 0. This concludes
the proof of Proposition 3.1. U

=1

Remark. In the case d =1, Birkhoff’s theorem guar-
antees that an invariant curve of a nonsingular
symplectic map with irrational rotation number
is a graph. Birkhoff’s theorem fails when condi-
tion (ii) (the twist condition) is violated. Also for
higher dimensions we are not aware of an analog of
Birkhoff’s theorem. (For d = 2 there is an analog
of Birkhoff’s theorem [Mather 1991] for the class of
maps that can be expressed as a finite number of
compositions of one-dimensional twist maps). In
the general case, the condition that the invariant
curve is a graph over T¢ can be replaced by a more
local condition (weaker in the case of the maps we
have been studying and also applicable to singular
symplectic maps, that is, maps with zero torsion).
If I is homotopic to T? there are coordinates in a
neighborhood of I' for which the invariant surface
reduces to a graph. Then condition (ii) need only
be satisfied in a neighborhood of the invariant sur-
face in the transformed coordinates (3.2) (that is,
we need only have v,y(yp,0) # 0) for the conclusions
of Theorem 2.1 to be valid.

We introduce some further notation. We use multi-
index notation: {m} will denote all possible combi-
nations of indices 1;,,...,d;, such that 27:1 l;, =
m. Moreover, the expression AU} will mean all
possible combinations of the different A’s raised
to all possible indices allowed from the condition
27:1 l;, = m. Also, a symbol Q,,; “multiplying”
A"} will denote a multitude of functions, one for
each combination of the A’s allowed (for example,
Q1) corresponds to d functions, Qs) corresponds
to d(d + 1)/2 functions, etc.)

We can now construct a normal form for f in
a neighborhood of the invariant surface. We first

construct d independent approximate integrals in
a small neighborhood of the invariant surface.

Lemma 3.2. Let f be a C” map as before, and let
w be a rotation vector of type (K, 7). Then, given
any nonnegative integer k < (r —1)/7, we can find
functions Hyoy, Hyry, ..., Hyey : T — R and con-
stants C), such that the map H : T¢ x R* — R?
defined by

k
H="Y A"™Hg,,(p)

m=0

satisfies
IH o f — H|| < Cra | A5
Proof. Expanding in A we have

H o f(p, A)

Z A+ AP (o, )™ Hi (0 + w + Av(p, A))

Z A+ A2y (p, A))im

b 0Hp.,
X <Z C{l}W{T;(‘p +w + Av(p, A))|a=o
1=0
O(A{m+k+1})>

k
= > AU (Hpy (9 + ) + Hipoay (0 + w)ulp, 0)

m=0

FLiny(9)) + O(ATH),

where ¢y are the coefficients of the Taylor expan-

sion and L{m} depends on H{O}, H{l}, . ,H{m,2}

and their derivatives up to order m, as well as on

the derivatives of Hy,,_1;. Notice that changes in

Hy,,_1y by a constant do not affect Ly,,,.
Matching terms by order we have

Hy(¢) = Hioy (¢ +w),

H{m}(gp) = H{m}(@_l’w) +H{m—1}(50+w)u(307 0)
+Limy(p). (3.3)

Equations (3.3) are of the form

glp+w) —g(p) = fp). (3.4)
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It is well known [Siegel and Moser 1971; Arnol’d
1988] that for the case of w of type (K,7), given
f € C? with zero average over the d-torus, there
exists g € C97"F) that satisfies (3.4) for every
e>0,qg>r.

For m = 0, the ounly possible continuous solution
is Hg, = constant: indeed, from the condition

JraLpyde =0,if [, u(p,0)dp # 0 we get Hygy =
0.

Now consider the case m > 0. If Hyoy, Hyyy, ...,
Hy,,_5 are uniquely determined and Hy,,_1; is de-
termined up to a constant, then Ly, is completely
determined. Moreover, Hy,,; can be determined up
to a constant if and only if

[ (1 0) + 1o 0 Hi iy ) i =,

(3.5)
which uniquely determines the average value of
Hy,,_1y when [, u(p,0) # 0. When [, u(p,0) =
0 we can show that the choice [, H{ny(p) = 0,
m > 0 satisfies (3.5). To this end, consider the
truncation HIE™ 1 = S AU H (), satisty-
ing (3.3) up to order m — 1. Then

/ (HE (o, 4) - HE™ Vo f(p, A)}dp = 0,
’]I‘d

since f, being symplectic, preserves volume in phase
space. We have

H[gm—l](%A) _ glsm=1] 4 flp, A)
= AU (L iy () + ulp, 0)H 1) (9 + w))
+O(Alm 1y,

thus, condition (3.5) is satisfied.

The process can be carried out inductively as
long as Lyy is smooth enough (at least of class
C7*¢). Since in every step of the induction the
smoothness of Ly decreases by 7, we have the
bound kr > r —1,or k < (r —1)/7. If fis C*
or analytic the induction can be carried out for all
keN O

We have constructed d functions H that are ap-
proximate integrals in the vicinity of the invariant

surface. Since Hyp, = 0, H is a small perturba-
tion of A and the surface H = h, for ||h||; small, is
topologically nontrivial.

The function H defined by

H(h) :/ Adyp
H=h
is conserved under f up to O(||Al/%*!
borhood of A = 0.
We change coordinates, in such a way that H
replaces A, using a generating function S

) in a neigh-

k
S(®,A) = (A+ / > AU H,(s) ds)cb. (3.6)
Tdm:2

The function S generates the symplectic transfor-
mation

k
H=DS(®A4)=A+ / > A H G, (s) ds,
T m=2

P = D2S((I)7A)

9 k
= - {m}
<1><1 + 51 W;A H{m}(s)ds>.
In the new coordinates,
f(®,H)=(2+w+HA(H), H) +E(®,H), 3.7)

where the remainder satisfies |E| < Ci||H||5™ (in
appropriate norms) and A(0) # 0.

Remark. Another way to construct the normal form
would be to perform successive canonical trans-
formations (for example using the method of Lie
transforms) and reduce f to an integrable map, up
to O(At+1})in a neighborhood of the invariant
surface. This method was used in the case d =1 in
[MacKay 1992|, whereas the method of construct-
ing an approximate integral was used in [Falcolini
and Llave 1992]. We favor the latter, since it lends
itself to efficient numerical implementations.

When the map f is analytic, our estimates hold in
a complex neighborhood of T* x {0} of the form
{Im®;| < ¢, |H,| <&, fori=1,...,d} for some
£>0.
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In the new (2, H)-coordinates, we have | DE| <
Ck “H“S and

Df(®, H) = ((1) FH)

) ot oo
where F(H) = A(H) + HA'(H).

In a neighborhood of the invariant surface only
periodic orbits with rotation vectors close to the ro-
tation vector of the invariant surface are allowed.
Since F(0) # 0, we conclude using the implicit
function theorem that the actions prer of a peri-
odic orbit of period N in the vicinity of the invari-
ant surface are bounded by

CilINw = Pllg < [ Hperlla < Col| Nw = Plla.

The existence of periodic orbits for maps that are
close to integrable (such as map (3.7) in a neighbor-
hood of the invariant surface) has been studied in
the case where f has a generating function [Bern-
stein and Katok 1987; Llave and Wayne 1989]. It
was shown that some periodic orbits of the inte-
grable system persist for small enough perturba-
tions, and that their distance from the original pe-
riodic orbits can be bounded by the size of the
perturbation. Although in [Llave and Wayne 1989]
only Hamiltonian flows were considered (which cor-
respond to maps with a generating function) the
methods used could be easily extended to periodic
orbits of symplectic maps that do not have a gen-
erating function.

The last part of the proof of Theorem 2.1 con-
sists of a simple perturbative argument. Since we
are interested in the eigenvalues of the derivative
along periodic orbits, we will estimate the norm of
products of matrices close to the ones appearing in

(3.8).
Lemma3.3. Let {A;}Y | be a set of 2d x 2d matrices

of the form
1 a;
A = (0 1 > ’

max(l, SuPlgigN(SuPlgl,kgd |(ai)lk|)) < A,

with

and let {B;}X | satisfy
(Ai)ju| <€

'7>‘2d Of

SUP1<i<n, 1<j,k<2d |(B:)jk —

with € < A. Then all the eigenvalues Ay, . .
B = B, ...By satisfy

11—\ <2((1+3dVAVE)Y —1).

Proof. We introduce norms for vectors and matri-
ces. For a vector in R*® we define

d

vlls = > (vil6 + [visal).

=1

For any 2d x 2d matrix C, we define

IClls = sup [|Cvlls/]|v]ls-
UERQ(I

Then, if A is an eigenvalue of C, we have |A| <
1Cs-
For the matrices A;, B; and for 6 < 1, we have
|Aills <1+ dmax(1,|(a;);k])0 <1+ dAS
||A1 — B’L“ﬁ S €maX(d + d6, d + d5_1)
=ed(l1+6"). (3.9)
To prove the claim about the eigenvalues of B,
notice that the eigenvalues i, ..., p2q of B—1 sat-
isfy
il <||B—Ay--- Ay + Ay - Ay — 1|5
S|IB— A Anlls + [|[Ar - Ay = I]s.
We write B = Bl---BN = (Al + (Bl — A]_))X
(As+(By—Ay)) ... (Ay +(By —Ay)). Expanding
and grouping terms, we get
B=A---Ax
+ ZA1 A (B — ADAiyy - An

+ Z(z‘h A (B — Ay A
5]

A (B — A A - Ax)
+(B1 —A1)"'(BN—AN)
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or

1B — Ay Axlls < (7) max; [ AT 1Bi = Ails

+ (3) max; | A; || 2B — Al + -+
+ () max; || B; — Aq|}.

Using the estimates (3.9) we conclude that
|B—A;...Axls
< (14+dAS+d(1+61e)" — (1 4+ dsA)~,
Choosing § = (¢/A)'/? < 1 we obtain
IB— Ay ... Aylls < (14 3dVAyE)" 1.

Following the same steps, ||A; -+ Ay — I||s can be
bounded by

A Ay = I|ls < (1 + dVAVE)Y — 1.

Since pu; = A; — 1 we have

X — 1] < (14 3dVAVE)Y + (1 4+ dVAVE)Y -2
<2((143dvVAVE)N —1). O
Putting all these estimates together, for IV large

enough, we can bound all the eigenvalues of DfN(x)
for a (P/N) periodic orbit by

I\ = 1] < Di||Nw = P||y* N.

This concludes the proof of Theorem 2.1.

The Analytic Case

To prove Theorem 2.2 we only need to compute the
values of the constants C), and D;, and choose the
best value for k. The optimal bound depends on
the diophantine properties of the rotation vector w.

Let
Tﬁ = {(90714-) :Retpi € [071]7 |Im901| < 67 |Al| < 6}

be a complex product neighborhood of the invari-
ant surface. For an analytic function F on Ty, set

|1 F|ls = sup |F;
Ts

or, if F' denotes several functions, set
1£]ls = max [|F 5.

We first state a lemma that provides quantita-
tive bounds for the solution to equations similar to
(3.4).

Lemma 3.4. Let L be a bounded analytic function
on Ts and assume that L has zero average over
T¢. For w diophantine of type (K,T) we can find
a solution of the equation

H(p) — H(p +w) = L(p)

unique, up to an additive constant, on Ts. More-
over, the solution is bounded on any smaller do-
main Ts_, by

[Hls—y < Creran™ I Llls
for any 0 < n < 6.

Proofs of this lemma can be found in [Riissmann
1975; Rissmann 1976; Arnol’d 1988; Fasso and
Benettin 1989].

In the process of constructing d approximate in-
tegrals in the neighborhood of the invariant surface
we need to solve the equations

Hiy (@) = Hpy (9 + w)
= H{mfl}(SD + W)U((p, 0) + L{m}(@);

where L.y () = Li,. () = I, (¢) with LY, ()
equal to

"1 0\ U}
> lga) Hoinle+w+ e )laso
g=1 W

and L7, (p) equal to

- 1 7/ 0\ _
. - (= {2} {5}
> Hon @y (5) A+APue )
under the condition (3.5).

We will use induction to estimate bounds on the
H’s.

Jj=2

Theorem 3.5. If the invariant surface is analytic in
Ts and w is diophantine of type (K,T), there are
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numbers K and E (depending on the system, the
invariant surface, the dimension and w) such that
Hﬁ{m}]|5,mn < ED™ and max|Hy,,| < ED™, for
H=[,Hdp, H=H—H, §—kp > 0, and
D=Knp ',

Proof. Using induction, the hypothesis holds for
m = 1. Assuming that all Hy,,;’s are determined
completely up to order m —2 and up to an additive
constant for Hy,,_,; and satisfy the bounds in the
assumption, we have

sup  |H{m—ji (¢ +w + Av(p, 4))|
[[Alla<n/2V
Ts—(m—1/2)n

<N H ey ls—m-1yn < N Hpm—jy ls—jns

where V' = supy, |v(p, A)|.

We can use Cauchy estimates to bound deriva-
tives with respect to A; this is justified for the case
of max norms in C* by the arguments in [Perry
and Wiggins 1994]. We derive the inequalities

1 o \1}
W(ﬂ) H{mfj}(§0+w+Av(§07A))|A:0

sup
|Alla<n/2V
Ts—(m—1/2)n )
(2v)y

< ||H{m—j}||6—jn7

and

1 AN ‘ ,
rilag) ArARhuie, ) s

1
Gri\aa =y

sup
|Alla<n/2V
Ts—(m—1/2)n

From them we deduce
1 4V
1Ly lls—m—1/2)y < D 1E7:

. )
||L%m}||57(m71/2)n <D 1E;.

From condition (3.5) it follows that
| H gyl < ED™

for n fixed and E large enough.
Using 3.4 and fixing < §/2k we have

||ﬁ1m||5—m17 < EDmilkniliT < ED™,

which concludes the induction. O

To conclude the proof of Theorem 2.2 we fix n =
6/2k and have C), < K(k/6)*3+7). Using a simple
maximization argument over k, we get

k k(1+7)
()

k< _ —1/(147) 51
nay B* <exp(—(1+71)B se™t)

Letting B = ||Nw — P||},/2 concludes the proof.

Remark. Theorem 2.2 is also valid for the case of
complex maps with complex invariant surfaces, as
long as the nondegeneracy condition (ii) is satisfied
in a neighborhood of the invariant surface.

The Quasiperiodic Skew-Product Case

The proof for the case of a quasiperiodic pertur-
bation of a symplectic map is similar to the proofs
of Theorems 2.1 and 2.2. We sketch the proof, re-
ferring to the preceding ones and emphasize the
differences.

We study invariant sets of maps f : T¢t¢ x R? —
Té*te x R? on which motion is conjugate to rigid
rotation with rotation vector w = (wy,w,), for w; €
T¢ and w, € T¢, and satisfying

f(o1, 02, A) = (fi(1, 02, A), 02 + w2),

where f; : T x R* — T¢ x R and fi(-,ps,-) is
symplectic.

The first part of the proof consists of construct-
ing a normal form for f in a neighborhood of the
invariant surface with rotation vector w. As in
Proposition 3.1 we can find a map h, defined in
a neighborhood of the invariant surface, such that
hofoh t(p,ps, A) equals

(pr+wi+A10(p1, @2, A1), Patws, Ai+ATu(pr, o))

with v(py1, p2,0) # 0.

We can now construct d approximate integrals
for f in a neighborhood of the invariant surface,
by expanding and matching by orders, just as in
Lemma 3.2. The difference at this point is that not
only the properties of w; (the rotation vector for
the symplectic coordinates) but also the combined
properties of w; and w» are important.



Tompaidis: Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results 207

After constructing the approximate integrals, we
perform a transformation (using a generating func-
tion in the “symplectic” coordinates, identity in
the remaining coordinates) to substitute the ap-
proximate integrals for the original “actions”.

The normal form for f in a neighborhood of the
invariant surface is

f(@y, 90271‘11) = (®1+w, +1‘~11A(1‘~11); 902+W27fi1)
+(E1(¢)17 P2, Al); 067 E2(q>17 P2, Al));

where A(0,w,) # 0 and ||Ey ] < Cil| A5+ in
appropriate norms.

Instead of studying the normal form for f itself,
we will study the extension f* : Téte x Rite —
Té+e x R¥*e with

f*(<1>1,go2,1411,A2)
= (1 + w1 + A1A(A), o2 + Az, AL Ay)
+ (E1 (D1, 92, A1), 0, By (P, 02, A1), 0,).

The map f* is also area-preserving and, for A, =
wy, motion in the @, goz,fil coordinates under f*
is identical to motion in the @y, p,, /11 coordinates
under f. The map f* has the advantage that in a
neighborhood of an invariant surface with rotation
vector of type (K, 7) one can find periodic orbits
(by simply changing A, to nearby rational num-
bers).

The bounds on the eigenvalues of the derivative
follow from Lemma 3.3. The 2e eigenvalues corre-
sponding to rotation in the ¢s, Ay coordinates are
identically 1.

Using arguments similar to those in the preced-
ing subsection, we can also reproduce the proof for
the analytic case. This proves Theorem 2.4.

Remark. In the case of a general volume-preserving
map f: T? x R — T¢ x R under conditions similar
to the ones in Theorem 2.4 it is possible to con-
struct one approximate integral in the neighbor-
hood of the invariant surface. However, no result
similar to Theorem 2.4 is possible, since we have no
control for the motion along the angle coordinates
as we did in the symplectic skew-product case.

4. CONCLUSIONS

Theorems 2.1, 2.2, and 2.4 suggest that the eigen-
values of the derivative of a symplectic map along
a periodic orbit are a higher-dimensional analog of
the residue (as used in Greene’s criterion for two-
dimensional twist maps—for a justification and an
application of Greene’s criterion in the case of a
particular dissipative map see [Llave and Tompa-
idis 1994]). Based on this analogy the following
efficient numerical algorithm can be implemented
to indicate existence of a close-by invariant surface.

e Compute periodic orbits with rotation vectors
close to the rotation vector of an invariant set
of interest.

e Check whether the periodic orbits thus com-
puted stay within a small neighborhood in phase
space.

e Compute the eigenvalues of the derivative of the
map along the periodic orbits.

e If all the eigenvalues approach 1 as the rotation
vector of the periodic orbit approaches the ro-
tation vector of the sought-for invariant set, ex-
istence is indicated. If, on the other hand, the
distance from the eigenvalues to 1 increases, we
have a numerical indication for the nonexistence
of the invariant surface.

Since convergence to the limit behavior (either 1
for the case of an invariant surface or oo for the
case of a uniformly hyperbolic invariant set) is ex-
ponentially fast, relatively low-period orbits can be
used. In [Tompaidis 1996] (the next article in this
issue) we implement such an algorithm for the case
of a quasiperiodic excitation of a two-dimensional
symplectic map.

Periodic orbits can also be used [Greene 1979;
MacKay 1982] to investigate behavior at break-
down. If transition can be described in terms of
a fixed point of a renormalization group opera-
tor with a stable manifold of codimension one, the
eigenvalues of the periodic orbits scale with the
period of the orbit and the distance from break-
down. Kosygin [1991] constructed a renormaliza-
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tion group operator and showed that if, under re-
peated action of the operator, the map converges to
a trivial fixed point, then the original map admits
an invariant surface. No such description is known
for the behavior at breakdown. Numerical stud-
ies and analytical arguments suggest that if such a
renormalization operator exists, there are regions
in parameter space where behavior at breakdown
is governed by dynamics more complex than a sim-
ple fixed point [MacKay et al. 1994; Artuso et al.
1991; Tompaidis 1996].

Another interesting problem is to determine the
existence of lower-dimensional hyperbolic tori on
which motion is conjugate to rigid rotation with a
resonant rotation vector. One can separate phase
space in the neighborhood of the low-dimensional
torus to the center manifold of the torus and the
hyperbolic directions. Arguments similar to the
ones we used in this paper can be used to show
that along the center manifold the map is close to
an integrable normal form. Along the hyperbolic
directions behavior can be described using argu-
ments similar to those of [Falcolini and Llave 1992].
The natural result appears to be that 2d* eigenval-
ues (where d* the dimension of the low-dimensional
torus) of the derivative of the map along periodic
orbits will approach 1, while the rest will approach
eMT | where the ); are the nonzero Lyapunov ex-
ponents of the orbits on the low-dimensional torus
and T is the period. Unfortunately a numerical al-
gorithm to estimate domains of existence of lower
dimensional hyperbolic tori would be difficult to
implement, since we cannot numerically isolate the
eigenvalues that tend to 1, from eigenvalues that
become exponentially large.
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