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Periodic configurations, or oscillators, occur in many cellular

automata. In an oscillator, repeated applications of the au-

tomaton rules eventually restore the configuration to its initial

state. This paper considers oscillators in Conway’s Life; anal-

ogous techniques should apply to other rules. Three explicit

methods are presented to construct oscillators in Life while

guaranteeing certain complexity bounds, leading to the exis-

tence of� an infinite sequence Kn of oscillators of periods n = 58, 59,

60, . . . and uniformly bounded population, and� an infinite sequence Dn of oscillators of periods n = 58,

59, 60, . . . and diameter bounded by b
p

log n, where b is

a uniform constant.

The proofs make use of the first explicit example of a stable

glider reflector in Life, solving a longstanding open question

about this cellular automaton.

1. INTRODUCTIONPeriodic con�gurations, or oscillators, are a nat-ural characteristic of many cellular automata. Inan oscillator, repeated applications of the rules ofthe cellular automaton (CA) eventually restore thecon�guration to its initial state either in the sameplace, or in some cases shifted slightly. In thelatter case, the con�guration will seem to propa-gate across cellular space and is often referred toas a spaceship [Berlekamp et al. 1982, Chapter 25;Poundstone 1985]. In this paper, \oscillator" willrefer to a stationary periodic con�guration unlessotherwise noted.We de�ne the period of an oscillator to be thesmallest number of rule applications needed to re-store it to its initial state. It is quite common tosee the same small, low-period oscillators arisingrepeatedly from random initial states. There is
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222 Experimental Mathematics, Vol. 7 (1998), No. 3no obvious connection between the shapes of thesecon�gurations and the underlying rules of the CA;rather, these shapes must be viewed as an emer-gent property of the system. Random experimen-tation often turns up a wealth of such con�gura-tions. There are usually other oscillators that areunlikely to arise from random initial states. Inprinciple, the set of all oscillators can be enumer-ated using such techniques as the de Bruijn dia-gram [McIntosh 1991], or constraint satisfaction[Bell and Hickerson 1994]. When applicable, thesetechniques often yield remarkable results. How-ever, they rapidly lead to combinatorial explosion,and are thus feasible only for small, low-period os-cillators.In this paper, we focus on the CA known as Con-way's Life [Berlekamp et al. 1982, Chapter 25]. Ourresults could not have been accomplished withoutdetailed knowledge of the behavior of this CA inparticular. Nevertheless, it is almost certain thata variation of these techniques could be used to ar-rive at analogous results for other CA rules. Wepresent a proof that for any n � 58, there is an os-cillator of period n that operates under Life rules,and give three explicit methods to construct suchoscillators. The �rst method, due to Buckingham[1996], results in large oscillators for large values ofn, but is the only one that works for periods up toseveral hundred. The second and third are used toprove optimal asymptotic size bounds under twodistinct de�nitions of size.
Why Life?Though called a game and often considered a topicin recreational mathematics, Conway's Life is animportant member of a very natural class of cellu-lar automata. In such a CA, a cell has only twostates, 0 and 1, and its transition rule is basedon just its current state and the sum of the val-ues of the eight cells surrounding it on the carte-sian grid. (Speci�cally, in Life a cell with a stateof 1 keeps this state if the sum of its neighborsis two or three. A cell with a state of 0 changesto 1 if the sum of its neighbors is exactly three.

In all other cases, its next state is 0.) There are218 such CA rules possible, and of these, Life isarguably the simplest one that achieves its char-acteristic balance between rapid stabilization anduncontrollable chaotic activity (this corresponds toClass 4 of [Wolfram 1984]).We believe there are no results of the type pre-sented here for any other CA not designed withthese results in mind. In addition, we are unawareof a simpler CA for which such claims are evenplausible. The components we present, thoughsimple to verify, often operate in a very counter-intuitive, \chaotic" manner. They must, of course,be combined in a more predictable and structuredmanner.Computers have been a useful tool in this re-search, both for enumerating combinations of sub-patterns and verifying the results. It should be em-phasized, however, that signi�cant advances haveall come from an informed judgment of what ispossible, based on computer-aided manual experi-mentation. So far, computers have primarily beenused to speed up the design process and �ll gapsleft by a manual search. Much potential remainsfor increasing the level of automation, suggestingthat Life may merit more attention from the com-puter search community.
ConventionsWe usually assume that Life operates on an in�nitegrid of cells whose state is 0 by default. A con�g-uration, typically called a pattern in this context,is considered �nite if it contains a �nite number ofcells with the value 1. The population is the to-tal number of cells having state 1. The boundingbox area of the pattern is the area of the smallestaxis-parallel rectangle containing all cells havingstate 1. The diameter of the pattern is the maxi-mum value of the Manhattan distance between anytwo cells having state 1. Life is often visualized asa grid covered with a pattern of round markers. Acell with a marker is considered to have a state of1, an empty cell a state of 0. We will adhere tothis convention in our illustrations.
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2. RESULTSWe provide several methods to construct oscilla-tors of all periods, with the consequence that os-cillators of all periods 58 and above can be con-structed. These methods can be used to produceinstances that are small enough to observe in op-eration on any reasonable desktop workstation orPC. We have actually built explicit examples usingevery method, but for brevity we will omit manydetails from our discussion of the method neededto prove the second complexity bound.We summarize our results as theorems. Theproof is deferred until later.
Theorem 1. There exists a constant a and a familyof oscillators K58;K59;K60; : : : functioning underLife rules such that Kn has period n and the pop-ulation of Kn never exceeds a.
Theorem 2. There exists a constant b and a familyof oscillators D58;D59;D60; : : : functioning underLife rules such that Dn has period n and the diam-eter of Dn never exceeds bplog n.Our bounds are within a constant of the best possi-ble. This is obvious in Theorem 1. To see that thisis true for Theorem 2, note that a period-n oscilla-tor must have n distinct states, which is not pos-sible unless it has a bounding box area of at leastdlog2 ne. Thus, its diameter must be 
�plog2 n �.With this in mind, it may briey seem puzzlingthat a constant population bound is attainable.There is no contradiction here: in this case, the di-ameter of the oscillator grows linearly with n andthe period is determined by the length of the pathtaken by a common type of 5-cell spaceship, calleda glider (Figure 1), as it travels between two pat-terns that act as reectors.Gliders are an important component of many ofour constructions, and were one of the �rst phe-

FIGURE 1. The two shapes of a glider.

nomena ever observed in Life. After two iterationsof Life rules, a glider becomes identical to its reec-tion across a diagonal, shifted slightly. After twomore iterations, the glider becomes identical to itsoriginal pattern but shifted by one diagonal cell.Because this pattern consists of just �ve cells, itoccurs as a by-product of many other reactions. Infact, other small patterns with special propertiesoften appear spontaneously, and all of our resultsrely heavily on this ability to exploit phenomenathat might best be described as combinatorial co-incidence.Ad hoc constructions are known for many lowerperiods (see [Hensel 1995]) and, as of this writ-ing, the only gaps that remain under the de�nitionused here are periods 19, 23, 27, 31, 37, 38, 41, 43,49, 53, and 57. Periods 33, 34, 39, and 51 haveonly been realized as uninteresting combinationsof lower-period oscillators; these are ruled out ac-cording to a stronger de�nition. The diagrams onthe next three pages show examples of oscillatorsof all periods not covered by the constructions pre-sented here. These ingenious designs are the workof many di�erent people, and have been compiledby Dean Hickerson. (Credit for a particular oscil-lator is available on request.)For completeness, we note that there is a class ofoscillator-like patterns called glider guns that be-come identical to their initial state after n turns,with the exception that they leave an extra gliderbehind. This glider moves away in time for thenext to appear, giving the pattern the e�ect of amachine gun �ring o� a stream of gliders at a regu-lar frequency. This pattern can be interpreted as asimple oscillator if we consider it to be attached toan in�nite stream of gliders, though this interpre-tation is not very useful for present purposes. Aglider gun is an important device for many otherconstructions in Life, and we note here that both ofthe above theorems can be rewritten as results onglider guns. The only important change is that, fortechnical reasons, some oscillators of period 61 andbelow have not been modi�ed to produce a streamof gliders. Thus, we must begin with n = 62.
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FIGURE 2. Oscillators realizing periods in the range not covered by our algorithm. (Continued on next page.) Box 1 shows twelve stilllifes in three rows; box 2 has four oscillators on the top row and two on the bottom row (the lower left one is symmetric and in twopieces); box 3 shows the familiar pulsar at the bottom, and there are two oscillators side by side above it; box 4 has three on the toprow and and two on the bottom row; boxes 5 and 6 show two oscillators each, side by side; box 8 has two rows of two oscillators each.
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3. PREVIOUS RESULTS IN LIFEThere is a long history of constructive proofs toshow that Life exhibits certain properties. Initially,it was not even clear that unbounded populationgrowth was possible in Life. While many similarCA rules result in fast, explosive growth, small ran-dom patterns in Life tend to stabilize eventually,though they can remain active for a long time. Thequestion of unbounded growth was later answeredin the positive with the discovery of the glider gun,discussed above, and several other patterns dis-cussed elsewhere [Berlekamp et al. 1982, Chapter25; Poundstone 1985].Another early problem in Life concerned so-calledGarden of Eden patterns. These are patterns thatcannot be the result of applying the Life rule toany previous pattern. A general proof by Moore[1962] su�ces to prove the existence of such a pat-tern in Life, and indeed in many cellular automataof interest. Nevertheless, the problem of �nding areasonably small instance remained open for sev-eral years until an explicit example was veri�ed;see [Berlekamp et al. 1982; Poundstone 1985], forexample.Finally, with the accumulation of many versatileinteractions between gliders and other patterns, itbecame clear that a universal computer could beembedded in Life. This is hardly a surprising prop-erty to �nd in a complex system, though it is notnecessarily an easy one to demonstrate. More sig-ni�cantly, it was shown how to embed a universalconstructor in Life [Berlekamp et al. 1982], a pat-tern that allows the self-replication of arbitrarilycomplex computers. The idea of a universal con-structor was introduced by von Neumann [1966]who designed a very complex CA rule in order tosupport such a con�guration. One of Conway'soriginal aims in developing the rules to Life was to�nd a more elegant cellular model for which vonNeumann's results would hold. With this result,it became clear that Conway's Life was one of thesimplest mathematical models of universal compu-tation and self-replication.

Since that time, a large body of unpublishedwork has re�ned and extended these results. Manyof the new results are more specialized and concern,for example, the design of patterns with unusualgrowth rates such as �(n log n), or linear but whosegrowth coe�cient has an irrational limit (compiledin [Callahan 1997; Hensel 1995]). Certain special-purpose computers have been embedded: for ex-ample, a pattern by Hickerson outputs spaceshipsat prime-numbered intervals [Hensel 1995]. Thisuses an implementation of the sieve method basedon the geometry and dynamics of the cellular space.Besides these large constructions, a collection ofsmall, \natural" oscillators and spaceships has beenaccumulated by applying intuition and a variety ofautomated search techniques [Hensel 1995].It is not clear that much is to be gained by hav-ing a collection of computational devices that workunder Life rules. However, the general design tech-niques should carry over to other systems. With in-creasing miniaturization, we must eventually reachthe point at which the device we are able to manu-facture is determined by the laws of physics ratherthan the wishes of the designer. While this pointmay be far in the future, it suggests at least one in-stance in which it may be of practical importanceto �nd small embeddings of computational devicesin complex systems whose rules we cannot modify.
4. THE OSCILLATOR PROBLEMThe results of this paper di�er from past resultsin the \time grain" of the embedding we exhibit.That is, in all past instances, a single time stepin the system to be embedded could only be sim-ulated by a sequence of several time steps in theembedding, typically at least 30, which is the pe-riod of the simplest known glider gun. Conse-quently, most known constructions that are usefulfor general computation cannot be used to embedarbitrary-period oscillators. While it has long beenknown how to build any oscillator of period 30n,it has been clear that the techniques used do notextend to arbitrary periods.
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Alternative PossibilitiesTo see that the present result is noteworthy, weconsider alternatives. At one extreme, we mighthave a CA that usually settles down into a dis-joint collection of small oscillators of \natural" pe-riods. In this case, a plausible conjecture is thatthere are a �nite number of such natural periodsand that the highest attainable oscillator period istheir least common multiple, the result of consider-ing the disjoint collection to be a single oscillator.This may be the case for some cellular automata.Early observations in Life, however, suggested amore interesting possibility.The pentadecathlon is a well known period-15 os-cillator that was found very early by hand. It wasobserved that a glider hitting this along a particu-lar diagonal at a particular phase will be reected180�, as shown in Figure 3; the reected glider isindicated by hollow markers. This reection canbe repeated in the other direction. Thus a singleglider can be sent on a loop between these patterns,forming an oscillator, the period of which dependson the total trip time. Because the reecting de-vice has period 15, the trip time for a glider is re-stricted to be a multiple of 15. Other restrictionsare related to the speed of the glider, which takesfour steps to move one diagonal. As a result, theoscillators that we can construct all have periodsof the form 60 + 120k. This is su�cient to refutethe pessimistic conjecture considered above, but itis a long way from obtaining all periods. Thus,a second plausible conjecture is that given enoughreector mechanisms, all multiples of the minimumreector periods can be obtained.
Stable ReflectorsThe above observation leads naturally to the stablereector problem, namely, to �nd a stable patternthat, when hit by a glider along some path, reectsone or more gliders, after which its original state isrestored allowing it to be reused. (A stable patternis a period-one oscillator, also known by Conway'spunning term \still life." We use \stable pattern"

FIGURE 3. A pentadecathlon reects a glider.here because this notion can be generalized to otherCA rules.)The existence of such a pattern was known tofollow from the existence of a universal construc-tor, but for many years, its explicit constructionappeared beyond the scope of known techniques.In this paper, we provide an explicit example of astable reector, and use it for our second method ofconstructing oscillators. It is not hard to see thatstable reectors satisfying some additional proper-ties can be used to realize any desired oscillatorperiod by adjusting glider trip times. We defer thediscussion of these properties until Section 6.Though a stable reector is a very desirable con-struction, there is a reason why the �rst reectorsfound tended to be of higher periods. A reectorhas to interact with a glider without being itself af-fected by the interaction|or if it is, it must some-how repair any damage. Many higher-period oscil-lators produce sparks, or collections of cells thatappear at every cycle but can be removed with-out changing the future of the remaining cells inthe pattern. Left alone, these sparks vanish harm-lessly. Sometimes, however, there is a way to col-lide a glider with sparks such that the product is aglider in another direction. The result is a reec-tor.A stable pattern obviously produces no sparks.Thus, a stable reector must be damaged by theglider that hits it. It must then produce a newglider, as well as repair the damage caused by theold one. In fact, there are small stable patternsthat exhibit limited capacity for self-repair. Thisoccurs, as usual, by coincidence and not deliberatedesign. Best known among these is the so-calledeater, a 7-cell pattern that can destroy a glider
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FIGURE 4. Left: a glider on the path to being eaten.Right: the boat bit reaction (boat shown with hol-low markers).without itself being destroyed. Less well known,but very useful, is the boat-bit reaction, in which aglider is converted by a 6-cell stable object called asnake into a 5-cell stable object called a boat. An-other glider along the same path deletes the boatcleanly, and this combination can be used to builda toggle memory. These reactions are shown inFigure 4. No similar reaction has been found thatproduces a new glider as a result, and a fairly com-plicated mechanism for self-repair was ultimatelyrequired to produce a stable reector, as we willlater discuss.An existence proof has already been mentionedfor a stable reector, based on the existence of auniversal constructor. (This reasoning was prob-ably arrived at independently by several people,so appropriate attribution of the proof is di�cult.)The idea is that a certain �eld of stable objectscan be triggered by a glider in a chain reaction, toconvert it into any desired collision of gliders. Thiscollision, in turn, can be one that synthesizes a uni-versal constructor. In particular, it must synthe-size one that is programmed to (a) rebuild the �eldof stable objects, (b) output the reected glider,and (c) annihilate itself cleanly with a hail of glid-ers on carefully chosen paths. While this scenariocarries an undeniable Alice in Wonderland appeal,the fact remains that a universal constructor hasnever been built explicitly. Furthermore, any pat-tern based on it would certainly be too large toview in operation on a reasonable machine at areasonable pixel resolution. Thus, for those seek-ing concrete veri�cation of such theoretical claims,a more parsimonious mechanism is required.

5. HERSCHEL-LOOP OSCILLATORSThe �rst explicit method of building oscillators ofany period was discovered very recently by Buck-ingham [1996]. This method does not use the sta-ble reector. However, some of the same compo-nents are required to build a functioning stable re-ector. In addition, the current fastest stable re-ector requires 623 steps to restore its state andaccept another glider, limiting its use to oscillatorsof period 623 and above. Buckingham's method isthe only uniform construction of an in�nite familyof all oscillators of period 58 and above.
FIGURE 5. The Herschel.Like the stable reector, Buckingham's construc-tion uses the idea of self-repairing stable compo-nents. Instead of redirecting the path of a glider,his components reposition a 7-cell active patterncalled a Herschel (Figure 5) that by itself doesnot even function as a spaceship. Rather, it pro-ceeds chaotically, emitting two gliders and eventu-ally leaving behind a small amount of stable de-bris. Careful observation suggested that the Her-schel was one of the most likely candidates to tamewith an arrangement of self-repairing stable pat-terns. Several such arrangements cause it to re-produce itself cleanly at a new position and orien-tation, producing gliders as a by-product.Buckingham conceived of the above notion in1973 (see [Buckingham 1996]), but was unable to�t all the pieces together until over twenty yearslater, after collecting many interactions that cameclose to satisfying this goal. Callahan was able toextend the set of conduits using a more automatedapproach, though in principle all of the known com-ponents could have eventually been found usinga computer-aided manual search within a feasibletime frame.The Herschel is the product of a better knownpattern called the B-heptomino, which often arises
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FIGURE 6. 112-step right turn Herschel conduit.spontaneously in random con�gurations. The lat-ter pattern evolves into a Herschel and a block,which is a 2�2 stable arrangement of live cells ap-pearing very commonly in debris. Most Herschelsynthesis techniques work by �rst producing a B-heptomino and then eliminating the extra blockone way or another. The B-heptomino can itselfbe synthesized from the well known R-pentomino.All of these pathways are signi�cant in the develop-ment of new devices. For brevity, however, we willrestrict our discussion to the Herschel, and viewthe stable Herschel-moving patterns (Herschel con-duits) as black boxes.One such Herschel conduit (fourteen are nowknown) is shown in Figure 6. The Herschel isshown here in the standard orientation that we usefor reporting the transformations realized by eachconduit. The position of a Herschel is taken to bethe position of its center cell (i.e., the cell whoseremoval leaves two disconnected sets of three cellseach). In the �gure, the original pattern is su-perimposed with the position of the Herschel af-ter 112 time steps. The objects other than theHerschel (four eaters and two blocks) look exactlyas they do initially at this point, while the origi-nal Herschel is eliminated and replaced by anotherHerschel, shown with hollow markers. In addition,

a glider is emitted, traveling north-east from theoriginal position of the Herschel. All the Herschelconduits function in a similar fashion. The emittedgliders can be suppressed with additional eaters,but often they are useful in other constructions.The list of known Herschel conduits is summa-rized in Table 1. Using this table, we can computethe e�ect of composing Herschel conduits in se-quence. Not all sequences are possible, of course.Some lead to self-intersection, others to more sub-tle forms of interference. However, with so manydegrees of freedom, we can generally �nd a wayto move a Herschel along a path| if sometimesa complicated one|to a position and orientationthat we need for a particular construction.For Buckingham's oscillator-building method, weare mainly interested in moving the Herschel backto its original position and orientation. The num-ber of steps it takes to accomplish this will be thesum, n, of the delay values for all the componentsin the path. We refer to such a path as a Herschelloop. After n steps, the Herschel will be in a po-sition to repeat the same trip, and will continuethis circuit forever. By suppressing all the emittedgliders, we obtain a period-n oscillator. The sim-plest instances of Herschel loops are obtained bycomposing four 64-step left turns for a period-256



Buckingham and Callahan: Tight Bounds on Periodic Cell Configurations in Life 231Transformation Shift Delay Found byleft turn ( 9; 11) 64 DJBx ip ( �8; 25) 77 DJBright turn (�33; 12) 112 DJBidentity ( 1; 32) 116 PBCidentity ( �6; 40) 117 DJBx ip ( 14; 20) 119 DJBx ip ( �4; 48) 153 PBCright turn (�41; 17) 156 DJBidentity ( 3; 49) 166 PBCx ip ( �5; 27) 158 DJBx ip ( 0; 45) 176 PBCleft turn ( 16; 24) 190 DJBNE diagonal ip ( 40; 17) 200 PBCNW diagonal ip ( 32; 7) 202 DJB
TABLE 1. Known Herschel conduits.oscillator, or four 112-step right turns for a period-448 oscillator.In�nitely many paths can be constructed thattranslate the Herschel by some amount and rotateit 90� left or right of its original orientation. Thesecompound right and left turns can be replicatedfour-fold in the same manner as atomic turns, giv-ing us a Herschel loop whose period is four timesthe number of steps through one of these paths.Two issues remain to be resolved if we wish to at-tain an oscillator period as low as 58. First, it isclear that the time around a Herschel loop is al-ways much greater than 58 steps. Second, if a loopis composed of four identical turns, then the timearound it once must be a multiple of four.The key to resolving these issues is the notionof period dividing, an idea we will use again whenwe discuss the next type of oscillator. Period di-viding works as follows. If the time around a Her-schel loop is an integer kn, then, provided somespacing conditions are met, we can divide its pe-riod by k simply by replacing the single Herschelwith k Herschels spaced n steps apart. (Spacingconditions must not be overlooked. For example,it is not possible to divide the period-256 oscil-lator by 4, because its turn elements require in-coming Herschels to be spaced at least 153 stepsapart. Nevertheless, a period-64 oscillator can be

constructed using other conduits that allow closerpacking.) Then, after n steps, any given Herschelis replaced by its predecessor in the sequence ofduplicates, and overall the pattern is identical tothe one we started with and is therefore a period-noscillator.The problem of building a period-n oscillator canbe reduced in this way to the problem of �nding aHerschel loop such that the total time around theloop is some multiple of n. This problem in turncan be solved by applying the following lemma.
Lemma 1. For any integer n � 1, there exists a ksuch that a functioning Herschel path can be builtthat translates the Herschel by some amount androtates it by 90� in kn steps. Moreover , this pathcan be composed with three copies of itself to forma 4kn-step Herschel loop.
Idea of the proof. A fully detailed proof would re-quire an analysis of the Herschel conduits them-selves. The basic idea, however, is analogous tothe fact that given any two relatively prime in-tegers a and b, we can �nd, for any n, a multi-ple of n that has the form ai + bj where i andj are nonnegative integers. It is relatively easyto build a non-self-intersecting Herschel path thattranslates without turning. Two such compoundtranslations can be built whose delays are rela-tively prime. These can be used in combination,along with one of the turns, to build a compoundturn such that the time through this turn is a mul-tiple of n. �This gives us a mechanical method of obtaining aHerschel-loop oscillator of any su�ciently large pe-riod n that we desire. We simply �nd a turn thatis a multiple of n, self-compose it into a Herschelloop, and populate the loop with enough Herschelsto reduce the total period to n. We must still becareful about close packing. Buckingham observedthat Herschels could be packed as close as 58 stepsfrom each other in the 77-step and 112-step con-duits. All other conduits require greater spacing.Such close packing is only possible if we suppress
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FIGURE 7. A 937-step Herschel loop.gliders in these stages as soon as possible. Orig-inally, Buckingham [1978] used a pattern calledeater-2 to allow packing as close as 61. He laterreduced this using a new eater found very recentlyby Hickerson [1997].No glider gun of period less than 62 has beenconstructed using this method. However, the 77-step and 112-step conduits are su�cient to buildoscillators of all periods 58 and up. The size of theperiod-61 oscillator can be reduced somewhat if weuse the 153-step conduit as well, and much smallerperiod-58 and period-60 oscillators have been con-structed using other techniques. Period 60 is par-ticularly easy to realize, for example, using twopentadecathlons to reect a glider, as noted earlier,or using one of a number of interactions betweenperiod-30 glider guns. Buckingham gave explicitexamples of glider guns of period 62 through 69that can easily be turned into oscillators. We sum-marize these results as follows.

Lemma 2. For any n � 58, a Herschel loop can beconstructed and populated with Herschels to realizea period-n oscillator . �Herschel loops allow the construction of the lowestperiod oscillators of all our methods. However, it isclear that the size of such a loop is 
(n) measuredby population and at least 
�pn � measured bydiameter. Thus, while this is a useful method, andcan often be used to build the smallest known oscil-lators of certain periods, it is not the best methodasymptotically.It is worth observing that the above constructionalways gives a Herschel loop whose time around isa multiple of four. There is no reason why odd-period|or, for that matter, prime-period loops|should not exist; however, they must necessarilybe asymmetric and more di�cult to �nd for thatreason. One can enumerate all possible loops upto a few thousand steps using exhaustive search.



Buckingham and Callahan: Tight Bounds on Periodic Cell Configurations in Life 233In this way, it was possible to �nd a Herschel loopwith a total trip time of 937 steps (see Figure 7).The result is a fairly small prime-period oscillator(or alternatively, a glider gun) that contains justone Herschel.
6. STABLE-REFLECTOR OSCILLATORSCompared to the design of an appropriate Herschelpath, it is a relatively simple matter to build an os-cillator out of a stable glider reector. The prob-lem, of course, is building such a reector in the�rst place. We consider the simpler problem �rstand then return to the design of a stable reector.Suppose we have a stable reector such that itsreected glider is turned 180� from the incomingglider, and there is enough clearance between thepaths of these gliders that another incoming glideralong the same path as the �rst will not interactwith its reected glider. This is the simplest kind ofreector that can be used to build arbitrary-periodoscillators. Without the condition of clearance, wecould only send one glider at a time between re-ectors, making it impossible to apply the methodof period dividing and obtain all periods above acertain value. A stable reector that realized a 90�turn would also work, since it is possible to builda 180� reector by composing two of them. Weconsider the 180� reector here because it leads tothe simplest construction.The above conditions place no constraint on thephase of the reected glider, which turns out tobe quite important. We de�ne the phase shift ofa 180� reector as follows. Let g be the originalglider as it is approaching the reector and let g0 beits reected glider. Apply the Life rules 4m timesto the pattern containing both glider and reector,wherem is large enough that g0 has appeared. Nowapply the Life rules again either 0, 1, 2, or 3 timesuntil g0 is identical to the original shape of g butrotated 180�. That number, between 0 and 3, isthe phase shift of the reector. To simplify ouranalysis, we assume the stable reector in questionhas a phase shift of 0.

Lemma 3. Suppose we have a stable 180� reectorwith a phase shift of 0. For all su�ciently large n,we can build a period-8n oscillator by reecting aglider between two copies of this reector .
Proof. Consider the closest spacing of the reectorsin such a pattern. After 4m turns, for some m, theglider g will be replaced by another glider g0, iden-tical but rotated 180�. So, after an additional 4mturns, by symmetry, the glider g will be restoredto its original position and orientation. Thus, thispattern is a period-8m oscillator. Now if we sep-arate these reectors by just one additional celldiagonally, the time of the total trip taken by theglider back to its starting position will be increasedby 8 steps (4 steps for the increased distance eachway), giving us a period-8(m+ 1) oscillator. Moregenerally, if we increase the separation by k diago-nal cells, we obtain a period-8(m+k) oscillator. �The preceding lemma shows that we can build anoscillator of any su�ciently large period that is amultiple of 8. Now we need only apply the methodof period dividing, as in the previous section. In-stead of using multiple Herschels, in this case weuse multiple gliders. Thus, we generalize the abovelemma as follows.
Lemma 4. Suppose we have a stable 180� reectorwith a phase shift of 0 and su�cient clearance toallow passing of incoming and reected gliders. Forall su�ciently large n, we can build a period-n os-cillator by reecting 1, 2, 4, or 8 gliders betweentwo copies of this reector . Moreover , there is aconstant k such that the population of each suchoscillator is k or less.
Proof. We use the preceding lemma and a straight-forward application of period dividing. The sizebound follows from the fact that the oscillator con-sists of a constant number of gliders and two reec-tors. �
Explicit Construction of a Stable ReflectorRecall that a stable reector is inevitably going tobe damaged by the glider that hits it. It must



234 Experimental Mathematics, Vol. 7 (1998), No. 3repair this damage and also output a glider. Ourstrategy for constructing such a pattern is to limitthe amount of damage to something we can re-alistically expect to repair, but at the same timeproduce an initial reaction of su�cient duration toproduce a new object (at least one new glider).This balance is very di�cult to obtain. Manystable objects will produce a long-lived reactionwhen hit by a glider, but they are destroyed in theprocess. Some other patterns can stop a glider inits path, either by destroying it as in the case of theeater or even leaving a stable object in its place,as in the case of the boat bit. These patterns arenot destroyed in the process, but the reaction theyproduce is very rapid and an unlikely candidate forproducing a glider.The most likely scenario is that the glider wouldhave to destroy at least one simple stable objectin order to \borrow" enough activity to produce anew glider. The explosive reaction caused by thiscollision could then be ampli�ed and controlled bysurrounding stable objects, eventually producingthe means to \pay back" the loan by reconstruct-ing the stable object and cleaning up any debris.Assuming this is possible at all, there should belittle di�culty in emitting one or more new glidersin the process. In fact, this idea is similar in avorto the proof that assumes a universal constructor.The di�erence is that we would like to minimizethe initial damage so it is reparable by a small,special-purpose device.In practice, \minimize the initial damage" means\�rst collide the glider with a block." This was ob-served by others working on the problem [Schroep-pel 1994] and independently by Callahan. Theblock is the most common stable object found inrandom residue, and seems the most likely candi-date to restore at a particular position and orienta-tion, the latter guaranteed by the block's eightfoldsymmetry.There are several ways to collide a glider witha block. The most promising way to begin withseemed to be one that produces the pi heptomino,a symmetric pattern that expands rapidly for over

150 steps before stabilizing into a symmetric ar-rangement of stable and period-2 objects. We be-gan with this collision and sought ways of inter-acting it nondestructively with surrounding stableobjects, primarily eaters and blocks, both knownfor their limited self-repair mechanisms. This isknown as perturbing a reaction. The goal was to�nd such an interaction that at least restored theblock in its original location. This event is so un-likely that any search is bound to produce a smallenough list of candidates to examine by hand.
The Block-Repair MechanismFigure 8 shows the most promising block-repairmechanism obtained so far. Callahan found thisearly in the process of developing an e�ective com-puterized method of enumerating perturbations bymultiple objects. Only the upper block and lowereater are needed to restore the collision block, how-ever, placing it well within the range of computer-aided manual search. In fact, this arrangement hadbeen considered previously by Buckingham, but atthe time there was no way to eliminate a majordi�culty, discussed below.The glider is shown at the last step before thecollision. In the �gure, the pattern is superimposed

FIGURE 8. Initial stage of the stable reector.



Buckingham and Callahan: Tight Bounds on Periodic Cell Configurations in Life 235with its product 104 steps later, shown with hol-low markers. At this step, the two eaters and blocksurrounding the collision have perturbed the explo-sion, resulting in� the restoration of the block involved in the col-lision,� a glider traveling in the opposite direction,� a small, chaotic pattern to the lower right of theblock, and� a 6-cell stable object known as a beehive, adja-cent to the block and obstructing the path of aglider sent on the same path as the original one.Only the last of these products is undesirable. Mostof our later e�ort will be spent eliminating it. Thechaotic pattern is not useful as such, but can beperturbed into something useful; we have restoredthe block, so anything we can obtain from this pat-tern is e�ectively obtained for free. The reectedglider is one of the things we were hoping to obtainin the �rst place, though it is of limited use sinceit has a phase shift of 1.The beehive appears at �rst a fatal error. Itsposition is deep in the interior of the active region,though this may not be obvious from the picture.Thus, there seems to be no way to place a stableobject to suppress this beehive without interferingwith earlier steps. We could eliminate the bee-hive cleanly with certain glider collisions originat-ing from outside the active region, but this leavesthe problem of producing such a glider.The solution appeared in the form of Bucking-ham's announcement of Herschel conduits. Usinga computer enumeration, Callahan found a pair ofblocks that convert the chaotic reaction productinto the R-pentomino. The latter is also chaoticbut can be perturbed into a Herschel using sev-eral patterns found by Buckingham, exactly one ofwhich works in this context. Using Herschel con-duits, a Herschel can be used to generate many newgliders, and the paths of these gliders can be ad-justed as desired using an appropriate sequence ofconduits. The solution, then, was simply to sendthe Herschel along to an appropriate diagonal at

which it could emit a glider to eliminate the bee-hive. While this scheme may appear somewhatcumbersome, one must admit it compares favor-ably to the solution that requires a universal con-structor.Construction of an appropriate Herschel pathturned out to be relatively straightforward. In thisway we constructed the �rst explicit stable reec-tor to operate under Life rules. In the originalsolution, it took several thousand steps to elimi-nate the beehive, limiting the packing of incominggliders. Callahan later re�ned this to a reectorthat reects gliders as close as 894 steps apart. Inthis construction, the �nal Herschel can be cleanlyeliminated or else used to emit as many additionalgliders as desired. Hickerson [1997] designed a re-ector using the block repair mechanism (see Fig-ure 9) which works in 747 steps. It terminateswith a special-purpose perturbation that destroysthe Herschel in the process of converting it into aglider along a path that would take longer to reachusing standard conduits. In either case, the useof the Herschel leaves us with a reector that pro-duces more than one reected glider, resulting inan interesting form of glider gun in which we re-circulate one glider on a closed path, producing anunbounded number of gliders as a product.Buckingham designed an even faster (672-step)stable reector using Herschel conduits without theblock-repair mechanism.1 This relies on the factthat a Herschel can be moved to nearly any desiredposition with conduits, and converted directly intoa variety of simple, stable objects, several of whichare quite readily converted into a Herschel after acollison with a glider. The new reector is basedon a collision with the 5-cell object called a boat.The block-repair mechanism remains useful inconstructions in which we need to convert a gliderinto a Herschel that is not destroyed when repairingthe collision damage. Such constructions are usedin the next section.1The record holder as of this writing, at 623 steps, was designedby Stephen Silver [1997] using the block-repair mechanism and anew R-pentomino-to-Herschel conduit.



236 Experimental Mathematics, Vol. 7 (1998), No. 3

FIGURE 9. 747-step stable reector.
Proof of Theorem 1. Hickerson's reector producesseveral gliders reected 90� with an even phaseshift. Thus two such reectors can be combinedinto a 180� reector with a phase shift of 0 andsu�cient path clearance to satisfy the conditionsof Lemma 4. Combining this with Lemma 2 wehave, �nally, a proof of Theorem 1. �
7. LOW-DIAMETER OSCILLATORSWhile the stable-reector oscillator is optimal interms of cell population, its diameter grows lin-early with period. There is no reason why thismust be the case in general. In fact, there are con-structions that achieve very high periods and verylow diameters. These have been known for manyyears, though they can only be used to obtain alimited set of periods. A useful component for sucha device is a toggle memory that is triggered by aglider and that reects a new glider on 1{0 tran-sitions. Such devices can be chained together intoa ripple counter, a well known element of digitaldesign [Wakerly 1994].

Thus, the �rst idea for obtaining a high period isto send a stream of gliders into a chained sequenceof such toggle memories. If the input period isn, the �rst toggle will have output period 2n, thenext 4n, etc. By eliminating the �nal gliders, weobtain an oscillator of period 2kn using a chain ofk toggles. Assuming a compact layout technique,such as adding reectors at intervals to snake thepath into a more compact form, this can all beplaced in a pattern with diameter O�pk �.Something like this can be built entirely of de-vices that have been known for years. Until re-cently, these periods had to be multiples of someknown set of base periods n. More signi�cantly,this construction seems to limit us to multiples oflarge powers of two. In this section, we show howto get around these problems. This requires a morecomplex design than either of our previous oscilla-tor construction methods, so we present our resultsat a higher level of abstraction. We have built aworking example of an oscillator using this tech-nique that is compact enough (�tting in a 467�429box) to view on any PC.
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Glider-Triggered Glider GunThe �rst new component we need is a glider gunthat can lie dormant inde�nitely as a collection ofstable objects, but when triggered by a single gliderbecomes active, producing a sequence of gliders ata regular period until stopped (for example by col-liding another glider with it). When stopped itreturns to its original state, ready to be activatedby the next glider.

FIGURE 10. 119-step conduit leaves clearance be-hind its north-east glider.We will skip the low-level details, but such a de-vice can easily be built along the same lines as astable reector. The only additional property itmust have is that it reects a glider back into itselfalong the same path as the glider that triggered it,thus repeating the triggering process inde�nitely.This requires some care, because most Herschelconduits do not leave any clearance behind theemitted gliders. An exception is the 119-step x-ip, shown in Figure 10. Using this device one canobtain the e�ect of capturing an entering gliderand recirculating it around the same loop inde�-nitely. The loop is composed partially of Herschelconduits. Thus, it is a simple matter to output anadditional glider each cycle, resulting in a glidergun. Moreover, one can stop the gun simply byblocking the path of the recirculating glider.

Herschel-Based Ripple CountersHickerson [1997] was the �rst to consider and im-plement a bit toggle based on a Herschel conduit.The idea is that the �rst Herschel travels throughthe conduit, leaving behind a small piece of stabledebris. The next Herschel interacts destructivelywith the debris, cleanly annihilating both in theprocess. This gives us a conduit through which ev-ery second Herschel emerges. Chaining k of thesetogether, we obtain a multi-stage conduit throughwhich every 2k-th Herschel emerges. The state aseach Herschel enters is determined by the subset ofstages containing destructive debris.
2:

1:

0:

FIGURE 11. A quaternary counter stage.Hickerson looked for a single conduit-like con-struction that accomplished this task, but was un-able to �nd one. Instead, he composed a sequenceof stages in such a way that the last stage emitteda glider that used the boat-bit reaction to leavedebris in the �rst stage. This is an e�ective solu-tion, but results in a rather large pattern. Unfor-tunately, a single-stage Herschel toggle seems to bea rarer object than intuition would suggest: aftersome trial and error using a computer to enumerateperturbations, we were unable to �nd one. (DieterLeithner [1997] constructed such a device shortlyafter we completed the initial draft of this paper.)Callahan, however, found a single-stage quaternary



238 Experimental Mathematics, Vol. 7 (1998), No. 3counter based on the 112-step turn stage. This isshown in Figure 11.The quaternary counter is like the bit toggle, butonly allows every fourth Herschel to pass through.This is actually preferable for current purposes,since we would like to store a counter state ascompactly as possible. The debris consists of ablock in each case, and this block can be in one ofthree positions. When the block is absent, a Her-schel passes through, leaving a block in the positionmarked 0 in the �gure. When the next Herschelreaches the stage, it reacts with the block destruc-tively, leaving only a new block, now in the positionmarked 1. Similarly, the next Herschel moves thisto the position marked 2. At this last position,an ancestor of the Herschel entering from certainstages cleanly annihilates the block and vanishes inthe process. This clears the counter stage so thatthe next Herschel can pass.
Lemma 5. For any k we can build a stable patternwith diameter O�pk � that emits one Herschel forevery 4k Herschels that it absorbs.
Proof. We need to build a Herschel path contain-ing k quaternary counters. When these allow aHerschel to pass, they operate equivalently to 112-step turns, so the geometry is identical to buildinga conventional Herschel path. It is straightforwardto build such a path in a snaking pattern such thatits length grows asymptotically with the square ofits diameter. �
Burst ReflectorsWe can combine such a 4k counter with a trigger-able glider gun to obtain a 4k-burst reector. Thisabsorbs one glider and emits a stream consistingof exactly 4k gliders in succession. Such a deviceworks as follows. We assume we have a trigger-able glider gun that leaves its Herschel intact afterrecycling a glider into its input. We send this Her-schel through a 4k counter. The Herschel emittedby this counter eventually is further sent on sucha path as to interfere with the recirculating gliderand de-activate the gun. Thus the gun will output

exactly 4k gliders before emitting the Herschel tode-activate itself. Clearly, a lot of details are left tobe resolved in practice. It was straightforward toconstruct a 16-burst reector explicitly using twoquaternary stages, and there does not seem to beany di�culty in extending this method.It should be kept in mind that the delay throughthe counter stages grows at least linearly with k.A conservative analysis would require the period ofgliders in a burst to increase linearly with k. Hick-erson [1997] has observed that this is unnecessary.To see this, assume that the counter counts from0 to 4k � 1, emitting a Herschel to de-activate thegun when its state changes to 0. By the time thegun is de-activated, it has inserted some numberi of additional Herschels into the counter. Hence,the counter stabilizes at state i rather than 0. Re-gardless of the value of i, the burst reector basedon it (initialized to state i) must output exactlyone glider for every state transition from i back toi again. This is exactly 4k gliders.In any such construction, we must be carefulabout timing the de-activation of the gun. We caneliminate most timing constraints by using the �nalHerschel to create a block to suppress the recircu-lating glider. We have to insure that a glider is notpresent when the block is being formed, but thiscan be accomplished using a sequence of conduitsto realize an appropriate delay. Clearly, there arealso lower limits on the period of a burst reector,based on Herschel packing and the lowest attain-able period for a triggerable glider gun. Combiningall of the above, we have:
Lemma 6. For su�ciently large q and for all k �0 there is a 4k-burst reector of diameter O�pk �that absorbs one glider and emits a period-q burstof 4k gliders. �
Programmable Delay ReflectorThe burst reector is useful as a sort of systemclock, but su�ers from its dependence on powersof 4. It is still not clear how to use it to buildan arbitrary-period oscillator. We now consider



Buckingham and Callahan: Tight Bounds on Periodic Cell Configurations in Life 239the component that allows us to adjust the periodmore or less arbitrarily up to a coarse approxima-tion that we will later re�ne. The component isactually considerably simpler than the burst reec-tor, and also uses a ripple counter:
Lemma 7. There is a constant c such that for anyk � 0, and any 4k-burst reector , there exists aninteger p � ck such that for any m between 1 and4k there is a stable pattern that absorbs a burst of4k gliders from the reector , emits a single glider psteps after absorbing the m-th glider in the burst ,and returns to its initial state after receiving thelast glider in the burst .
Proof. The pattern converts each incoming gliderinto a Herschel and sends it through k quaternarycounter stages. The initial state of this counter isset to adjust the step at which the glider is emitted.Because the burst consists of 4k gliders, the stateis reset to its initial value obliviously after the lastglider is absorbed. �Pairing this component with a burst reector, wecan now build a small-diameter device that reectsa glider 180� after an adjustable delay. In otherwords:
Lemma 8. There is a constant c such that , for su�-ciently large q and for all k � 0, there exists p � cksuch that for any m between 1 and 4k, there is a180� stable glider reector of diameter O�pk � thatemits its reected glider at step p+mq. �We combine two of these reectors to form an os-cillator in the usual manner. However, we need toremember that regardless of the step at which a re-ector emits its glider, it must still spend over 4kqsteps resetting the state of the adjustable compo-nent, and it is not ready to receive another gliderduring this time. There is no problem here as longas we insist that one of the reectors is set to out-put its �nal glider as late as possible. This con-struction will allow us to realize every q-th periodwithin some range. We can treat q as a constant,in practice the lowest period of a triggerable glidergun. This construction is depicted schematically

Absorb 4k gliders.Emit 1 glider afterabsorbing m.Absorb 1 glider.Emit 4k gliders.I Absorb 1 glider.Emit 4k gliders.I
Absorb 4k gliders.Emit 1 glider afterabsorbing all. JJ

FIGURE 12. Schematic of an oscillator of period(4k+m)q +O(1).in Figure 12. We summarize the set of oscillatorsrealizable this way as follows.
Lemma 9. For any n, there is an oscillator of periodn0 and diameter O�plog n � such that n0 � n andn� n0 = O(1). �This construction is a bit counterintuitive, so it isworth considering a cycle of this oscillator, settingm to various values in the �rst (adjustable) reec-tor. When m is set to 1, the �rst glider is reectedvery soon after its collision. The reected gliderthen enters the second reector, set to maximumdelay. These two reectors continue to operateconcurrently for most of the cycle. The �rst �n-ishes shortly before the second. The second emitsits glider and then �nishes, repeating the cycle. Asthe initial state of the �rst reector is adjusted, thenumber of steps of concurrent activity is reducedaccordingly. When the �rst reector is set to max-imum delay m = 4k, there is relatively little con-currency between the reectors; the �rst �nishesshortly after emitting the reected glider.
Proof of Theorem 2. To complete the proof of The-orem 2 we need to be able to adjust the period nto any desired value. This is possible using a moreconventional delay technique, because the total er-ror is now constant. It is relatively straightforward



240 Experimental Mathematics, Vol. 7 (1998), No. 3to prove the following using a snaking pattern ofstable reectors of appropriate phase shifts.
Lemma 10. For any su�ciently large n, there is apattern with O�pn � diameter that absorbs a gliderand later emits another glider equivalent to the �rstglider delayed by n steps. �So, to complete the construction, we �rst place apair of reectors to attain a period within someconstant of that desired. Next, we add a delaycomponent, as above, to the path of the recircu-lating glider, adjusting the period so it is exactlyequal to n.The construction of this section works for su�-ciently large periods n. For lower periods, we canbuild an oscillator some other way, without a�ect-ing the asymptotic bounds of the theorem. Thiscompletes the proof of Theorem 2. �
8. CONCLUSIONConway's announcement of the rules of Life andits subsequent popularization by Martin Gardner(collected in [Gardner 1983]) led to much interestin this elegant cellular automaton. Many funda-mental questions were answered during an earlyburst of activity, much of which was carried outentirely by hand. Life remains a source of interest-ing open questions to this day. In the meantime,our understanding has been increased by over 25years of careful study, and our tools include re�nedsearch techniques and greatly enhanced computingpower.The study of Life has moved beyond its earlystages, in which a limited number of known inter-actions were combined in an ingenious fashion toprove the existence of patterns of interest. Oftensuch patterns (notably, the as-yet-unrealized uni-versal constructor) were far too unwieldy to buildexplicitly. Since that time, useful interactions andatomic patterns have been found in such abun-dance as to defy all attempts to catalog. The ques-tion of whether a certain kind of pattern can bebuilt at all has been replaced in many instances by

the puzzle of �nding a particularly small or elegantexample.This shift in focus is demonstrated by the prob-lem of realizing all oscillator periods and the re-lated problem of �nding a stable reector. In thiscase, the early proof's reliance on the universalconstructor would have made it hard to build evena very large instance of a stable reector. By com-bining new interactions, however, we were able toexhibit a small, convincing example of such a pat-tern.The search for Life patterns combines computersearch, ad hoc puzzle solving, and a variety of ana-lytical techniques that apply to well-behaved pat-terns such as oscillators, reectors, and conduits.Life's rich structure makes it an ideal testbed bothfor combinatorial search and more interactive formsof computer-aided mathematics. We believe thetechniques demonstrated here will lead to moremethods for �nding useful con�gurations in otherCAs of interest. Future directions include the fol-lowing questions:Is there a smaller , faster stable reector (or glider-to-Herschel conduit)|particularly one that doesnot require a multiple-stage Herschel track?Can a feasible automated method be developed toenumerate all Herschel conduits within a given sizerange?Can the gaps in known oscillator periods be �lled ,either by ad hoc constructions or a more generaluniform construction?Can similar constructions be realized in other CAs,particularly those not designed for this purpose?Is there a CA for which nontrivial negative resultshold for the oscillator or stable reector problems?Can the techniques used here be applied to CAs ofmore general interest , such as those motivated byphysical systems?
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