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The Cauchy transform of a measure in the plane,

1 1
F(z) = —
2m Joz—w

du(w),

is a useful tool for numerical studies of the measure, since the
measure of any reasonable set may be obtained as the line inte-
gral of F around the boundary. We give an effective algorithm
for computing F when p is a self-similar measure, based on
a Laurent expansion of F for large z and a transformation law
(Theorem 2.2) for F that encodes the self-similarity of p. Us-
ing this algorithm we compute F for the normalized Hausdorff
measure on the Sierpinski gasket. Based on this experimen-
tal evidence, we formulate three conjectures concerning the
mapping properties of F, which is a continuous function holo-
morphic on each component of the complement of the gasket.

1. INTRODUCTION

Let p be a probability measure in the complex
plane C. The Cauchy transform of u is defined
formally by

F(z) = % /C - 1 — dp(w) (a-1)
(see [Mattila 1995]). Note that F' is always well-
defined and holomorphic in the complement of the
support of p. For many measures we can meaning-
fully extend (1-1) to the whole plane, and F will
allow us to effectively recover the measure p via
the formula

u(U) = /aUF(Z) dz (1-2)

(where the contour is oriented counterclockwise)
for any reasonable set U—say with piecewise C*
boundary. Indeed, (1-2) follows from (1-1) and the
Cauchy integral formula as long as we can justify
the interchange of integrals. This suggests that
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the Cauchy transform might be an effective tool
for numerical analysis of measures in the plane.

In this paper we will be concerned with self-
similar measures pu. These are solutions of self-
similar identities

p=y puoS;t (1-3)
j=1

where S; are contractive similarities (forming what
is called an iterated function system, or i.f.s.) and p;
are probabilities (so ) p; = 1 and p; > 0 for all j).
A well-known theorem of Hutchinson [1981] asserts
that there is a unique probability measure satisfy-
ing (1-3), supported on the compact set K which
is the attractor of the i.f.s. (the unique compact set
satisfying K = |J/_, S;K). We will usually assume
that the i.f.s. satisfies the open set condition: there
exists an open set U such that S;U C U and the
sets S;U are disjoint, which implies the measure
separation condition [Schief 1994]

w(SSUNSU)=0 forj#k  (1-4)

It was suggested in [Strichartz et al. 1995] that
self-similar identities (1-3) play a role for measures
analogous to differential equations for functions.
Part of this analogy is that there exist numerical
methods to compute approximations to the solu-
tion of self-similar identities (1-3). This is a rel-
atively straightforward problem when the under-
lying space is the line [Strichartz et al. 1995], but
is a more challenging problem even for the plane.
In this paper we show that there exist effective al-
gorithms for approximating the Cauchy transform
of self-similar measures; together with (1-2) this
gives one approach to the numerical approxima-
tion of the measure. One of the weaknesses of this
approach is the difficulty of performing the numer-
ical integrations required in (1-2): since the func-
tion F' is not particularly smooth, the usual meth-
ods of numerical integration cannot be expected to
perform well.

We note that the reconstruction formula (1-2)
is redundant, since the integral on the right side is

complex valued, while the left side is a nonnega-
tive real. This is not necessarily such a bad thing,
since in numerical approximations the size of the
imaginary part of the approximation to the inte-
gral might be a good indicator of the size of the
error. It is easy to eliminate this redundancy, and
complex numbers, by considering the pair of real
functions

1 x—a
F = du(z',y'
1(I7y) I /R2 (w—x’)z—l-(y—y’)z :u(ny)7
1 y_y’ [
F = d
2($,y) 21 /VR2 (x_$,)2+(y_y,)2 /J«(ZU,y),
so that
F:—Fg—’l:Fl

and (1-2) becomes

u(U) = /BU(—F.Z dzr + Fy dy).

This approach generalizes easily to higher-dimen-
sional spaces, but we will not pursue it in this paper
since we are especially interested in the properties
of the Cauchy transform that are connected with
complex analysis.

Another perspective on the Cauchy transform is
that it provides a solution of the differential equa-
tion P

%F =M,
and of course any solution of this equation differs
from the Cauchy transform by an entire holomor-
phic function. In this way, the Cauchy transform
is a complex analog of the potentials of classical
potential theory. We will not use this observation
in our work, however.

We now outline the contents of this paper. In
Section 2 we discuss some elementary properties of
the Cauchy transform. We show that the hypoth-
esis

p; <r; forall j, (1-5)

where r; is the contraction ratio of the similarity
S;, suffices to make F' a continuous function. In
fact (1-5) implies that g has a uniform dimension
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greater than 1, and this is the condition that im-
plies continuity. We also show that F' satisfies a
transformation law (see (2-7)) that is reminiscent
of the transformation law for the Fourier trans-
form of p [Strichartz 1990]. We then show how to
compute the Laurent expansion of F' in the com-
plement of a disk containing K. In Section 3 we
give an algorithm for the approximate computation
of F(z) by combining the transformation law and
the Laurent expansion. We show that the number
of operations required to guarantee an error of at
most ¢ is O(|log [?).

In Section 4 we turn our attention to a special
case, when p is the normalized Hausdorff measure
on the Sierpinski gasket. We display the data ob-
tained by carrying out the algorithm, and describe
three conjectures that are suggested by the data.
The first two concern the mapping properties of
F. Tt appears that the image of the plane under
F' is the region inside of a certain curve, which is
itself the image under F' of a Cantor set contained
in the boundary triangle of the Sierpinski gasket.
It is easy to see that the exterior of this triangle
is mapped to the interior of the curve, but there
is no apparent explanation for why the interior of
the triangle should also end up mapped to the same
region. We are able to prove only that a neighbor-
hood of the midpoints of the edges of the triangle
are mapped to this region. The third conjecture
concerns the behavior of F' in a neighborhood of a
vertex of the triangle. Of course F' is holomorphic
in the exterior of the triangle. The data suggest
that F follows an approximate fractional power law
in this sector. We have only numerical evidence for
this behavior.

2. THE LAURENT EXPANSION

For simplicity, we consider only the case of orien-
tation-preserving similarities, so we can write

Siz=z;+r; e (z — 2;), (2-1)

where z; is the fixed point of S; and 0 < r; <1
is the contraction ratio. We may assume without

loss of generality that r; > ry > r3 > ---. If g
is close to 1, the i.f.s. converges at a slow rate and
our algorithms will perform poorly.

The assumption we need to make on the self-
similar measure, in addition to the open set condi-
tion with measure separation (1-4), is

p; <r; forallj. (2-2)
As we will see, this forces p to have dimension
greater than one in the uniform sense that

pu(A) < cdiam(A)” (2-3)

for some ¢ and o > 1.

Theorem 2.1. (a) If u is a self-similar measure satis-
fying the open set condition and condition (2-2),
then u satisfies (2-3) with o > 1, namely

a = min {logp;/logr;}. (2-4)

(b) If p is any probability measure of compact sup-
port satisfying (2-3) with o> 1, then the Cauchy
transform F is a well-defined bounded continu-
ous function on C, satisfying a uniform Holder
estimate

‘F(zl) — F(zz)‘ <clzy — 27t (2-5)

of order a — 1 (for a < 2). In particular, the
integral (1-1) is absolutely convergent and (1-2)
holds.

Proof. (a) For any multiindex J = (j;,...,jy) write
S;=258,08,0--08,,,r; =r;,r) 1), and
DJs = PP, Pjn- Let U be the open set in the
open set condition. Then u(S;U) = p;, by the
measure separation condition (1-4). A standard
stopping time argument yields uniform constants
M, ¢, and ¢, such that any set A of diameter d
can be partitioned into at most M sets of the form
ANS;U with ¢;d < r; < ¢yd (in the sense that
u(A) = > u(AN S;U)). Since py < r§ by (2-4),
we have p(A4) <> p; <> rg < Mcyd®, which is
(2-3).
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(b) Let u be supported in a disk of radius R. Then
all statements are straightforward for points out-
side the disk of radius 2R. Now (2-3) in par-
ticular implies that p is nonatomic, so we may
partition the integral (1-1) into annular regions
Ap ={w: 2F <|w — 2| < 2¥1} for —oo < k < k.
By (2-3) we have p(A4;) < 2% and of course
|lw— 2|7t < 27" on Aj. Thus

/ d#(w) S Cz(a—l)k, (2-6)
A

3 |Z—U)|

and since a > 1 this shows that (1-1) is an abso-
lutely convergent integral, with a uniform bound.
This is sufficient to justify the interchange of inte-
grals

IR
_/ (2m /E,U Zizw) dp(w)

= [ dutw) = uv)

to prove (1-2). To prove the Holder estimate we
fix z;, 2z, distinct and let |z; — 25| = d. Then we can
cover the support of u by annular sets A,(j) about
2, and AS) about z, with 2¥ < 5d/2 and sets B,
obtained by deleting these sets from annular sets
A® about the midpoint with 3d < 2. Now

P = Pl = [ = L) |dutw
_/C b ‘du

Z1 —w

On A" and A” we use (2-6) and the crude esti-
mate
1 1 1 1
R P P
Z1 — W Zo — W Z1 —w Zo — W

to obtain ¢(2%)*~! for an upper bound which sums
to cd®~t. On B, we use the estimate

1
_ ‘<cd2 2k
Z1 —w Zo —

to obtain cd(2%)*=2 for an upper bound, which
sums to ¢d®™! since o < 2. This gives the Holder
estimate (2-5), which proves in particular that F
is uniformly continuous. O

Remark. Part (b) is essentially well-known [Car-
leson 1967; Garnett 1972, p. 78]. For related results
see [Mattila and Melnikov 1994; Verdera 1992].

Theorem 2.2. Let F' be the Cauchy transform of a
self-similar measure . Then

— i,

2 =3P p(sta), (2-7)

Proof. From (1-1) and (1-

1 m
_2—2:: /Z—Sw

(872 —w). O

3) we obtain

But z — Sjw = r;e”

Remark. If we allow some of the similarities to be
orientation-reversing, of the form

ewj (2 - 5j)a

then the only change in (2-7) would be to replace
F(S:'2) by F(S;!

Let D be the smallest closed disk containing K,
the support of pu. By translating the i.f.s., we may
assume without loss of generality that D is cen-
tered at the origin. Since F' is holomorphic in the
complement of D and vanishes at infinity, it has a
Laurent expression with no nonnegative powers,

SjZ:Zj+7“j

z) for those j.

= Zanzfn for z ¢ D. (2-8)

It is easy to see from (1-1) that a; = 1/(27i). The
other coefficients can be obtained recursively using
(2-7).

Theorem 2.3. The coefficients in the Laurent expan-
ston satisfy

m n—1
(1=t Jon = 3 s @
Jj=1 k=1
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for

_(n-1\ v i0;\k—1 i0,\yn—k
Bn,k_(n_k);pme ) ey (= e
(2-10)

Proof. Substitute (2-8) in (2-7). Note that S; 'z =

rite % (2 — 2;(1 — r;e)) so that

(ijlz)fk — (Tjeiﬂj)k
o (k—1+1\ i,
XZ( l+ )Z (1= ryet®)!
=0

as a convergent Laurent series for |z| sufficiently
large. Thus we have an equality between the Lau-
rent series (2-8) and

o0

D opilre) Y (ak (rye)"
j=1

k=1
« i(k) —ll‘l‘l)z—k—l(zj(l _ rje'ioj))l> .
=0

Note that there are only a finite number of terms in
this triple sum with the power 27", so that we may
rearrange it into a Laurent expansion. Equating
coefficients of the two expansions yields for a,, the
value

>

Jj=1 k=1

0 \k— n_l 0 n—=~k
ar(rye™) (17 ) (L= rye®)) .

M=

We can transpose the a, term on the right (note
that | > p;(r;e® )" 1| < 1) to the left to obtain
(2-9) and (2-10). O

Example 2.4. Let w = —3 + z? be a cube root of
unity and let

Siz=1%(z+w’) forj=0,1,2. (2-11)

The attractor K of this i.f.s. is just the familiar
Sierpinski gasket (rotated from its usual presenta-
tion). If we choose p; = % then p is just the nor-
malized Hausdorff measure of dimension log 3/log 2
on K. Because K and p are invariant under the %

rotation obtained by multiplication by w, it follows
that the Cauchy transform F satisfies

F(z) = wF(wz); (2-12)

hence the only nonzero coefficients in the Laurent
expansion (2-8) are those with n =1 mod 3. The
recursion relations (2-9) and (2-10) in this case
simplify to

n—1

a3p 1 = ﬁ 2(3(7132 k_))a3k+1- (2-13)

Next we show that for many self-similar measures,
including the above example, the Laurent expan-
sion actually converges on the boundary circle of
the disk D. For this we need the additional as-
sumption that all §; = 0, so there are no rotations
in the similarities S;. This implies that K is con-
tained in the convex hull of the fixed points z;.
To simplify notation we assume that D is the unit
disk, so |z;| < 1 for all j with equality holding for
some j.

Theorem 2.5. Under the above assumptions and the
hypotheses of Theorem 2.1(a), for every f < «
there exists ¢ such that

la,| < en™P, (2-14)

In particular, (2-8) converges uniformly on the unit
circle.

Proof. For each n and each j, we choose a positive
integer k; so that rf" is on the order of n=/¢. More
precisely, we choose the smallest integer such that
rf" < n~P/* and then we have a uniform bound

en e <l <l (2-15)

Since we have p; < r§ by (2-4) we also know
Py <n P (2-16)

Now we remove from K the sets Sf’ K, and the
resulting set K’ is contained in the disk of radius
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1 — en=P/% by the lower bound in (2-15). We use
the formula

a, = i w" tdu(w) (2-17)
2m Jp

for the coeflicients of the Laurent expansion, which
follows easily from (1-1). To estimate a,, we break
the integral up into the integrals over the sets K'
and Sf’K. For the first we have |z| < 1—cn™?/® in
K’ and p(K') < 1. For the second we have |z| < 1
and ,u(Sij) = pf’ < n=? by (2-16). Thus

la,| < (1 —cen=?/*)"=t 4 mn="

and since 3 < a we have (1 — cn= /)" < ¢in=F
for a suitable choice of ¢;: just use the fact that
log(1 — ) < —z and choose ¢; so that —en! =9/ <
—(logn + logc¢;. This proves (2-14). Since a > 1
we can also choose § > 1 to show the convergence
of the Laurent expansion on the boundary circle.
O

3. THE ALGORITHM

We describe an algorithm for approximating F'(z)
by combining (2-7) and (2-8). The idea is to it-
erate (2-7) until the points are pushed outside D,
and then evaluate F' at those points using the Lau-
rent expansion. There are 3 parameters in the al-
gorithm that influence both the accuracy and the
number of computations required. The first pa-
rameter R > 1 is an expansion factor for D; D’
is the disk with the same center as D with radius
multiplied by R. We will only evaluate the Laurent
expansion at points outside D', which will guaran-
tee rapid convergence. The second parameter N is
just the number of terms in the Laurent expansion
that we take. The third parameter ¢ is a threshold;
when the coefficient drops below § we will discard
the term. We always assume § < 1.
By iterating (2-7) we obtain

F(z)=Y qu—Je*iﬂJF(Sglz), (3-1)
Jeg 7

where ¢ is a finite collection of multiindices J =
(41, -, Jx). Here we use the notation

SJ:Sjlsjz"'Sjka
Ps=DPj " Pjis
Tr=T T
0;=601+---+ 6.

There are many different choices of collections ¢
of multiindices for which (3-1) is valid. For each z
the algorithm will construct the particular ¢ by
an iterative procedure, starting with

S =11),2),...,(m)}.

At each iteration the multiindices J are sorted into
two groups, ¢’ and #". The elements of #' are
kept unchanged (and continue unchanged there-
after), while each J in _#" is replaced by the m
multiindices (J,1), (J,2), ..., (J,m). The crite-
rion for the selection is that J goes in " if either
S7'zis outside D’ or p;/r; drops below the thresh-
old . Because of assumption (2-2) the iteration
eventually terminates. If

A =max {p;/r;}

then p;/r; < A\* if J has length k, so log §/log \ is
an upper bound for the length of any J in 7.

It might seem that the number of terms in the
sum (3-1) would be quite large, but it turns out
that it is quite modest, and all but a few multi-
indices J are there because S 'z is outside D’. To
simplify the discussion we present first a complete
analysis in the special case that all the contraction
ratios r; are equal. We then briefly discuss the
modifications needed to handle the general case.

Lemma 3.1. In the preceding special case, there ex-
st constants ¢y, ¢y depending on R such that the
number of terms in (3-1) is at most ¢, |log |, and
the number for which S;'z is in D' is at most c,.

Proof. Set ko = |logd/log A|, and for each k < kg
let 7, denote the set of multiindices at stage k& of
the construction, split into ¢/ and _#/" according
to whether S7'z is outside D’ or inside D’. The
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key observation is that there is an upper bound c,
for the number of elements of #;". To see this ob-
serve that S;'z € D' is the same as z € S,D’, and
the disks S; D’ all have the same radius. Hence all
S;D'" for J € #/ lie in the disk of radius cRr"
about z, for ¢ equal to the diameter of D. On the
other hand, the open set condition gives disjoint
sets S;U lying inside the same disk. If A is the area
of U, then S;U has area r** A, so ¢; = mn¢? R*/A is
the upper bound for the cardinality of ¢#’. Fi-
nally, each J in ¢} gives rise to m multiindices in
P41, s0 we have an upper bound of c,mk, for the
cardinality of #, and this is of the form ¢ |log ]
for ¢; = cam/|log Al. O

The preceding argument made use of the fact that
the sets S, D’ (and also S,;U) were of comparable
size. In the general case (different r;) we have to
modify the way we break up the algorithm into
steps _Z;, in order to achieve this. We choose the
ordering so that ry > r; > .-+ > r,,. The multi-
indices J in _#;, will be chosen to satisfy rh<ry;<
ri-t. Specifically, 77 is just {(1),(2),...,(m)} as
before, and each J in ¢’ is subdivided until r;
first goes below r¥ . to obtain the new elements
of Ziy1. There is still a uniform upper bound to
the number of elements in _#;,; that arise from
each J in _#Z/', but it is larger than m. We again
have an upper bound of O(|logd|) for the number
of steps until all p;/r; go below the threshold 4.
In this way the lemma can be established without
the special assumptions.

Let 7' denote those multiindices in (3-1) for
which S7'z is outside D', and _#" those for which
ps/r; < d. To approximate F'(z) we discard the
terms in (3-1) corresponding to _#", and for the
remaining terms we replace F(S;'z) by N terms
of the Laurent expansion (2-8). Specifically

N

F(z) ~ Z I;—je*mJ Z a, (S5 2) 7" (3-2)

Je g’ n=1

The error in (3-2) due to dropping the #" terms
is bounded by Mcy0, where M = ||F||, since

there are at most ¢, terms and the coeflicient of
each is bounded by 4. The error in approximat-
ing F' by the Laurent expansion can be bounded
by (22 )R™Y, where M, = sup|a,|. There are
c1|log d| such terms in (3-2), and the coefficients
are a priori only bounded by 1, so the bound for

the error in (3-2) is

M
Meyd + (;_11>|log5|R*N. (3-3)

We choose the parameters in our algorithm in
the order R, , N. A reasonable choice for R is
2. This choice determines ¢; and ¢, and does not
depend on the target error e. We then choose § =
e/2Mc,, so the first term in (3-3) is /2. Having
chosen §, we choose N large enough to bound the
second term in (3-3) by €/2, which means NV is the
smallest integer greater than or equal to

log (—2}3%\{1) + log |log & + |log €|
log R

We can easily estimate the number of compu-
tations required to guarantee the target error e.
There are at most ¢, |log | terms in the #' summa-
tion. Both |log d| and N are on the order of |log¢|.
The transformation S, the ratio p;/r;, and the
phase 0; are are easily computed from the corre-
sponding parameters for the parent multiindex of
J. The most intensive part of the computation is
the evaluation of a truncated Laurent series. For
each J in (3-2), this requires about 2N operations.
Thus the entire algorithm requires O(|loge|?) op-
erations to compute F(z) at a single point z to
within an error of €.

This is a worst case analysis of the error and
computational effort; usually the algorithm gives a
better performance on both accounts. For points
z in the complement of K, all preimages S;'z are
outside D' for J of sufficient length. For this z we
can find a single ¢ that works for all €, and the
only error arises from the truncation of the Laurent
expansions.

Essentially the same thing is true if we take z to
be one of the fixed points z;, but this requires a

(3-4)
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slight change in the algorithm. In this case (2-7)
has F'(z;) on both sides of the identity. To simplify
notation take z = z;. Then (2-7) yields

it

—if; m -
<1 _ e )F(zl) = I%F(Sj’lzl) (3-5)
=2 7

T

and the coefficient of F'(z;) is nonzero because p; <
r1. We could use (3-5) in place of (2-7) whenever
F(z,) arises in one of the terms of the expansion in
our algorithm. This will never occur for a generic
point, but it occurs if we take for z an image of a
fixed point under S, and often these are the most
prominent points in K.

Another modification that would yield a slight
improvement in the algorithm would be not to dis-
card all the #" terms, but to approximate F(S;"z)
by taking F(z') for 2’ a point near S;'z. This
would entail storing a table of values of F at a
grid of points in D', and then locating the nearest
point to 2’ on the grid. The Holder estimate (2-5)
controls the error involved in replacing F(S;'z) by
F(2'), and this is multiplied by the small coefficient
in (3-1).

4. THE SIERPINSKI GASKET

We consider now the measure in Example 2.4 and
its Cauchy transform. Let 17" denote the triangle
with vertices 1, w, w?. The Cauchy transform F is
holomorphic in the exterior of 7', and also in each
of the triangular components of the complement of
the Sierpinski gasket K. Since the complement of
K is dense in the plane, it would suffice to under-
stand the behavior of F' on each of these triangu-
lar domains. But this seems to be quite difficult.
There is no canonical form for an analytic function
in the interior or exterior of a triangle. Also, our
data suggest that the behavior of F' becomes quite
wild as z approaches the boundary of a triangle.

We note that (2-7), which now has the simple
form

F(z)=2(F(2z — 1)+ F(22 —w) + F(2z — %)),
(4-1)

enables us to connect the different holomorphic
functions that F' becomes when restricted to these
triangular domains in the complement of K. For
example, if z lies in the largest component, then
each of the preimages 2z — 1, 2z —w, 2z — w? lies in
the exterior of T'. By iterating (4-1) we can obtain
a formula for F(z) on any component entirely in
terms of F(S;'z) with S, 'z in the exterior of 7.

We implemented the algorithm described in Sec-
tion 3 to compute F. Because this is a function
from C to C it is impossible to display all the
data graphically. In Figure 1 we show the graph
of the restriction of Im F' to the z—axis (Re F' is
zero there). The z—axis passes through a countable
sequence of triangular components of the comple-
ment of K, accumulating at the point x = 1, and
the graph shows that the holomorphic pieces join
together in what appear to be cusp singularities.
In Figure 2 we show the graph of the restrictions
of Re F and Im F' to one side of the triangle T
(rescaled to the unit interval). These functions
seem to exhibit fractal behavior. In Figure 3 we
show the image of the triangle 7" under F. This is
a curve with many self-intersections. Let A denote
the unbounded component of the complement of
F(T), and B the complement of A. We think of A
as the “exterior” of F/(T'), and the interior of B as
the “interior” of F(T).

0.2+

FIGURE 1. The restriction of Im F' to the z-axis.
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—=0.1¢

—0.2¢

FIGURE 2. The restriction of Re F' (top) and Im F'
(bottom) to the line w + ¢ (1 — w) through the ver-

tices w = (—% + z@) and 1 of the triangle T'.

Conjecture 4.1. The interior of B is connected, and
the boundary of B, which we denote by L', is a sim-
ple closed curve, the wmage of a Cantor set C in
T (the complement of C in T is a dense countable
union of open intervals).

The conjecture in particular says that F(T') has
self-intersections at the images of the endpoints of
the intervals in the complement of C, and then
loops into the interior of B on the interval (the loop
must go in rather than out for the interior of B to
be connected). We are not asserting that these are
the only self-intersections of F'(T'); in fact the data
seems to show self-intersection in the image of the

FIGURE 3. The image of the triangle T' under the
mapping F.

intervals in the complement of C.

It follows from the open mapping property of an-
alytic functions that the exterior of T' gets mapped
to the interior of B. Figure 4 shows the image of
the 27 triangles obtained from 7" after 3 iterations
of the i.f:s.

FIGURE 4. The image under F' of the 27 triangles
obtained from 7" after three iterations of the i.fs.
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Conjecture 4.2. The wmage of C under F is exactly
B, and F(z) lies in the interior of B unless z is in
T. Also F(K) is dense in B.

We present a small piece of evidence for these con-

jectures by analyzing the behavior of F(z) near a

midpoint of a side of T'. Because of (2-12) there is

complete symmetry, so it suffices to deal with the
1

point —3.

Theorem 4.3. F(—%) lies in the interior of B.

Proof. We look at f(t) = —2miF(—% —t) for t > 0.
This is a real-valued function because of symmetry
of p under z — Z; in fact

H@:Z%/(xiw+xiwﬁmw

for x real, so

t+u+i
f(t)_/ (t+u+1)” +o

dp(w), (4-2)

where w = u + iv. Note that f(¢) is positive, and
f(t) = 0 ast — co. We claim that f(¢) is actually
increasing for ¢ near 0. If we can prove this we are
done, because that would mean there exists ¢, > 0
with f(to) = f(0), hence F(—%) = F(—5 — to).
Since —3 — to lies outside 7', F(—% — t;) must lie
in the interior of B.

To show f is increasing we need to show f' > 0.
We will actually prove f'(0) = 400, which makes
f'(t) > 0 for ¢ near 0. We can differentiate (4-2)
for £ > 0 to obtain

/ o 1)2—(%+U+t)2
1O | e e o

dp(w). (4-3)

We claim that this is a divergent integral for ¢ = 0.
To see this we consider how this integral behaves
under the contraction Sz = 1(z — 1) with fixed
point —% (this is not a mapping in the i.f:s.). The
measure is multiplied by %, while the integrand is

multlphed by % Let Tl = SlslT and T2 = SlsoT,

so that 5,7 is the disjoint union of S*T} and S*T,
for £ > 0. Then

e,
/5le (UZ N (% +u)2)2 dN( )

4\F v — (L + u)2
:(Q AW@L+G+Uffde»
! 2
Since the integrand is positive on 17, we conclude
that the integral in (4-3) diverges at t = 0.

Now the contribution to the integral from the
triangle SyT" is finite, so we can ignore it, and by
symmetry the contributions from S;7" and ST are
equal. To show that f'(0) = +oo it suffices to show
that the integral over 7} U 15 is positive. This is
not quite as simple as before since the integrand is
negative on a portion of 7. But consider the re-
flection symmetry about the line joining —1 to the
common vertex of 1} and 7. This interchanges
T, and T,, leaves the measure invariant, and also
leaves the denominator (v2+ (u+%)2)2 unchanged.
Finally, we need to see that the sum of the numer-

ator at two symmetric points is positive. These
points must be of the form

(u,v) = (—%—i—)\(%is), A(¥¢s§>),

and the sum of v? — (% + u)2 is equal to

2(4 - 259, 4

Also |s| < 2 for points in T} or Ty, so (4-4) is
positive.

This shows that for t = 0 the integral in (4-3) di-
verges to +00. Of course this argument also shows
that if we take ¢ > 0 close to 0 then (4-3) will be
positive. Il

We illustrate this behavior in Figure 5, using the
“dartboard” method. To visualize the mapping F
in a neighborhood of a point we display the image
under F of a dartboard (or portion of a dartboard)
centered at the point, meaning a set of equally
spaced radial spokes and concentric circles of con-
stant polar coordinates. In Figure 5, top, we use



Lund, Strichartz, and Vinson: Cauchy Transforms of Self-Similar Measures 187

much more complicated, but the picture is consis-
tent with Conjecture 4.2.

—0.098 +

—0.100+

—0.102+

N
| >

WA
-
1
-

—0.104+
—0.04 —0.02 0 0.02 0.04
—0.106 FIGURE 6. The image under the mapping F' of %
of a dartboard centered at the corner 1 of 7', and
extending into the exterior of T'.
—0.108+

In Figure 6 we show the image of the exterior
portion of a dartboard centered at the corner 1 (the
angular variable is restricted to —%ﬂ <0< gw).
The image of the boundary spokes 6 = ﬂ:%ﬂ' fol-
lows the boundary curve I' (with loops into B), but

—0.057
away from these spokes the image suggests an ap-
—0.06+ proximate power law. Simple heuristic considera-
tions lead to the power a—1, where o = log 3/log 2
—0.071 is the dimension of K, and this is confirmed by the
data.
—0.08+
Conjecture 4.4. There exists an imaginary constant
—0.094 b such that
—0.10+ F(z)=F(1)+b(z—-1)*"+0(z—1|) 45
1 ‘ ‘ ‘ ‘ holds in any sector
—0.18 —0.16 —-0.14 —0.12 —0.10
FIGURE 5. Top: The image under the mapping F' _gﬂ +e<Arg(z—1) < %W —€ (4-6)

of a half dartboard centered at the midpoint of a
side of T' (in this case §(1+w)) and extending into
the exterior of 7. Bottom: The same for the full
dartboard, shown to a different scale.

for e > 0.

As evidence for this conjecture we attempted to
estimate the constant b by fitting the data to (4-5),

the half of a dartboard exterior to T at a mid- and in fact we guessed a simple linear term for the
point (in this case (1 + w)) of a side. The image O(|z — 1|) remainder,

of th(.e H.ndpomt lies at the‘ tip of the loo.p th@t F(z) ~ F(1) +b(z — 1)* ' 4+ e(z — 1). (4-7)
goes inside B. For comparison, we show in Fig-

ure 5, bottom, the image of the whole dartboard. By trial and error we found that b = 0.2764¢ and

Note that the behavior of F in the interior of T is ¢ = —0.14214 give very good agreement in (4-7).
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002 004 1006 008 010

FIGURE 7. The real (left) and imaginary (right) parts of the difference between F(z) and the approximation
F(1)+0.2764i (2 —1)*71—0.1421i (2 —1). Each line is the restriction to one of the radial spokes of the dartboard,

for —%w <f< %w.

In Figure 7 we show the real and imaginary parts of
the difference between the two sides in (4-7) along
the radial spokes of the dartboard corresponding
to —§7r < g < §7r. In fact it seems likely that
(4-5) is only the first term of a complete asymp-
totic expansion.

We conclude by showing some variants of Figure
6 for different i.f.s. We change the contraction ratio
from £ to obtain the i.f.s.

Siz=rz+(1— r)wj for 7 =0,1,2, (4-8)

where 7 is the new contraction ratio, and take p
to be unique probability measure satisfying (1-3)

with p; = p, = ps = 3. For r > 1 the images

S;K overlap, so p is not the normalized Hausdorff
measure on K (in fact, the Hausdorff dimension of
K is not known), although K is connected and lies
inside 7'. For r < %, K is totally disconnected and
w1 is the normalized Hausdorff measure of dimen-
sion @ = log 3/log(1/r). We display the analogous
image to Figure 6 for the choices r = 0.51 and
r = 0.49 in Figure 8. The overall pattern is simi-
lar, but the behavior of the image of the boundary
spokes changes significantly.

If we replace the three third roots of unity with
the five fifth roots of unity, and choose the con-
traction ratio 772 (where 7 = (v/5 + 1)/2, the
golden ratio), then we obtain the self-similar set

—0.04

—0.02 0 0.02 0.04

—0.02 0 0.02 0.04
FIGURE 8. The same as Figure 6, except that the i.f.s. used has contraction ratio 0.51 (left) and 0.49 (right).

—0.04
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K, the pentagasket, shown in Figure 9. In Figure
10 we display the analogous image to Figure 6 for
the self-similar measure with all p; = L associated

5
with this i.f.s.
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FIGURE 9. The pentagasket (courtesy of Kyallee Dalrymple).
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—0.02 —0.01 0 0.01 0.02
FIGURE 10. The image under F' of the exterior portion of a dartboard centered at the corner 1 of the pentagasket.
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