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The Cauchy transform of a measure in the plane,

F(z) =
1

2�i

ZC 1

z� w
d�(w),

is a useful tool for numerical studies of the measure, since the

measure of any reasonable set may be obtained as the line inte-

gral of F around the boundary. We give an effective algorithm

for computing F when � is a self-similar measure, based on

a Laurent expansion of F for large z and a transformation law

(Theorem 2.2) for F that encodes the self-similarity of �. Us-

ing this algorithm we compute F for the normalized Hausdorff

measure on the Sierpiński gasket. Based on this experimen-

tal evidence, we formulate three conjectures concerning the

mapping properties of F, which is a continuous function holo-

morphic on each component of the complement of the gasket.

1. INTRODUCTIONLet � be a probability measure in the complexplane C . The Cauchy transform of � is de�nedformally byF (z) = 12�i ZC 1z � w d�(w) (1–1)(see [Mattila 1995]). Note that F is always well-de�ned and holomorphic in the complement of thesupport of �. For many measures we can meaning-fully extend (1{1) to the whole plane, and F willallow us to e�ectively recover the measure � viathe formula �(U) = Z@U F (z) dz (1–2)(where the contour is oriented counterclockwise)for any reasonable set U|say with piecewise C1boundary. Indeed, (1{2) follows from (1{1) and theCauchy integral formula as long as we can justifythe interchange of integrals. This suggests that
c
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178 Experimental Mathematics, Vol. 7 (1998), No. 3the Cauchy transform might be an e�ective toolfor numerical analysis of measures in the plane.In this paper we will be concerned with self-similar measures �. These are solutions of self-similar identities� = mXj=1 pj� � S�1j ; (1–3)where Sj are contractive similarities (forming whatis called an iterated function system, or i.f.s.) and pjare probabilities (soP pj = 1 and pj � 0 for all j).A well-known theorem of Hutchinson [1981] assertsthat there is a unique probability measure satisfy-ing (1{3), supported on the compact set K whichis the attractor of the i.f.s. (the unique compact setsatisfying K = Smj=1 SjK). We will usually assumethat the i.f.s. satis�es the open set condition: thereexists an open set U such that SjU � U and thesets SjU are disjoint, which implies the measureseparation condition [Schief 1994]�(SjU \ SkU ) = 0 for j 6= k: (1–4)It was suggested in [Strichartz et al. 1995] thatself-similar identities (1{3) play a role for measuresanalogous to di�erential equations for functions.Part of this analogy is that there exist numericalmethods to compute approximations to the solu-tion of self-similar identities (1{3). This is a rel-atively straightforward problem when the under-lying space is the line [Strichartz et al. 1995], butis a more challenging problem even for the plane.In this paper we show that there exist e�ective al-gorithms for approximating the Cauchy transformof self-similar measures; together with (1{2) thisgives one approach to the numerical approxima-tion of the measure. One of the weaknesses of thisapproach is the di�culty of performing the numer-ical integrations required in (1{2): since the func-tion F is not particularly smooth, the usual meth-ods of numerical integration cannot be expected toperform well.We note that the reconstruction formula (1{2)is redundant, since the integral on the right side is

complex valued, while the left side is a nonnega-tive real. This is not necessarily such a bad thing,since in numerical approximations the size of theimaginary part of the approximation to the inte-gral might be a good indicator of the size of theerror. It is easy to eliminate this redundancy, andcomplex numbers, by considering the pair of realfunctionsF1(x; y) = 12� ZR2 x� x0(x� x0)2 + (y � y0)2 d�(x0; y0);F2(x; y) = 12� ZR2 y � y0(x� x0)2 + (y � y0)2 d�(x0; y0);so that F = �F2 � iF1and (1{2) becomes�(U) = Z@U (�F2 dx+ F1 dy):This approach generalizes easily to higher-dimen-sional spaces, but we will not pursue it in this papersince we are especially interested in the propertiesof the Cauchy transform that are connected withcomplex analysis.Another perspective on the Cauchy transform isthat it provides a solution of the di�erential equa-tion @@�zF = �;and of course any solution of this equation di�ersfrom the Cauchy transform by an entire holomor-phic function. In this way, the Cauchy transformis a complex analog of the potentials of classicalpotential theory. We will not use this observationin our work, however.We now outline the contents of this paper. InSection 2 we discuss some elementary properties ofthe Cauchy transform. We show that the hypoth-esis pj < rj for all j; (1–5)where rj is the contraction ratio of the similaritySj , su�ces to make F a continuous function. Infact (1{5) implies that � has a uniform dimension



Lund, Strichartz, and Vinson: Cauchy Transforms of Self-Similar Measures 179greater than 1, and this is the condition that im-plies continuity. We also show that F satis�es atransformation law (see (2{7)) that is reminiscentof the transformation law for the Fourier trans-form of � [Strichartz 1990]. We then show how tocompute the Laurent expansion of F in the com-plement of a disk containing K. In Section 3 wegive an algorithm for the approximate computationof F (z) by combining the transformation law andthe Laurent expansion. We show that the numberof operations required to guarantee an error of atmost " is O�jlog "j2�.In Section 4 we turn our attention to a specialcase, when � is the normalized Hausdor� measureon the Sierpi�nski gasket. We display the data ob-tained by carrying out the algorithm, and describethree conjectures that are suggested by the data.The �rst two concern the mapping properties ofF . It appears that the image of the plane underF is the region inside of a certain curve, which isitself the image under F of a Cantor set containedin the boundary triangle of the Sierpi�nski gasket.It is easy to see that the exterior of this triangleis mapped to the interior of the curve, but thereis no apparent explanation for why the interior ofthe triangle should also end up mapped to the sameregion. We are able to prove only that a neighbor-hood of the midpoints of the edges of the triangleare mapped to this region. The third conjectureconcerns the behavior of F in a neighborhood of avertex of the triangle. Of course F is holomorphicin the exterior of the triangle. The data suggestthat F follows an approximate fractional power lawin this sector. We have only numerical evidence forthis behavior.
2. THE LAURENT EXPANSIONFor simplicity, we consider only the case of orien-tation-preserving similarities, so we can writeSjz = zj + rj ei�j (z � zj); (2–1)where zj is the �xed point of Sj and 0 < rj < 1is the contraction ratio. We may assume without

loss of generality that r1 � r2 � r3 � � � � . If r1is close to 1, the i.f.s. converges at a slow rate andour algorithms will perform poorly.The assumption we need to make on the self-similar measure, in addition to the open set condi-tion with measure separation (1{4), ispj < rj for all j: (2–2)As we will see, this forces � to have dimensiongreater than one in the uniform sense that�(A) � cdiam(A)� (2–3)for some c and � > 1.
Theorem 2.1. (a) If � is a self-similar measure satis-fying the open set condition and condition (2{2),then � satis�es (2{3) with � > 1, namely� = minflog pj=log rjg: (2–4)(b) If � is any probability measure of compact sup-port satisfying (2{3) with �>1, then the Cauchytransform F is a well-de�ned bounded continu-ous function on C , satisfying a uniform H�olderestimate��F (z1)� F (z2)�� � c jz1 � z2j��1 (2–5)of order � � 1 (for � < 2). In particular , theintegral (1{1) is absolutely convergent and (1{2)holds.
Proof. (a) For any multiindex J = (j1; : : : ; jN) writeSJ = Sj1 � Sj2 � � � � � SjN , rJ = rj1rj2 � � � rjN , andpJ = pj1pj2 � � � pjN . Let U be the open set in theopen set condition. Then �(SJU) = pJ , by themeasure separation condition (1{4). A standardstopping time argument yields uniform constantsM , c1, and c2 such that any set A of diameter dcan be partitioned into at most M sets of the formA \ SJU with c1d � rJ � c2d �in the sense that�(A) = P�(A \ SJU)�. Since pJ � r�J by (2{4),we have �(A) �P pJ � P r�J � Mc�2 d�, which is(2{3).
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(b) Let � be supported in a disk of radius R. Thenall statements are straightforward for points out-side the disk of radius 2R. Now (2{3) in par-ticular implies that � is nonatomic, so we maypartition the integral (1{1) into annular regionsAk = fw : 2k � jw � zj � 2k+1g for �1 < k � k0.By (2{3) we have �(Ak) � c2k� and of coursejw � zj�1 � c2�k on Ak. ThusZAk d�(w)jz � wj � c2(��1)k; (2–6)and since � > 1 this shows that (1{1) is an abso-lutely convergent integral, with a uniform bound.This is su�cient to justify the interchange of inte-gralsZ@U F (z) dz = 12�i Z@U ZC d�(w)z �w dz= ZC � 12�i Z@U dzz � w� d�(w)= ZU d�(w) = �(U)to prove (1{2). To prove the H�older estimate we�x z1, z2 distinct and let jz1�z2j = d. Then we cancover the support of � by annular sets A(1)k aboutz1 and A(2)k about z2 with 2k � 5d=2 and sets Bkobtained by deleting these sets from annular setsA(3)k about the midpoint with 3d � 2k. NowjF (z1)� F (z2)j = ��� ZC � 1z1 � w � 1z2 � w���� d�(w)� ZC ��� 1z1 � w � 1z2 � w ��� d�(w):On A(1)k and A(2)k we use (2{6) and the crude esti-mate��� 1z1 � w � 1z2 � w ��� � ��� 1z1 �w ���+ ��� 1z2 � w ���to obtain c(2k)��1 for an upper bound which sumsto cd��1. On Bk we use the estimate��� 1z1 � w � 1z2 � w ��� � cd2�2k

to obtain cd(2k)��2 for an upper bound, whichsums to cd��1 since � < 2. This gives the H�olderestimate (2{5), which proves in particular that Fis uniformly continuous. �
Remark. Part (b) is essentially well-known [Car-leson 1967; Garnett 1972, p. 78]. For related resultssee [Mattila and Melnikov 1994; Verdera 1992].
Theorem 2.2. Let F be the Cauchy transform of aself-similar measure �. ThenF (z) = mXj=1 pje�i�jrj F (S�1j z): (2–7)

Proof. From (1{1) and (1{3) we obtainF (z) = 12�i mXj=1 pj Z d�(w)z � Sjw :But z � Sjw = rjei�j (S�1j z � w). �
Remark. If we allow some of the similarities to beorientation-reversing, of the formSjz = zj + rjei�j (�z � �zj);then the only change in (2{7) would be to replaceF (S�1j z) by F (S�1j z) for those j.Let D be the smallest closed disk containing K,the support of �. By translating the i.f.s., we mayassume without loss of generality that D is cen-tered at the origin. Since F is holomorphic in thecomplement of D and vanishes at in�nity, it has aLaurent expression with no nonnegative powers,F (z) = 1Xn=1 anz�n for z =2 D: (2–8)It is easy to see from (1{1) that a1 = 1=(2�i). Theother coe�cients can be obtained recursively using(2{7).
Theorem 2.3. The coe�cients in the Laurent expan-sion satisfy�1� mXj=1 pj(rjei�j )n�1�an = n�1Xk=1 Bn;kak (2–9)



Lund, Strichartz, and Vinson: Cauchy Transforms of Self-Similar Measures 181forBn;k = �n�1n�k� mXj=1 pj(rjei�j )k�1(zj(1� rjei�j ))n�k:
(2–10)

Proof. Substitute (2{8) in (2{7). Note that S�1j z =r�1j e�i�j (z � zj(1� rjei�j )) so that(S�1j z)�k = (rjei�j )k� 1Xl=0�k�1+ ll �z�k�l(zj(1� rjei�j ))las a convergent Laurent series for jzj su�cientlylarge. Thus we have an equality between the Lau-rent series (2{8) andmXj=1 pj(rjei�j )�1 1Xk=1�ak(rjei�j )k� 1Xl=0�k�1+ ll �z�k�l(zj(1� rjei�j ))l�:Note that there are only a �nite number of terms inthis triple sum with the power z�n, so that we mayrearrange it into a Laurent expansion. Equatingcoe�cients of the two expansions yields for an thevaluemXj=1 pj nXk=1 ak(rjei�j )k�1�n�1n�k�(zj(1� rjei�j ))n�k:We can transpose the an term on the right (notethat ��Pmj=1 pj(rjei�j )n�1�� < 1) to the left to obtain(2{9) and (2{10). �
Example 2.4. Let ! = � 12 + ip32 be a cube root ofunity and letSjz = 12 (z + !j) for j = 0; 1; 2: (2–11)The attractor K of this i.f.s. is just the familiarSierpi�nski gasket (rotated from its usual presenta-tion). If we choose pj = 13 then � is just the nor-malized Hausdor� measure of dimension log 3=log 2on K. Because K and � are invariant under the 13

rotation obtained by multiplication by !, it followsthat the Cauchy transform F satis�esF (z) = !F (!z); (2–12)hence the only nonzero coe�cients in the Laurentexpansion (2{8) are those with n � 1 mod 3. Therecursion relations (2{9) and (2{10) in this casesimplify toa3n+1 = 123n � 1 n�1Xk=0� 3n3(n� k)�a3k+1: (2–13)Next we show that for many self-similar measures,including the above example, the Laurent expan-sion actually converges on the boundary circle ofthe disk D. For this we need the additional as-sumption that all �j = 0, so there are no rotationsin the similarities Sj . This implies that K is con-tained in the convex hull of the �xed points zj .To simplify notation we assume that D is the unitdisk, so jzj j � 1 for all j with equality holding forsome j.
Theorem 2.5. Under the above assumptions and thehypotheses of Theorem 2.1(a), for every � < �there exists c such thatjanj � cn��: (2–14)In particular, (2{8) converges uniformly on the unitcircle.
Proof. For each n and each j, we choose a positiveinteger kj so that rkjj is on the order of n��=�. Moreprecisely, we choose the smallest integer such thatrkjj � n��=�, and then we have a uniform boundcn��=� � rkjj � n��=�: (2–15)Since we have pj � r�j by (2{4) we also knowpkjj � n��: (2–16)Now we remove from K the sets Skjj K, and theresulting set K 0 is contained in the disk of radius



182 Experimental Mathematics, Vol. 7 (1998), No. 31 � cn��=� by the lower bound in (2{15). We usethe formula an = 12�i ZD wn�1d�(w) (2–17)for the coe�cients of the Laurent expansion, whichfollows easily from (1{1). To estimate an we breakthe integral up into the integrals over the sets K 0and Skjj K. For the �rst we have jzj � 1�cn��=� inK 0 and �(K 0) � 1. For the second we have jzj � 1and �(Skjj K) = pkjj � n�� by (2{16). Thusjanj � (1� cn��=�)n�1 +mn��and since � < � we have (1 � cn��=�)n � c1n��for a suitable choice of c1: just use the fact thatlog(1�x) � �x and choose c1 so that �cn1��=� ��� log n+ log c1. This proves (2{14). Since � > 1we can also choose � > 1 to show the convergenceof the Laurent expansion on the boundary circle.�
3. THE ALGORITHMWe describe an algorithm for approximating F (z)by combining (2{7) and (2{8). The idea is to it-erate (2{7) until the points are pushed outside D,and then evaluate F at those points using the Lau-rent expansion. There are 3 parameters in the al-gorithm that in
uence both the accuracy and thenumber of computations required. The �rst pa-rameter R > 1 is an expansion factor for D; D0is the disk with the same center as D with radiusmultiplied by R. We will only evaluate the Laurentexpansion at points outside D0, which will guaran-tee rapid convergence. The second parameter N isjust the number of terms in the Laurent expansionthat we take. The third parameter � is a threshold;when the coe�cient drops below � we will discardthe term. We always assume � < 1.By iterating (2{7) we obtainF (z) = XJ2J pJrJ e�i�JF (S�1J z); (3–1)

where J is a �nite collection of multiindices J =(j1; : : : ; jk). Here we use the notationSJ = Sj1Sj2 � � �Sjk ;pJ = pj1 � � � pjk ;rJ = rj1 � � � rjk ;�J = �1 + � � � + �k:There are many di�erent choices of collections Jof multiindices for which (3{1) is valid. For each zthe algorithm will construct the particular J byan iterative procedure, starting withJ = f(1); (2); : : : ; (m)g:At each iteration the multiindices J are sorted intotwo groups, J 0 andJ 00. The elements of J 0 arekept unchanged (and continue unchanged there-after), while each J in J 00 is replaced by the mmultiindices (J; 1), (J; 2), . . . , (J;m). The crite-rion for the selection is that J goes in J 0 if eitherS�1J z is outsideD0 or pJ=rJ drops below the thresh-old �. Because of assumption (2{2) the iterationeventually terminates. If� = max fpj=rjgthen pJ=rJ � �k if J has length k, so log �=log � isan upper bound for the length of any J in J .It might seem that the number of terms in thesum (3{1) would be quite large, but it turns outthat it is quite modest, and all but a few multi-indices J are there because S�1J z is outside D0. Tosimplify the discussion we present �rst a completeanalysis in the special case that all the contractionratios rj are equal. We then brie
y discuss themodi�cations needed to handle the general case.
Lemma 3.1. In the preceding special case, there ex-ist constants c1, c2 depending on R such that thenumber of terms in (3{1) is at most c1 jlog �j, andthe number for which S�1J z is in D0 is at most c2.
Proof. Set k0 = blog �=log �c, and for each k � k0let Jk denote the set of multiindices at stage k ofthe construction, split into J 0k and J 00k accordingto whether S�1J z is outside D0 or inside D0. The



Lund, Strichartz, and Vinson: Cauchy Transforms of Self-Similar Measures 183key observation is that there is an upper bound c2for the number of elements ofJ 00k . To see this ob-serve that S�1J z 2 D0 is the same as z 2 SJD0, andthe disks SJD0 all have the same radius. Hence allSJD0 for J 2 J 00k lie in the disk of radius cRrkabout z, for c equal to the diameter of D. On theother hand, the open set condition gives disjointsets SJU lying inside the same disk. If A is the areaof U , then SJU has area r2kA, so c1 = �c2R2=A isthe upper bound for the cardinality of J 00k . Fi-nally, each J inJ 00k gives rise to m multiindices inJk+1, so we have an upper bound of c2mk0 for thecardinality of J , and this is of the form c1 jlog �jfor c1 = c2m=jlog �j. �The preceding argument made use of the fact thatthe sets SJD0 (and also SJU) were of comparablesize. In the general case (di�erent rj) we have tomodify the way we break up the algorithm intosteps Jk in order to achieve this. We choose theordering so that r1 � r1 � � � � � rm. The multi-indices J inJk will be chosen to satisfy rkm � rJ <rk�1m . Speci�cally, J1 is just f(1); (2); : : : ; (m)g asbefore, and each J in J 00k is subdivided until rJ�rst goes below rkm, to obtain the new elementsof Jk+1. There is still a uniform upper bound tothe number of elements in Jk+1 that arise fromeach J in J 00k , but it is larger than m. We againhave an upper bound of O(jlog �j) for the numberof steps until all pJ=rJ go below the threshold �.In this way the lemma can be established withoutthe special assumptions.Let J 0 denote those multiindices in (3{1) forwhich S�1J z is outside D0, andJ 00 those for whichpJ=rJ � �. To approximate F (z) we discard theterms in (3{1) corresponding to J 00, and for theremaining terms we replace F (S�1J z) by N termsof the Laurent expansion (2{8). Speci�callyF (z) � XJ2J 0 pJrJ e�i�J NXn=1 an(S�1J z)�n: (3–2)The error in (3{2) due to dropping the J 00 termsis bounded by Mc2�, where M = kFk1, since

there are at most c2 terms and the coe�cient ofeach is bounded by �. The error in approximat-ing F by the Laurent expansion can be boundedby � M1R�1�R�N , where M1 = sup janj. There arec1jlog �j such terms in (3{2), and the coe�cientsare a priori only bounded by 1, so the bound forthe error in (3{2) isMc2� + � c1M1R� 1� jlog �jR�N : (3–3)We choose the parameters in our algorithm inthe order R, �, N . A reasonable choice for R is2. This choice determines c1 and c2 and does notdepend on the target error ". We then choose � ="=2Mc2, so the �rst term in (3{3) is "=2. Havingchosen �, we choose N large enough to bound thesecond term in (3{3) by "=2, which means N is thesmallest integer greater than or equal tolog � 2c1M1R�1 �+ log jlog �j+ jlog "jlogR (3–4)We can easily estimate the number of compu-tations required to guarantee the target error ".There are at most c1jlog �j terms in theJ 0 summa-tion. Both jlog �j and N are on the order of jlog "j.The transformation SJ , the ratio pJ=rJ , and thephase �J are are easily computed from the corre-sponding parameters for the parent multiindex ofJ . The most intensive part of the computation isthe evaluation of a truncated Laurent series. Foreach J in (3{2), this requires about 2N operations.Thus the entire algorithm requires O(jlog "j2) op-erations to compute F (z) at a single point z towithin an error of ".This is a worst case analysis of the error andcomputational e�ort; usually the algorithm gives abetter performance on both accounts. For pointsz in the complement of K, all preimages S�1J z areoutside D0 for J of su�cient length. For this z wecan �nd a single J that works for all ", and theonly error arises from the truncation of the Laurentexpansions.Essentially the same thing is true if we take z tobe one of the �xed points zj , but this requires a



184 Experimental Mathematics, Vol. 7 (1998), No. 3slight change in the algorithm. In this case (2{7)has F (zj) on both sides of the identity. To simplifynotation take z = z1. Then (2{7) yields�1� p1e�i�1r1 �F (z1) = mXj=2 pje�i�jrj F (S�1j z1) (3–5)and the coe�cient of F (z1) is nonzero because p1 <r1. We could use (3{5) in place of (2{7) wheneverF (z1) arises in one of the terms of the expansion inour algorithm. This will never occur for a genericpoint, but it occurs if we take for z an image of a�xed point under SJ , and often these are the mostprominent points in K.Another modi�cation that would yield a slightimprovement in the algorithm would be not to dis-card all theJ 00 terms, but to approximate F (S�1J z)by taking F (z0) for z0 a point near S�1J z. Thiswould entail storing a table of values of F at agrid of points in D0, and then locating the nearestpoint to z0 on the grid. The H�older estimate (2{5)controls the error involved in replacing F (S�1J z) byF (z0), and this is multiplied by the small coe�cientin (3{1).
4. THE SIERPIŃSKI GASKETWe consider now the measure in Example 2.4 andits Cauchy transform. Let T denote the trianglewith vertices 1, !, !2. The Cauchy transform F isholomorphic in the exterior of T , and also in eachof the triangular components of the complement ofthe Sierpi�nski gasket K. Since the complement ofK is dense in the plane, it would su�ce to under-stand the behavior of F on each of these triangu-lar domains. But this seems to be quite di�cult.There is no canonical form for an analytic functionin the interior or exterior of a triangle. Also, ourdata suggest that the behavior of F becomes quitewild as z approaches the boundary of a triangle.We note that (2{7), which now has the simpleformF (z) = 23�F (2z � 1) + F (2z � !) + F (2z � !2)�;

(4–1)

enables us to connect the di�erent holomorphicfunctions that F becomes when restricted to thesetriangular domains in the complement of K. Forexample, if z lies in the largest component, theneach of the preimages 2z�1, 2z�!, 2z�!2 lies inthe exterior of T . By iterating (4{1) we can obtaina formula for F (z) on any component entirely interms of F (S�1J z) with S�1J z in the exterior of T .We implemented the algorithm described in Sec-tion 3 to compute F . Because this is a functionfrom C to C it is impossible to display all thedata graphically. In Figure 1 we show the graphof the restriction of Im F to the x{axis (ReF iszero there). The x{axis passes through a countablesequence of triangular components of the comple-ment of K, accumulating at the point x = 1, andthe graph shows that the holomorphic pieces jointogether in what appear to be cusp singularities.In Figure 2 we show the graph of the restrictionsof Re F and Im F to one side of the triangle T(rescaled to the unit interval). These functionsseem to exhibit fractal behavior. In Figure 3 weshow the image of the triangle T under F . This isa curve with many self-intersections. Let A denotethe unbounded component of the complement ofF (T ), and B the complement of A. We think of Aas the \exterior" of F (T ), and the interior of B asthe \interior" of F (T ).
�1 1

0:2

�0:2
FIGURE 1. The restriction of Im F to the x-axis.
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�0:1
�0:2

�0:5 0:5 1:5

0:05
�0:1�0:2

�0:5 0:5 1:0 1:5
FIGURE 2. The restriction of ReF (top) and ImF(bottom) to the line !+ t(1� !) through the ver-tices ! = (� 12 + ip32 � and 1 of the triangle T .

Conjecture 4.1. The interior of B is connected , andthe boundary of B, which we denote by �, is a sim-ple closed curve, the image of a Cantor set C inT (the complement of C in T is a dense countableunion of open intervals).The conjecture in particular says that F (T ) hasself-intersections at the images of the endpoints ofthe intervals in the complement of C, and thenloops into the interior of B on the interval (the loopmust go in rather than out for the interior of B tobe connected). We are not asserting that these arethe only self-intersections of F (T ); in fact the dataseems to show self-intersection in the image of the

0:20:1
�0:1�0:2

0:20:1�0:1�0:2
FIGURE 3. The image of the triangle T under themapping F .intervals in the complement of C.It follows from the open mapping property of an-alytic functions that the exterior of T gets mappedto the interior of B. Figure 4 shows the image ofthe 27 triangles obtained from T after 3 iterationsof the i.f.s.

FIGURE 4. The image under F of the 27 trianglesobtained from T after three iterations of the i.f.s.
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Conjecture 4.2. The image of C under F is exactlyB, and F (z) lies in the interior of B unless z is inT . Also F (K) is dense in B.We present a small piece of evidence for these con-jectures by analyzing the behavior of F (z) near amidpoint of a side of T . Because of (2{12) there iscomplete symmetry, so it su�ces to deal with thepoint � 12 .
Theorem 4.3. F �� 12� lies in the interior of B.
Proof. We look at f(t) = �2�iF (� 12 � t) for t � 0.This is a real-valued function because of symmetryof � under z ! �z; in factF (x) = 14�i Z � 1x� w + 1x� �w�d�(w)for x real, sof(t) = Z t+ u+ 12�t+ u+ 12�2 + v2 d�(w); (4–2)where w = u+ iv. Note that f(t) is positive, andf(t)! 0 as t!1. We claim that f(t) is actuallyincreasing for t near 0. If we can prove this we aredone, because that would mean there exists t0 > 0with f(t0) = f(0), hence F (� 12) = F (� 12 � t0).Since � 12 � t0 lies outside T , F (� 12 � t0) must liein the interior of B.To show f is increasing we need to show f 0 > 0.We will actually prove f 0(0) = +1, which makesf 0(t) > 0 for t near 0. We can di�erentiate (4{2)for t > 0 to obtainf 0(t) = Z v2 � � 12 + u+ t�2�v2 + � 12 + u+ t�2�2 d�(w): (4–3)We claim that this is a divergent integral for t = 0.To see this we consider how this integral behavesunder the contraction Sz = 12�z � 12� with �xedpoint � 12 (this is not a mapping in the i.f.s.). Themeasure is multiplied by 13 , while the integrand ismultiplied by 43 . Let T1 = S1S1T and T2 = S1S0T ,

so that S1T is the disjoint union of SkT1 and SkT2for k � 0. ThenZSkT1 v2 � � 12 + u�2�v2 + �12 + u�2�2 d�(w)= �43�k ZT1 v2 � �12 + u�2�v2 + � 12 + u�2�2 d�(w):Since the integrand is positive on T1, we concludethat the integral in (4{3) diverges at t = 0.Now the contribution to the integral from thetriangle S0T is �nite, so we can ignore it, and bysymmetry the contributions from S1T and S2T areequal. To show that f 0(0) = +1 it su�ces to showthat the integral over T1 [ T2 is positive. This isnot quite as simple as before since the integrand isnegative on a portion of T2. But consider the re-
ection symmetry about the line joining � 12 to thecommon vertex of T1 and T2. This interchangesT1 and T2, leaves the measure invariant, and alsoleaves the denominator �v2+�u+ 12�2�2 unchanged.Finally, we need to see that the sum of the numer-ator at two symmetric points is positive. Thesepoints must be of the form(u; v) = ��12 + ��38 � s�; ��3p38 � sp33 ��;and the sum of v2 � �12 + u�2 is equal to�2� 932 � 23s2�: (4–4)Also jsj � 38 for points in T1 or T2, so (4{4) ispositive.This shows that for t = 0 the integral in (4{3) di-verges to +1. Of course this argument also showsthat if we take t > 0 close to 0 then (4{3) will bepositive. �We illustrate this behavior in Figure 5, using the\dartboard" method. To visualize the mapping Fin a neigbborhood of a point we display the imageunder F of a dartboard (or portion of a dartboard)centered at the point, meaning a set of equallyspaced radial spokes and concentric circles of con-stant polar coordinates. In Figure 5, top, we use
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�0:182 �0:180 �0:168 �0:166 �0:164�0:108�0:106�0:104�0:102�0:100�0:098

�0:18 �0:16 �0:14 �0:12 �0:10�0:10�0:09�0:08�0:07�0:06�0:05

FIGURE 5. Top: The image under the mapping Fof a half dartboard centered at the midpoint of aside of T (in this case 12 (1+!)) and extending intothe exterior of T . Bottom: The same for the fulldartboard, shown to a di�erent scale.the half of a dartboard exterior to T at a mid-point (in this case 12(1 + !)) of a side. The imageof the midpoint lies at the tip of the loop thatgoes inside B. For comparison, we show in Fig-ure 5, bottom, the image of the whole dartboard.Note that the behavior of F in the interior of T is

much more complicated, but the picture is consis-tent with Conjecture 4.2.
�0:04 �0:02 0 0:02 0:04

�0:20�0:22
FIGURE 6. The image under the mapping F of 56of a dartboard centered at the corner 1 of T , andextending into the exterior of T .In Figure 6 we show the image of the exteriorportion of a dartboard centered at the corner 1 (theangular variable is restricted to � 56� � � � 56�).The image of the boundary spokes � = � 56� fol-lows the boundary curve � (with loops into B), butaway from these spokes the image suggests an ap-proximate power law. Simple heuristic considera-tions lead to the power ��1, where � = log 3=log 2is the dimension of K, and this is con�rmed by thedata.

Conjecture 4.4. There exists an imaginary constantb such thatF (z) = F (1) + b(z � 1)��1 +O(jz � 1j) (4–5)holds in any sector� 56� + " � Arg(z � 1) � 56� � " (4–6)for " > 0.As evidence for this conjecture we attempted toestimate the constant b by �tting the data to (4{5),and in fact we guessed a simple linear term for theO(jz � 1j) remainder,F (z) � F (1) + b(z � 1)��1 + c(z � 1): (4–7)By trial and error we found that b = 0:2764 i andc = �0:1421 i give very good agreement in (4{7).
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:002 :004 :006 :008
2�10�610�60 :002 :004 :006 :008 :010

10�60�10�6
FIGURE 7. The real (left) and imaginary (right) parts of the di�erence between F (z) and the approximationF (1)+0:2764 i(z�1)��1�0:1421 i(z�1). Each line is the restriction to one of the radial spokes of the dartboard,for � 23� � � � 23�.In Figure 7 we show the real and imaginary parts ofthe di�erence between the two sides in (4{7) alongthe radial spokes of the dartboard correspondingto � 23� � � � 23�. In fact it seems likely that(4{5) is only the �rst term of a complete asymp-totic expansion.We conclude by showing some variants of Figure6 for di�erent i.f.s. We change the contraction ratiofrom 12 to obtain the i.f.s.Sjz = rz + (1� r)wj for j = 0; 1; 2; (4–8)where r is the new contraction ratio, and take �to be unique probability measure satisfying (1{3)with p1 = p2 = p3 = 13 . For r > 12 the images

SjK overlap, so � is not the normalized Hausdor�measure on K (in fact, the Hausdor� dimension ofK is not known), although K is connected and liesinside T . For r < 12 , K is totally disconnected and� is the normalized Hausdor� measure of dimen-sion � = log 3=log(1=r). We display the analogousimage to Figure 6 for the choices r = 0:51 andr = 0:49 in Figure 8. The overall pattern is simi-lar, but the behavior of the image of the boundaryspokes changes signi�cantly.If we replace the three third roots of unity withthe �ve �fth roots of unity, and choose the con-traction ratio ��2 (where � = 12(p5 + 1)=2, thegolden ratio), then we obtain the self-similar set

�0:04 �0:02 0 0:02 0:04
�0:19�0:20�0:21 �0:04 �0:02 0 0:02 0:04

�0:20�0:22
FIGURE 8. The same as Figure 6, except that the i.f.s. used has contraction ratio 0.51 (left) and 0.49 (right).



Lund, Strichartz, and Vinson: Cauchy Transforms of Self-Similar Measures 189K, the pentagasket, shown in Figure 9. In Figure10 we display the analogous image to Figure 6 forthe self-similar measure with all pj = 15 associatedwith this i.f.s.
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FIGURE 9. The pentagasket (courtesy of Kyallee Dalrymple).
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�0:02 �0:01 0 0:01 0:02
�0:17�0:18�0:19
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