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There is a well-understood connection between polynomials
and certain simple algebraic dynamical systems. In this con-
nection, the Mahler measure corresponds to the topological
entropy, Kronecker’s Theorem relates ergodicity to positivity of
entropy, approximants to the Mahler measure are related to
growth rates of periodic points, and Lehmer’s problem is re-
lated to the existence of algebraic models for Bernoulli shifts.
There are similar relationships for higher-dimensional algebraic
dynamical systems.

We review this connection, and indicate a possible analogous
connection between the global canonical height attached to
points on elliptic curves and a possible ‘elliptic’ dynamical sys-
tem.

1. INTRODUCTION

The simplest examples of dynamical systems are
often those of algebraic origin. For such exam-
ples, it is unsurprising that almost every dynami-
cal property can ultimately be related to a property
of polynomials. In this paper we bring the poly-
nomial into the foreground, and collect well-known
results that show how to associate a dynamical sys-
tem to a polynomial, and how the classical Mahler
measure attached to the polynomial corresponds
to the entropy of the dynamical system. Underly-
ing everything in some sense is the compact group
structure of the circle S'.

Recently, Everest and others have studied an
analogous measure for polynomials where the un-
derlying compact group is an elliptic curve. In an
arithmetic situation, this can be seen as a gener-
alisation of the global canonical height attached
to a rational point. We conjecture that there is
an analogous associated dynamical system whose
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entropy, suitably interpreted, corresponds to the
elliptic Mahler measure.

Given the speculative nature of this work, we
state results in rather restricted settings and prove
them for the simplest possible case that displays
the desired phenomena.

2. MAHLER MEASURES ARISE AS ENTROPIES

A topological dynamical system is a representation
a: N’ = C(X, p), where C(X, p) is the semigroup
of continuous maps of the metric space (X, p) to it-
self. If each map in the image of « is a homeomor-
phism, then it is an ¢nwvertible dynamical system,
and « extends to a Z"-action

o : Z% — Homeo(X, p).

The topological entropy of « is a measure of or-
bit complexity first introduced for compact X and
d = 1 by Adler, Konheim and McAndrew [Adler
et al. 1965]. The definition we give follows that
given by Bowen [1971] for d = 1 and does not re-
quire compactness. In the compact case several
equivalent definitions are given for d > 1 in Ap-
pendix A of [Lind et al. 1990].

Let R(n) = [0,n—1]?NZ* denote a d-dimensional
cube of side n in Z%. A set F C X is said to be
(R(n),e)-separated under « if for every pair  # y
in £ there is an n € R(n) with the property that
planx, any) > £. For each compact set K C X,
let

sk(R(n),e) =max{|E|: EC K is
(R(n),e)-separated under a},

1
hi(a,e) = hmsup — log s (R(n),e),

n—ro0

hic(a >=ggr3h;<<a,s>,

and finally define the topological entropy of « to
be

h(a) = sup hg (). (2-1)

K

Notice that hyx () = h(a) if X is compact.

Theorem 2.1. [1] If X is compact, d = 1, and « is in-
vertible, then h(c«) = h(a™"). More generally, if «
is a Z-action and M is a d x d integer matriz with
nonzero determinant, then h(() = |det(M)|h(«),
where Bp, = Qprp.

(2] If X is a locally compact metrizable group with
Haar measure p, and « acts by continuous endo-
morphisms of X, then

h(co) =lim li ——1 _
() 1\r(n1msup ogu( ﬂ « )

n— neR(n)

where B.(0) is the metric open ball of radius
around the identity in X.

Proof. The first part of [1] (where d = 1) follows
from [Adler et al. 1965, Corollary to Theorem 2],
and the second part follows by similar arguments
(the analogue of [1] for measurable dynamics is in
[Conze 1972/73, Section 6]); [2] may be proved us-
ing the ideas for the d = 1 case in [Bowen 1971,
Section 2]. O

Example 2.2. [1] Let X = T (the additive circle)
with the usual metric, and define o by «;(x) = 2z
(mod 1). Here R(n) ={0,1,...,n — 1}, and using
Theorem 2.1 we see that

) oy (B0) = (-2 Ve, 427 Ve,

JeR(n)
so h(«) =log 2.

2] Let X = Z[--], and define « to be the automor-
phism of the solenoid X dual to & — %z on Z[X]
for coprime integers a,b. Then Abramov’s formula
[1959] shows that

h(a) = log max{|al, |b|}.

[3] Let X be a local field (for example, R, C, Q,
or a completion of F,(¢)) with valuation |-|, and
let @« : X — X be given by a(z) = &x for some
¢ € X\{0}. Then a calculation similar to [1] shows
that

h(a) = max{0,log mod(«)},
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where mod(«) is the module of the automorphism
a; see [Weil 1974, Chapter 1].

For example,  — 2z on C has entropy log 4,
x — <z on Q, has entropy log3, = — 2z on Q,
has entropy 0, and = — tz has entropy log p on the
completion F, (£);-1.

Now let F' € Z[u| denote a primitive polynomial
in one variable with factorisation over the complex
numbers

F(u) = bH(u—)\i).

The Mahler measure of F, denoted m(F), is de-
fined by

m(F) = log |b| + Zlog max{1, |\;|}. (2-2)

The same definition could be given for any poly-
nomial with complex coefficients but our bias is
towards arithmetic results so we will stick to the
integral case. A discussion of the Mahler measure
for polynomials with coefficients in rings of integers
in number fields can be found in [Einsiedler 1997].

Example 2.3. [1] If F'(u) = u — 2 then m(F) = log 2.

[2] Let F'(u) = bu — a, where @ and b are coprime
integers. The definition in (2-2) gives

m(F) = log |b| + log max{1, |a/b|}.

If b > a then the second term contributes nothing
and m(F) = log |b|, while if @ > b then the second
term contributes log |a/b| = log |a| — log |b|. Thus
the log |b| terms cancel and we have m(F') = log |a|.
In other words, m(F’) simplifies to

m(F) = log max{|al,|b|}. (2-3)

Notice that the same expression arose in Example
2.2[2] above.

The reason m(F) carries Mahler’s name is the two
papers [Mahler 1960; 1962]. Many fascinating prop-
erties of the measure (and its generalisations) have
been discovered; we will review some of them in
Section 4. We next indicate how the Mahler mea-
sure m(F') arises as the entropy of a dynamical

system attached in a natural way to the polyno-
mial F. Since the construction and the relation-
ship hold in several variables, we first indicate the
higher-dimensional analogue of the Mahler mea-
sure (2-2). The route to this generalisation be-
gins with a simple application of Jensen’s formula
which we call Mahler’s Lemma; see [Mahler 1960].
Here (and elsewhere) we assume the polynomial
is nonzero. To be consistent with the dynamical
interpretation, we define m(0) to be infinite.

Lemma 2.4. For any F € Clu],

1
m(F) = / log | F'(27)| d6). (2-4)
0

Proof. This is an easy consequence of Jensen’s for-
mula,

1
/ log €™ — A| = log max{1, |\|}. O
0

Definition 2.5. Let F'(u) € Z[uy,...,u,4] be a prim-
itive polynomial in d commuting variables. The
Mahler measure of F is defined by

1 1

m(F) :/ ° / log‘F(e2ﬂi01, sy @27Ti9d)‘d91 e d9d
0 0

(2-5)

Notice that the definition is unambiguous since
any variables that do not appear in F' integrate
out, and accords with (2-2) for d = 1 by Mahler’s
Lemma 2.4. Calculations involving (2-5) are not
straightforward unless F' has a dominant coeffi-
cient.

Example 2.6. [1] Let F' = s, a constant. Then

m(F) = log]|s]|.
[2] Let F'(uy,us) =3 —u; — uy. Then by Jensen’s
formula,

m(3 —u; —uy) = max{0, m(3—u;)} = log3.
More general calculations in this direction appear
in [Smyth 1981, Section 2].

[3] If the polynomial F has the property that singu-
larities appear in the integral (2-5) —that is, if '
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vanishes somewhere on the torus (S')? —the cal-
culation of m(F') is much harder. For example,
3v3

m(l +uy +up) = ?L(Z X3)s

7

where L(2,x3) = Yoo, (2) &, (%) denotes the
quadratic character modulo 3, and ( is the Rie-
mann zeta function; see [Boyd 1981b; Smyth 1981].

Recent work by Boyd and Deninger gives a pos-
sible explanation of the appearance of L-functions
in the explicit values of higher-dimensional Mahler
measures; see [Boyd 1998; Deninger 1997].

In a similar vein, calculating the entropy of a
Z.%-action from first principles is more involved for
d > 1, so we will give just two simple examples.

Example 2.7. [1] Let X = {0,1,...,s —1}%*, viewed
as a compact abelian group with Haar measure pu.
Define the shift Z"-action « on X by

(an(w))m = Tnitm

for all n,m € Z% and © = (z,) € X. A metric
ball of radius € around the identity in X is a set of
the form

B.(0) ={x € X : 2, =0V n with |n| < R.}

for some R.. Applying Theorem 2.1[2], we find
that

(] an(B(0) ={ze€X:z,=0foraln
neR(n)

with n =a +b, [[al| < R., b€ R(n)}.
It follows that
u( M e (BE<0>>> = s lels,
neR(n)
and so h(«a) = log |s]|.
2] Let X = T?, again viewed as a compact abelian

group with Haar measure p. Define a Z*-action a
on X by

Q(a,b) (@), = 2b$k+a mod 1

for all a,b,k € Z and = (z,,) € X. A metric on
X compatible with its natural topology is given by

plm,y) =D 27z, —ya.
a€EL

It follows that

M(( N o B.0)) = 272"

a,b)ER(n)

so h(a) = log2. Examples of this kind have been
studied in the measurable dynamics framework by
Conze [1972/73, Section 2, Example 3], who calcu-
lated their measurable entropy.

3. THE DYNAMICAL SYSTEM ATTACHED TO A
POLYNOMIAL

We now describe how an element of Z[uy, ..., u4]
determines a Z%-dynamical system (in the sense
of Section 2). This follows exactly the work of
Schmidt and others in algebraic dynamical sys-
tems: see [Kitchens and Schmidt 1989; Lind et al.
1990; Einsiedler and Ward 1997; Lawton 1973;
Schmidt 1995].

First recall that T?" is the dual (character) group
of Z[uy, ..., ug] with the pairing

(+,"): Z[uy,...
defined by

< Z cru™, m> = exp <2m' Z cnacn> ,

where u™ = ui" ... uy".

,Ud] X TZd — Sl

Definition 3.1. Let F' € Z[uy,...,uy] be a primitive
polynomial. The Z%-action o’ associated to F is
the shift action

ar}:(m)m = Tnitm

on the closed, shift-invariant subgroup
X — XF
={x € T | (u™F(u),z) =1 for all n € Z}.

The basic connection between the Mahler measure
and dynamical systems is the following theorem.
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Theorem 3.2. The topological entropy of the dynama-
cal system associated to a polynomial F is the poly-
nomial’s Mahler measure: h(a’) = m(F).

Proof. See [Lind et al. 1990, Theorem 3.1]. O
Example 3.3. [1] Taking F(u) = u — 2 gives the
group Xy = Z[3], and the map «” is the natural
invertible extension of Example 2.2[1].

[2] Taking F'(u) = bu — a gives the group Xp =
Z[ =], with o the automorphism dual to z — %z
on Z[%]. The Mahler measure is given by (2-2)
and the entropy by Abramov’s formula in Example
2.2[2].

3] If F = s, a constant, then the group Xp is
{0,1,...,5—1}%", and a* is the full d-dimensional
shift with entropy log |s|.

[4] If F =1+ u; + us, the group Xy is

XF Z{ZBETZ :I(a,b)+x(a+l7b) +I(a,b+1) =0 (mod ].)
for all (a,b) € Z°},

and the shift o has entropy given by Example
2.6[3].

A modern proof of Abramov’s formula is given
in [Lind and Ward 1988] using adelic methods.

Briefly, the compact group X = Z[L] arises as a
quotient of the topological ring X, = R x [L0 Q,
by a discrete subgroup isomorphic to Z[%]. The
automorphism af" lifts to an automorphism & of
X r which is simply the direct product of the auto-
morphisms z — ¢ on each of the (finitely many)
local fields R and Q, for p|ab.

The dynamics of the local covering maps are very
simple to describe: on R, x{ is a dilation scaling
distances by |¢| if [$| > 1, and is a contraction
(zero entropy) if [#| < 1. On each finite place p
dividing a, x % is a contraction (zero entropy). Fi-
nally, on each of the finite places Q, with p dividing
b, x % is a dilation scaling distances by [b] .

General considerations show that

h(a) = h(a"),

and the right hand side is then simply a finite sum
of expressions of the form described in Example
2.2[3]. Abramov’s formula then naturally takes the
form

ha)y= >

pe{plab}U{oco}

+ la
|5

log™ 151p = Zpgoo log o>

where the last equality holds since the finite places
with p fab contribute nothing to the sum.

More generally, the dynamical system associated
to a polynomial F(u) is an automorphism of a
solenoid of the form described in [Kitchens and
Schmidt 1989; Lawton 1973]. The adelic cover-
ing space method of [Lind and Ward 1988] shows
that the resulting entropy is given by Yuzvinskii’s
formula,

h(a”) =m(F) = Z Z [ Aiplps 3-1)
}

p<oo {A;ip

where {); ,} are the roots of F(u) = 0 in a finite
extension of Q,. Comparing (2-2) with (3-1) and
using the product formula shows that the sum over
the finite (nonarchimedean) places contributes the
log |b| term to (2-2). It is interesting to compare
this observation with the proof of Lemma 4.6.

4. ARITHMETIC OF MAHLER’S MEASURE

We start by recording a simple lemma, a restate-
ment of Kronecker’s Theorem which says that an
algebraic integer whose conjugates are all equal to
1 in modulus must be a root of unity. First recall
the definition of a cyclotomic polynomial. This is
the term used to describe a primitive polynomial
in Zlu], all of whose roots are algebraic roots of
unity. The term cyclotomic means literally ‘circle
dividing’ and refers to the way the roots of unity
divide up the unit circle in the complex plane. A
cyclotomic polynomial must divide ¥ —1 for some
N. It follows that it must be monic and therefore
roots of unity are algebraic integers.

Lemma 4.1. Suppose that F € Zlu] is a primitive
polynomial. Then m(F) = 0 if and only if F is a
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monomial times a product of cyclotomic polynomi-
als in monomials.

Proof. Clearly a polynomial of this form has zero
measure because it is monic and all its roots have
absolute value 1. Conversely, a polynomial with
zero measure must be monic. Thus its roots must
be zero or algebraic integers all having absolute
value 1 and Kronecker’s Theorem says they must
in fact be algebraic roots of unity. g

In view of the fact that m(F’) is an entropy, this
lemma may be interpreted as a statement about
the entropy of certain measure preserving trans-
formations: of has positive entropy whenever F is
not a product of cyclotomics.

Mahler’s measure was really discovered by D.
H. Lehmer, one of the great mathematical exper-
imentalists, nearly thirty years before the work of
Mahler [Lehmer 1933]. Lehmer was able to man-
ufacture some ‘large’ primes from monic polyno-
mials F'(u) € Z[u| provided the growth rate of a
sequence attached to F' was not too great. In our
language, the sequence is the number of periodic
points and the growth rate is Mahler’s measure
(see Section 7 for more details). Realising Lemma,
4.1 above, he asked whether it might be possible
that the nonzero measures are uniformly bounded
below by a positive constant and mentioned that
he could not find a smaller nonzero measure than
that of the polynomial

W +u —u = - =t = e+ 1. 41

That is still the position today! Proving that there
is a smallest positive measure has become known
as Lehmer’s problem. Extensive calculations have
been made and no smaller positive measure has
been found. However, one must set beside this the
fact that, even if one is convinced that (0,=£1)-
coefficient polynomials will yield the smallest mea-
sures, there are still a lot of them to check for fixed
(large) degree. A very elegant positive answer in a
special case was provided by Smyth [1971].

A natural question is whether the analogue of
Lehmer’s problem holds for polynomials in several

variables. The next theorem is stated in the spe-
cial case where d = 2 for brevity. Let F' € Z[u,, u,]
denote a polynomial. For general polynomials F
(in which the integrand in (2-5) has singularities)
it is not clear what the limiting behaviour of the
measures m (F (u,u™)) of one-variable polynomials
has to do with the two-variable m(F'). Nonethe-
less, Boyd and Lawton have shown the following.

Theorem 4.2.
lim m(F(u,u™)) = m(F(uy,uy)).
N —o00
Proof. See [Boyd 1981b; Lawton 1983]. O

A similar result holds for suitably defined one-vari-
able polynomials built using polynomials in sev-
eral variables. It follows that gaps in the range of
the one-variable measure will be inherited by the
many-variable measures. Boyd [1981b] wrote a fas-
cinating paper exploring this in a far-reaching way.

It is easy to construct polynomials in several
variables with vanishing measure. Any monomial
times a product of cyclotomic polynomials in mono-
mials will obviously have zero measure, by Jensen’s
Formula. Conversely, there is the following gen-
eralization of Lemma 4.1. It is technically easier
to state this if we work with Laurent polynomi-
als, that is, polynomials in u!, ... ,udﬂ. We say a
polynomial is generalised cyclotomic if it is a prod-
uct of cyclotomic polynomials in monomials.

Theorem 4.3. If F € Z[u', ..., u"] is a primitive
polynomial then m(F) = 0 if and only if F is a
monomial times a generalised cyclotomic polyno-
maal.

Proof. This can be found in [Boyd 1981a; Lawton
1977; Smyth 1981]. O

Our final result is really much simpler but is con-
ceptually important. We have seen that for a poly-
nomial in one variable, Mahler’s measure arises
as the entropy of an automorphism of an adelic
space. It was clear during the calculation of the
measure that contributions to the measure really
were coming from local entropies. It will help us,
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when searching for elliptic analogues, to make this
precise.

Notice first of all that we can realise the integral
formula in (2-4) as a limit in the following way.

Lemma4.4. Let \ denote any algebraic number. For
each N € N, let ¢ run through the N-th roots of
unity. Then

m(u—\) = 1\}520% Z log [¢ — Al (4-2)

V=1

Proof. Note that we take it as assumed that any
undefined terms in (4-2) (such as when ¢ = \) are
omitted. The limit looks straightforward except
for problems which might arise if |A| = 1. In that
case we can put a ball of radius € around A. To get
the limit shown, we need to guarantee that € can be
chosen to vary with NV in a harmless way. Baker’s
Theorem does guarantee this because it gives the
following inequality,

I = A > AN 5, (4-3)

for all ¢ with ¢~ = 1, provided the left hand side
of (4-3) is nonzero, where A and B are positive
constants depending only upon A. Thus the con-

tribution to the integral arising from the e-ball is
O(log N/N) which vanishes in the limit. O

Expressions of the form (4-2), summing over vec-
tors of unit roots, converge to the Mahler measure
in the higher-dimensional case if the integrand has
no singularities, but in general the higher-dimen-
sional analogue of (4-2) is not known to hold.

Now suppose that, for each prime p, we adjoin
to Q, the roots of F' and the N-th roots of unity.
The p-adic value extends to this field and we will
keep the same notation to denote this extension.
Then define, for each A; with F'(\;) =0,

. 1
mr, (@ = Ai) = lm > 1og ¢ = Al
V=1

The next lemma may be thought of as a p-adic
version of Jensen’s formula.

Lemma 4.5. We have
mr, (z — A;) = logmax{l, |\;|, }. (4-4)

Proof. The proof goes over word for word as above,
using the p-adic version of Baker’s Theorem. [

Notice how this all makes sense even if p|oo. We
can define a ‘local-to-global’ measure by taking

Z Z m']rp (I‘ - )\1) (4—5)
% P

Lemma 4.6. The measure in (4-5) is equal to m(F).

Proof. What is happening here is that the total
contribution from the finite (or nonarchimedean)
primes is —3_ log|[b,. By the product formula,
this is precisely log |b|. This accounts for the first
term on the right of (2-2). The remaining terms
appear as the total contribution from the archime-
dean primes. O

This simple lemma allows us to interpret each of
the local components of m(F') as local entropies as
in the discussion after Example 3.3. The space X F
is replaced by a product of completions of the field
generated by the {\;}. For more details, see [Lind
and Ward 1988]. Later on, in the elliptic case, we
will be groping in the dark to try to realise elliptic
analogues of these statements. It will be useful to
be able to look at this particular aspect of the toral
case.

The last remark in this section concerns the con-
nection between Lehmer’s problem and the mea-
surable structure of the dynamical system o'

Theorem 4.7. Let F' € Z[uy, . .. ,ug4) be an irreducible
polynomial. Then the Z"-action o on Xy is mea-
surably isomorphic to a d-dimensional Bernoull:
shift with entropy h(a!") if and only if h(a!) > 0.

Proof. This is proved in [Rudolph and Schmidt
1995). O

What this means is that there are certain abstract
measure-theoretic model dynamical systems (the
Bernoulli shifts), and these occur with all possible
entropies. Lehmer’s problem therefore becomes a
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question about dynamical systems: is there an al-
gebraic system isomorphic to any Bernoulli shift,
or must the Bernoulli shift have constrained en-
tropy? For a fuller discussion of this question, see
[Lind et al. 1990] and references there.

5. THE ELLIPTIC MAHLER MEASURE

Suppose now that E denotes a complex elliptic
curve (for full definitions in this and the remain-
ing sections, see [Silverman 1986]). Then the com-
plex points of E are parametrised by transcenden-
tal functions, just as the points of the circle are
parametrised by the exponential function. Pre-
cisely, there is a lattice L in C with associated
Weierstrass p-function g, (z) defined by

m(z)=%+ > (ﬁ—%) (5-1)

0£LEL

for z ¢ L. It can be shown that the series in (5-1)
is absolutely convergent for z ¢ L, that it is a
meromorphic function with double poles only at
points in L, that p;(z) and its derivative @) (z)
are periodic with respect to L and, finally, that
the algebraic differential equation

1002 = (2’ + ApL(2) + B (5-2)

is satisfied for all z ¢ L. In (5-2), A and B denote
complex numbers. Thus the pairs (p.(z), $¢7(2))
for z € C/L parametrise the complex points on the
cubic curve with equation

y? =2 + Az + B. (5-3)

It can be shown that this curve is nonsingular and,
moreover, given any nonsingular curve of the type
in (5-3), we can find a lattice L so that the curve
is parametrised as above.

In view of this, it might seem appropriate to de-
fine an elliptic Mahler measure by

mu(F) = / » log |F(p(2))|dz.  (5-4)
zE

In (5-4), dz denotes the area measure on the fun-
damental parallelogram for C/L, that is, the usual
Lebesgue measure normalised to give area 1 to the
parallelogram. It is true that some kind of elliptic
theory could be developed in that way, but it would
certainly lack the sophistication we require. For ex-
ample, we wish at least that the coefficients A and
B be rational. Even then, this global approach
turns out not to have the right kind of functori-
ality properties. For example, we need to impose
extra conditions upon F' to ensure it satisfies Kro-
necker’s Theorem. A full discussion is presented in
[Everest 1999].

In order to obtain a properly functorial elliptic
Mahler measure, we need to give a local-to-global
approach. This will exactly mirror the approach
to Mahler’'s measure we gave in Section 4. Our
alm is to recognise the local factors of the elliptic
Mahler measure as local entropies. We are suc-
cessful for almost all of the factors, and for those
factors where we are frustrated, we can begin to
see why there are difficulties.

For each p, define the local curve E, comprising
all points with coordinates in Q, (this makes sense
it A,B € Q). This curve forms a compact group
with Haar measure denoted p,. Define

mg, (F) = / log | F|, dp,. (5-5)
B,
Now we can add up the local measures to obtain a
global measure

mp(F) =Y mg,(F). (5-6)

For each root \; of F', we have a point on the (com-
plex) curve P; = (\;, * ).

Theorem 5.1. For a primitive polynomial F € Z[u],
mg(F) = 0 if and only if all the P; are torsion
points on E.

This is the analogue of Kronecker’s Theorem (see
Lemma 4.1), and is proved in [Everest 1999]. It is
useful to have an even more down to earth version
of the definitions. For each ¢, we could adjoin \;
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to Q, then define

mg, (u—N\;) = / log |u — Ail, dp,.
E

P

In [Everest 1999], it was shown that

mp(F)=> Y mp,(u—\).

(2

Note the exact comparison with the toral coun-
terpart in (4-5). Our development of the elliptic
Mahler measure is a generalisation of the canon-
ical height attached to rational points on elliptic
curves. The heart of the matter is to be found
in [Everest and Fhlathiin 1996], where an integral
representation for the local canonical heights was
exploited. For a linear polynomial F(u) = bu — a,
with a and b coprime integers, we have the rela-
tion my(F) = 2h(P), where P = (a/b,*) and h
denotes the global canonical height: see [Everest
1999]. Thus any dynamical interpretation of the
elliptic Mahler measure will necessarily entail an
interpretation of the global canonical height.

6. ELLIPTIC ENTROPY

We conjecture that the elliptic Mahler measure de-
fined in Section 5 arises in a natural way as an
entropy. Having restricted ourselves to this arith-
metic version we are looking for arithmetic dynam-
ical systems. Our feeling that we really do have an
adelic space to act upon comes from the following
lemma, which is an elliptic analogue of Jensen’s
Formula. Suppose A is a rational number, with
P = (\,*) denoting the corresponding point on
the elliptic curve. Let p denote any prime of Q
(possibly infinity). In [Everest 1999] an intimate
relation between the local elliptic Mahler measure
mg, (u — A) and the local canonical height of the
point P at p was found. In special cases, this ex-
actly mirrors the toral case.

Lemma 6.1. Suppose p is a prime of good reduction
for E. Then

mg, (u— A) = log max{1,|A|,}. (6-1)

Proof. This is formula (2.11) in [Everest 1999]. O

To an extent then, we can justify our conjecture
about the existence of elliptic entropy. At the good
nonarchimedean primes, we could let the point P
act by multiplication of its z-coordinate on Q,.
But this is all we did in the toral case and it cannot
represent the whole story.

Things are more interesting at the archimedean
primes and at the primes of (split multiplicative)
bad reduction. If we take the simple action as be-
fore we actually get the ‘wrong’ answer. Coinci-
dentally, it happens that the ‘analysis’ of elliptic
curves is essentially the same at these two types of
primes. So let K denote a local field which is the
completion of Q at infinity or at a prime of bad
split multiplicative reduction corresponding to the
absolute value |-| = ||, (note that, by extending
the field of definition, we can always assume the
reduction is of this type).

Theorem 6.2. [1] There is an element q of K with
lq| < 1 such that

E(K)~K*/¢".

[2] Let t € K*/q* correspond to P = (A, * ) under
the isomorphism in [1]. Let By(x) = 2*> —x + 1/6
denote the second Bernoulli polynomial. Then

mg, (u—A) =

log [¢|

—log q(1/2)32(—10g\Q\)(1—t) [Ta-ata—qg"t™)|.
n=1

(6-2)

Proof. 1t follows from [Everest and Fhlathuin 1996]
that the left hand side of (6-2) is the local canon-
ical height of the point P. The formula (6-2) can
be found in [Silverman 1994, pp. 468 and 473]. O

We are therefore predicting that there is an action
of the point P upon a certain ‘adelic’ space with
these properties:

(i) At the primes of good reduction, the space is
isomorphic to Q,,.
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(i) At archimedean primes and primes of bad re-
duction the point acts upon a local space in such
a way that the entropy is given by the formula
in (6-2).

7. COUNTING PERIODIC POINTS

In this section, we will consider the relationship be-
tween entropy and the periodic points of an action.
In the toral case this is well understood. We will
go on to discuss a potential elliptic analogue. Our
claim is basically this: although we do not yet know
what the action should be in the elliptic case, we do
predict the periodic behaviour. See [Chothi et al.
1997] for a discussion of periodic point behaviour
in a class of arithmetic dynamical systems.

For simplicity, we begin by letting a denote a
positive integer with F'(u) = u —a the correspond-
ing linear polynomial. Now o’ acts on Xp = Z[1]
via the map dual to x — ax. The number of
points of period n € N is given by F,, =a" — 1 =
2" — 1],—,. Let @, () = 2™ — 1 and consider the
expression

1
—1 . 7-1
- 1og |pu(a)] 7-1)

Let F' € Z[u] be monic, with Ap the companion
matrix associated to F. We assume below that F
has no zeros which are unit roots (this is equivalent
to assuming that o is ergodic). If F has degree
r then af" acts on Xr ~ T" in the natural linear
way. Now F,,, the number of points of period n is
given by |det(A} — I,)]. If the roots of F' =0 (the
eigenvalues of Ay) are listed with multiplicity as
A1, ..., A, then we can express this number as

F=|r =17 =D =] len)l- 7-2)
=1

It was this sequence F, that Lehmer studied in
[1933]. These numbers (all in N) are generaliza-
tions of the Mersenne numbers arising from F'(u) =
u — 2. The growth rate is measured by the quan-
tity Llog F,,. Taking LlogF, in the limit we get

the following result (see [Lind 1982] for more de-
tails about this kind of dynamical system).

Lemma 7.1. The limit of Llog F, exists as n — oo
and equals m(F).

Proof. This is obvious if |)\;|] # 1, the only cases
Lehmer could handle. The potential difficulties lie
with the case where |\;| = 1 for one or more i.
However, just as in Lemma 4.4, Baker’s Theorem
comes to the rescue. It guarantees that

AP —1| >Cn™P

for some C, D > 0. Therefore, in the limit, terms
arising from |A;| = 1 contribute nothing. O

Now consider the elliptic case. Suppose that the
curve F is given by a generalised Weierstrass equa-
tion (see [Silverman 1986]) with integer coefficients.
Then for every 1 < n € N, there is a polynomial
p(x) € Z[x] with degree n* — 1 and leading coef-
ficient n? whose roots are the z-coordinates of the
(nonidentity) points of order dividing n on E. In
the d =1 case, let E,, = [¢,(a)| and consider

1
= log E,,. (7-3)

Theorem 7.2. Suppose that P = (a,x) € E has
everywhere good reduction. Then the limat

1
lim — log E,

n—o00 N

exists and equals mg(u — a).

Proof. For an integral point with the good reduction
condition, we know that the total contribution to
mpg comes from the archimedean prime. Write the
expression in (7-3) as

1
= (log n? 4 Z log |z(p) — a|>, (7-4)

np=0

where here the sum is over the points p which are
not the identity O but have np = O. Clearly the
term (logn?)/n? contributes nothing in the limit.
The limit over the m-th torsion points in (7-4)
tends to the integral over the parallelogram. This
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is obvious (as in the toral case) except for the prob-
lem of points near to P. Write « € C/L with
or(a) = a. The elliptic analogue of Baker’s The-
orem says that [p — «| > n™", when p is an n-
th torsion point and a corresponds to an algebraic
point on E. Therefore, just as before, the contri-
bution to the Riemann sum is negligible for points
close to a and thus the limit of (7-4) is equal to
the integral giving the elliptic Mahler measure. [

A similar argument holds for monic F' € Z[u] with
degree greater than 1.

In short, for ¢ € N, we are claiming that an
action can be found which has approximately E, =
|1, (a)| points of period n and with the property
that

1
lim — log E,, = mg(u — a). (7-5)

n—00 ’n2

8. CONCLUSION

The connection between the arithmetic properties
of the classical Mahler measure and algebraic dy-
namical systems is well-known. Recent work shows
that an elliptic analogue of the classical Mahler
measure has properties analogous to the Mahler
measure, and there are indications that there is
a corresponding ‘elliptic’ dynamical system whose
entropy is related to the elliptic Mahler measure.
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Table 1 summarizes our deliberations. For sim-
plicity, assume that the polynomial is irreducible.
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