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We develop an efficient technique for computing relative class

numbers of imaginary abelian fields, efficient enough to en-

able us to easily compute relative class numbers of imaginary

cyclic fields of degrees 32 and conductors greater than 1013,

or of degrees 4 and conductors greater than 1015. Acccording

to our extensive computation, all the 166204 imaginary cyclic

quartic fields of prime conductors p less than 107 have relative

class numbers less than p/2. Our major innovation is a tech-

nique for computing numerically root numbers appearing in

some functional equations.

1. INTRODUCTIONLet n � 1 be a given positive integer.Let N be an imaginary abelian number �eld ofdegree n, hence n is even, and let N+ be the sub-�eld of N of degree n=2 �xed by the complex con-jugation. Then N is a quadratic extension of N+and the class number hN+ of N+ divides the classnumber hN of N. We call h�N = hN=hN+ the rela-tive class number of N. Let fN be the conductorof N. Then N is a sub�eld of the cyclotomic �eldQ (�fN) and we let XN denote the group of prim-itive Dirichlet characters which are trivial on theGalois group of the abelian extension Q (�fN)=N:For any � 2 XN we let f� denote its conductor.We let wN denote the number of roots of unity inN and QN 2 f1; 2g denote the Hasse unit index ofN. Finally, we let X�N denote the subset of all the� 2 XN such that �(�1) = �1. For each cyclicsubgroup X of XN choose a generator  2 X, letn denote the order of  , let N be the norm mapfrom the cyclotomic �eld Q (�n ) to Q and �nallylet Y �N denote the set of such odd generators  .
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294 Experimental Mathematics, Vol. 7 (1998), No. 4The following equality is well known [Washington1997]: h�N = QNwN Y�2X�N � 12B1;�= QNwN Y 2Y �N N �� 12B1; � (1–1)withB1;� = 1f� f��1Xx=1 x�(x) = � 12� ��(2)S�; (1–2)where S� def= X1�x�f�=2�(x)is an algebraic integer. Hence, if � has order mthen S� is in Z[�m], the ring of algebraic integersof the cyclotomic �eld Q (�m). We also note thataccording to the Brauer-Siegel theorem log h�N isasymptotic to 12 log� Y�2X�N f��when fN goes to in�nity. In particular, h�N is usu-ally a very large integer. Roughly speaking, us-ing (1{1) we have to do O(fN) operations to com-pute h�N. In this paper will reduce this amount ofrequired computation down to O(pfN log fN) ele-mentary operations. Indeed, we will explain howwe can compute the exact values of the integralcoordinates of all the S 2 Z[�n ] which appear in(1{1) and will explain how we can then computethe exact value of h�N.However, to make our technique clear, when do-ing relative class number computation we will as-sume that n = 2r � 2 is a 2-power, that N iscyclic of degree n = 2r and of prime conductor p,and that N is not a cyclotomic �eld. In that sit-uation, not only are the S� algebraic integers, butall the B1;� 2 Z[�2r ] are algebraic integers of thecyclotomic �eld Q (�2r). Moreover QN = 1, wN = 2and Y �N is reduced to a set with one element.

2. THE METHODTo begin with, for any odd primitive Dirichlet char-acter � we will express B1;� as the limit of a rapidlyabsolutely convergent series (see formula (2{3)).So, let � be an odd primitive Dirichlet character ofconductor f and order m. We set�� = f�1Xx=1 �(x)e2x�i=f and "� = 1ipf ��;g(x; �) =Xn�1 n�(n)e��n2x=f (x > 0) (2–1)and F (s; �) = �f��(s+1)=2 ��s+ 12 �L(s; �):Note also that1pf F (0; �) = L(0; �) = �B1;�:It is known that "� has absolute value equal to oneand thatg(1=x; �) = "�x3=2g(x; ��) = "�x3=2g(x; �); (2–2)for x > 0. Therefore, for s complex we haveF (s; �) = Z 10 g(x; �)x(s+1)=2 dxx if Re(s) > 1;and this equalsZ 11 g(x; �)x(s�1)=2 dx+ "� Z 11 g(x; ��)x�s=2 dxfor any s, so we getF (1 � s; �) = "�F (s; ��) for s complex;and we now express B1;� = �L(0; �) as the limitof a rapidly absolutely convergent series:B1;� = �pf� �"�Xn�1 ��(n)n e��n2=f+Xn�1 �(n)n F (�n2=f)�; (2–3)



Louboutin: Computation of Relative Class Numbers of Imaginary Abelian Number Fields 295whereF (X) = X Z 11 e�Xx dxpx � X Z 11 e�Xxdx = e�X :There are similar results for even primitive Dirich-let characters [Williams and Broere 1976; Schoofand Washington 1988; Seah et al. 1983] and ourmethod developed below could be easily adaptedto the numerical computation of class numbers ofreal abelian number �elds (whose regulators areknown).In particular, (2{3) is a rapidly absolutely con-vergent series which could be used to compute nu-merical approximations of values of Dirichlet gen-eralized Bernoulli's numbers B1;� (see below). Butsince there is no known general formula for Gausssums [Berndt and Evans 1981], we should knowhow to compute "� numerically. To this end, andsince �m� is a product of Jacobi's sums which arealgebraic integers of the cyclotomic �eld Q (�m), ac-cording to the literature bearing on this question,one usually uses known results on Gauss sums toget a formula for �� = "m� : This leaves it unspec-i�ed which m-th root of �� is equal to "�. As in[Schoof and Washington 1988, Section 4] and in[Seah et al. 1983], people usually get round thisproblem by computing, for each of these m pos-sible m-th roots, numerical approximations of L-functions and class numbers. For example, thenumerical computation of the class number of acyclic cubic number �eld whose regulator is knownboils down to the computation of L(1; �) for onlyone Dirichlet L-function for some primitive cubiccharacter �. In all the cases they considered, itturned out that exactly one out of these m = 3possible choices for 3p�� yielded a value for theclass number which was close enough to a positiveinteger to be the numerical approximation of theclass number, thus providing them with the ex-act value of this sought class number [Seah et al.1983]. However, if we delt with a cyclic quinticnumber �eld, then the numerical computation ofits class number would boil down to the compu-tation of L(1; �) for only two Dirichlet L-function

associated to primitive quintic characters �. Here,for each of these two L-functions we would have�ve possible choices for 5p�� and we would end upwith twenty �ve possible values for the class num-ber. It becomes less likely that only one of themis going to be close enough to a positive integerto be the numerical approximation of this soughtclass number. In fact, for cyclic quintic �elds, aslightly di�erent approach was used in [Schoof andWashington 1988], but it also left the authors withtwenty possible values for each class number theywanted to compute. Luckily, each time, it turnedout that only one of these twenty values was closeenough to a positive integer to be the numericalapproximation of this sought class number.Here, we will promote a completely di�erent ap-proach.Using (2{2) at s = 1, we get "� = g(1; �)=g(1; �),provided that g(1; �) is not equal to zero. We willuse (2{2) �rst to verify that g(1; �) 6= 0 and thento compute good approximations of all "�'s for � 2X�N (see Theorem 3.1). Second, we will use therapidly absolutely convergent series (2{3) to obtaingood enough approximations of all B1;�'s to use(1{1) to deduce the exact value of the relative classnumber of a given N. To begin with, we setB(t;M; f) =rf� (t log(f=�) +M): (2–4)Throughout this paper we will replace various in�-nite sums similar to (2{3) by sums up to the leastinteger greater than or equal to B(t;M; f) wheret and M will be be suitably chosen. Note thatn � B(t;M; f) implies0 � F (�n2=f) � e��n2=f � (�=f)te�M :Roughly speaking, we will prove �rst that we needcompute only B(1;M; f) terms in (2{1) to compute"� with an error not exceeding e�M (see Theorem3.1), second that we need compute only B( 32 +";M; f) terms in (2{3) (where "� is replaced byits just computed approximation) to compute B1;�with an error not exceeding e�M (see Theorem 4.2),



296 Experimental Mathematics, Vol. 7 (1998), No. 4and third we will show that this enables us to com-pute the exact value of B1;�, i.e., to compute theexact values of the the coordinates of the algebraicinteger S� in the canonical Z-basis of the ring of al-gebraic integer Z[�m] of the cyclotomic �eld Q (�m):Finally, we explain how the knowledge of these co-ordinates will provide us with the exact value ofh�N: To keep this paper short, when doing actualrelative class number computation, we will focuson imaginary cyclic �elds of 2-power degrees andprime conductors. In that case all B1;� for � 2 X�Nare algebraic integers.
3. A CONJECTUREIn this section, we explain why it is reasonableto conjecture that the complex number g(1; �) isnever equal to zero.
Theorem 3.1. Set g = g(1; �) andgm = gm(1; �) = mXn=1 n�(n)e��n2=f :Then m � pp=2� implies jg � gmj � f2�e��m2=fandj"� � gm=�gmj � 2 jg � gmjjgmj � f�jgmje��m2=f : (3–1)Therefore, m � B(1;M; f) and jgmj > 12e�M implyjg�gmj � 12e�M , g 6= 0, gm 6= 0 and j"��gm=�gmj �e�M=jgmj:
Proof. Notice that x 7! xe��x2=f decreases for x �pf=2�: �
Corollary 3.2. 1. Whenever p is an odd prime letgp � 2 denote the least primitive root modulo pand let �p be the odd character modulo p de�nedby �p(gp) = exp(2�i=(p � 1)). Hence, the �kp'swith 1 � k < p and k odd are the (p � 1)=2 oddcharacters modulo p. Choosing M = 20 and let-ting �kp range over the 773733 odd characters forthe 668 odd primes p � 5000 we get the follow-ing table of the ten least values of jg(1; �kp)j (with1 � k � (p � 1)=2 and k odd), according to which

we have g(1; �) 6= 0 for the 773733 odd charac-ters modulo any prime p � 5000. (Here ord(�kp) =(p� 1)= gcd(p�1; k) denotes the order of �kp:)p k ord(�kp) jg(1; �kp)j2161 725 432 0:00160 � � �3041 535 608 0:00151 � � �2767 285 922 0:00108 � � �1559 775 1558 0:000830 � � �3779 1745 3778 0:000722 � � �1433 273 1432 0:000618 � � �3617 225 3616 0:000556 � � �3061 143 3060 0:000196 � � �3373 615 1124 0:0000802 � � �2803 1337 2802 0:00000541 � � �
2. If � is an odd primitive quartic character ofprime conductor p then p� 5 (mod 8). Conversely ,for each prime p � 5 (mod 8) there are two oddquartic characters of conductor p, they are conju-gated and we let �p be the one well de�ned by meansof �p(2) = i: Choosing M = 20 and letting � rangeover all the 166204 odd primitive quartic charac-ters �p of prime conductors p, we get the followingtable of the ten least values of jg(1; �p)j accordingto which we have g(1; �p) 6= 0 for these 166204 oddquartic characters.p jg(1; �p)j5717 0:311 � � �2537461 0:271 � � �2089037 0:177 � � �114797 0:153 � � �149 0:143 � � �

p jg(1; �p)j907589 0:121 � � �105173 0:0943 � � �2958821 0:0756 � � �7750373 0:0356 � � �3428861 0:0189 � � �According to this Corollary, we put forward thefollowing hypothesis:
Conjecture. For any primitive odd Dirichlet charac-ter � (of conductor f) we haveg(1; �) =Xn�1 n�(n)e��n2=f 6= 0:



Louboutin: Computation of Relative Class Numbers of Imaginary Abelian Number Fields 297Of course, if x 7! g(x; �) is real valued and "� = �1then (2{2) yields g(1; �) = 0. In particular, forslightly di�erent L-functions, the associated g(1; �)can be equal to zero. Indeed, according to [Fr�ohlich1972] there exist in�nitely many quaternion octicnumber �elds such that the Artin roots number" for their irreducible non-abelian characters  ofdegree two of their Galois groups H8 (the quater-nion group of order eight) are equal to �1 (how-ever, since the exact value of " is known, we wereable in [Louboutin � 1998] to develop a techniquefor computing the values at s = 1 of the associ-ated Artin L-functions s 7! L(s;  ), which in turnenabled us to derive an e�cient technique for com-puting relative class numbers of quaternion octicCM-�elds).Finally, we conclude this section with a partialproof of this conjecture:
Theorem 3.3. Let X�p denote the set of odd primitiveDirichlet characters modulo an odd prime p. SetMp = 2p� 1 X�2X�p jg(1; �)j2(and note that there are (p�1)=2 elements in X�p ).Then Mp is asymptotic to p3=2=�4�p2� when pgoes to in�nity . Moreover ,jg(1; �)j � p2� +r p2�e :In particular , for any c < �=�2p2� there exists pcsuch that if p � pc then at least cpp charactersin X�p satisfy g(1; �) 6= 0. Therefore, there are in-�nitely many odd characters � of prime conductorssuch that g(1; �) 6= 0:
Proof. Standard orthogonality relations give for thesumP�2X�p �(a)��(b) the value(p�1)=2 if b� a (mod p) and a 6� 0 (mod p),�(p�1)=2 if b��a (mod p) and a 6� 0 (mod p),0 otherwise.

ThusMp = p�1Xr=1Xk�0Xl�0�(r+kp)(r+lp)e�� (r+kp)2+(r+lp)2p�(r+kp)(p�r+lp)e�� (r+kp)2+(p�r+lp)2p �;from which we easily deduce that Mp is equivalent�rst to Pp�1r=1 r2e�2�r2=p, and second toZ 10 r2e�2�r2=p dr = p4� Z 10 e�2�r2=p dr = p3=24�p2 :As for the bound on jg(1; �)j, we note that ne��n2=pis less than or equal to pp=(2�e) and we use acomparison of series with integrals. �
4. COMPUTATION OF NUMERICAL

APPROXIMATIONS OF B1,�In this section, we explain how to use (2{3) to com-pute as good as desired numerical approximationsof B1;�, provided that g(1; �) is not equal to zero.
Lemma 4.1. Let � be an odd primitive Dirichletcharacter modulo f:
1. (See also [Louboutin 1996]). For any f � 2 wehave Xn�1 1ne��n2=f � 12 log fand mXn=1 1nF (�n2=f) � Z 10 F (�t2=f)dtt = 1:
2. SetB1;�(m) = �pf� �"� mXn=1 ��(n)n e��n2=f+ mXn=1 �(n)n F (�n2=f)�:We havejB1;� �B1;�(m)j � f 3=2�2m2 e��m2=f : (4–1)



298 Experimental Mathematics, Vol. 7 (1998), No. 4Therefore, m � B( 12 ;M; f) impliesjB1;� �B1;�(m)j � 2e�Mp�(log(f=�) + 2M) :
Proof. Part 2 follows from [Louboutin 1996]. As for(4{1), using F (X) � e�X , we havejB1;� �B1;�(m)j � 2pf� Xn>m 1ne��n2=f� 2pf� Z 1m e��x2=f dxx� 2pf�m2 Z 1m xe��x2=f dx= f 3=2�2m2 e��m2=f : �
Theorem 4.2. Assume gm 6= 0 and set~B1;�(m) = �pf� �gm�gm mXn=1 ��(n)n e��n2=f+ mXn=1 �(n)n F (�n2=f)�:Then m � B(t;M; f) impliesjB1;� � ~B1;�(m)j� � 1m2 + log f2jgmj� e�Mp�(f=�)t�(3=2) : (4–2)Therefore, settingt = 32 + M + log log flog(f=�) = 32 + o(1);then m � B(t;M; f) and jgmj � 12e�M implyjB1;� � ~B1;�(m)j � 2e�M :
Proof. According to (4{1), (3{1) and part 1 ofLemma 4.1, we havejB1;�� ~B1;�(m)j� jB1;��B1;�(m)j+jB1;�(m)� ~B1;�(m)j� f 3=2�2m2 e��m2=f+ f 3=22�2jgmj(log f)e��m2=f : �

For numerical computation purposes, we note thatF (X) = 2pX Z 1pX e�u2 du= p�X � 2Xn�0 (�1)nXn+1(2n+ 1)(n!) ;a rapidly absolutely convergent series which is use-ful for numerical computation of F (X) when X issmall. Moreover, we haveF (X) = Xe�XX + 12 + 2X + 32 + 4X + 52 + � � �(see [Wall 1948, pages 356{358]); this is useful fornumerical computation of F (X) when X is large.
5. DETERMINATION OF B1,�We now explain how our method provides us withan e�cient technique for computing relative classnumbers of imaginary abelian number �elds.To simplify, we will assume that N is a non-quadratic imaginary cyclic �eld of 2-power degreen and prime conductor p. In that case, N is themaximal sub�eld of 2-power degree of Q (�p), hencep determines N and n; and we will let Np de-note the only imaginary cyclic �eld of conductorp and degree n. We also simplify the notation andset h�p = h�Np , wp = wNp , Qp = QNp 2 f1; 2g,Xn;p = XNp and X�n;p = X�Np . Note that accordingto Brauer-Siegel's theorem log h�p is equivalent ton4 log p when p goes to in�nity. IfNp is not equal tothe cyclotomic �eld of conductor p, then all B1;�'sare algebraic integers of the cyclotomic �eld Q (�n)and 2(n=2)�1 times h�p is equal to the norm of anyof these algebraic integers. We will de�ne a partic-ular generator �p of Xn;p and will explain how we



Louboutin: Computation of Relative Class Numbers of Imaginary Abelian Number Fields 299can compute exact values of the rational integersak which are such thatB1;�p = (n=2)�1Xk=0 ak�kn:The idea is to compute good approximations of allthe B1;�'s, to express each ak as a linear combina-tion of these B1;� and to use the fact that all theak's must be rational integers to deduce their exactvalues from their good enough numerical approxi-mations. We �nally explain how we compute theexact value of h�p from these ak's.Let n = 2r � 2 be a given 2-power.Let p be an odd prime such that p � 1 (mod n):Since the multiplicative group G = (Z=pZ)� iscyclic of order p� 1, thenH = fx 2 G : x(p�1)=n = 1gis its unique subgroup of index n. Let np be de�nedby np = minfa � 1 : a(p�1)=2 = �ap� = �1g;where �ap� is the Legendre symbol. Then np hasorder n in the quotient group G=H. If � is a char-acter of order n on G then � must be trivial on Hand � is well determined by the image �(np) = �which must be some n-th primitive root of unity.For any x 2 G we have �(x) = �k if and onlyif �(x=nkp) = 1, hence if and only if x=nkp 2 H,hence if and only if (x=nkp)(p�1)=n = 1: Settingmp = n(p�1)=np (modulo p) we get the following ef-�cient technique for computing the values of �:�(x) = �kxwhere kx = minfk 2 f0; 1; 2; � � � ; n�1g : x(p�1)=n �mkp (mod p)g. Note also that we have �(�1) =�(n(p�1)=2p ) = �(p�1)=2n = (�1)(p�1)=n; so that � isodd if and only if p � 1+n (mod 2n):We shall �pdenote the character modulo p well de�ned by�p(np) = �n def= exp(2�i=n):

Proposition 5.1. Let N be a non-quadratic imagi-nary cyclic �eld of prime conductor p and 2-powerdegree [N : Q ] = n = 2r � 4. Set �n = exp(2�i=n):
1. We have p � n+1 (mod 2n) and for any primep � n + 1 (mod 2n) there exists exactly oneimaginary cyclic �eld of conductor p and degreen, to be denoted by Np:
2. If p = n + 1 then Np = Q (�p), wp = 2p andQp = 1:
3. If p > n + 1 then wp = 2, Qp = 1, h�p is odd(use [Washington 1997, Theorem 10.4 (b)]),h�p def= h�Np = 22n=2NQ(�n)=Q(B1;�p); (5–1)and B1;�p = (n=2)�1Xk=0 ak�kn 2 Z[�n]is an algebraic integer of Q (�n) where eachak = 2n TrQ(�n)=Q(��kn B1;�p) = 2n n�1Xi=1i odd ��ikn B1;�ipis a rational integer , which according to part 1of Lemma 4.1, satis�esjakj � max1�i�n�1i odd jB1;�ip j � 12�pp(log p+ 2)Finally , all these ak are odd .
Proof. If one of these ak's were even then all of themwould be even, 2n=2 would divide NQ(�n)=Q(B1;�p)and h�p would be even (use 5{1), a contradiction.�Now, let p � 1 + n (mod 2n) be given and let usexplain how we compute h�p , the relative class num-ber of the imaginary abelian �eld of degree n andconductor p. To begin with, we use Theorem 3.1 toverify that for all the � 2 X�n;p we have g(1; �) 6= 0:We have not yet found any � such that Theorem3.1 would not imply g(1; �) 6= 0. Then we useTheorem 4.2: we let m be the least integer greater



300 Experimental Mathematics, Vol. 7 (1998), No. 4than or equal to B( 32 + ";M; f) and compute ap-proximations ~B1;�(m) of all B1;� for � 2 X�n;p (inpractice, we choose M = 15). Setting~ak = 2n n�1Xi=1i odd ��ikn ~B1;�ip(m)we get jak � ~akj < 2e�M , so that ak is the near-est integer to ~ak, and we have computed the exactvalues of all the ak's. It is worth noticing that theabsolute values of all the B1;�ip(m) being less thanpp2� (log f+2), then even for very large values of p weneed only work with complex numbers of reason-able absolute values to compute the exact valuesof the coordinates of B1;�p .It remains to explain how we compute h�p . Hereof course, we need to work with large precisionarithmetic on integers. Setting Sp(r) = B1;�p 2Z[�n] andSp(i) = NQ(�2i+1 )=Q(�2i )(Sp(i+ 1)) 2 Q (�2i)for 1 � i � r � 1, we can writeSp(i) = 2i�1�1Xj=0 ai(j)�j2iwithSp(i) =� 2i�1�1Xj=0 ai(2j)�j2i�2��2i� 2i�1�1Xj=0 ai(2j+1)�j2i�2= 2i�1Xj=0 Aj�j2i = 2i�1�1Xj=0 ai(j)�j2i ;where A0 = (ai(0))2; A2i�1 = �(ai(2i � 1))2;Aj = min(j;2i�1�1)Xk=max(0;j�(2i�1�1)) ai(2k)ai(2j � 2k)� min(j�1;2i�1�1)Xk=max(0;j�2i�1) ai(2k + 1)ai(2j � 2k � 1)

(for 1 � j � 2i�2) and ai�1(j) = Aj�Aj+2i�1 (for0 � j � 2i�1�1), which enables us to compute theexact value of the positive integerSp(1) = NQ(�n)=Q(B1;�p) = 2(n=2)�1h�p :Since we do not have any positive lower boundon the absolute values of the g(1; �)'s, for we donot even know how to prove they are never equalto zero, we cannot give any proved upper bound onthe number of elementary operations our algorithmrequires for computing h�p . However, in practice,jg(1; �)j is never very small so that we may use thebound B( 32 + ";M; f) with M = 15. We have pro-grammed our formulas in Kida's language Ubasic,which allows fast arbitrary precision calculation onPC's.For example, let Np be the imaginary abelian�eld of degree 32 and conductor p = 1010+97. Weget min1�i�p�1i odd jg(1; �ip)j = 456 382:26 � � � ; B1;�p =P15k=0 ak�k32 withk ak k ak k ak k ak0 �4809 4 421 8 3991 12 �73771 �2705 5 1933 9 2781 13 �70212 7729 6 819 10 �13879 14 �40913 2979 7 2541 11 �2221 15 537and h�p = 22391 83221 41405 05711 42075 0365949593 37650 55905 64162 98557 82256 60609 � 2 �1064.Now let Np be the imaginary abelian �eld ofdegree 32 and conductor p = 1013 + 609. We getmin1�i�p�1i odd jg(1; �ip)j = 173 010 991:29 � � � ; B1;�p =P15k=0 ak�k32 withk ak k ak k ak k ak0 �216157 4 �213847 8 �160929 12 1526011 �211319 5 �264627 9 35681 13 �2716792 74357 6 �25413 10 309661 14 3888533 396321 7 �238953 11 �15135 15 537675



Louboutin: Computation of Relative Class Numbers of Imaginary Abelian Number Fields 301and h�p = 10 57160 41460 14284 21537 30049 3528389944 64043 49937 90979 09467 19576 76809 2387607191 38750 25726 21601 � 1091.
6. THE IMAGINARY CYCLIC QUARTIC CASEWe now focus on imaginary cyclic quartic �eldsof prime conductors p � 5 (mod 8), for here wealmost have an explicit formula for "�p . Note thatnp = 2 and Np = Q (p�(p+ bpp)), where p =a2 + b2 with a � 1 odd and b even.
Proposition 6.1. Let p = a2 + b2 � 1 (mod 4) beprime and set�p =rp+ app2 + i bjbjrp� app2 :
1. For � 2 Z[i] coprime with � = a + ib let thequartic residue symbol [�� ] 2 f�1;�ig be de�nedby �(p�1)=4 � [�� ] (mod �). We have� 2�� = (�1)(p�1)=4i�ab=2:
2. Let p = a2 + b2 � 5 (mod 8) be prime, wherea � �1 (mod 4) and b � 2 (mod 4) are ratio-nal integers. Hence, ab � 2 (mod 4). Choosethe sign of b so thati = �p(2) = � 2�� = �i�ab=2;i .e., so that ab � 2 (mod 8). Then, for some"p = �1, we have ��p = "p�p:
Proof. We may assume that a is odd. We let (�� )denote quadratic residue symbols. We have� 2�� = ��i(1 + i)2� � = ��i� ��1 + i� �= (�1)(p�1)=4i((a2+b2)�1)=4�1 + i� �

(for [ i� ] = i(p�1)=4), and a(1 + i) � a + b (mod �)yields�1 + i� � = �a(a+ b)p �= � jajja+ bjp � = � pjaj�� pja+ bj�= � pja+ bj� = � 2a2ja+ bj� = � 2ja+ bj�= i�((a+b)2�1)=4:If the sign of b is chosen as required, then accordingto part 1 we have �p = (=�)4 where � = a+ ib andthe desired result follows from [Ireland and Rosen1990, Lemma 6 on page 121 and Proposition 9.10.1]which yield � 2�p = �pp. Note also that according to[Berndt and Evans 1981] there is no known e�cienttechnique for computing numerically this sign "p.�Once we have proved, using Theorem 3.1, thatg(1; �p) 6= 0, and once we have computed good ap-proximations of "�p , we can deduce the exact valuesof �1 = "p = ��p=�p = ipp"�p=�p and ��p = "p�p.Then, according to Lemma 4.1 and since B1;�p =x+ yi is in Z[i], we need compute only B( 12 ;M; f)terms to determine the exact value of B1;�p andwe end up with an exact value for L(1; �p). Forexample, with p = 1010+61 = 887952 +(�45994)2we found "p = +1, B1;�p = 12099 + 20507i, h�p =12 jB1;��p j2 = 283 461 425 = 52 � 13 � 872169 andL(1; �p) = � �pp"�pB1;��p = i�B1;�p=��p= � 20507 + 12099irp+ 88795pp2 + irp� 88795pp2= 0:715907801 � � � � 0:216809690 � � � i :Note that we could not have computed ��p or B1;�peasily by simply using their de�nition, for this p ismuch too large. Here are two more examples:
1. If p = 1014 + 133 = 99199672 + 12626382 then"p = �1, B1;�p = 145937 � 3209401i and h�p =5 160 776 193 385.
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2. If p = 1015 + 37 = 179368792 + (�26043586)2then "p = �1, B1;�p = �9475929 + 163987i andh�p = 44 910 061 074 605:
Proposition 6.2. There are 166204 primes p � 5(mod 8) less than or equal to 107. For 82204 outof them we have "p = +1 while for the 84000 re-maining ones we have "p = �1:
Theorem 6.3. For any prime p � 5 (mod 8) let h�pdenote the relative class number of the imaginarycyclic quartic �elds of conductor p. Then
1. For the 64 primes p � 5 (mod 8) less than 1621we have h�p � p=5, but h�1621 = 333:
2. For the 814 primes p � 5 (mod 8) less than29989 we have h�p � p=4, but h�29989 = 8325:
3. For the 11878 primes p � 5 (mod 8) less than578029 we have h�p � p=3, but h�578029 = 198725:
4. For the 109542 primes p � 5 (mod 8) such thatp < 6389629 we have h�p � 2p=5, but h�6389629 =2765413:We have not been able to �nd the smallest primep � 5 (mod 8) such that h�p � p=2. Nevertheless,we note that there are 77 primes p � 5 (mod 8) lessthan 1679516029 such that �p(q) = +1 for the �rstnine odd primes q 2 f3; 5; 7; 11; 13; 17; 19; 23; 29g.They all have relative class numbers h�p less thanp=2, but h�1679516029 = 904595821 > p=2: It can beproved that for any c > 0 there are in�nitely manyprimes p � 5 (mod 8) such that h�p � cp:
7. AN APPLICATION OF SUCH EXTENSIVE

COMPUTATIONSTo conclude this paper, we �nally give one possibleuse of our e�cient technique for doing extensivecomputations of relative class numbers of imagi-nary cyclic �elds of 2-power degrees and (large)prime conductors: they are useful when dealingwith Catalan's equation xp � yq = 1 (here x and ydenote relative integers, and p and q denote pos-itive integers (we may assume that p and q areprime)). This equation has only �nitely many solu-tions [Tijdeman 1976]. But to date, it is not proved

that its only solutions are the trivial ones. How-ever, in using the following Theorem, bounds onrelative class numbers and extensive relative classnumber computation, various authors [Mignotteand Roy 1997; Steiner 1998] have lately provedthat if Catalan's equation has a non-trivial solu-tion (x; y; p; q) then min(p; q) must be large.
Theorem 7.1 [Schwarz 1995]. Let p 6= q be oddprime numbers and let Np denote the imaginarysub�eld of 2-power degree of the cyclotomic �eldQ (�p): Then Catalan's equation xp� yq = 1 has nonon-trivial integral solution if pq�1 6� 1 (mod q2)and q does not divide h�p :Let us sketch how they use this Theorem. First,assume p � 3 (mod 4) and p < q. Then Np =Q (p�p) is an imaginary quadratic �eld and we al-ways have h�p < p. Therefore, if Catalan's equationxp� yq = 1 has a non-trivial integral solution thenpq�1 � 1 (mod q2). Now, assume p � 5 (mod 8)and p < q. Then Np is the imaginary cyclic quar-tic �eld of conductor p and we do not always haveh�p < p: However, according to our computation,if p < 107 and if Catalan's equation xp � yq = 1has a non-trivial integral solution, then pq�1 � 1(mod q2). We refer the reader to [Mignotte andRoy 1997] for a lesser trivial and more comprehen-sive exposition of the usefulness of such relativeclass number considerations to prove that Cata-lan's equation often has no non-trivial solution. Wealso refer the reader to [Steiner 1998].
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