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We survey what is known about spectra of combinatorial Lapla-
cians (or adjacency operators) of graphs on the simplest finite
symmetric spaces. This work is joint with J. Angel, N. Cel-
niker, A. Medrano, P. Myers, S. Poulos, H. Stark, C. Trimble,
and E. Velasquez. For each finite field IF; with g odd, we con-
sider graphs associated to finite Euclidean and non-Euclidean
symmetric spaces over [F;. We are mainly interested in three
questions regarding the eigenvalues and eigenfunctions of the
combinatorial Laplacian as ¢ goes to infinity: How large is
the second largest eigenvalue, in absolute value, compared
with the graph’s degree? (The largest eigenvalue is the degree.)
What can one say about the distribution of eigenvalues? What
can one say about the “level curves” of the eigenfunctions?

1. INTRODUCTION

In this computer age, it is very natural to model the
continuous with the finite: for example, to replace
R with a finite field [, and the Fourier transform
with the fast Fourier transform. Here we begin to
do the same thing in higher dimensions.

The goal of this work is to survey what is known
about spectra of combinatorial Laplacians, or adja-
cency operators, for graphs coming from finite ana-
logues of the simplest Euclidean and non-Euclidean
symmetric spaces G/K over finite fields of odd
characteristic. In a later paper we will consider fi-
nite analogues of the Selberg trace formula. In the
process we will find some examples of Ramanu-
jan graphs. These graphs have been of interest
since the paper of Lubotzky, Phillips and Sarnak
[Lubotzky et al. 1988] for their expansion prop-
erties, which make them well suited for building
communications networks [Friedman 1993]. At the
beginning our work was motivated by that of Stark
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[1987] on p-adic upper half-planes. We were also
inspired by [Arthur 1989; Diaconis 1988; Lubotzky
1994; Sarnak 1990], and by work of Fan Chung
and Sternberg on the buckyball [Sternberg 1994].
Graph analogues of Riemann surfaces have been of
interest to geometers for some time [Buser 1992].

Much of the work reported on here is joint with
Jeff Angel, Nancy Celniker, Archie Medrano, Perla
Myers, Steve Poulos, Harold Stark, Cindy Trimble,
and Elinor Velasquez. See [Angel et al. 1992; An-
gel et al. 1994; Angel et al. 1995; Celniker et al.
1993; Medrano et al. a; b; Terras 1991; Stark and
Terras]. Section 2 discusses the Euclidean case,
mostly following [Medrano et al. a]. Section 3 dis-
cusses the non-Euclidean case. See page 28 for a
table summarizing this paper.

2. FINITE EUCLIDEAN SYMMETRIC SPACES

It is easy to find a finite analogue of n-dimensional
Euclidean space R™ by replacing R with the finite
field F, having ¢ = p" elements, where p is an odd
prime. We define finite Fuclidean n-space as the
space ;' of column vectors z with j-th entry x; €
Fy, for 1 < 5 < n. The distance between two
column vectors z and y in F}' is

n

dz,y) ="z —y)(e—y) =Y (& —y)’ @D

Jj=1

where 'z is the transpose of z.

Since it has values in the finite field, this distance
is not a metric in the sense of the triangle inequality
and analysis, but rather a metric in the sense of
quadratic forms and algebra [Lang 1965]. It does
possess group invariance properties, just like the
Euclidean metric in R®. For clearly

d(z+u, y +u) =d(z,y)
for all w € F*, and
d(kz, ky) = d(z,y)
for all £k € O(n,F,). Here O(n,F,) is the orthog-

onal group, consisting of n X n matrices k with
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entries in F, such that ‘kk = I, where I is the
n X n identity matrix.

Recall that the Cayley graph of a group G with
respect to a set of generators .S, closed under inver-
sion, has as vertices the elements of G and edges
(g,9s), for s € S and g € G. Since S generates G,
the graph will be connected; since S = S~!, the
graph is undirected.

Definition. The Euclidean graph E,(n, a) associated
to a € F, has as vertices the elements of ;" and
as edges the pairs (z,y) such that d(z,y) = a. In
other words, it is the Cayley graph of the group F
with respect to the set of generators

S,(a) = Sg(n,a) = {z € F} : d(z,0) = a}, (2.2)

except in the exceptional case when n =2, a = 0,
and —1 is not a square in F,; in this case S,(n,a) =
{0}, so that E,(n,a) is then a disconnected graph
consisting of n loops. We will usually ignore this
exceptional case.

It is not hard to show [Carlitz 1953; Small 1991,
pp. 86-91, 145-146] that the graphs E,(n,a), for
a # 0, are regular with degree

|Sq(n,a)] = ¢ 4+ O(¢™ V7).
Figure 1 shows two examples.

Definition. The finite Fuclidean group G consists of
(n+1) x (n+ 1) matrices with block form

1= (o 1)

where k € O(n,F,;), u is a column vector in Fz,
and 0 denotes a row vector of n zeros. Then g acts
onz € F? by

e~ keru=(y §)(7)

Note that this action preserves the distance d(z, y)
defined in (2.1).

Now define K to be the subgroup of G of matrices
with u = 0. Then G/K = F?. This space is a sym-
metric space, since we have a commutative algebra
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FIGURE 1. Left: The Euclidean graph Fs5(2,1) has degree four, since S5(2,1) = {(£1,0), (0,£1)}. Right:
E7(2,1) has degree eight, since S7(2,1) = {(£1,0), (0,+£1), (£2,+2)} (independent signs). The edges incident

on one vertex are highlighted.

L?*(FF7) of functions f : F — C with multiplication
defined by convolution:

(fxg)(@) = fW)g(z—y).

yeFn

As already mentioned, in the exceptional case
(g,n,a) = (g,2,0) with —1 a nonsquare in F,, we
have S;(n,0) = {0}. Otherwise, we can ask if the
K-orbits in F —{0} are the sets S,(n, a), for a # 0,
or S,(n,0) — {0}, for a = 0. The answer to this
question is yes, by Witt’s theorem [Lang 1965].

For a symmetric space we need an analogue of
the Laplace operator, that is, a G-invariant opera-
tor on functions on G/K.

Definition. The adjacency operator A = A, of a
graph E,(n,a) acts on functions f € L*(F}") by

Af(@)= > fy) =) fl@+u)=Xs*f(),
yeFy u€eSs
d(z,y)=a

where d(z,y) and S = S,(n,a) are as in (2.1) and
(2.2), and xs is the function that is 1 on points
of S and 0 on points not in S. The combinatorial
Laplacian is

A=A-dI,

where d = |S,(n,a)| is the degree of the graph
E,(n,a).

This is a self-adjoint, negative operator on L*(F}")
with respect to the inner product

(f.9) =Y f(@)g(x),

z€F}

that is, (Af,g) = (f,Ag) and (Af, f) < 0. This
is equivalent to the fact that A is a self-adjoint
operator with largest eigenvalue equal to the degree
d of the graph. The corresponding eigenfunction is
constant. Because the graph is connected if we are
not in the exceptional case, the multiplicity of the
largest eigenvalue is one [Biggs 1974].
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Questions One Might Wish Answered

Question 1. Consider a connected regular graph X
of degree d with adjacency operator A. Define y =
max{|A| : A is an eigenvalue of A and A # d}. We
say that X is a Ramanugjan graph [Lubotzky et al.

1988] if
uw<2vd-1.

Are our graphs Ramanujan? This is of interest for
various reasons. For example, Ramanujan graphs
are good expanders. If X is a connected regular
graph, its expansion constant is

c=max{|0Y|:Y C X, and |Y| < }|X]|},

where the boundary dY is the set of b € X —Y that
are adjacent to some vertex in Y. The expansion
constant ¢ measures transmission speed in a com-
munication network. If ¢ is large, one is happy.
The following inequality holds between u, ¢, and
the degree d of the graph [Sarnak 1990]:

cxi(1-5).

One can also show that, for graphs of fixed degree,
the Ramanujan graphs are best possible expanders
[Lubotzky 1994; Sarnak 1990].

Question 2. What can one say about the distribu-
tion of the eigenvalues of A—the spectrum? One
can ask what happens as ¢ goes to infinity. Do
the eigenvalues spread out in a solid line? What
about the multiplicities? Look at the histogram of
the spectrum (minus the degree). That is, divide
up the interval [—pu, p] into subintervals I of equal
length and count the number b(I) of eigenvalues
in I. Then plot rectangles with base I and height
b(I). As ¢ — oo, does the histogram approach a
semicircle? (See (2.8) below.)

Question 3. What can one say regarding the “level
curves” of the eigenfunctions?

Question 1 arises in many recent works [Chung
1991; Friedman 1993; Li 1992; Li 1996; Lubotzky
1994; Lubotzky et al. 1988; Sarnak 1990]. Much
of the interest in it comes from computer science.

15 August 1996 at 18:54

Another reason for interest is that the graph is
Ramanujan if and only if the Riemann hypothesis
holds for its Ihara zeta function [Hashimoto 1989;
Sunada 1988; Venkov and Nitikin 1994; Stark and
Terras|. Moreover, there are connections with esti-
mates of classical exponential sums, the Weil con-
jectures, counting points on curves, the Riemann
hypothesis for zeta functions of function fields, as
we shall see.

In connection with Question 1, we remark also
that good bounds on p imply that the simplest ran-
dom walk on the graph converges extremely rapidly
to uniform [Diaconis 1988; Myers 1995].

Question 2 was considered in [Lafferty and Rock-
more 1992] for Cayley graphs attached to groups G
of 2 x 2 matrices with entries in [F, and subsets S
of G with |S| = 4. They found that, as ¢ — oo, the
spectra approach a line segment with gaps rather
than a continuous band. See also [Lafferty and
Rockmore 1993].

If the spectra do seem to approach a solid band
between —p and p as ¢ — o0, it is natural to ask
for even more detailed knowledge. For example,
one can ask whether the distribution of the eigen-
values in our problem, like that of a random sym-
metric matrix, approaches a semicircle as ¢ — oo
[McKay 1981; Mehta 1967]. For historical reasons
the semicircle distribution is also known as the
Wigner semicircle distribution and the Sato—Tate
distribution. See formula (2.8) below.

As part of Question 2, one can also ask “what is
the level spacing distribution?” [Sarnak a]. This
means that you must order the eigenvalues A; <
Ay < --- < A, and then plot the histogram of the
differences A;;; — A;. The question is whether the
histogram looks like the graph of e *.

Question 3 is a finite Euclidean analogue of ques-
tions considered in mathematical physics [Courant
and Hilbert 1961, p. 302]. See also [Gutzwiller
1990; Hejhal and Rackner 1992; Sarnak 1995].

In the case of eigenfunctions of A = 9?/9z% +
0?/0y* that are zero on the boundary of a do-
main D in the real plane R?, we are asking for
the points of a vibrating drum that reach a given
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height above the plane of the resting drum. By
sprinkling dark dust on the membrane one can ac-
tually see the zero-level curves, as on the cover of
[Powers 1987]. For a circular drum, the contour
lines of radial eigenfunctions are circles.

We can think of the simultaneous eigenfunctions
h(z), for z € F7, of the combinatorial Laplacians
on the finite Euclidean graphs E,(n,a) for fixed ¢
and n and varying a, as finite spherical functions.
We will find that the values of z such that f(z)
is constant satisfy d(z,0) = constant. Thus the
level “curves” are finite analogues of circles. See
Figure 2 on the next page.

Answers to the Three Questions

An asymptotic answer to Question 1 is given in
[Medrano et al. a]. We summarize the results here.
For y € F,, where ¢ = p" with p prime, define the
trace of y as

r—1

Try=y+y"+---+9y" €.

Then the exponentials (or characters of the addi-
tive group IF}')

)), for b,z € F',

(2.3)
are eigenfunctions of the adjacency operator for
the Euclidean graphs E,(n,a) corresponding to the
eigenvalue

)\b = z eb(a:),

d(z,0)=a

for b€ F?.

This is an old result and easy to prove: the char-
acters of a finite abelian group are eigenfunctions
for the convolution operators on the group.

After some computation, one finds that, when
b # 0, the eigenvalues A, in the formula above are
generalized Kloosterman sums, whose definition we
recall [Carlitz 1953; Medrano et al. a]. Suppose
that x is a character of the multiplicative group

Fy, and let a,b € F;. The generalized Kloosterman
sum is

K(k|a,b) = Z k(t) exp(? Tr <at + g)) (2.4)

tE]F;

This is a finite analogue of a Bessel function, as
can be seen by recalling the formula for the K-
Bessel function:

-3 [ ron(-4e )%

For this says the K-Bessel function is an integral of
the product of a multiplicative character of ¢ and
an additive character at ¢ + 1/¢. One can write
down a similar formula for the J-Bessel function.
In the finite case these two functions seem to coin-
cide.

The eigenvalues (other than the degree) of the
adjacency operator of E,(n,a) have the form

Aoy = ¢ 'GYK (" | a,d(b,0)),

where G, is a Gauss sum defined by

G, = Z e(t) exp(? Tr t),

teF,

and ¢ is the quadratic character of F;, defined by

1, ift =w® for some u € Fy,
ift=0, (2.5)
—1, otherwise.

The Gauss sum is a finite analogue of the gamma
function, as you can see by recalling Euler’s for-
mula

I(s) = /000 t° exp(—t)% :

the integral of a multiplicative character times an
additive character.

One sees that the eigenvalue A, is also a ra-
dial eigenfunction of the combinatorial Laplacian
as a function of ¢. This may appear to be rather
strange but it is a general phenomenon for sym-
metric spaces. We will say more about this later.
Anyway, once you believe this, it is no surprise that

15 August 1996 at 18:54



20

Experimental Mathematics, Vol. 5 (1996), No. 1

FIGURE 2. A “radial” or K-invariant
eigenfunction of the adjacency operator
A, on a Euclidean graph E,(n,a) has
the same level sets as the distance
function d(z,0), for = € Fy. Here we
show a ¢ x ¢ grid with the color of a
point z determined by the distance
d((z1,22), (0,0)) = 2 + 22 mod ¢. It is
easy to produce such graphs using
Mathematica [Wolfram 1992] or Matlab
[MathWorks 1995].
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we have found finite analogues of Bessel functions
to be the eigenfunctions of the Laplacian for our
Euclidean graphs. See [Terras 1985, Chapter 2].

Weil [1948] bounded the Kloosterman sum (2.4)
using his proof of the Riemann hypothesis for zeta
functions of curves over finite fields. See [Schmidt
1976] for a more elementary approach, and also [Li
1992, Theorem 16; Li 1996, Theorem 6]. This leads
to an asymptotic answer to Question 1 about our
Euclidean graphs:

Theorem 2.1 (Finite Euclidean graphs are asymptotically
Ramanujan). Let A\, be an eigenvalue of the adja-
cency operator A of the graph E,(n,a) correspond-
ing to the eigenfunction defined by (2.3). Then, for
b # 0, we have the bound |\y| < 2¢V/2.

The degrees of these graphs are |S,(n,a)| = ¢" '+
error. The error may be 0, positive or negative.
If a # 0 it always is asymptotic to a lower power
of ¢ as ¢ — oo. This says that the graphs are
asymptotically Ramanujan as ¢ — oo, in the sense
of [Lubotzky et al. 1988]. But one can still ask
whether the graphs are exactly Ramanujan. For
this, one needs the exact formula for the degree.
When a # 0, it is

|Sy(n,a)| = ¢t +e((—1) "/ 2q) g1/
for n odd, and
|Sy(n,a)| = gt — e((—1)"/%) gt 2/

for n even. Here £(a) is the quadratic character
defined in formula (2.5).

For odd n, we can see whether our graphs are
Ramanujan without too much trouble once we re-
call a result of Salié [1932] saying that the Kloos-
terman sums are essentially cosines in this case. A
proof can also be found in [Carlitz 1953]. We find

that, for odd dimensions n,
T
Aoy =2G7te(d(b,0)) cos (4%%)

if ad(b,0) = ¢® with ¢ # 0, (2.6)

Aoy = 0 if ad(b,0) is not a square mod p, (2.7)

and finally, if ad(b,0) = 0 with b # 0,

_ J qe(—a)
A = { 4e(~d(b,0))

From (2.6) and (2.7) it is not hard to see that,
if p = 3 mod 4 and p > 158, the graphs E,(3,1)
are not Ramanujan. Recalling the formula for the
degree above, we know that the graphs E,(3, 1) for
p = 1 mod 4 are Ramanujan. There can be non-
Ramanujan graphs F,(2,1) with p = 1 mod 4: for
example, for p = 17 and 53.

It is interesting to note that the graphs E,(3,1)
with p > 158 give examples of similarly constructed
graphs whose Thara zeta functions either do or do
not satisfy the Riemann hypothesis according as
p =1 or 3 mod 4. We referred to such examples in
[Stark and Terras].

It also follows from (2.6) and (2.7) that, for odd
dimensions n, the eigenvalues can indeed be 0. In
even dimensions, however, [Katz 1980] proves that
the Kloosterman sums do not vanish.

Finally, we note that, given ¢ and n, there are
only two distinct graphs E,(n, a) for even n, and at
most three for odd n [Medrano et al. a]. This is in
contrast to the finite upper half-plane case in the
next section, when there seem to be ¢ — 2 different
graphs for each finite field IF,.

Before trying to answer Question 2, one should
look at Figure 3. The histograms it shows, each for
the eigenvalues of a certain Euclidean graph, look
very different. The one on the left, for F1g21(2,1),
looks somewhat like the semicircle distribution one
expects for a random graph; the one on the right,
for E1919(3,1), does not. In fact, it is proved in
[Katz 1988] that the distribution of the Klooster-
man sums K (1]a, 1) approaches the semicircle dis-
tribution; see also [Adolphson 1989]. More pre-
cisely, this means that if B C [-2,2] and E is
the set of Kloosterman sums k = K(1]¢,1), for
¢ € Z/Zq nonzero, we have

if d(b,0) = 0,
if d(b,0) # 0.

1 K 1
— €E=2:—€eBy~— V1—22d
q_l#{n V4 } 27(/ oo

zEB (2.8)
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FIGURE 3. Histograms of values of Kloosterman

sums for E1021(2, 1) (tOp) and E1019(3,1) (bOt—
tom).

as ¢ — 0o. Asin [Adolphson 1989; Katz 1988], take
x = 2cosf to obtain the Sato—Tate distribution.
See also [McKay 1981; Sarnak 1990]. The moral
is that, neglecting the multiplicity of the eigenval-
ues of E,(2n,a), their distribution approaches the
semicircle distribution as ¢ — oco. But in odd di-
mensions the situation is very different, as Figure 3
shows. Then the eigenvalues are really cosines.
Now we come to Question 3. What are the level
“curves” for the eigenfunctions of the adjacency
operators for our Euclidean graphs? They are the
sets Sy(n,c) for fixed ¢ and n, as ¢ varies over F,.
For F‘f, such sets can be viewed as finite analogues
of circles, as illustrated in Figure 2, where we asso-
ciate a color to each element of ;. They look very
much like Fresnel diffraction patterns. See [Myers

15 August 1996 at 18:54

1995; Goetgheluck 1993] for discussions of similar
patterns.

A. Rudvalis suggested that we should look at
more general distances than (2.1), such as

de(z,y) =Y ci(z; — y;)%,
j=1

where ¢ = (cy,...,¢;) € Fy'. With given n and g,
one can produce more Ramanujan graphs by vary-
ing ¢. Myers [1995] has considered these more gen-
eral Euclidean graphs. The figures analogous to
Figure 2 for ¢ = (1,—1) or (1,d), for some d # 0
or 1, are quite interesting: the level “curves” are
finite analogues of hyperbolas or ellipses. She also
has some beautiful animations of these figures as
the prime goes to infinity.

Recently we have also been looking at Euclidean
graphs over finite rings Z/p"Z, and finding that
they behave rather differently from those over F,-
in some respects [Medrano et al. b].

3. FINITE NON-EUCLIDEAN SYMMETRIC SPACES

If G is a finite group and K is a subgroup, con-
sider the convolution algebra L?(K\G/K) of all K
bi-invariant functions f : G — C under the convo-
lution product

(f*xg)(@) =D fyglzy™).

yeG

If this product is commutative, we call G/K a sym-
metric space.

In the continuous case, there are many crite-
ria, such as Gelfand’s and Selberg’s, that ensure
that G/K is a symmetric space [Terras 1988; Krieg
1990]. The simplest criterion [Poulos 1991] is just
that the K-double cosets in G be stable under in-
version: (KsK)™ ' = KsK for all s € G. This is a
special case of the Gelfand criterion. The theory of
association schemes associated to finite symmetric
spaces G/K is also relevant. See [Bannai and Ito
1984] for examples.

Next we want to look at a finite analogue of the
Poincaré upper half-plane. The continuous version
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gives a good model for non-Euclidean geometry
and has been a symmetric space dear to the hearts
of many number theorists [Terras 1985, Chapter 3].
The analogue with R replaced by a finite field F,
has many charms and has been studied in [Angel
1993; Angel et al. 1992; Angel et al. 1994; Cel-
niker 1994; Celniker et al. 1993; Poulos 1991; Ter-
ras 1991]. It is also possible to look at finite ana-
logues over rings Z/p"Z [Angel et al. 1995], but
these spaces are quite different. For finite fields of
even characteristic, see [Angel 1993; Evans 1995].

Let I, be the field with ¢ = p" elements, where
p is an odd prime. Suppose 6§ is a generator of
the multiplicative group F; of nonzero elements in
F,. The extension F. = F, (/) is analogous to
C = R[i]. We define the finite Poincaré upper half-
plane as

Hy={z=2z+yV6:z,ycF, and y £ 0}.

(“Half-plane” is something of a misnomer, since
y # 0 may not be a good finite analogue of the
condition y > 0 that defines the usual Poincaré
upper half-plane in C. In fact, H, is more like a
double covering of a finite upper half-plane.)

The general linear group G = GL(2,F,) is the
group of invertible matrices of the form

_f(a b
g - c d )
with a,b,c,d € F,. The element (‘C” Z) of G acts on

z € H, by the fractional linear transformation

az+b
cz+d

€ H,.

Moreover, we can easily identify H, with the quo-
tient G/K, where K is a finite orthogonal group
counsisting of matrices k € G such that

kVE = V6.

It is not hard to see that
K = {(Z bj) ta,b e, and a2—b2(57é0};

moreover the correspondence

(a b6) — a+bV§
b a

shows that K is isomorphic to the multiplicative
group of F,(+v/8), and hence cyclic.
We use the familiar notation from complex anal-
ysis for z =z + yV/6 € H,:
z = Re z,
Z=1x— y\/g = 2%,

Nz =Norm of z = 2z = 2!

y =Imz,

+q

The Poincaré distance between z,w € H, is

N(z —w)
Imz Imw’
As with the Euclidean distance (2.1), this is not a
metric in the sense of analysis, but it is GL(2, F,)-
invariant: d(gz, gw) = d(z,w) for all g € GL(2,F,)
and all z,w € H,.

We can attach graphs to H; by a method anal-
ogous to that which led to the Euclidean graphs
E,(n,a) in the preceding section.

d(z,w) = 3.1

Definition. For a fixed a € [y, the finite upper half-
plane graph P,(6,a) has as vertices the points in
H, and edges between vertices z,w if d(z,w) = a.
Put

R,(6,a) = {z € H, : d(z,V6) = a}
={z+yVo:a>=ay+6@y—1)*} B2

then P, (6, a) is the Cayley graph of the affine group

{(g T):x,yqu andy;«éO}, (3.3)

with respect to the set R,(6,a), which is invariant
under inversion.

Except when a = 0 or a = 46, R,(6,a) is a gen-
erating set with ¢ + 1 elements, so P,(6,a) is a
connected graph of degree ¢ + 1. When a = 0
we have R, = {V/6} and when a = 46 we have
R, = {6}, so that P,(6,a) is disconnected in
these cases, with one or two nodes, respectively,

15 August 1996 at 18:54
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per connected component. As a varies, then, we
get ¢ — 2 graphs P,(6,a) of degree ¢ + 1. It is still
an open question whether these graphs are always
nonisomorphic.

For example, when ¢ = 3 you get only one graph:
the regular octahedron. For ¢ = 5 the vertex set
corresponds naturally to the vertices of a regular
dodecahedron, and the edges of the graph are cer-
tain diagonals or edges of the dodecahedron, as
shown in Figure 4; there are three possibilities as
a varies.

Note also that the sets R,(,a) of (3.2) are the
K-orbits in H,, and can thus be identified with K-
double cosets in G = GL(2,F,). It follows from all
of this that H, is a symmetric space, using the cri-
terion mentioned at the beginning of this section.
A representation-theoretic consequence is that any
irreducible unitary representation of G occurs in
the induced representation Ind$ 1 with multiplic-
ity at most one [Diaconis 1988; Terras 1991].

Remark. Angel [1993] looks at the graphs for fi-
nite fields of characteristic two, where one must
replace the equation z? — § = 0 with some irre-
ducible quadratic over [F,. For example, the graph
corresponding to finite upper half-planes over [,
is the icosahedron. See also [Evans 1995]. The
references [Angel 1993; Angel et al. 1995] also con-
sider finite upper half-planes over rings like Z/Zp".
They behave quite differently in some respects.

Just as in Section 2, we define the adjacency oper-
ator A, by A,f = Xg * f, where R = R,(6,a).

The Same Three Questions
Question 1. Are the graphs P,(6,a) Ramanujan?
Question 2. What can be said about the distribu-

tion of the eigenvalues of the adjacency operators
of the graphs P,(6,a)?

Question 3. What can be said about the level curves
of the eigenfunctions of the adjacency operator of
the graphs P,(6,a)?

The answer to Question 1 is yes. For p odd this
requires a formula from [Soto-Andrade 1987] and
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FIGURE4. We represent the finite upper half-plane
Hj; by a dodecahedron. The edges of the graph
P5(3,a) that are incident on a certain vertex are
shown as solid lines; the remaining edges can be
obtained by applying the dodecahedral symmetries.
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an estimate from [Katz 1993]. Winnie Li [1996; a]
shows how to do the estimate without étale coho-
mology: using L-functions of idele class characters
of function fields. For finite fields of even char-
acteristic, [Evans 1995] and [Katz 1995] show the
graphs are again Ramanujan.

It is possible to derive some understanding of the
eigenfunctions of the adjacency operator on H, in
a very elementary way. We say a little about that,
following [Terras 1985, Chapter 3].

On the continuous Poincaré upper half-plane the
power function p,(z) = (Im z)® is clearly an eigen-
function of the non-Euclidean Laplace operator

0? 0?
2=3" (5 ).

with eigenvalues s = s(s —1). What is the finite
analogue of the power function?

Replace y* with a character x of the multiplica-
tive group Fy of the finite field. Define, for z € H,
the finite power function

px(2) = x(Im 2).

Then p, is an eigenfunction of the the adjacency
operator A of the finite upper half-plane graph
P,(6,a), with eigenvalue 7, given by

=Y x(lmz)= Y x(y. 64

2ERq(6,a) ,yE€Fy 1 y#£0 and
z?=ay+58(y—1)°
There are also analogues of K-Bessel functions
on the Poincaré upper half-plane H,. For the real
Poincaré upper half-plane the K-Bessel functions
are functions f : H — C such that

f(z 4+ u) = exp(2miau) f(2)

for all v € R and some a € R, satisfying the con-
ditions Af = Af and |f(z)| < Cy?. The finite k-
Bessel function is defined for x a multiplicative
character of F; and ¢ an additive character of [,
by

— Ve

kelew) =Y x(m

u€lF,

This formula is the finite analogue of [Terras 1985,
p. 136, eq. (3.14)]. It turns out to be, essentially, a
Kloosterman sum [Angel et al. 1992]. One obtains
this upon multiplication of k(z | x, 1) by a suitable
Gauss sum, in analogy with the corresponding con-
tinuous result [Terras 1985, p. 136, exercise 1].
The eigenfunction k(z|x,1) turns out to have
the same eigenvalue r,, given in (3.4), as the power
function p,(z) = x(Imz). Thus the eigenvalues r,,
have multiplicity > p for x nontrivial. We call
them one-dimensional because they actually cor-
respond to one-dimensional representations of the
affine group (3.3). There is one more type of eigen-
value, corresponding to a higher-dimensional rep-
resentation of the affine group. It is easiest to un-
derstand this type of eigenvalue by thinking about
spherical functions on the symmetric space G/K.
In the continuous case of the real Poincaré upper
half-plane a spherical function h : H — C is an
eigenfunction of A satisfying h(kz) = h(z) for all
k € K = SO(2) and z € H, normalized by the
condition h(7) = 1. The spherical functions on H
are obtained by averaging power functions over K:

hs(z) = /keK ps(kz) dk.

Using polar coordinates z = ke"i, where £k € K
and r > 0, we have

hs(ke"i) = P;_y(coshr),

where P,(z) is the Legendre function. The level
curves of these spherical functions on H are circles.
Recall that H, = G/K, with G = GL(2,F,) and

k={(} W)ea}.

What are the spherical functions on finite up-
per half-planes? To find the answer, note that
the G-invariant operators on G/K are polynomi-
als in the adjacency operators A, of the graphs
P,(6,a), where a € F, (including a = 0,46). Har-
monic analysis on G/K means expanding functions
in the common eigenfunctions of the adjacency op-
erators. Moreover, these operators commute, since
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L?*(K\G/K) is a commutative algebra under con-
volution on G (because G/ K is a symmetric space);
so we can hope to find a simultaneous set of eigen-
functions. In fact, we have already found some:
the power function and the Bessel functions. Thus
we define a spherical function h on H, as a func-
tion h : H — C that is an eigenfunction of all the
adjacency operators A, and satisfies h(kz) = h(z)
for all £ € K and z € H,, normalized by setting
h(v/6) = 1. We write h(gv/6) = h(g) for g € G.

Remark. There are many references on finite ana-
logues of spherical functions [Angel et al. 1992;
Bannai and Ito 1984; Diaconis 1988; Stanton 1990;
Terras 1991; Velasquez 1991]. In particular, if G is
the semidirect product of (Z/nZ)* with the sym-
metric group S and K = Sj, one obtains Kraw-
tchouk polynomials as spherical functions. The
Krawtchouk polynomials are quite useful in cod-
ing theory.

One can also view the spherical functions h as
eigenvectors of collapsed adjacency matrices [Angel
1993; Angel et al. 1992; Poulos 1991].

All texts on symmetric spaces, like [Terras 1988],
devote a full page to equivalent conditions for a
function to be spherical. The most important per-
haps is the mean value property.

Mean Value Property. A function h : H, — C is
spherical if and only if
1
— > h(zky) = h(z)h(y)
K]
for any x,y € G.

The left-hand side of this equality is | K| 1(A.h)(x)
if y =y, € Ry(6,a), the set defined in (3.2). The
right-hand side is the eigenfunction h(z) times the
eigenvalue A, = h(y,). The moral of the story is
that

eigenfunctions = eigenvalues.

When you say this to most mathematicians, their
hair stands on end. Nevertheless it is true for
spherical functions on symmetric spaces.
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It turns out that the spherical functions on the
symmetric space G/K can be understood by un-
derstanding the irreducible unitary representations
m of G that occur in the regular representation p
of G on L?*(G/K). Because we are dealing with
a symmetric space, these representations can oc-
cur with at most multiplicity 1 in p. And it is
possible to identify our spherical functions with
K-fixed vectors s, of some irreducible represen-
tations 7 of G occurring in L*(G/K). See [Dia-
conis 1988; Sternberg 1994; Terras 1991] for more
details. More explicitly, the spherical function s,
assoctated to such an irreducible representation w
of G is

52(z) = % S Te (k).

keK

This can be proved using the Frobenius reciprocity
law [Terras 1991].

For our example where G = GL(2,F,) and K is
the subgroup fixing v/8, we find two types of spher-
ical functions, and thus, by the preceding equation,
two types of eigenvalues, as already mentioned.

The first type, the one-dimensional eigenvalues
of formula (3.4), correspond to spherical functions
coming from principal series representations of G:

Mab) =Y exp(2mbu>, (3.5)

q

z,y€F, :y=6" and
z2=ay+6(y—1)2
where a,b € Z/(q — 1)Z with a # 0, 46.

The second type, corresponding to spherical func-
tions coming from discrete series representations
associated to characters w # w? of the multiplica-
tive group F,(v/8)* were proved in [Soto-Andrade
1987] to have the form

As(c,w) = Z e(c+ 2z)w(z), (3.6)
Nz=1
z=z+yv/'§
where ¢ = (a/6)—2 and ¢ is the quadratic character
of F¥ defined in (2.5). It is shown in [Soto-Andrade
and Vargas 1995] that one can put (3.5) into a form
similar to (3.6).
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In order to estimate the eigenvalues, one needs
Weil’s proof [1948] of the Riemann hypothesis for
zeta functions associated to curves over finite fields.
Evans and Stark independently used results from
[Schmidt 1976] to find estimates for the principal
series eigenvalues (3.5), showing that

[Ai(a, )] < 2V/q

fora#0,40 and 1 <b<q—1.

N. Katz [1995] used [-adic étale cohomology to
estimate the Soto-Andrade eigenvalues (3.6). In
[Li a] the same estimate is achieved without étale
cohomology, using only idele class zeta functions of
function fields. The result is

[As(e,w)| < 24/g
for 1<c<qg-—1,c# 12, and w # w.

Theorem 3.1 (Finite non-Euclidean graphs are Ramanu-
jan). The finite upper half-plane graphs P,(6,a), for
a # 0,46, are Ramanujan graphs.

This completes the discussion of Question 1 for
the finite upper half-plane graphs. See also [Evans
1994; Evans 1995].

Next we proceed to Question 2, and ask: Do the
eigenvalues have the semicircle (Sato—Tate) distri-
bution? That is, does

L#{)\: i EE} Ni/ V4 —z?dx
g—1 Va 2m Jg
as ¢ — oo? Again we neglect multiplicities, and
look only at the ¢ — 1 eigenvalues given in formulas
(3.5) and (3.6). This question is still open. There
is some evidence for an affirmative answer. See
[Kuang 1995] for a proof that the first and second
moments of the eigenvalues asymptotically match
those of the semicircle distribution. McKay [1981]
shows that, under certain hypotheses, the semicir-
cle distribution is the distribution of the eigenval-
ues of a large regular graph. But McKay’s result
assumes that the degree of the graph is fixed and
our graphs have degrees going to infinity with q.
The histograms in Figure 5 also give some evi-
dence for the conjecture.
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FIGURE5. Histograms for eigenvalues of P347(2,2)

(top) and P347(2,71) (bottom). The height of the
bar gives the number of eigenvalues in a subinterval.
Data computed by B. Shook using Matlab.

You might ask: What happens if you replace
the field F, by the ring Z/qZ with the same num-
ber of elements? In this case the graphs fail to be
Ramanujan for all ¢ = p? with prime p > 3, and
the eigenvalue distribution looks quite different, as
shown in Figure 6. See [Angel et al. 1995].

Finally, we briefly consider Question 3: what can
be said about level curves of finite spherical func-
tions h on H,? For an odd prime p, the space H), is
a rectangular grid [-3(p—1), 3(p—1)] x [1,p—1].
We color the square at (z, j) according to the value
of the distance

d(z+ yv/B, Vo) = #
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Histogram of eigenvalues for finite upper half-planes over the ring Z/169 Z with § = 2. Left: a = 31.

Right: a = 17. Data computed by B. Shook using Matlab.

where y = §7. A level “curve” is obtained by con-
necting the dots of the same color. The results for
p = 71 and 163 are shown in Figure 7. They look
much more chaotic than the analogous figures for
the Euclidean graphs Figure 2.

One of the referees asks the interesting questions:
Are the non-Euclidean graphs chaotic also from the
point of view of “non-Euclidean eyes”? What is the
minimum g such that P,(6,a) can be drawn on a

surface of genus g? Do the level curves look less
chaotic there?
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connectivity
adjacency operator Aof = Xs, ) * f
is graph Ramanujan?
eigenfunctions and eigenvalues
is spectrum a semicircle?

is 0 an eigenvalue?

level curves

Sy(a) = {z € F} :

asymptotically as ¢ — oo
Kloosterman sums

if and only if n is even

if and only if n is odd
finite Fresnel patterns

Euclidean Non-Euclidean
space X 2 G/K F? H,C Fq(\/g) =T,
N(z —w)

. i B N(z—w)
distance (x—y)(z—y) T —"
group G F2 - O(n,F,) GL(2,F,)
subgroup K O(n,F,) {(Z bj) € G}
graphs E,(n,a), for a € F, P,(n,a), for a € I,
degree q"~! + error g+1
# distinct connected graphs <3 <qg-—2

d(z,0) = a} | R,(6,a) ={z € H,:d(z,V9)

A.f = XR,(5,a) * f
yes

a}

spherical functions
unknown

unknown (yes if a = 20)
look chaotic

TABLE 1.
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Summary of results: comparison of finite Euclidean and non-Euclidean graphs.
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FIGURE 7. An eigenfunction of the
adjacency operator A, on a
non-Euclidean graph P,(n,a) also has
the same level sets as the Poincaré
distance function d(z,v/8) of (3.1), since
the K-double cosets of G are the sets
R,(6,a) in (3.2). Here we show a

g X (¢ — 1) grid with the color of a point
(z,j) determined by the distance

d(z +yV6, V6) = 2oy —1)° 65’ — 1)2,

where y = §7. It is easy to produce such
graphs using Mathematica.
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