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We survey what is known about spectra of combinatorial Lapla-

cians (or adjacency operators) of graphs on the simplest finite

symmetric spaces. This work is joint with J. Angel, N. Cel-

niker, A. Medrano, P. Myers, S. Poulos, H. Stark, C. Trimble,

and E. Velasquez. For each finite field Fq with q odd, we con-

sider graphs associated to finite Euclidean and non-Euclidean

symmetric spaces over Fq . We are mainly interested in three

questions regarding the eigenvalues and eigenfunctions of the

combinatorial Laplacian as q goes to infinity: How large is

the second largest eigenvalue, in absolute value, compared

with the graph’s degree? (The largest eigenvalue is the degree.)

What can one say about the distribution of eigenvalues? What

can one say about the “level curves” of the eigenfunctions?

1. INTRODUCTIONIn this computer age, it is very natural to model thecontinuous with the �nite: for example, to replaceR with a �nite �eld Fq and the Fourier transformwith the fast Fourier transform. Here we begin todo the same thing in higher dimensions.The goal of this work is to survey what is knownabout spectra of combinatorial Laplacians, or adja-cency operators, for graphs coming from �nite ana-logues of the simplest Euclidean and non-Euclideansymmetric spaces G=K over �nite �elds of oddcharacteristic. In a later paper we will consider �-nite analogues of the Selberg trace formula. In theprocess we will �nd some examples of Ramanu-jan graphs. These graphs have been of interestsince the paper of Lubotzky, Phillips and Sarnak[Lubotzky et al. 1988] for their expansion prop-erties, which make them well suited for buildingcommunications networks [Friedman 1993]. At thebeginning our work was motivated by that of Stark
c
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[1987] on p-adic upper half-planes. We were alsoinspired by [Arthur 1989; Diaconis 1988; Lubotzky1994; Sarnak 1990], and by work of Fan Chungand Sternberg on the buckyball [Sternberg 1994].Graph analogues of Riemann surfaces have been ofinterest to geometers for some time [Buser 1992].Much of the work reported on here is joint withJe� Angel, Nancy Celniker, Archie Medrano, PerlaMyers, Steve Poulos, Harold Stark, Cindy Trimble,and Elinor Velasquez. See [Angel et al. 1992; An-gel et al. 1994; Angel et al. 1995; Celniker et al.1993; Medrano et al. a; b; Terras 1991; Stark andTerras]. Section 2 discusses the Euclidean case,mostly following [Medrano et al. a]. Section 3 dis-cusses the non-Euclidean case. See page 28 for atable summarizing this paper.
2. FINITE EUCLIDEAN SYMMETRIC SPACESIt is easy to �nd a �nite analogue of n-dimensionalEuclidean space R n by replacing R with the �nite�eld Fq having q = pr elements, where p is an oddprime. We de�ne �nite Euclidean n-space as thespace F nq of column vectors x with j-th entry xj 2Fq , for 1 � j � n. The distance between twocolumn vectors x and y in F nq is
d(x; y) = t(x� y)(x� y) = nXj=1(xj � yj)2; (2.1)

where tx is the transpose of x.Since it has values in the �nite �eld, this distanceis not a metric in the sense of the triangle inequalityand analysis, but rather a metric in the sense ofquadratic forms and algebra [Lang 1965]. It doespossess group invariance properties, just like theEuclidean metric in R n . For clearlyd(x+ u; y + u) = d(x; y)for all u 2 F nq , andd(kx; ky) = d(x; y)for all k 2 O(n; Fq ). Here O(n; Fq ) is the orthog-onal group, consisting of n � n matrices k with

entries in Fq such that tkk = I, where I is then� n identity matrix.Recall that the Cayley graph of a group G withrespect to a set of generators S, closed under inver-sion, has as vertices the elements of G and edges(g; gs), for s 2 S and g 2 G. Since S generates G,the graph will be connected; since S = S�1, thegraph is undirected.
Definition. The Euclidean graph Eq(n; a) associatedto a 2 Fq has as vertices the elements of F nq andas edges the pairs (x; y) such that d(x; y) = a. Inother words, it is the Cayley graph of the group F nqwith respect to the set of generatorsSq(a) = Sq(n; a) = fx 2 F nq : d(x; 0) = ag; (2.2)except in the exceptional case when n = 2, a = 0,and �1 is not a square in F q ; in this case Sq(n; a) =f0g, so that Eq(n; a) is then a disconnected graphconsisting of n loops. We will usually ignore thisexceptional case.It is not hard to show [Carlitz 1953; Small 1991,pp. 86{91, 145{146] that the graphs Eq(n; a), fora 6= 0, are regular with degreejSq(n; a)j = qn�1 +O(q(n�1)=2):Figure 1 shows two examples.
Definition. The �nite Euclidean group G consists of(n+ 1)� (n+ 1) matrices with block formg = � k u0 1 �;where k 2 O(n; Fq ), u is a column vector in F nq ,and 0 denotes a row vector of n zeros. Then g actson x 2 F nq byx! kx+ u = � k u0 1 ��x1 �:Note that this action preserves the distance d(x; y)de�ned in (2.1).Now de�ne K to be the subgroup of G of matriceswith u = 0. Then G=K �= F nq . This space is a sym-metric space, since we have a commutative algebra
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FIGURE 1. Left: The Euclidean graph E5(2; 1) has degree four, since S5(2; 1) = f(�1; 0); (0;�1)g. Right:E7(2; 1) has degree eight, since S7(2; 1) = f(�1; 0); (0;�1); (�2;�2)g (independent signs). The edges incidenton one vertex are highlighted.L2(F nq ) of functions f : F nq ! C with multiplicationde�ned by convolution:(f � g)(x) = Xy2Fnq f(y)g(x� y):
As already mentioned, in the exceptional case(q; n; a) = (q; 2; 0) with �1 a nonsquare in Fq , wehave Sq(n; 0) = f0g. Otherwise, we can ask if theK-orbits in F nq �f0g are the sets Sq(n; a), for a 6= 0,or Sq(n; 0) � f0g, for a = 0. The answer to thisquestion is yes, by Witt's theorem [Lang 1965].For a symmetric space we need an analogue ofthe Laplace operator, that is, a G-invariant opera-tor on functions on G=K.

Definition. The adjacency operator A = Aa of agraph Eq(n; a) acts on functions f 2 L2(F nq ) byAaf(x) = Xy2Fnqd(x;y)=af(y) =
Xu2S f(x+ u) = �S � f(x);

where d(x; y) and S = Sq(n; a) are as in (2.1) and(2.2), and �S is the function that is 1 on pointsof S and 0 on points not in S. The combinatorialLaplacian is � = A� dI;where d = jSq(n; a)j is the degree of the graphEq(n; a).This is a self-adjoint, negative operator on L2(F nq )with respect to the inner producthf; gi = Xx2Fnq f(x)g(x);that is, h�f; gi = hf;�gi and h�f; fi � 0. Thisis equivalent to the fact that A is a self-adjointoperator with largest eigenvalue equal to the degreed of the graph. The corresponding eigenfunction isconstant. Because the graph is connected if we arenot in the exceptional case, the multiplicity of thelargest eigenvalue is one [Biggs 1974].
15 August 1996 at 18:54
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Questions One Might Wish Answered

Question 1. Consider a connected regular graph Xof degree d with adjacency operator A. De�ne � =maxfj�j : � is an eigenvalue of A and � 6= dg. Wesay that X is a Ramanujan graph [Lubotzky et al.1988] if � � 2pd� 1:Are our graphs Ramanujan? This is of interest forvarious reasons. For example, Ramanujan graphsare good expanders. If X is a connected regulargraph, its expansion constant isc = max�j@Y j : Y � X; and jY j � 12 jXj	 ;where the boundary @Y is the set of b 2 X�Y thatare adjacent to some vertex in Y . The expansionconstant c measures transmission speed in a com-munication network. If c is large, one is happy.The following inequality holds between �, c, andthe degree d of the graph [Sarnak 1990]:c � 12 �1� �d� :One can also show that, for graphs of �xed degree,the Ramanujan graphs are best possible expanders[Lubotzky 1994; Sarnak 1990].
Question 2. What can one say about the distribu-tion of the eigenvalues of A|the spectrum? Onecan ask what happens as q goes to in�nity. Dothe eigenvalues spread out in a solid line? Whatabout the multiplicities? Look at the histogram ofthe spectrum (minus the degree). That is, divideup the interval [��; �] into subintervals I of equallength and count the number b(I) of eigenvaluesin I. Then plot rectangles with base I and heightb(I). As q ! 1, does the histogram approach asemicircle? (See (2.8) below.)
Question 3. What can one say regarding the \levelcurves" of the eigenfunctions?Question 1 arises in many recent works [Chung1991; Friedman 1993; Li 1992; Li 1996; Lubotzky1994; Lubotzky et al. 1988; Sarnak 1990]. Muchof the interest in it comes from computer science.

Another reason for interest is that the graph isRamanujan if and only if the Riemann hypothesisholds for its Ihara zeta function [Hashimoto 1989;Sunada 1988; Venkov and Nitikin 1994; Stark andTerras]. Moreover, there are connections with esti-mates of classical exponential sums, the Weil con-jectures, counting points on curves, the Riemannhypothesis for zeta functions of function �elds, aswe shall see.In connection with Question 1, we remark alsothat good bounds on � imply that the simplest ran-dom walk on the graph converges extremely rapidlyto uniform [Diaconis 1988; Myers 1995].Question 2 was considered in [La�erty and Rock-more 1992] for Cayley graphs attached to groups Gof 2� 2 matrices with entries in Fq and subsets Sof G with jSj = 4. They found that, as q !1, thespectra approach a line segment with gaps ratherthan a continuous band. See also [La�erty andRockmore 1993].If the spectra do seem to approach a solid bandbetween �� and � as q ! 1, it is natural to askfor even more detailed knowledge. For example,one can ask whether the distribution of the eigen-values in our problem, like that of a random sym-metric matrix, approaches a semicircle as q ! 1[McKay 1981; Mehta 1967]. For historical reasonsthe semicircle distribution is also known as theWigner semicircle distribution and the Sato{Tatedistribution. See formula (2.8) below.As part of Question 2, one can also ask \what isthe level spacing distribution?" [Sarnak a]. Thismeans that you must order the eigenvalues �1 ��2 � � � � � �m and then plot the histogram of thedi�erences �i+1 � �i. The question is whether thehistogram looks like the graph of e�x.Question 3 is a �nite Euclidean analogue of ques-tions considered in mathematical physics [Courantand Hilbert 1961, p. 302]. See also [Gutzwiller1990; Hejhal and Rackner 1992; Sarnak 1995].In the case of eigenfunctions of � = @2=@x2 +@2=@y2 that are zero on the boundary of a do-main D in the real plane R 2 , we are asking forthe points of a vibrating drum that reach a given
15 August 1996 at 18:54
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height above the plane of the resting drum. Bysprinkling dark dust on the membrane one can ac-tually see the zero-level curves, as on the cover of[Powers 1987]. For a circular drum, the contourlines of radial eigenfunctions are circles.We can think of the simultaneous eigenfunctionsh(x), for x 2 F nq , of the combinatorial Laplacianson the �nite Euclidean graphs Eq(n; a) for �xed qand n and varying a, as �nite spherical functions.We will �nd that the values of x such that f(x)is constant satisfy d(x; 0) = constant. Thus thelevel \curves" are �nite analogues of circles. SeeFigure 2 on the next page.
Answers to the Three QuestionsAn asymptotic answer to Question 1 is given in[Medrano et al. a]. We summarize the results here.For y 2 Fq , where q = pr with p prime, de�ne thetrace of y asTr y = y + yp + � � �+ ypr�1 2 Fp :Then the exponentials (or characters of the addi-tive group F nq )

eb(x) = exp�2�i Tr(txb)p � ; for b; x 2 F nq ;
(2.3)are eigenfunctions of the adjacency operator forthe Euclidean graphs Eq(n; a) corresponding to theeigenvalue�b = Xd(x;0)=a eb(x); for b 2 F nq :

This is an old result and easy to prove: the char-acters of a �nite abelian group are eigenfunctionsfor the convolution operators on the group.After some computation, one �nds that, whenb 6= 0, the eigenvalues �b in the formula above aregeneralized Kloosterman sums, whose de�nition werecall [Carlitz 1953; Medrano et al. a]. Supposethat � is a character of the multiplicative group

F �q , and let a; b 2 F �q . The generalized Kloostermansum isK(� j a; b) =Xt2F�q �(t) exp��2�ip Tr�at+ bt��: (2.4)

This is a �nite analogue of a Bessel function, ascan be seen by recalling the formula for the K-Bessel function:Ks(y) = 12 Z 10 ts exp��y2�t+ 1t��dtt :For this says the K-Bessel function is an integral ofthe product of a multiplicative character of t andan additive character at t + 1=t. One can writedown a similar formula for the J-Bessel function.In the �nite case these two functions seem to coin-cide.The eigenvalues (other than the degree) of theadjacency operator of Eq(n; a) have the form�2b = q�1Gn1K("n j a; d(b; 0));where G1 is a Gauss sum de�ned byG1 =Xt2Fq "(t) exp�2�ip Tr t�;
and " is the quadratic character of F �q , de�ned by
"(t) = 8<: 1; if t = u2 for some u 2 F �q ,0; if t = 0,�1; otherwise. (2.5)

The Gauss sum is a �nite analogue of the gammafunction, as you can see by recalling Euler's for-mula �(s) = Z 10 ts exp(�t)dtt :the integral of a multiplicative character times anadditive character.One sees that the eigenvalue �c is also a ra-dial eigenfunction of the combinatorial Laplacianas a function of c. This may appear to be ratherstrange but it is a general phenomenon for sym-metric spaces. We will say more about this later.Anyway, once you believe this, it is no surprise that
15 August 1996 at 18:54
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q = 71

q = 163

FIGURE 2. A \radial" or K-invarianteigenfunction of the adjacency operatorAa on a Euclidean graph Eq(n; a) hasthe same level sets as the distancefunction d(x; 0), for x 2 F nq . Here weshow a q � q grid with the color of apoint x determined by the distanced((x1; x2); (0; 0)) = x21 + x22 mod q. It iseasy to produce such graphs usingMathematica [Wolfram 1992] or Matlab[MathWorks 1995].
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we have found �nite analogues of Bessel functionsto be the eigenfunctions of the Laplacian for ourEuclidean graphs. See [Terras 1985, Chapter 2].Weil [1948] bounded the Kloosterman sum (2.4)using his proof of the Riemann hypothesis for zetafunctions of curves over �nite �elds. See [Schmidt1976] for a more elementary approach, and also [Li1992, Theorem 16; Li 1996, Theorem 6]. This leadsto an asymptotic answer to Question 1 about ourEuclidean graphs:
Theorem 2.1 (Finite Euclidean graphs are asymptotically

Ramanujan). Let �b be an eigenvalue of the adja-cency operator A of the graph Eq(n; a) correspond-ing to the eigenfunction de�ned by (2.3). Then, forb 6= 0, we have the bound j�bj � 2q(n�1)=2:The degrees of these graphs are jSq(n; a)j = qn�1+error. The error may be 0, positive or negative.If a 6= 0 it always is asymptotic to a lower powerof q as q ! 1. This says that the graphs areasymptotically Ramanujan as q !1, in the senseof [Lubotzky et al. 1988]. But one can still askwhether the graphs are exactly Ramanujan. Forthis, one needs the exact formula for the degree.When a 6= 0, it isjSq(n; a)j = qn�1 + "((�1)(n�1)=2a)q(n�1)=2for n odd, andjSq(n; a)j = qn�1 � "((�1)n=2)q(n�2)=2for n even. Here "(a) is the quadratic characterde�ned in formula (2.5).For odd n, we can see whether our graphs areRamanujan without too much trouble once we re-call a result of Sali�e [1932] saying that the Kloos-terman sums are essentially cosines in this case. Aproof can also be found in [Carlitz 1953]. We �ndthat, for odd dimensions n,�2b =2Gn�11 "(d(b; 0)) cos�4�Tr cp �
if ad(b; 0) = c2 with c 6= 0, (2.6)�2b = 0 if ad(b; 0) is not a square mod p, (2.7)

and �nally, if ad(b; 0) = 0 with b 6= 0,�2b = � q"(�a) if d(b; 0) = 0,q"(�d(b; 0)) if d(b; 0) 6= 0.From (2.6) and (2.7) it is not hard to see that,if p � 3 mod 4 and p > 158, the graphs Ep(3; 1)are not Ramanujan. Recalling the formula for thedegree above, we know that the graphs Ep(3; 1) forp � 1 mod 4 are Ramanujan. There can be non-Ramanujan graphs Ep(2; 1) with p � 1 mod 4: forexample, for p = 17 and 53.It is interesting to note that the graphs Ep(3; 1)with p > 158 give examples of similarly constructedgraphs whose Ihara zeta functions either do or donot satisfy the Riemann hypothesis according asp � 1 or 3 mod 4. We referred to such examples in[Stark and Terras].It also follows from (2.6) and (2.7) that, for odddimensions n, the eigenvalues can indeed be 0. Ineven dimensions, however, [Katz 1980] proves thatthe Kloosterman sums do not vanish.Finally, we note that, given q and n, there areonly two distinct graphs Eq(n; a) for even n, and atmost three for odd n [Medrano et al. a]. This is incontrast to the �nite upper half-plane case in thenext section, when there seem to be q� 2 di�erentgraphs for each �nite �eld Fq .Before trying to answer Question 2, one shouldlook at Figure 3. The histograms it shows, each forthe eigenvalues of a certain Euclidean graph, lookvery di�erent. The one on the left, for E1021(2; 1),looks somewhat like the semicircle distribution oneexpects for a random graph; the one on the right,for E1019(3; 1), does not. In fact, it is proved in[Katz 1988] that the distribution of the Klooster-man sumsK(1 j a; 1) approaches the semicircle dis-tribution; see also [Adolphson 1989]. More pre-cisely, this means that if B � [�2; 2] and � isthe set of Kloosterman sums � = K(1 j c; 1), forc 2 Z=Zq nonzero, we have1q � 1#�� 2 � : �pq 2 B� � 12� Z
x2B p1� x2 dx

(2.8)
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FIGURE 3. Histograms of values of Kloostermansums for E1021(2; 1) (top) and E1019(3; 1) (bot-tom).as q !1. As in [Adolphson 1989; Katz 1988], takex = 2 cos � to obtain the Sato{Tate distribution.See also [McKay 1981; Sarnak 1990]. The moralis that, neglecting the multiplicity of the eigenval-ues of Eq(2n; a), their distribution approaches thesemicircle distribution as q ! 1. But in odd di-mensions the situation is very di�erent, as Figure 3shows. Then the eigenvalues are really cosines.Now we come to Question 3. What are the level\curves" for the eigenfunctions of the adjacencyoperators for our Euclidean graphs? They are thesets Sq(n; c) for �xed q and n, as c varies over Fq .For F 2q , such sets can be viewed as �nite analoguesof circles, as illustrated in Figure 2, where we asso-ciate a color to each element of Fq . They look verymuch like Fresnel di�raction patterns. See [Myers

1995; Goetgheluck 1993] for discussions of similarpatterns.A. Rudvalis suggested that we should look atmore general distances than (2.1), such asdc(x; y) = nXj=1 cj(xj � yj)2;where c = (c1; : : : ; cj) 2 F nq . With given n and q,one can produce more Ramanujan graphs by vary-ing c. Myers [1995] has considered these more gen-eral Euclidean graphs. The �gures analogous toFigure 2 for c = (1;�1) or (1; d), for some d 6= 0or 1, are quite interesting: the level \curves" are�nite analogues of hyperbolas or ellipses. She alsohas some beautiful animations of these �gures asthe prime goes to in�nity.Recently we have also been looking at Euclideangraphs over �nite rings Z=prZ, and �nding thatthey behave rather di�erently from those over Fprin some respects [Medrano et al. b].
3. FINITE NON-EUCLIDEAN SYMMETRIC SPACESIf G is a �nite group and K is a subgroup, con-sider the convolution algebra L2(KnG=K) of all Kbi-invariant functions f : G! C under the convo-lution product(f � g)(x) =Xy2G f(y)g(xy�1):If this product is commutative, we call G=K a sym-metric space.In the continuous case, there are many crite-ria, such as Gelfand's and Selberg's, that ensurethat G=K is a symmetric space [Terras 1988; Krieg1990]. The simplest criterion [Poulos 1991] is justthat the K-double cosets in G be stable under in-version: (KsK)�1 = KsK for all s 2 G. This is aspecial case of the Gelfand criterion. The theory ofassociation schemes associated to �nite symmetricspaces G=K is also relevant. See [Bannai and Ito1984] for examples.Next we want to look at a �nite analogue of thePoincar�e upper half-plane. The continuous version
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gives a good model for non-Euclidean geometryand has been a symmetric space dear to the heartsof many number theorists [Terras 1985, Chapter 3].The analogue with R replaced by a �nite �eld Fqhas many charms and has been studied in [Angel1993; Angel et al. 1992; Angel et al. 1994; Cel-niker 1994; Celniker et al. 1993; Poulos 1991; Ter-ras 1991]. It is also possible to look at �nite ana-logues over rings Z=prZ [Angel et al. 1995], butthese spaces are quite di�erent. For �nite �elds ofeven characteristic, see [Angel 1993; Evans 1995].Let Fq be the �eld with q = pr elements, wherep is an odd prime. Suppose � is a generator ofthe multiplicative group F �q of nonzero elements inFq . The extension Fq2 �= Fq(p�) is analogous toC = R [i]. We de�ne the �nite Poincar�e upper half-plane asHq = fz = x+ yp� : x; y 2 Fq and y 6= 0g:(\Half-plane" is something of a misnomer, sincey 6= 0 may not be a good �nite analogue of thecondition y > 0 that de�nes the usual Poincar�eupper half-plane in C . In fact, Hq is more like adouble covering of a �nite upper half-plane.)The general linear group G = GL(2; Fq ) is thegroup of invertible matrices of the formg = � a bc d� ;with a; b; c; d 2 Fq . The element �ac bd� of G acts onz 2 Hq by the fractional linear transformationz 7! az + bcz + d 2 Hq:Moreover, we can easily identify Hq with the quo-tient G=K, where K is a �nite orthogonal groupconsisting of matrices k 2 G such thatkp� = p�:It is not hard to see thatK = �� a b�b a � : a; b 2 F q and a2 � b2� 6= 0�;

moreover the correspondence� a b�b a � 7! a+ bp�shows that K is isomorphic to the multiplicativegroup of Fq(p�), and hence cyclic.We use the familiar notation from complex anal-ysis for z = x+ yp� 2 Hq:x = Re z; y = Im z;�z = x� yp� = zq;Nz = Norm of z = z�z = z1+q:The Poincar�e distance between z; w 2 Hq isd(z; w) = N(z � w)Im z Imw: (3.1)As with the Euclidean distance (2.1), this is not ametric in the sense of analysis, but it is GL(2; Fq )-invariant: d(gz; gw) = d(z; w) for all g 2 GL(2; Fq)and all z; w 2 Hq.We can attach graphs to Hq by a method anal-ogous to that which led to the Euclidean graphsEq(n; a) in the preceding section.
Definition. For a �xed a 2 Fq , the �nite upper half-plane graph Pq(�; a) has as vertices the points inHq and edges between vertices z; w if d(z; w) = a.PutRq(�; a) = fz 2 Hq : d(z;p�) = ag= fx+ yp� : x2 = ay + �(y � 1)2g; (3.2)then Pq(�; a) is the Cayley graph of the a�ne group�� y x0 1� : x; y 2 Fq and y 6= 0� ; (3.3)with respect to the set Rq(�; a), which is invariantunder inversion.Except when a = 0 or a = 4�, Rq(�; a) is a gen-erating set with q + 1 elements, so Pq(�; a) is aconnected graph of degree q + 1. When a = 0we have Rq = fp�g and when a = 4� we haveRq = f�p�g, so that Pq(�; a) is disconnected inthese cases, with one or two nodes, respectively,
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per connected component. As a varies, then, weget q � 2 graphs Pq(�; a) of degree q + 1. It is stillan open question whether these graphs are alwaysnonisomorphic.For example, when q = 3 you get only one graph:the regular octahedron. For q = 5 the vertex setcorresponds naturally to the vertices of a regulardodecahedron, and the edges of the graph are cer-tain diagonals or edges of the dodecahedron, asshown in Figure 4; there are three possibilities asa varies.Note also that the sets Rq(�; a) of (3.2) are theK-orbits in Hq, and can thus be identi�ed with K-double cosets in G = GL(2; Fq). It follows from allof this that Hq is a symmetric space, using the cri-terion mentioned at the beginning of this section.A representation-theoretic consequence is that anyirreducible unitary representation of G occurs inthe induced representation IndGK 1 with multiplic-ity at most one [Diaconis 1988; Terras 1991].
Remark. Angel [1993] looks at the graphs for �-nite �elds of characteristic two, where one mustreplace the equation x2 � � = 0 with some irre-ducible quadratic over Fq . For example, the graphcorresponding to �nite upper half-planes over F4is the icosahedron. See also [Evans 1995]. Thereferences [Angel 1993; Angel et al. 1995] also con-sider �nite upper half-planes over rings like Z=Zpr .They behave quite di�erently in some respects.Just as in Section 2, we de�ne the adjacency oper-ator Aa by Aaf = �R � f , where R = Rq(�; a).
The Same Three Questions

Question 1. Are the graphs Pq(�; a) Ramanujan?
Question 2. What can be said about the distribu-tion of the eigenvalues of the adjacency operatorsof the graphs Pq(�; a)?
Question 3. What can be said about the level curvesof the eigenfunctions of the adjacency operator ofthe graphs Pq(�; a)?The answer to Question 1 is yes. For p odd thisrequires a formula from [Soto-Andrade 1987] and

P5(3; 4)

P5(3; 1)

P5(3; 3)

FIGURE 4. We represent the �nite upper half-planeH5 by a dodecahedron. The edges of the graphP5(3; a) that are incident on a certain vertex areshown as solid lines; the remaining edges can beobtained by applying the dodecahedral symmetries.
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an estimate from [Katz 1993]. Winnie Li [1996; a]shows how to do the estimate without �etale coho-mology: using L-functions of idele class charactersof function �elds. For �nite �elds of even char-acteristic, [Evans 1995] and [Katz 1995] show thegraphs are again Ramanujan.It is possible to derive some understanding of theeigenfunctions of the adjacency operator on Hq ina very elementary way. We say a little about that,following [Terras 1985, Chapter 3].On the continuous Poincar�e upper half-plane thepower function ps(z) = (Im z)s is clearly an eigen-function of the non-Euclidean Laplace operator� = y2� @2@x2 + @2@y2� ;with eigenvalues s = s(s � 1). What is the �niteanalogue of the power function?Replace ys with a character � of the multiplica-tive group F �q of the �nite �eld. De�ne, for z 2 Hq,the �nite power functionp�(z) = �(Im z):Then p� is an eigenfunction of the the adjacencyoperator A of the �nite upper half-plane graphPq(�; a), with eigenvalue r� given byr� = Xz2Rq(�;a)�(Im z) = Xx;y2Fq : y 6=0 andx2=ay+�(y�1)2�(y): (3.4)

There are also analogues of K-Bessel functionson the Poincar�e upper half-plane Hq. For the realPoincar�e upper half-plane the K-Bessel functionsare functions f : H ! C such thatf(z + u) = exp(2�iau)f(z)for all u 2 R and some a 2 R , satisfying the con-ditions �f = �f and jf(z)j � Cyp: The �nite k-Bessel function is de�ned for � a multiplicativecharacter of F �q and  an additive character of Fqby k(z j�; ) = Xu2Fq ��Im �1z + u� (u):

This formula is the �nite analogue of [Terras 1985,p. 136, eq. (3.14)]. It turns out to be, essentially, aKloosterman sum [Angel et al. 1992]. One obtainsthis upon multiplication of k(z j�; ) by a suitableGauss sum, in analogy with the corresponding con-tinuous result [Terras 1985, p. 136, exercise 1].The eigenfunction k(z j�; ) turns out to havethe same eigenvalue r�, given in (3.4), as the powerfunction p�(z) = �(Im z). Thus the eigenvalues r�have multiplicity � p for � nontrivial. We callthem one-dimensional because they actually cor-respond to one-dimensional representations of thea�ne group (3.3). There is one more type of eigen-value, corresponding to a higher-dimensional rep-resentation of the a�ne group. It is easiest to un-derstand this type of eigenvalue by thinking aboutspherical functions on the symmetric space G=K.In the continuous case of the real Poincar�e upperhalf-plane a spherical function h : H ! C is aneigenfunction of � satisfying h(kz) = h(z) for allk 2 K = SO(2) and z 2 H, normalized by thecondition h(i) = 1. The spherical functions on Hare obtained by averaging power functions over K:hs(z) = Zk2K ps(kz) dk:Using polar coordinates z = keri, where k 2 Kand r > 0, we havehs(keri) = Ps�1(cosh r);where P�(x) is the Legendre function. The levelcurves of these spherical functions on H are circles.Recall that Hq �= G=K, with G = GL(2; Fq) andK = �� a b�b a � 2 G� :What are the spherical functions on �nite up-per half-planes? To �nd the answer, note thatthe G-invariant operators on G=K are polynomi-als in the adjacency operators Aa of the graphsPq(�; a), where a 2 Fq (including a = 0; 4�). Har-monic analysis on G=K means expanding functionsin the common eigenfunctions of the adjacency op-erators. Moreover, these operators commute, since
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L2(KnG=K) is a commutative algebra under con-volution onG (becauseG=K is a symmetric space);so we can hope to �nd a simultaneous set of eigen-functions. In fact, we have already found some:the power function and the Bessel functions. Thuswe de�ne a spherical function h on Hq as a func-tion h : H ! C that is an eigenfunction of all theadjacency operators Aa and satis�es h(kz) = h(z)for all k 2 K and z 2 Hq, normalized by settingh(p�) = 1. We write h(gp�) = h(g) for g 2 G.
Remark. There are many references on �nite ana-logues of spherical functions [Angel et al. 1992;Bannai and Ito 1984; Diaconis 1988; Stanton 1990;Terras 1991; Velasquez 1991]. In particular, if G isthe semidirect product of (Z=nZ)k with the sym-metric group Sk and K = Sk, one obtains Kraw-tchouk polynomials as spherical functions. TheKrawtchouk polynomials are quite useful in cod-ing theory.One can also view the spherical functions h aseigenvectors of collapsed adjacency matrices [Angel1993; Angel et al. 1992; Poulos 1991].All texts on symmetric spaces, like [Terras 1988],devote a full page to equivalent conditions for afunction to be spherical. The most important per-haps is the mean value property.
Mean Value Property. A function h : Hq ! C isspherical if and only if1jKjXk2K h(xky) = h(x)h(y)
for any x; y 2 G.The left-hand side of this equality is jKj�1(Aah)(x)if y = ya 2 Rq(�; a), the set de�ned in (3.2). Theright-hand side is the eigenfunction h(x) times theeigenvalue �a = h(ya). The moral of the story isthat

eigenfunctions = eigenvalues.When you say this to most mathematicians, theirhair stands on end. Nevertheless it is true forspherical functions on symmetric spaces.

It turns out that the spherical functions on thesymmetric space G=K can be understood by un-derstanding the irreducible unitary representations� of G that occur in the regular representation �of G on L2(G=K). Because we are dealing witha symmetric space, these representations can oc-cur with at most multiplicity 1 in �. And it ispossible to identify our spherical functions withK-�xed vectors s� of some irreducible represen-tations � of G occurring in L2(G=K). See [Dia-conis 1988; Sternberg 1994; Terras 1991] for moredetails. More explicitly, the spherical function s�associated to such an irreducible representation �of G is s�(x) = 1jKjXk2KTr�(kx):
This can be proved using the Frobenius reciprocitylaw [Terras 1991].For our example where G = GL(2; Fq) and K isthe subgroup �xing p�, we �nd two types of spher-ical functions, and thus, by the preceding equation,two types of eigenvalues, as already mentioned.The �rst type, the one-dimensional eigenvaluesof formula (3.4), correspond to spherical functionscoming from principal series representations of G:�1(a; b) = Xx;y2Fq : y=�u andx2=ay+�(y�1)2 exp

�2�ibuq �; (3.5)

where a; b 2 Z=(q � 1)Z with a 6= 0; 4�.The second type, corresponding to spherical func-tions coming from discrete series representationsassociated to characters ! 6= !q of the multiplica-tive group Fq (p�)�, were proved in [Soto-Andrade1987] to have the form�s(c; !) = XNz=1z=x+yp� "(c+ 2x)!(z); (3.6)

where c = (a=�)�2 and " is the quadratic characterof F �q de�ned in (2.5). It is shown in [Soto-Andradeand Vargas 1995] that one can put (3.5) into a formsimilar to (3.6).
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In order to estimate the eigenvalues, one needsWeil's proof [1948] of the Riemann hypothesis forzeta functions associated to curves over �nite �elds.Evans and Stark independently used results from[Schmidt 1976] to �nd estimates for the principalseries eigenvalues (3.5), showing thatj�1(a; b)j � 2pqfor a 6= 0; 4� and 1 � b � q � 1.N. Katz [1995] used l-adic �etale cohomology toestimate the Soto-Andrade eigenvalues (3.6). In[Li a] the same estimate is achieved without �etalecohomology, using only idele class zeta functions offunction �elds. The result isj�s(c; !)j � 2pqfor 1 � c � q � 1, c 6= �2, and ! 6= !q.
Theorem 3.1 (Finite non-Euclidean graphs are Ramanu-

jan). The �nite upper half-plane graphs Pq(�; a), fora 6= 0; 4�, are Ramanujan graphs.This completes the discussion of Question 1 forthe �nite upper half-plane graphs. See also [Evans1994; Evans 1995].Next we proceed to Question 2, and ask: Do theeigenvalues have the semicircle (Sato{Tate) distri-bution? That is, does1q � 1#�� : �pq 2 E� � 12� ZEp4� x2 dxas q ! 1? Again we neglect multiplicities, andlook only at the q�1 eigenvalues given in formulas(3.5) and (3.6). This question is still open. Thereis some evidence for an a�rmative answer. See[Kuang 1995] for a proof that the �rst and secondmoments of the eigenvalues asymptotically matchthose of the semicircle distribution. McKay [1981]shows that, under certain hypotheses, the semicir-cle distribution is the distribution of the eigenval-ues of a large regular graph. But McKay's resultassumes that the degree of the graph is �xed andour graphs have degrees going to in�nity with q.The histograms in Figure 5 also give some evi-dence for the conjecture.
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FIGURE 5. Histograms for eigenvalues of P347(2; 2)(top) and P347(2; 71) (bottom). The height of thebar gives the number of eigenvalues in a subinterval.Data computed by B. Shook using Matlab.You might ask: What happens if you replacethe �eld Fq by the ring Z=qZ with the same num-ber of elements? In this case the graphs fail to beRamanujan for all q = p2 with prime p > 3, andthe eigenvalue distribution looks quite di�erent, asshown in Figure 6. See [Angel et al. 1995].Finally, we brie
y consider Question 3: what canbe said about level curves of �nite spherical func-tions h on Hq? For an odd prime p, the space Hp isa rectangular grid [� 12(p� 1); 12(p� 1)]� [1; p� 1].We color the square at (x; j) according to the valueof the distance
d(x+ yp�; p�) = x2 � �(y � 1)2y ;
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FIGURE 6. Histogram of eigenvalues for �nite upper half-planes over the ring Z=169Z with � = 2. Left: a = 31.Right: a = 17. Data computed by B. Shook using Matlab.where y = �j. A level \curve" is obtained by con-necting the dots of the same color. The results forp = 71 and 163 are shown in Figure 7. They lookmuch more chaotic than the analogous �gures forthe Euclidean graphs Figure 2.One of the referees asks the interesting questions:Are the non-Euclidean graphs chaotic also from thepoint of view of \non-Euclidean eyes"? What is theminimum g such that Pq(�; a) can be drawn on a

surface of genus g? Do the level curves look lesschaotic there?
ACKNOWLEDGEMENTSI would like to thank R. Evans, N. Katz, A. Rud-valis, B. Shook, and S. Picciotto for their input,and Silvio Levy for editing that goes beyond thecall of duty!Euclidean Non-Euclideanspace X �= G=K F nq Hq � Fq(p�) = Fq2distance t(x� y)(x� y) N(z � w)Im z Imwgroup G F nq �O(n; Fq) GL(2; Fq)subgroup K O(n; Fq) n� a b�b a � 2 Gographs Eq(n; a), for a 2 F q Pq(n; a), for a 2 Fqdegree qn�1 + error q + 1# distinct connected graphs � 3 � q � 2connectivity Sq(a) = fx 2 F nq : d(x; 0) = ag Rq(�; a) = fz 2 Hq : d(z;p�) = agadjacency operator Aaf = �Sq(a) � f Aaf = �Rq(�;a) � fis graph Ramanujan? asymptotically as q !1 yeseigenfunctions and eigenvalues Kloosterman sums spherical functionsis spectrum a semicircle? if and only if n is even unknownis 0 an eigenvalue? if and only if n is odd unknown (yes if a = 2�)level curves �nite Fresnel patterns look chaotic

TABLE 1. Summary of results: comparison of �nite Euclidean and non-Euclidean graphs.
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q = 71

q = 163

FIGURE 7. An eigenfunction of theadjacency operator Aa on anon-Euclidean graph Pq(n; a) also hasthe same level sets as the Poincar�edistance function d(z;p�) of (3.1), sincethe K-double cosets of G are the setsRq(�; a) in (3.2). Here we show aq � (q � 1) grid with the color of a point(x; j) determined by the distanced(x+ yp�; p�) = x2 � �(y � 1)2y ;where y = �j . It is easy to produce suchgraphs using Mathematica.
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