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We develop algorithms for three problems. Starting with a
complex torus of dimension g > 2, isomorphic to a princi-
pally polarized, simple abelian variety A/C, the first problem
is to find an algorithmic solution of the hyperelliptic Schottky
problem: Is there a hyperelliptic curve C of genus g whose ja-
cobian variety J¢ is isomorphic to A over C? Our solution is
based on [Poor 1994]. If such a hyperelliptic curve C exists,
the next problem is the construction of the Rosenhain model
C:Y? = XX=DX=A)X=Xp)...(X = Agg—1) for pairwise
distinct numbers A; € C \ {0, 1}. Applying the theory of hy-
perelliptic theta functions we show that these numbers A; can
easily be computed by using theta constants with even charac-
teristics. If the abelian variety A is defined over a field k (this
field could be the field of rational numbers, an algebraic num-
ber field of low degree, or a finite field), we show only in the
case k = Q for simplicity, how the method in [Mestre 1991]
can be generalized to get a minimal equation over Z [%] for
the hyperelliptic curve C with jacobian variety Jc =¢ A. This
is our third problem. For some hyperelliptic, principally po-
larized and simple factors with dimension g = 3, 4, 5 of the
jacobian variety Jo(N) = Jx,ov of the modular curve Xo(N) we
compute the corresponding curve equations by applying our
algorithms to this special situation.

1. INTRODUCTION

We consider a g-dimensional abelian variety A, with
g > 2, which is principally polarized, simple and
defined over the rational numbers Q. For example,
A could be an abelian variety with real multipli-
cation defined over @; that is, the endomorphism
ring End(A) is an order in a totally real field E of
degree [E : Q] = g. Since the generalized Shimura—
Taniyama conjecture asserts that any abelian vari-
ety with real multiplication defined over Q is isoge-
nous to a factor of the jacobian variety Jx,v) of
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the modular curve X, (V) for suitable level N € N,
we restrict ourselves to these modular abelian vari-
eties. The following three problems will be solved
algorithmically in this paper.

In Section 2 we give a solution, based on [Poor
1994], of the hyperelliptic Schottky problem, by
showing that an abelian variety A/C is isomorphic
to the jacobian variety Jo of a hyperelliptic curve
C/C of genus g > 3 if and only if a number n(g) of
certain even theta constants associated to A vanish
(the case g = 2 is trivial, since every curve of genus
2 is hyperelliptic).

Section 3 shows how the corresponding Rosen-
hain model Y? = X (X —1)(X —A;) ... (X —Ag-1),
where \; € C \ {0, 1}, of the hyperelliptic curve C
with Jo 2¢ A can be computed by the use of cer-
tain other even theta constants.

Section 4 generalizes the method introduced in
[Mestre 1991] for computing a Z[5]-minimal curve
equation of the curve C. This method can also be
used for other fields of definition, for example fi-
nite fields or algebraic number fields with tolerable
arithmetic.

In Section 5 we apply these algorithmic solutions
to hyperelliptic, principally polarized and simple
factors of Jx,n) with dimension g = 3,4,5. The
construction of such modular hyperelliptic curves
C of genus ¢ is motivated by its use in public key
cryptosystems for Pic’(C)(F,) based on the dis-
crete logarithm problem. Here F, denotes a finite
field with ¢ = p" elements and Pic’(C)(F,) the
[F,-rational divisor classes of degree 0 on C'. More
about this topic can be found in [Weber 1996].

2. THE HYPERELLIPTIC SCHOTTKY PROBLEM

We take the set I{,(C) of C-isomorphism classes of
hyperelliptic curves of fixed genus g > 2. This set
is a coarse moduli space and has the structure of a
quasi-projective irreducible algebraic variety with
dimension 2¢g — 1 [Deligne and Mumford 1969]. We
identify H,(C) with the orbit space

{B CPY(C) : #B = 2(g + 1)}/ PSL,y(C),

where the action is given by

for all v = (“") € PSLy(C) and P = (a : 1) €
P!(C). Abel’s map Jp, : C — Pic’(C) with P
[(P)—(F,)] gives us an embedding (depending on a
base point P, € C') by sending a moduli point C' €
3,(C) into the jacobian variety do =¢ Pic’(C).
This jacobian variety J¢ is a principally polarized
abelian variety with dimension g and polarization
divisor W,_; = Jl(gﬁfl)(C(gfl)), that is, the image of
the (g—1)-fold symmetric product C9~Y) under the
surjective map J};‘(’;l) 1 O™ — W, | C Pic’(C).
This divisor W,_, is defined uniquely up to trans-
lation. For g = 2 the curve C is isomorphic to
W,_1. See [Lang 1959] for these results.

We get a morphism J : H,(C) — A,(C) with
C = (Jc,W,_1), where A (C) is the coarse mod-
uli space of principally polarized abelian varieties
with fixed dimension g > 2. Torelli’s theorem
states that this morphism is injective, that is, a
moduli point C' € H,(C) can be uniquely recon-
structed from its principally polarized jacobian va-
riety (Jc, Wy—1).

We observe that a moduli point A € A,(C) is a
complex torus CY/(Z9 + QZ9) with period matrix
QeH, ={M e M,(C) : M' = M, Im(M) > 0}.
So we get the description A,(C) = H, /T',, where
the action of the full modular group I'y = Sp,,(Z)
is given by

Yo Q= (aQ+b)(cQ+d)™"

forally = (¢7) €', and Q € H,.

The hyperelliptic Schottky problem asks for a char-
acterization of the hyperelliptic jacobian varieties
in A,(C). Since A,(C)(d(H,(C))) has codimen-
sion £ (g—1)(g—2), this problem is trivial for g < 2.
That’s the reason why the following question is
only interesting in the case g > 3:

Problem 2.1. Let A € A,(2)(C) be a simple mod-
uli point given as a complex torus C9 /(Z9 + Q7Z79)
with period matriz Q € H, (where simple means
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symplectic irreducible). Let B = {1,2,3,...,2g+1,
oo}. Are there distinct numbers a; € CU {00}, for
i € B, such that the moduli point C € H,(C) given

by

V= ][(X —a)

i€B

satisfies A =¢ Jo, and oy, corresponds to the base
point Py of Abel’s map Jp, under the projection to
the projective line P17

Our algorithmic solution of this problem is based
on [Poor 1994], where the hyperelliptic jacobian
varieties are characterized by a number (depending
on the genus g¢) of vanishing even theta constants.

Write F3¢ for the set of characteristics [g] with
row vectors d,¢ € F§. If we choose a symplectic
basis for the 2-torsion points A[2] of a moduli point
A € A,(C) by fixing a level-2-structure U, : [g] —
(e +09Q), we can identify A[2] with F2¢. We get
a pair (A, ¥,) from the orbit space A,(2)(C) =
H, /T4 (2) with I'y(2) = ker(I'y — Sp,,(F2)).

We attach to every characteristic [g] € FY a
theta constant

0[°](Q) = > ertlntanentzoitintz0)e)

nez9

and get 2971(29 +1) even or 297 (29 — 1) odd holo-
morphic functions H[g] : Hy — C, depending on
whether de! = 0 or de! = 1. It follows that all the
odd theta constants vanish; that is, [g] = 0 when
det = 1. The following result gives us a condition
necessary to our Problem 2.1:

Theorem 2.2 [Krazer 1903, p. 459]. Let (A,¥,) €
Ay(2)(C) be a simple moduli point with torus rep-
resentation C9 /(29 +QZ9) and A =¢ Jc for some
moduli point C € H,(C). Let V(A) =V (A, ¥,) be

the set of vanishing even theta constants,
V(4) = {0[)(@) = 0: []] € FY, 52 =0}
Then

2g+1)

#Vm)zwﬂaw+m—( ,

We define n(g) as the number in the right-hand
side of this equation.

An azygetic fundamental system is a set n =
{m,...,m2g+1} of 2941 pairwise distinct character-
istics n; = [g] € 39\ {0} such that §;e! + ;¢! = 1
for all n; and n; with ¢ # j.

Proposition 2.3. (i) The finite group
Sp2g (Fy) = FQ/FQ(Z)

acts transitively on the set of azygetic funda-
mental systems in F3?.

(ii) Let

s [1000...0] 0_[1000”.ﬂ
m=1o000...0)° ™~ l1000...0)
s [0100...0] _[0100” ﬂ
5= 11000...0” M~ |1100...0]
s _[0010...0] 0_[0010”.ﬂ
5= 11100...0" "~ |1110...0)

o 0000...0

"2g+1 1111...1

Then the set n° = {n?,...,n3,,,} is an azygetic
fundamental system in F37.

Proof. See [Igusa 1972, p. 212] for statement (i) and
[Mumford 1983, p. 3.88] for (ii). O

To state the following necessity and sufficiency cri-
terion from [Poor 1994] we need some notations.
Let U = {1,3,5,...,2g+1} C B be the set of odd
indices and define Ue S = (UUS)\ (UNS) for any
set S C B\ {oo}. (That is, U @ S is the symmetric
difference of U and S).

Define

To(2) = {S C B\ {oo} : #5 = 0 mod 2}.

Then Ty(2) is a disjoint union T3 (2)UT (2), where
T5(2) ={S CB\{oo}: #(U eS) =g+ 1} and
T7(2) is defined analogously.

For an azygetic fundamental system 7 in F3¢ and
aset S € T7(2) we put g = Y ses s and call

W(A,n) ={0[ns]() =0: S € Ty (2)}

the vanishing set of some moduli point A € A,(C).
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Theorem 2.4 [Poor 1994, Main Theorem 2.6.1]. For
a moduli point (A, ¥,) € A (2)(C) the following

two statements are equivalent:

(i) A is simple and there is an azygetic fundamental
system 1 = {M,...,Nag1} such that V(A) =
W(A,n).

(ii) There exists a moduli point C € H,(C) satisfy-
ing the conditions of Problem 2.1.

When (i) and (ii) hold, «; corresponds to n; (that
18, if P; is a Weierstrass point with x-coordinate «;,
then Wy (Jp, (P;)) =m:), and as corresponds to 0.

Algorithm 2.5. Input. A simple moduli point A €
Ay(2)(C) of dimension g > 2 given as a torus
C?/(Z9 + QZ7) with the standard polarization.

Output. An answer € {YES,NO} for the question:
Is there a moduli point C' € H,(C) with Jo =¢ A?
For g = 2 the answer is always YES and there’s
nothing to do.

Step 1. Compute the 2971(29 + 1) even theta con-
stants 0[° ] (Q) with § e = 0 and form the set V(A)
(where the vanishing of the theta constants only
has been proved numerically).

Step 2. If #V(A) = n(g) continue with Step 3.
Otherwise output NO because of Theorem 2.2.

Step 3. Form W (A, n°) with the azygetic fundamen-
tal system n° from Proposition 2.3. Output YES
if V(A) = W(A,n°). Otherwise find, if possible, a
matrix v € Sp,,(F,) such that

V(A) = W(A,yon°),
and output YES. If there is no such -, output NO.

3. CONSTRUCTION OF THE ROSENHAIN MODEL
OVER C

Take a simple moduli point (A4, ¥,) € A,(2)(C)
given as a torus C9/(ZY + QZ9) with an azygetic
fundamental system 7 = {n,..., 72,41} such that
V(A) = W(A,n). An application of Theorem 2.4
gives a moduli point C' and numbers «;, for ¢ =
1,2,...,2g9+ 1,00, as in the statement of the same
theorem.

Theorem 3.1 [Mumford 1983, Thomae’s theorem,
p. 3.120]. The value of (0[ns](2))* is 0 for S €
T7(2) and

1
. (—1)#WUnS) I | I | -
¢ (=1) . . (@i — aj)
1€(UeS) jgZ(UeS)

for all S € T;(2), where ¢ € C* is a constant that
does not depend on S.

We introduce, for p = 1,...,2g — 1, the analytic
moduli
A0 — (g
A = —mft2 T
H Ay — (1 ’

to get the new model
V2=X(X-DX —-A)... (X —Agy_1)  B-1)

for the moduli point C' € H,(C) with pairwise dis-
tinct numbers A, € C\ {0,1}. Equation (3-1) is
called the Rosenhain model of C.

Problem 3.2. Compute the Rosenhain model of C' €
H,(C).

This problem can easily be solved by using the next
result, for which we introduce some more notation.
For all p = 1,...,2g—1 write B as some disjoint
union

B ={1,2,u+2,00} UBy UBY,
where By and B; have g — 1 elements. Set
‘S’:lLL :{172}UBSJ ‘5’5:{172}U‘Bl{7
St = {Lu+2} UBL, S = {1,u+2} UBL,
SE={2,u+2y UBL, S§={2,u+2} UB.
Finally, for v =1,...,6 we set 8% = 0[nyes:](2).
Theorem 3.3. With the notation just introduced,

(61 05)* + (05 01)" — (05 05)"
2(07 62)"* ’

A, =

foru=1,...,29g—1.

Proof. Consider for some k € B\ {oo} the disjoint
decomposition B\ {oo} = SUT U {k} for sets S, T
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where S and T each have cardinality g. As an
application of Theorem 3.1 we get the identity

(Onuerogep] ())* = (—1)FH [Licw (o — o)
(Onue(suir](2))* [[es(oy —ax)
(3-2)
We fix p € {1,...,29—1}. Then we apply (3-2)
with k =1 and § = S\ {1} and T = S5 \ {1},
obtaining

o _ [Liess (i — o)
0f  Ihesp\yles —a)

If we do the same for k =1 and S = S5 \ {1} and
T =S¢\ {1} we get from (3-2) the equation

(3-3)

04 licsy\uy (o —an)

b - . (3-4)
Oy Ihesnvpy(ay —a)
Multiplying (3-3) and (3-4) we get
0505 _ (g2 — 1)’ (3-5)

0105 (s —a1)?
Applying (3-2) in the same manner to k = 2 and
the cases S = SI' \ {2} and T' = S\ {2}, on the
one hand, and S = S4 \ {2}, T = S§ \ {2}, on the
other, we get an analogous equation

9% 05 _ (g — 02)2_ (3-6)

0y 0 (ay — az)?
We use (3-5) and (3-6) in the easily verified iden-
tity

Qui2 =01 _ (p—)? + (o =)’ = (auyn—0y)?
Qo — (1 2 (012—CV1)2 ’

and see that our statement is true for the given pu.
O

Algorithm 3.4. Input. A simple moduli point A €
Ay(2)(C) of dimension g > 2 given as a torus
C? /(Z9 4+ Q2 Z9) with an azygetic fundamental sys-
tem 7 such that V(A4) = W(A4,n).

Output. The Rosenhain model (3-1) for some mod-
uli point C' € H,(C) with Jo =¢ A.

Step. Compute the roots Aq,..
rem 3.3 and output (3-1).

., Agg—1 using Theo-

4. CONSTRUCTION OF A MINIMAL CURVE
EQUATION OVER Z 1]

We now state and solve our third problem:

Problem 4.1. Let C € H,(Q) be a moduli point of
genus g > 2 with projective model

Z2Y? = F(X, Z), (4-1)

where F' € C[X, Z] is the binary form of degree
2(g+ 1) given by

2(g+1)
F(X,Z)= )Y FEX'7?0™7 4

=0

Decide whether C' has an affine model over Q and,
if so, compute a curve equation that is minimal
over Z[1].

Given an element v = (“’) in SL,(C) and a form

as in (4-2), we can write

2g+1)
F(aX+b,cZ+d) = Z FoX 20—t

=0

where each F; can be expressed as a polynomial
with integer coefficients on the F; and the entries
of 7. Then we can define an action of SLy(C) on
ClX,Z,Fy, ..., Fyg41)] by setting

(70 (P)(X, Z7 F07 s 7F2(g+1))
== SD(dX—bZ, —cX—I—aZ, Fo, PN ,Fg(g+1)),

for p € C[X, Z, Fy, ..., Fag4r)) and v = (*)). The
homogeneous polynomials that are invariant under
this action form a finitely generated algebra
:Kg((C) - (C[X, Z,Fy, ... ,F2(g+1)]

over C, called the covariant algebra of binary forms
of degree 2(g + 1).

Every covariant ¢ € X,(C) can be characterized
by its order ¢, which is its degree in X, Z, and

its degree e, which is its degree in Fy,..., F5g41).
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Thus we can represent the covariant algebra as a
bihomogeneous graded algebra

%,(C) = P Ky (i, €)(C).

1,620

This graded algebra contains a subalgebra

1,(C) = @ %,(0,€)(C),

e>0

the wnwvariant algebra of binary forms with degree
2(g + 1). This subalgebra is also finitely generated
over C. Some of these results can be found in the
classical papers of Hilbert.

The right-hand side of (4-2) can be regarded as
an element of C[X, Z, Fy, ..., Fy(y41)], which we de-
note by F and call the generic binary form. It is,
by construction, a covariant of order 2(g + 1) and
index 1.

The uberschiebung operation on covariants is de-
fined as follows (see also [Vinberg and Popov 1994,
p. 182]). If 1,2 € X,(C) have orders i;,i, and
degrees e, ey, and if h € {0,...,min(i;,i,)}, we
set

h
h 9", 0"y
(p1,p2)n = AE; (]) OX" 1071 0XI9Z" 1’
=

with

(i — h)! (is — h)!

Y

A=

115!

this is a new covariant with order 7; + i, — 2h and
degree e; 4 e;. (The factor A is traditional.)

Theorem 4.2 [Clebsch 1872, p. 101]. The covariant
algebra X, (C) is generated by iterated iberschie-
bungen of the generic binary form

FeXK,(2(9+1),1)(C).

Now we generalize the method of Mestre [1991] to
the case where the genus is greater than 2 and the
field of definition of the moduli point is Q. Sup-
pose that the automorphism group Aut(C) of the
moduli point C' € H,(C) is trivial, which means
Aut(C) = {id, ¢}, where ¢ denotes the hyperellip-
tic involution. Then Mestre’s method (for g = 2)

gives us an affine model over QQ, provided that such
a model exists.

We now recall results from the classical invariant
theory that are fundamental for this method and
its generalization. Let 1,1, 15 € X, (C) be three
covariants of order 2 = ¢; = i, = i3 and degrees
0 < e; < ey < e3. Following [Clebsch 1872, p. 201],
we have the following corresponding simultaneous
system of generators:

e 3 covariants
1 = (2, ¥3)1 € Ky(2, e2+€3)(C),
p2 = (s, 91)1 € Ky(2,e5+€1)(C),
©3 = (Y1, ¥2)1 € Ky(2, €1 +e€2)(C)

e 6 invariants Q. = (Y1, ¥m)2 € J,(e;+e€m,)(C),
forl <m=1,2,3; and
e 1 invariant

)

Riz3 = —p1 % o x 3 € I (e1+e3+e3)(C),

with R}y, = %det(QLm) for Q21 = Q12, Q31 =
Q13, and Q3 = ()2 3. The operation % is de-
fined in [Mestre 1991].

Proposition 4.3 [Clebsch 1872, p. 201].

(l) Zlg,m:]_ Ql,m%l‘pm = 0.

(ii) Rios T = 31 (F, )21

(iii) For fized values of the indeterminates Fy, ...,
Fy(g41), the covariants @1, 2, and @3 are lin-
early independent if and only if R # 0 (here
V1, Y2, 3, and Ris3 are specialized at the given
values).

Mestre recognized that relation (ii) is a special case
of

3
g+l § :
R123 F= Hll ~~~~~ ly+1Ply - - Plygrs

U100y lg+1:1

Hll ----- lgt1 — (“'((9:7¢l1)27¢l2)27"'7¢lg+1)2
< jg( f:+11 e, + 1) (©)

for g € NU {0}. This led him to the idea that we
now describe.
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Proposition 4.4 [Mestre 1991, pp. 322 and 324]. Let
C and F be as in Problem 4.1, and consider the
specialization of the wvarious covariants discussed
above to the given Fy, ..., Fyg4i1). Assume that F
has trivial automorphism group. (In this case Ryy3
is nonzero). Let V(Q) be the conic defined by the
irreducible quadratic form Q € C[X,, X5, X3] such
that

3
Q(X1, X2, X3) = > Quun X1 X,

l,m=1

and let V(H) be the curve of degree g + 1 defined
by the form H € C[X,, X,, X3] such that

3
E Hl1 ----- ly+1Xll Tt Xlg+1'

l1,0e0s lg+1=1

H(X17X27X3) =

Then:

(i) The map @ : PY(C) — V(Q) taking (X:Z) to
(p1:po:p3) is an isomorphism defined over C,
and it maps the set of (X:Z) € PY(C) such that
F(X,Z) =0 to the set of (X,:X2:X3) € P*(C)
such that Q(X,, X5, X3) = H(X, X5, X3).

(ii) The moduli point C € H,(Q) possesses an affine
model over Q if and only if the conic V(Q) has

a rational point over Q.

The discriminant A, € J,(2(g9 + 1))(C) is the in-
variant of degree 2(g + 1). Following [Geyer 1974],
we have 3(,(C) =¢ Spece(J4[A; " ]o).

The elements of the algebra J,[A*](C) are called
absolute invariants (that is, quotients of invariants
with the same degree) with discriminant power in
the denominator. If we choose an embedding

15(C) = J,[A;11(C)

and specialize at F'(X, Z) € H,(Q), the invariants
Qim and Hy, ;. ., are then elements in Q with re-
stricted denominator and so a conversion from C to
Q is possible. We will give the precise definition of
the embedded coefficients (depending on the genus
g) in the last section and fix for these embedded
coefficients the same notation.

Lemma 4.5 [Mordell 1969, p. 47]. Suppose that Q) €
L|Z,, Zy, Z3] is an irreducible quadratic form with
a nontrivial solution (29,239, 73) € 23\ {0}. Then
every other nontrivial solution has the form

(Z17Z27Z3) = (hl(T)7h2(T)7h3(T))

with polynomials hy, hy,hs € Z[T] of degree two,
depending also on (29,29, ZY).

Algorithm 4.6. Input. A binary form F(X,Z) €

C[X, Z] with trivial automorphism group, which

corresponds to a moduli point C' € H,(Q) of genus

g=>2.

Output. An answer in {YES,NO} for the ques-

tion: Has C' an affine model over Q7 If the an-

swer is YES, output an affine model Y? = h(T') =

S 480 b Tt € Z[T] with these properties:

(1) deg(h) = 2¢g+1 if C has a Q-rational Weierstrass
point, and 2(g + 1) otherwise.

2) 398" || € Z is minimal for C.

1=0

(3) |Ay(h(T))| € Z [%] is minimal for C.

Step 1. Compute the embedded coefficients Q) ,, €
Q for I <m =1,2,3. They are elements in Z[S 1],
where S denotes the set of primes with bad reduc-
tion of the moduli point C' € H,(Q).

Step 2. Using Lemma 4.5, compute the parametri-
zation

(Zy,25,Z3) = (hy(T), ho(T), hs(T)) (4-3)

for the irreducible quadratic form Q(Z,, Z,, Z3) €
Z[Z]_, Zz, Zg] Output NO if (Z]_7 Zz, Z3) == (0, 0, 0)
and YES otherwise.

Step 3. Compute the embedded coefficients
Hy ., €Q

for ly,...,l,41 = 1,2,3. Without loss of generality,
they are elements in Z[S™']. Plug into (4-3) to get
a squarefree polynomial

B (T) = H(hy (T), ha(T), hy(T)) € Z[T)]

of degree deg(h®) = 2(g + 1).
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Step 4. Factor A,(h®(T)), which has the form

|Ag(h(3) (T))| = 2v2 m?etDiet1) le'p

pES
for vy, vy, m € Ny.

Step 5. Minimize |A,(h®)(T))| by iterated com-
putations of roots T} of the congruence h® (T) =
0 mod n for some n € {2,m} U S and afterwards
by doing the transformation

AT = n=2 RGN (T 40 T).

The result is a polynomial A (T) with property
(3)-

Step 6. Minimize Z?i%(h(z)) Ih\®| € Z by iterated
computations of roots § € C and afterwards by do-
ing the transformation h® (T) — k3 (T + Re(3))
under the assumption hg?ﬂ < héz). The result is a
polynomial h(")(T') with property (2).

Step 7. Find a root v € Z of the polynomial h*)(T)
(if C has a Q-rational Weierstrass point) and apply
the transformation h™" (T) — R (T~ +Ty) T2+
to get a polynomial h(T) € Z[T'] with property (3).
Output the affine model Y? = h(T).

Remark 4.7. Only for simplicity have we considered
the case that the moduli point C' € 3 (k) is defined
over kK = Q. If k is a finite field or a number field
of low degree, it’s also possible to construct curve
equations over these fields. In [Weber 1996] there
is an example of a moduli point C' € H,(k), which
is defined over a real quadratic number field k£ =
Q(vd) with class number hy = 1. The jacobian
variety do of this moduli point is isomorphic to an
abelian variety A with complex multiplication.

5. APPLICATION TO MODULAR CURVES

Our aim in this section is to construct (as an ap-
plication of Algorithms 2.5, 3.4, and 4.6) hyper-
elliptic curves with real multiplication and genus
g = 3,4,5. The jacobian varieties of these curves
are principally polarized, simple factors of the jaco-
bian variety Jo(N) = Jx,(n) of the modular curve
Xo(N). We recall the definition of this modular
curve.

Let N € N be a fixed natural number and let
['o(N) be the subgroup of matrices (*") € SL,(Z)
with ¢ = 0 mod N. The modular curve X,(N)/C
can be regarded as the orbit space H*/T'y(N'), where
H* = {w € C: Im(w) >0} UP*(Q) and the action

of I'y(IV) is given by

aw—+b
cw+d

Yow=

forally = () € ['y(IV) and w € H*. If we denote
by S, (V) the space of cusp forms of weight 2 for the
group ['o(V), we get [Shimura 1971] for some fixed
newform f(2) =14+ ", a,e®""/N)= € §)(N) a
simple abelian variety A/Q satisfying these con-
ditions:

e End(Ay)isan order in the totally real field E; =
Q(az,...,ax) with degree [E; : Q] = dim(Ay).

e A, isisogenous to a simple factor of the jacobian
variety Jo(IN).

Using the programs of X. Wang and M. Miller
we can compute the decomposition of Jy(NN) into
simple factors of dimension g > 1, the Fourier co-
efficients of new forms f € S,(IV), and the period
matrices €2, of simple factors A of Jy(N) with di-
mension g > 1. See [Wang 1995] for more details,
including the definition of polarization and a crite-
rion to test the principality given a period matrix
of dimension g > 2.

For those modular curves Xy(/N) that are hyper-
elliptic (classified in [Ogg 1974]), affine models in
the form Y? = f(T') € Z[T] have been computed
by Gonzalez Rovira [1991] and independently by
M. Shimura [1995], who also considered the nonhy-
perelliptic case. The methods used in these papers
don’t leave the arithmetic of the modular curve
Xo(N), so they don’t allow us to treat simple fac-
tors of Jy(N). We show now that by applying
our algorithms to hyperelliptic, principally polar-
ized and simple factors of Jy(IN), we can construct
affine models for these factors and for the cases
treated by Gonzalez Rovira and M. Shimura. The
case g = 2 was solved in [Wang 1995].
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5.1. Three-Dimensional Factors of J,(N)

We explain in detail how our algorithms must be

applied to get affine models of hyperelliptic curves

C/Q with real multiplication and genus g = 3.
We start with the newform

f=14) a.q" € 5,(284)

n=2

whose Fourier coefficients belong to the totally real
field

Er = Q({an : n € N}) = Q(5)

with irreducible equation 3* + 33% —3 = 0. The
first few of these coefficients are

a; =0, az =,

as =—F—-38-1, a; =23 +28-6,
an =20, a3 = —46° — 66 + 4,
Q17 = 452 + 646 — 6, Q19 = _ﬂz -2,

ags = —20° + 8, azg = 66° + 96 — 8,
az = —203 -8, az7 = —ﬁ2 —48 -2,

an = —46" = 85 +4,

agg = =" =30+ 1,

0.66735 + 0.30210¢.

Wyz = W3z =

We use this torus C* /(Z® + Q; Z*) as an input for
Algorithm 2.5. In Step 1 we compute the 36 even
theta constants 6[°](€;) for [°] € F§ and §e! =0
and build the set V(A;). As an abbreviation we
use binary notation (by rows) for the theta con-
stants; for example, the theta constant 6 [(1) 8 8] (€2y)
will be denoted by 0[4, 0](£2¢).

In Step 2 we notice that because of V(A4;) =
{0[5,5](2¢)} (this has been proven numerically)
our condition #V (A;) = n(g) =1 is fulfilled.

The canonical azygetic fundamental system n =

{n?,...

O_[100] o, [100] 0_[010]
= 1loool ™ l1o0)> BT l100)]
o 010 o 0017 o [001
774_ 110/ 775__110_7 776_ 1111
o, [000]7
777=_111_7

,m9} for Step 3 is given by

Qg7 = _4ﬁz - 8ﬁ + 87

By Shimura’s construction we get an associated
simple abelian variety A; isogenous to a three-
dimensional simple factor of the jacobian variety
Jo(284) of the modular curve X,(284). In general
a factor A; is simple over Q and simple over C
only if the level N is squarefree. If the level NV
contains a square we have to show that End(A;)
has no zero-divisors to assume that A, is simple
over C.

Ay is principally polarized and possesses the torus
representation C* /(Z® 4+ Q Z?), where

Qp = (wij)i<iy<s

is the period matrix, whose entries (truncated to
five decimal places) are

wyy = —1.39675 + 1.711954,
way = —0.36574 + 0.289821,

wszz = 1.61009 + 1.33956¢,

and shows us that the vanishing set W(A;,n°) =
{0[7,5](2¢)} and the set V(A;) are different. By a
computer search we find a transformation matrix
v € Spg(Fs) with

001000

011000

~l100000

7= loo0o0011

000010

000100

and yon® =7 = {f,...,70} for
~_[001] 70017 ~_[010]
m = 000}’ 772__001_7 T3 = 001/’
~_[010] . 1101 . [110]
Ta = 1111 775__111_7 Tle = 011}’

. [000]

"= 1o11]

such that W (A7) = {0[5,5](Q2;)} = V(A4;). So
we can produce the output YES and stop.
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To apply Algorithm 3.4 we choose the sets

St={1,2,4,6}, S;={1,2,5,7}, S3=1{1,3,4,6},
S =1{1,3,5,7}, S:=1{2,3,4,6}, Si=1{2,3,5,T7},
S?=1{1,2,3,5}, S2=1{1,2,6,7}, S?=1{1,4,3,5},
S3=1{1,4,6,7}, S?=1{2,4,3,5}, St=1{2,4,6,7},

={1,2,3,4}, S5={1,2,6,7}, S5=1{1,5,3,4},
S%=1{1,5,6,7}, S:=1{2,5,3,4}, S¥=1{2,5,6,7},
St=1{1,2,3,4}, S;=1{1,2,5,7}, S;={1,6,3,4},
S;=1{1,6,5,7}, St=1{2,6,3,4}, Sg={2,6,57},
S?=1{1,2,3,5}, S;=1{1,2,4,6}, S>=1{1,7,3,5},
S2={1,7,4,6}, S2=1{2,7,3,5}, Sg=1{2,7,4,6}.

Then the roots Aq,..., A; of the Rosenhain model
(3-1) have the numerical values shown in the table
below. The associated binary form

F(X,Y)=X(X-Y) ﬁ(X —\Y)

corresponds to a moduli point € € H3(Q) with
trivial automorphism group (in the case of real
multiplication the automorphism group is always
simple since there are no nontrivial roots of unity
in ]Ef)

This Rosenhain model is then fed into Algorithm
4.6. In Step 1 we define the three covariants ¢, =

1)z € K3(2,7)(C)
and 3 = (k,9¥2)2 € K3(2,9)(C) with the help of
the covariants k = (F,F)s € K3(4,2)(C) and m =
(F,k)s € K3(4,3)(C). For the tuberschiebung we
use the parameter A = 1/(h!)?2. Then we get with
I, = (5,%)s € 13(2)(C) the embedded coefficients

(k,m)s € Ks3(2,5)(C), 1/)z=(k%)0
(4,

Q, 11—(l+m)

Ql’mHT7 fOI' l,m=1,2,3,
3

as elements in the algebra J5[A; '], (C); we denoted
them by @, ,,, as well.

Using the procedure isolve in Maple we get in
Step 2 the irreducible quadratic form Q(Z,, Z,, Z3)
in the diagonalized representation shown at the top
of the next page. Therefore we output YES, mean-
ing that C has an affine model over Q.

For Step 3 we compute the embedded coefficients
(fixing the same notation) of the curve V(H) by
using the embedding

12— (l1+l2+13+14
Hl I5I (Li+lz+13+14)
—
1yensla 3
A3

with invariant Iy = (k,m), € J3(5)(C). Using
the coordinates Z,, Z,, Z; for X, X5, X5 that have
diagonalized the quadratic form, we plug in the
parametrization and get the squarefree polynomial
h®)(T) given at the bottom of the next page.

H,

i = LU0, + G000 000N~ 0O LU _ g0 3 paas,
1o = L2000 80 + 0020 I~ DA IO _ 1472 1 73021
o - BTN )+ 0420 03 4E) — O YOO _ 005 soner
o 5 HO O3 )+ O 20 03, 06)) — 4 YOI U 15500 oo
s - L AONILO0,) + 0090 H00(0)) — GOYO) LU _ 3 5510 p g

Roots of the Rosenhain model (3-1) for the example of Section 5.1.
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Q(Zy,Z2, Z3) = —310146482690273725409 Z2 + Z3 + 113922743 ZZ2,with squarefree coefficients

Z1 = hi(T) = 5408438734746610874028937383516975917117472 + 47474618257274676699357014108385504 T,
Zy = ho(T") = 88093297856830518212763482347330720171053905689804927
—6786519614930089882898902557690696309599959734634 T' — 773272268003856949026968937601254212875245689 12,
Z3 = h3(T') = —3393259807465044941449451278845348154799979867317
—1546544536007713898053937875202508425750491378 T + 29785622414876763820982183327918536466419 T

Quadratic form produced by Step 2 of Algorithm 4.6 for the example of Section 5.1.

The factorization of the discriminant in Step 4,
which has over 2000 digits, was carried out using
the computer algebra program LiDIA [1996]. We
get Ag(h®)(T)) = =22 m>° 713, with

m=3-11-59-67-79-149-1993-7187-45757-16215770450329.

Finally, after minimizing this polynomial in Steps
5, 6, and 7, we get an affine model

Y2=g(T)=T"+3T°4+21° -T*-21* -27*-T—1

8
RON(T) = Z hl(-3)Ti € Z[T), with coefficients
=0

for our moduli point C' € H;(Q) with Jo =¢ Ay.
We have investigated 228 three-dimensional sim-
ple factors of Jy(N) up to level N < 500. Only
26 of them were principally polarized. For those
factors that are isomorphic to hyperelliptic jaco-
bians of dimension ¢ = 3 we have computed the
corresponding curve equations with endomorphism
fields E; = End(Ay) ® Q (f denotes here a new-
form); see Table 1. Our result for N = 41 is the
same one that appears in [Gonzalez Rovira 1991;

hgn = —124106094710662863340822193234454568071760054258264696428674415577551963836959258872941789\
364518841252980669498433795610746275444834342956742139545374780761457

hgm = —289422967350034912763544130861983992324886848261913393813342090615151077677987075884065004\
34547196076741770450238345218211412565742210132185732771321930472

hgm = —290576948995281531407381833896198365369397073243460940310410783006943147014187581943094580\
095782923921718553605966633467667889218257444145427367626138812

hgn = 545485656312720261658668387978285496873098732561291294620283260390367935912590603344031205\
31884519283982507149139230108128357890874000642828718145000

hgn = —538066929523204341945650993919758180851690142972368856289656737999525931483063312198414458\

6915405047245504450865009231594542643350885484721455686

hém = 790987028435054085783060904170360181468862221473517625495854403566263530462619899648934171\

542410693902695032603650101661182395886508813476392

hg” = —513961847531856347240393860381315890092669916607668216423675988960751605597684364873850531\

81625578918264790156206694021859969165064814204

h?” = 221540933088014339204476848833284885332655901902118189341769144664641839349319103761445514\

6317987921412272748592467135373560827316824

hg” = —574135797825075316615253152523804806529259507348984589893321192177271150962633975074782362\

37751674911801455587757292693422566801

Polynomial produced by Step 3 of Algorithm 4.6 for the example of Section 5.1.
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N =41
curve =Y?2 = X8 +4X7 —8X% — 66X° —
Ay = (—1)-216 . 416

Er =Q(8), with 82+ 3> -58-1=0
D =148 =2%.37

120X* —

56X° + 53X? + 36X — 16

N=95=5-19

curve = Y2 = 19X8 — 262X7 4+ 1507X9
Ay = 21656 9%
E; = Q(f), with g% — 32
D =148 =22.37

—33+1=0

— 4784 X5 4+ 9202X* — 10962X 3 + 7844 X2

— 3040X + 475

N =284=22.71

curve =Y? = X7 4+3X6 +2X5 - X4+ -2X% —
Az = (-1)-71°
Ef = Q(3), with 8% +338%> -3=0
D=81=34

-X-1

N=38=5-7-11
curve = Y2 =

AB ( ) 216 54 719,116

Er =Q(8), with ° +48% +28-2=0

D =148 =2%.37

X8 +12X7 4+ 68X0 +114X5 + 282X* + 176 X3 — 123X2 — 170X + 25

TABLE 1. Hyperelliptic curves of genus 3 with real multiplication.

Shimura 1995]. More detailed tables can be found
in [Weber 1996].

5.2. Four-Dimensional Factors of J,(N)

In this section we mention only the main algo-
rithmic differences from the case ¢ = 3. If we
consider a generic four-dimensional hyperelliptic
factor Ay of Jy(IV), the corresponding vanishing
set W(A,n°) consists of 10 even theta constants,
nanely,

9[1379](Qf)7 9[7v 5](Qf)v 9[14 11](Qf)7 0[77 13](Qf)a
G111, 13](S2¢), 0[15,5](€2;), 614, 10](82¢),
6[13,11](2¢), 0[15,10](€2), O]11,9](£2¢)
(recall the binary notation for thetas on page 281).

We define covariants ¢, = (F,k)s € K,4(2,3)(C )

Y2 = (m, 1) € Ky(2,5)(C), and ¢5 = (m, 1), €
K4(2,7)(C) with the help of the covariants

k= (Stv 5t‘)6 € :K4(87 2)(C)7
m = (Stv 5t‘)8 € :K4(47 2)(C)7

and choose for the iiberschiebung the parameter

value A = (h — 1)!/(h!)*. Using the invariant I, =
(F,F)10 € 14(2)(C) we get an embedding
8 (I+m)
G Qi
4

for I,m = 1,2, 3 into the algebra J,[A;']o(C). The
embedding of the coefficients of the curve V(H) of
degree 5 has the form
. I215—(l1+12+13+l4+ls)

A3 ’

for Iy,...,l5 = 1,2,3. We found 114 four-dimen-
sional simple factors of Jy(N) up to level N < 500,
and 11 of them were principally polarized. Table
2 includes all curve equations with endomorphism

H,

1Lwls

Hll ----- s
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N =47
Ay =220.478

D =1957=19-103

curve = Y2 = X104+ 6X% + 11X% + 24X7 + 19X + 16X° — 13X* — 30X° — 38X? — 28X — 11

E; = Q(f), with 84 — 83 —582+53—-1=0

N=119=7-17
Ay =2%.75.176

D =9301="71-131

curve = Y2 = X104+ 2X8 _11X6 — 14X5 —40X* — 42X3 — 48X2 — 28X — 7

Er =Q(B), with g*+ 3% —582-38+3=0

TABLE 2. Hyperelliptic curves of genus 4 with real multiplication.

N =59

As = (—1)-224.59°
E; = Q(3), with 35 — 933 + 232 + 163 —8 =0
D = 138136 = 2% - 31 - 557

curve = Y2 = X12 48X 4+ 22X10 4 28X + 3X® —40X7 — 62X6 — 40X — 3X* +24X3 +20X% +4X -8

TABLE 3. Hyperelliptic curve of genus 5 with real multiplication.

fields E; = End(A;) ® Q (f denoting a newform)
up to level N < 500. Our result for N = 47 is
the same one found in [Fricke 1924-28, p. 491;
Gonzalez Rovira 1991; Shimura 1995].

5.3. Five-Dimensional factors of J,(N)

Our method is theoretically useful for all ¢ € N. In
practice we’re restricted to the case g < 5 since the
computation of the even theta constants requires
in practice a precision of approximately 50 g digits
and a great deal of computing time already for g =
5 (roughly 55 hours per theta constant on a parallel
IBM SP1 with four processors).

The rarity of hyperelliptic factors of Jy(N) for
genus g > 5 is another reason for the restriction to
g < 5. Up to level N < 800 we found only the five-
dimensional simple factor Jy(59), which belongs to
the classical hyperelliptic modular curve X,(59);
see Table 3.

We discuss with the algorithmic differences be-
tween the case g = 5 and the preceding ones. The
vanishing set W (A;,n°) of a generic hyperelliptic

factor A; of Jy(IN) consists of 66 even theta con-
stants, corresponding to the following pairs, where
(i,7) stands for [i, j](2;):

30,11), (15,10), (27,9), (15,5), (14,10), (28,20),
11,29), (31,10), (29,20), (22,19), (7,29), (13,27),
26,22), (19,17), (31,20), (28,21), (13,9), (25,21),
26,23), (21,25), (31,5), (14,26), (29,11), (15,21),
25,19), (30,20), (7,5), (21,19), (19,25), (25,23),
), (25,17), (27,22), (28,22), (13,11), (28,23),

(

(

(

(

(
(30,21
(11,9), (19,29), (15,26), (23,5), (11,13), (31,23),
(23,18), (21,17), (7,21), (30,10), (14,27), (14,11),
(26,18), (21,27), (27,13), (23,13), (7,13), (11,25),
(29,9), (27,18), (31,17), (26,19), (22,27), (23,26),
(31,29), (13,25), (19,21), (22,18), (22,26), (29,22).

To define the embedded coefficients of the conic
V(Q) and the curve V(H) of degree 6 we need
the covariants ¢, = (m,n); € K5(2,5)(C), 1, =
(ny1y)2 € K5(2,7)(C), and

3 = (n7¢2)2 € JC5(279)((C)7
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with
k= (F,5) € K5(12,2)(C),
m = (F, k)1 € Ks5(4,3)(C),
n=(F,F)i0 € K5(4,3)(C).

For the iiberschiebung we choose the parameter

value A = 1/(h!)?. Then with the help of the invari-
ant I, = (F,F) 15 € I5(2)(C) we get the embedding

I8—(l+m)

Ql m 42
- =
Ql,m A 5

for I,m = 1,2, 3 into the algebra J5[A;']o(C). The
other embedded coefficients have the form

22—(l1+Hl2+I3+1a+15+16)
'_) Hll,...,lo I3 I2
lo 3 ?
A5

...,lg = 1,2, 3, with the invariant

Our result for N =59 (see Table 3) is the same
one found in [Gonzalez Rovira 1991; Shimura 1995].
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