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Let n � 2 be an integer and consider the set Tn of n�n permu-

tation matrices � for which �ij = 0 for j � i+2.

We study the convex hull Pn of Tn, a polytope of dimension�
n

2

�
. We provide evidence for several conjectures involving Pn,

including Conjecture 1: Let vn denote the minimum volume of

a simplex with vertices in the affine lattice spanned by Tn. Then

the volume of Pn is vn times the product

n�2Y
i=0

1

i+1

�2i

i

�
of the first n�1 Catalan numbers.

We also give a related result on the Ehrhart polynomial of Pn.

Editor’s note: After this paper was circulated, Doron Zeilberger

[1998] proved Conjecture 1, using the authors’ reduction of the

original problem to a conjectural combinatorial identity, and

sketched the proofs of two others. The problems and methodol-

ogy presented here gain even further interest thereby.

1. INTRODUCTIONLet n � 2 be an integer and consider the set Tn ofn�n permutation matrices � for which �ij = 0 forj � i+2 and Pn the convex hull of Tn.Let Vn be the relative volume of Pn. That is, thevolume of Pn expressed in units of the minimum vol-ume vn of a simplex with vertices in the a�ne latticespanned by Tn. Our main purpose in this paper isto provide evidence for the following conjecture.
Conjecture 1. The relative volume Vn of Pn isVn = n�2Yi=0 1i+1�2ii �;the product of the �rst n�1 Catalan numbers.This conjecture arose from the study [Chan andRobbins 1999] of the polytope Bn of all doubly sto-chastic matrices, which is the convex hull of the setof all n�n permutation matrices. It is easily shown
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92 Experimental Mathematics, Vol. 9 (2000), No. 1that Pn is a face of Bn of dimension �n2 � with 2n�1vertices. In [Chan and Robbins 1999] we discusstwo methods for �nding the volume of Bn and itsfaces. We assume some familiarity with these meth-ods, which apply to the calculation of the volume ofPn. The reader may also wish to consult the refer-ences [Billera and Sarangarajan 1996; Diaconis andGangolli 1995, Hibi 1992, Chapter 9; Stanley 1980],which provide background for the work in [Chan andRobbins 1999].The �rst method discussed in that earlier paperconsists of decomposing the polytope into simplices,each of volume vn, and counting the simplices. Byadapting the method slightly we were able easily to�nd the relative volumes of Pn and its faces providedthat n � 10. This provided the �rst evidence forConjecture 1.The second method discussed in [Chan and Rob-bins 1999] computes the Ehrhart polynomial of thepolytope [Ehrhart 1977]. In general the Ehrhartpolynomial of a d-dimensional polytope P with inte-ger vertices is a degree d polynomial (in t) denotede(P; t), with the property that the number of inte-ger points in the polytope t�P is e(P; t) when t � 0.A basic property of the Ehrhart polynomial is thatthe relative volume of the polytope is given by d!times its leading coe�cient. A common method forcomputing the Ehrhart polynomial is to count thenumbers of lattice points in t�P for small t and thento �nd the polynomial by interpolation. For a typi-cal face of Bn the Ehrhart polynomial method seemsto be more expensive than the simplicial decompo-sition method. However for Bn itself the Ehrhartpolynomial method is less expensive because it ispossible to exploit the symmetries of Bn. Thesesymmetries do not help with the calculation of theEhrhart polynomial of Pn. However, di�erent sim-pli�cations in the case of Pn allow us to computethe Ehrhart polynomial and thus verify Conjecture1 for n � 12, as described in Section 2 of this paper.In Section 3 of this paper we give a proof of abijection between the simplices in a decompositionof Pn and a set of easily described integer arrays,which suggest that a combinatorial proof of Conjec-ture 1 may exist. We also discuss a generalizationof the conjecture which arises from the bijection.In Section 4 we discuss formulas for the relativevolumes of some of the facets of Pn, which we pur-

sued as an alternative path toward proving Conjec-ture 1. The formulas were discovered by using thesimplicial decomposition method mentioned above.
2. THE EHRHART POLYNOMIAL OF PnOne approach to calculating the volume of Pn is tocalculate its Ehrhart polynomial. Denote by e(Pn; t)the Ehrhart polynomial of Pn evaluated at t. Thene(Pn; t) is the number of ways of �lling a left-justi�edarray of n rows of lengths 2; 3; : : : ; n�1; n; n withnonnegative integers in such a way that all row andcolumn sums are t. Thus e(P3; 1) = 4 since the onlyfour suitable arrays are1 00 1 00 0 1 1 00 0 10 1 0 0 11 0 00 0 1 0 10 0 11 0 0It is known that e(Pn; t) is a polynomial in t whosedegree as a function of t is the dimension of Pn or�n2 �.We have e(Pn; 0) = 1 for all n. Also it is easilyveri�ed that e(Pn; 1) = 2n�1 for all n. These arespecial cases of a more general principle.
Theorem 1. For every nonnegative integer t, the se-quence e(P0; t); e(P1; t); : : : ; e(Pn; t); : : :satis�es a linear recursion of degree p(t) with integercoe�cients, where p(t) is the number of partitionsof t.It is conceivable, as far as we know, that the se-quences also satisfy recursions of lower degree. How-ever, for all cases t = 0; : : : ; 12, where we have com-puted the coe�cients of the linear recursion, theassociated characteristic polynomial has been irre-ducible over the integers so, in these cases, no lowerdegree recursion exists.
Proof. Fix a nonnegative integer t. Let� = (x1; x2; : : : ; xl)be a partition of t of length l � 1. That is, 0 <x1 � � � � � xl and x1+ � � �+xl = t. For integersn � 2 let F (�; n) denote the set of arrays of n left-justi�ed rows of nonnegative integers of lengths l+1,l+2, . . . , l+n�2, l+n�1, l+n�1, such that the �rstl column sums are x1; : : : ; xl, the remaining column



Chan, Robbins, and Yuen: On the Volume of a Certain Polytope 93sums are t, and all row sums are t. Let f(�; n) be thecardinality of F (�; n), with f(�; 1) = 1. (If � is theone-part partition (t), we have f(�; n) = e(Pn; t).)Suppose that n � 2. Set xl+1 = t. Let y1; : : : ; yl+1be any nonnegative integers with yi � xi for i =1; : : : ; l+1 such that y1+� � �+yl+1 = t. If y1; : : : ; yl+1is the �rst row of one of the arrays of F (�; n), thenthe rest of the array has its �rst l+1 column sumsequal to zi = xi�yi. By deleting the zi's which equal0 and sorting the remaining zi's, we obtain anotherpartition � of t, of length at most l+1, and thenumber of ways of completing the array is clearlyf(�; n�1). (Since f(�; 1) = 1, this also holds forn = 2.) Now for every partition �, let M(�; �)denote the number of (l+1)-tuples y1; : : : ; yl+1 forwhich our process of forming the z's by subtract-ing from the x's, deleting 0's, and sorting yields thepartition �. Then we have shown thatf(�; n) =X� M(�; �)f(�; n�1):For �xed n we can regard the array of f(�; n), as� varies over partitions of t, as a column vector ofintegers of length p(t). When n = 1 we have thevector of all 1's. The preceding equation shows thatthe n-th vector is obtained by applying the matrixMn�1 to the all 1's vector. Thus the sequence ofvectors satis�es a linear recursion with integer coef-�cients given by the characteristic polynomial of thematrix M . In particular, the component of the col-umn vector f(�; n) corresponding to the partition(t) is e(Pn; t), which proves our theorem. �Example: It is easy to compute the matrix M forsmall values of t. For example, let t = 2. If � = (2),then (x1; x2) = (2; 2), so (y1; y2) = (0; 2), (1; 1) and(2; 0), which yield � = (2), (1; 1) and (2) respec-tively. If � = (1; 1), then (x1; x2; x3) = (1; 1; 2), so(y1; y2; y3) = (0; 0; 2), (0; 1; 1), (1; 0; 1), and (1; 1; 0),which yield � = (1; 1), (1; 1), (1; 1), and (2), respec-tively. Thus we haveM = � 2 11 3� ;with the rows and columns ofM indexed by the par-titions (2) and (11) in that order. The characteris-tic polynomial of M is �2�5�+5. Thus we havee(Pn; 2) = 5e(Pn�1; 2)�5e(Pn�2; 2). Initial values

are e(P1; 2) = 1 (by de�nition) and e(P2; 2) = 3 (byapplying M to the all ones vector).Theorem 1 and its example contain the essentialideas behind our method for evaluating e(Pn; t) forsmall values of t. If we wish to calculate a value ofe(Pn; t) for which n is also small, we can simplify alittle more by computing and using only the subma-trix of M corresponding to partitions of length notexceeding n.Denote the characteristic polynomial of the ma-trix associated to the nonnegative integer t by ft(�).The �rst 6 polynomials aref0 = ��1;f1 = ��2;f2 = �2�5�+5;f3 = �3�10�2+27��20;f4 = �5�20�4+135�3�396�2+518��245;f5 = �7�36�6+480�5�3140�4+11059�3�21180�2+20560��7840:As far as we have computed, all the roots of thesepolynomials are positive real numbers.We can also use Ehrhart's reciprocity principle tosimplify the computation of the Ehrhart polynomial.Recall that, for a d-dimensional polytope P withinteger vertices, and t > 0, Ehrhart's reciprocityprinciple states thate�(P; t) = (�1)de(P;�t)where e�(P; t) is the the number of lattice points inthe interior of t �P .An interior lattice point of t �Pn is an array ofpositive integers consisting of left-justi�ed rows oflength 2; 3; : : : ; n; n with all row and column sumsequal to t. For such an array, if k < n, the �rst krows have lengths 2; 3; : : : ; k; k+1 and the sum of alltheir entries taken together is tk. On the other hand,the sum of all entries in the �rst (k+1) columns is(k+1)t, and this includes all entries in the �rst krows. Thus the sum of all entries in the �rst k+1columns of the last n�k rows must be t. Since allentries are positive, it follows that t � (k+1)(n�k)and this inequality must hold for k = 0; : : : ; n�1.Thus if an interior point exists for a given t, we



94 Experimental Mathematics, Vol. 9 (2000), No. 1must have t at least equal to the maximum overk of (k+1)(n�k). Thus for odd n = 2m+1, wehave e(Pn;�t) = 0 for t = 1; : : : ; (m+1)2�1, whilefor even n = 2m, we have e(Pn;�t) = 0 for t =1; : : : ;m(m+1)�1.We have calculated the Ehrhart polynomials of Pnfor n = 2; : : : ; 12. The �rst few aree(P2; t)= t+1;e(P3; t)= 16 3Yi=1(t+ i);e(P4; t)= t+3360 5Yi=1(t+ i);e(P5; t)= (t+3)2362880 8Yi=1(t+ i);e(P6; t)= (t+3)2(t2+12t+26)9340531200 11Yi=1(t+ i);e(P7; t)= (t+3)2(14t4+353t3+2985t2+9568t+10336)121645100408832000� 15Yi=1(t+ i):The factor (t+3)2, which appears in e(P5; t), persiststhrough n = 12, but we have no proof that it persistsforever.To check Conjecture 1, one multiplies the leadingcoe�cient of e(Pn; t) by �n2 �!, to get the predictedrelative volume. This works through n = 12.
3. EXPLICIT DECOMPOSITION INTO SIMPLICESIn this section we show that the polytope Pn can bedecomposed into minimal volume simplices whichare in bijection with an easily described set of integerarrays. Thus the relative volume of Pn is simply thenumber of such integer arrays. This suggests anavenue for proving Conjecture 1, although we havenot been successful thus far. Postnikov and Stanley[Postnikov and Stanley 1998] have found a bijectionvery much like ours, and also observed that thereforeConjecture 1 is equivalent toK �a1+3a2+6a3+ � � �+�n2�an�1� = n�1Yi=0 1i+1�2ii �

where a1; : : : ; an�1 is a choice of simple roots and Kis the Kostant partition function for the root systemAn�1.To describe our decomposition we �rst need somenotation.The polytope Pn consists of doubly stochastic ma-trices Y = (yij) where yij = 0 for j > i+1.However the entries yij , j � i � n�1, determinethe remaining 2n�1 entries y12; y23; : : : ; yn�1;n andyn1; : : : ; ynn. Thus we may view a point Y in Pn asa triangular arrayy11y21 y22... ... . . .yn�1;1 yn�1;2 yn�1;3 � � � yn�1;n�1where the nonnegative yij 's satisfy the conditionsn�1Xi=k yik � k�1Xj=1 yk�1;j � 1 (1)for k = 2; : : : ; n�1 andn�1Xi=1 yi1 � 1 (2)so that the �rst column has sum � 1.Let An be the set of triangular arrays of nonneg-ative integersa22a32 a33... ... . . .an�1;2 an�1;3 � � � an�1;n�1where the a's are subject to the constraintsa22+ � � �+an�1;2 � 0;a33+ � � �+an�1;3 � 1+a22;a44+ � � �+an�1;4 � 2+a32+a33;a55+ � � �+an�1;5 � 3+a42+a43+a44;...an�1;n�1 � n�3+an�2;2+an�2;3+ � � �+an�2;n�2(3)

Note that this condition implies that the leftmostcolumn in the array is all zeros.



Chan, Robbins, and Yuen: On the Volume of a Certain Polytope 95For example, A5 consists of these 10 triangulararrays:00 00 0 0 00 00 0 1 00 00 0 200 00 1 0 00 00 1 1 00 00 1 200 10 0 0 00 10 0 1 00 10 0 2 00 10 0 3We will give a decomposition of Pn into simplicesall of the same volume in such a way that the sim-plices in the decomposition will be in one-to-one cor-respondence with the set An.We start by de�ning a mapping which assigns toeach element � of An a simplex contained in Pn.Let V be the space of triangular arraysx11x21 x22... ... . . .xn�1;1 xn�1;2 � � � xn�1;n�1Let S be the unit simplex in V consisting of all non-negative arrays of the preceding form in which thesum of all the entries is � 1. The simplex associatedto � will be the image of S under a certain lineartransformation of determinant 1 which is associatedto �. We will denote this linear transformation byL(�).We can construct many such mappings from �'sto simplices, each of which yields a suitable decom-position of Pn. A convenient way to specify a singleone of these is to assign a linear ordering to the vari-ables xij . It does not matter what linear orderingwe use.To form L(�) we start with the identity matrix,represented by the preceding triangle. Then L(�) isformed by a series of steps, one step for each columnof �. At the beginning of each step we have a lin-ear transformation consisting of a triangle of linearfunctions of the x's. The step itself consists in per-forming certain operations on the triangle, leadingto another triangle of linear functions.

After each step all the linear functions in eachtriangle are of a particularly simple form:
C0. each linear function is a linear combination ofthe x's all of whose coe�cients are 0 or 1; i.e.a sum of distinct x's. Moreover no two entriesin any row involve the same variable and no twoentries in any column involve the same variable.Also, after having used columns 2; : : : ; k of �, thetriangle of linear functions has certain additionalproperties depending on k.
C1.In the rectangular subarray consisting of columns1; : : : ; k of rows k through n�1, no two of thelinear functions share any variables.
C2. Within this rectangle, if j � 2, entry ij is a sumof precisely aij+1 variables, while entry i1 is justxi1, a sum of 1 variable.
C3. The only variables that occur in columns 1; : : : ; kof the triangle are those that were originally inthese columns.
C4. In columns k+1; : : : ; n�1, the linear function isjust the original variable xij .
C5. For 2 � j � k the variables appearing in col-umn j of the array are a proper subset of thoseappearing in row j�1.
C6. In the �rst column of the triangular array everyvariable originally in the �rst k columns appearsprecisely once.In view of (2) above, after having used columns2; : : : ; k of �, there are preciselyk+ak2+ � � �+ak;kvariables in all the sums in the k-th row. Denotethis number of variables by N . We now list thesevariables in the assigned order, denoting them asz1; : : : ; zN .From our conditions above de�ning An, we haveN > ak+1;k+1+ � � �+an�1;k+1:Before actually modifying the triangle of linearfunctions we �rst use column k+1 of � to parse thez's into \chunks", putting the �rst ak+1;k+1 z's intothe �rst chunk, the next ak+2;k+1 z's into the nextchunk, and so forth, one chunk for each entry ai;k+1in column k+1 of �. The inequality (3) guaranteesthat there is at least one more variable available



96 Experimental Mathematics, Vol. 9 (2000), No. 1than is needed to form all the chunks. Notice thatsome of the chunks can be empty and that at leastone of the z's does not appear in any chunk.After we form each chunk, we associate to it the�rst of the z's (in our ordering) that has not yetappeared in any chunk (including the chunk justformed) and call this the \cap" of the chunk justformed. Note that since some of the chunks areempty, it is possible for chunks associated to severalconsecutive entries ai;k+1 to have the same cap.Now we modify the triangle of linear functions intwo substeps.First, for each i = k+1; : : : ; n�1, we let z be thecap of the chunk associated to ai;k+1, and then re-place every occurrence of z in columns 1; : : : ; k of thetriangle of linear functions with z+xi;k+1. The orderin which we perform the substitutions in this sub-step is immaterial since the variables xi;k+1 did notpreviously appear in columns 1; : : : ; k (and hencealso are never caps).Second, for each variable xi;k+1 in column k+1 ofthe triangle of linear functions, we replace that vari-able by a sum consisting of the variable itself plusthe sum of all the variables in the chunk associatedto ai;k+1.Conditions C0{C6 holds for the initial triangleand it is easy to see, inductively, that the modi-�cation rules above preserve the conditions. Thusthey hold at every stage.A somewhat deeper property of our inductive pro-cedure is that, at each stage, the triangle of linearfunctions represents a linear transformation of de-terminant 1.The �rst substep is a linear substitution of de-terminant 1. However, the second substep is notstrictly a linear substitution since the �rst substepresults in occurrences xi;k+1 in the columns 1; : : : ; k,while, in the second substep, we do not perform thesubstitution in these occurrences.However, we can obtain the second substep by asequence of pairs of linear substitutions of determi-nant 1. Indeed for each xi;k+1 in column k+1 wesubstitute for its cap variable the cap variable mi-nus the sum of the associated chunk variables, andthen substitute for the xi;k+1, xi;k+1 plus the sum ofthe chunk variables. The e�ect of the these two sub-stitutions is to leave columns 1; : : : ; k unchanged butto perform the desired substitution in column k+1.

Here is an illustration of the procedure describedabove. Suppose that n = 5 and that the array � is00 10 0 20 0 1 2Take the array of variables (called xij above) to beAB FC G JD H K ME I L N Oand order the variables alphabetically.When the �rst column of � is used, all 4 chunkshave length 0 and cap A. So the e�ect is that allfour variables are added to A, yieldingAFGHIB FC G JD H K ME I L N Owhere, for the rest of this example, we designateaddition by juxtaposition, so that AFGHI meansA+F +G+H+I.When the second column of � is used, the vari-ables in the second row of the triangle are B;F andthere are three chunks, the �rst is B and the last twoare empty. All three have cap F . Thus we obtainAFGHIJKLB FJKLC G BJD H K ME I L N OWhen the third column of � is used there, are fourvariables in the third row of our triangle, namelyB;C;G; J and there are two chunks, B;C and G,with caps G and J respectively. The chunks areadjoined toM and N and, in the �rst three columns



Chan, Robbins, and Yuen: On the Volume of a Certain Polytope 97of the triangle, G is replaced by GM and J by JN .Thus we obtainAFGHIJKLMNB FJKLNC GM BJND H K BCME I L GN OFinally, when the last column of � is used, thereare 6 variables in the fourth row of the triangle,B;C;D;H;K;M . We form one chunk of size 2,namely B;C, with cap D, obtainingAFGHIJKLMNB FJKLNC GM BJNDO H K BCME I L GN BCOThe unit simplex in V is the set of 15-tuples A;: : : ; O of nonnegative reals whose sum is � 1. Still,taking note of our juxtaposition notation for addi-tion, we see that the triangle above de�nes a linearmapping from the unit simplex to P5.It is easy to see, inductively, that this will be thecase for any � in An. First note the inequality (2)will always hold because of (C6). One also easilyveri�es that the conditions (1) always hold. Thesecond of the inequalities is a consequence of the factthat the variables occurring in any row are alwaysdistinct. The �rst inequality follows from (C5).Thus we have associated to every � in An a sim-plex whose volume is 1=�n2 �!.One needs also to show that the simplices L(�)cover Pn and have disjoint interiors. There is anargument, rather similar to the preceding, in whichwe start with a point of Pn and build up � and L(�)with a construction like the preceding. But we omitthe details.Thus our conjecture would be proved if we couldshow that the cardinality of An was given byn�2Yi=0 1i+1�2ii �:We have not been able to show this.However, this combinatorial interpretation leadsto a stronger conjecture. We can classify the ele-ments of An according to the number of times that

we have equality in (3). This can hold from 1 ton�2 times.
Conjecture 2. If n � 2 and Dnk is the number ofelements of An for which equality holds for k of theinequalities (3), then Dnk is divisible byn�3Yi=0 1i+1�2ii �and the quotient isN(n; k) = 1n�2�n�2k ��n�2k�1�;the Narayana number N(n�2; k).For example, the following two elements of A5 sat-isfy just 1 equality in (3)00 00 0 0 00 00 0 1while the following two elements of A5 satisfy threeequalities 00 00 1 2 00 10 0 3The remaining 6 satisfy two equalities.To conclude this section we de�ne a generalizationof the set An and a corresponding generalization ofConjecture 1.Let Ajn denote the set of elements of An in whichthe �rst j columns consist entirely of zeros. ThusA1n = An and Ajn � Aj�1n for all j � 2. Here is asmall table of values of Ajn.n j = 1 j = 2 j = 3 j = 4 j = 53 14 2 15 10 3 16 140 28 4 17 5880 840 60 5 1
Conjecture 3. The number of elements in Ajn is theproduct n�3Yi=j 12i+1�n+ i�12i �:With the help of Mathematica we can verify thiseasily for n�j � 6.
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4. FACETS OF Pn AND THEIR VOLUMESAnother approach toward proving Conjecture 1 isto try to understand the relative volumes of thefacets of Pn. In this section we study these facetvolumes and make a conjecture concerning these vol-umes based on evidence obtained by the simplicialdecomposition method described in [Chan and Rob-bins 1999].Suppose that n � 2 is an integer and that 1 �r; s � n and s � r+1. Consider the convex hullPn(r; s) of those permutations in Tn whose (r; s) en-try is zero. Then Pn(r; s) is always a face of Pn. Ifn = 2 these are all facets of Pn(r; s), but for n � 3,Pn(r; s) is a facet of Pn precisely when r 6= 1 ands 6= n and s 6= r+1.Since the set Tn is invariant under the operation ofexchanging the �rst two columns and the operationof exchanging the last two rows, the same symme-tries apply to the volumes of the facets. Thus thevolume of Pn(r; 1) is equal to that of Pn(r; 2) forall r. Also the volume of Pn(n; s) equals that ofPn(n�1; s). Thus, we can display the volumes of allthe facets as a triangular array consisting of the vol-umes of Pn(r; s) for 2 � r � n�1 and 2 � s � n�1and s � r.Here are the volumes of Pn(r; s) for n = 3; : : : ; 7.112 137 410 7 32870 42112 84 42140 112 70 288402180 13403700 2860 15205040 4200 2860 13405880 5040 3700 2180 840

These arrays have some properties that are easilyveri�ed. For example, there is symmetry about theanti-diagonal. There is a slightly deeper fact. Inany 2�2 submatrix of the preceding array the sumof the entries on one diagonal of the submatrix isequal to the sum of the entries on the other.There is a slightly stronger version that can bestated a little more elegantly if we add an extra di-agonal of zeroes above the main diagonal and thencomplete the triangle to a skew-symmetric matrix.For example, the square matrix associated to thelast triangle (corresponding to n = 7) is0 �840 �2180 �3700 �5040 �5880840 0 �1340 �2860 �4200 �50402180 1340 0 �1520 �2860 �37003700 2860 1520 0 �1340 �21805040 4200 2860 1340 0 �8405880 5040 3700 2180 840 0Each square matrix formed this way has the prop-erty that, for any of its 2�2 submatrices, the sumon the entries on one diagonal is the same as thesum of the entries on the other.This property is easily proved. It results from thefact that the relative volume of Pn can be expressedas the sum of the relative volumes of the facets op-posite any vertex. The rectangular relations arisefrom pairs of vertices that (when regarded as per-mutations) di�er by a transposition.One consequence of the rectangular relations isthat all the entries in each triangle depend linearlyon the main diagonal so we can describe the wholetriangle, much more succinctly, in terms of the di-agonal. Here are the diagonals (listed as rows) forn = 3; : : : ; 10. (The last four rows need to be com-pleted to be palindromic of length n�2.)11 13 4 328 42 42 28840 1340 1520 134083160 137610 167310 16731027747720 47016970 59676120 6409102031743391680 54669174560 71411118240 80251753120The entries in the �rst two columns of this arrayseem to be predictable. Suppose that an denotes



Chan, Robbins, and Yuen: On the Volume of a Certain Polytope 99the entry in the �rst column and bn the entry in thesecond column. Then an is de�ned for n � 3, andbn is de�ned for n � 4 so thata3; a4; a5; a6 : : : = 1; 1; 3; 28 : : :and b4; b5; b6; b7 : : : = 1; 4; 42; : : : :
Conjecture 4. For n � 3,an = 3Vn.�n2�:For n � 4,(n�1)� bn+1an+1 � bnan� = (n+2)� bn+2an+2 � bn+1an+1� :The evidence for the second formula is perhaps notall that compelling since the result is known to holdonly for n = 4; : : : ; 8. However it is not hard tocheck that the two formulas above, taken togetherwith Conjecture 1, predict integral values for bn, forall n. So this gives some additional evidence.
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