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Percolation of averages in the stochastic
mean field model: the near-supercritical regime*
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Abstract

For a complete graph of size n, assign each edge an i.i.d. exponential variable with
mean n. For λ > 0, consider the length of the longest path whose average weight is at
most λ. It was shown by Aldous (1998) that the length is of order logn for λ < 1/e and
of order n for λ > 1/e. In this paper, we study the near- supercritical regime where
λ = e−1 + η with η > 0 a small fixed number. We show that there exist two absolute
constants C1, C2 > 0 such that with high probability the length is in between ne−C1/

√
η

and ne−C2/
√
η. Our result corrects a non-rigorous prediction of Aldous (2005).

Keywords: Combinatorial optimization; stochastic distance model; percolation.
AMS MSC 2010: 60C05; 60G70.
Submitted to EJP on February 14, 2015, final version accepted on November 1, 2015.

1 Introduction

LetWn be a complete undirected graph of n vertices where each edge is assigned an
independent exponential weight with mean n; this is referred to as the stochastic mean-
field (SMFn) model. For a (self-avoiding) path π = (v0, v1, . . . , vm), define its length
len(π) and average weight A(π) by

len(π) = m, and A(π) = 1
m

∑m
i=1W(vi−1,vi) ,

where W(u,v) is the weight of the edge (u, v). For λ > 0, let L(n, λ) be the length of the
longest path with average weight below λ, i.e.,

L(n, λ) = max{len(π) : A(π) ≤ λ, π is a path in SMFn model} .

In a non-rigorous paper of Aldous [2], it was predicted that L(n, λ) � n(λ − e−1)β

with β = 3 as λ ↓ e−1. Our main result is the following theorem, which corrects Aldous’
prediction.
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Percolation of averages in the stochastic mean field model

Theorem 1.1. Let λ = 1/e + η where η > 0. Then there exist absolute constants
C1, C2, η

∗ > 0 such that for all η ≤ η∗,

lim
n→∞

P
(
ne−C1/

√
η ≤ L(n, λ) ≤ ne−C2/

√
η
)

= 1 . (1.1)

The study of the object L(n, λ) was initiated by Aldous [1] where a phase transition
was discovered at the threshold e−1. It was shown that with high probability L(n, λ) is
of order log n for λ < e−1 and L(n, λ) is of order n when λ > e−1. The critical behavior
was established in [4], where it was proved that with high probability L(n, λ) is of order
(log n)3 when λ is around e−1 within a window of order (log n)−2. Our Theorem 1.1
describes the behavior in the near-supercritical regime, and in particular states that
L(n, λ)/n is a stretched exponential in η with η = λ − e−1 ↓ 0. Another interesting
result proved in [4] states that L(n, λ) ≥ n1/4 in a somewhat similar regime namely
λ ≥ 1/e + β(log n)−2, where β > 0 is an absolute constant. Notice that substituting
η = C(log n)−2 in (1.1), we indeed get a fractional power of n. In fact our method should
work, subject to some technical modifications, all the way down to η = C(log n)−2 for a
large absolute constant C. However, we do not attempt any rigorous proof of this in the
current paper.

A highly related question is the length for the cycle of minimal mean weight, which
was studied by Mathieu and Wilson [9]. An interesting phase transition was found in [9]
with critical threshold e−1 on the mean weight. Further results on this problem have
been proved in [5]. It might be relevant to mention here that the method used in [5]
could be potentially useful for nailing down the second phase transition detected in
[4], namely the transition from η = α(log n)−2 to η = β(log n)−2 where α, β are positive
constants.

Another related question is the classical travelling salesman problem (TSP), where
one minimizes the weight of the path subject to passing through every single vertex in
the graph. For the TSP in the mean-field set up, Wästlund [12] established the sharp
asymptotics for more general distributions on the edge weight, confirming the Krauth-
Mézard-Parisi conjecture [10, 11, 8]. Indeed, it is an interesting challenge to give a
sharp estimate on L(n, λ) for e−1 < λ < λ∗ (here λ∗ is the asymptotic value for TSP),
interpolating the critical behavior and the extremal case of TSP. A question of the same
flavor on steiner tree is given in [13].

One can also look at the maximum size of tree with average weight below a certain
threshold, where a phase transition was proved in [1]. The extremal case of the question
on the tree with minimal average weight is the well-known minimal spanning tree
problem, where a ζ(3) limit is established by Frieze [7].

Main ideas of our proofs. A straightforward first moment computation as done in
[1] implies that limn→∞P

(
L(n, λ) = O(log n)

)
= 1 when λ < 1/e (see also [4, Theorem

1.3]). For λ > 1/e, a sprinkling method was employed in [1] to show that with high
probability L(n, λ) = Θ(n). The author first proved that with high probability there
exist a large number of paths with average weight slightly above 1/e and then used a
certain greedy algorithm to connect these paths into a single long path with average
weight slightly above 1/e. However, the method in [1] was not able to describe the
behavior at criticality. In [4] (see also [9] for the cycle with minimal average weight), a
second moment computation was carried out restricted to paths of average weight below
1/e and with the maximal deviation (defined in (3.2) below) at most O(log n), thereby
yielding that with high probability L(n, 1/e) = Θ((log n)3). A crucial fact responsible for
the success of the second moment computation is that the length of the target path is
Θ((log n)3)�

√
n. As such, a straightforward adaption of this method would not be able

to succeed in the regime considered by this paper.
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Percolation of averages in the stochastic mean field model

TSP, where one studies paths (cycles) that visit every single vertex, is in a sense
analogous to the question of finding the minimal value λ for which L(n, λ) = n with high
probability. Wästlund [12] showed that the minimum average cost of TSP converges in
probability to a positive constant by relaxing it to a certain linear optimization problem.
But it seems difficult to extend his method to “incomplete” TSP i.e. when the target
object is the minimum cost cycle having at least pn many edges for some p ∈ (0, 1). Since
our problem is in a sense dual to incomplete TSP in the regime we are interested in, the
method of [12] does not seem to be suitable for our purpose either. In the current work,
our method is inspired by the (first and) second moment method from [4, 9] as well as
the sprinkling method employed in [1].

In order to prove the upper bound, our main intuition is that if L(n, λ) were greater
than e−C2/

√
ηn then we would have a larger number of short and light paths (a light

path refers to a path with small average weight — at most a little above 1/e) than we
would typically expect. Formally, let ` = c1

η where c1 is a small positive constant, and
consider the number of paths (denoted by Nη/c1,c2) with length ` and total weight no

more than λ`− c2
√
` for a positive constant c2. We call such a path a downcrossing. A

straightforward computation gives ENη/c1,c2 = O(1)n`e−c3/
√
η for a positive constant c3

depending on c1 and c2. Now we consider the number of paths (denoted by Nδ) of length
δ(λ)n and average weight at most λ. Such paths have two possibilities: (1) The path
contains substantially more than ENη/c1,c2 many downcrossings, which is unlikely by
Markov’s inequality. (2) The path does not have substantially more than ENη/c1,c2 many
downcrossings. This is also unlikely for the following reasons: (a) A straightforward first
moment computation gives that ENδ = O(n)ec4δnη for a constant c4 > 0; (b) The number
of downcrossings along a path of this kind, or a random variable that is “very likely”
smaller, should dominate a Binomial random variable Bin(δn/`, c5) where c5 > 0 is an
absolute constant (since in the random walk bridge, every subpath of size ` has a positive
chance to have such a downcrossing). If we choose δ suitably large as in Theorem 1.1,
we are suffering a probability cost for the constraint on the number of downcrossings
(probability for a binomial much smaller than its mean) and this probability cost is of
magnitude e−c6δn/` for a constant c6 > 0 depending in c1. If we choose c1 small enough
this probability cost kills the growth of ec4δnη in ENδ. Therefore, paths of this kind do
not exist either. The details are carried out in Section 2.

For the lower bound, our proof consists of two steps. In light of the preceding
discussion, we cannot hope to directly apply a second moment method from [4, 9] to
show the existence of a light path that is of length linear in n. As such, in the first step
of our proof we prove that with high probability there exists a linear (in n) number of
disjoint paths, each of which has weight slightly below λ and is of length ec7/

√
η for an

absolute constant c7 > 0. This is achieved by two second moment computations, which
are expected to succeed as the length of the path under consideration is�

√
n (indeed

remains bounded as n→∞). In the second step, we propose an algorithm which, with
probability going to 1, strings together a suitable collection of these short light paths to
form a light path of length e−c8/

√
ηn for an absolute constant c8 > 0. Our algorithm is

similar to the greedy algorithm (or in a different name exploration process) employed in
[1]. But in order to ensure that the additional weight introduced by these connecting
bridges only increases the average weight of the final path by at most a multiple of η, we
have to use a more delicate algorithm. The details are carried out in Section 3.

Notation convention. For a graph G, we denote by V (G) and E(G) the set of vertices
and edges of G respectively. A path in a graph G is an (finite) ordered tuple of vertices
(v0, v1, · · · , vm), all distinct. For a path π = (v0, v1, · · · , vm), we also use π to denote the
graph whose vertices are v0, v1, · · · , vm and edges are (v0, v1), · · · , (vm−1, vm). This would
be clear from the context. The weight of an edge e inWn is denoted by We and we define
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Percolation of averages in the stochastic mean field model

the total weight W (π) of a path π as
∑
e∈E(π)We. The collection of all paths in Wn of

length ` ∈ [n] is denoted as Π`. We let λ = 1/e + η where η is a fixed positive number. A
path is called λ-light if its average weight is at most λ, and a path is called (λ,C)-light if
its total weight is at most λ`−C

√
` where ` is length of the path. For nonnegative real or

integer valued variables x0, x1, · · · , xn, let S be a statement involving x0, x1, · · · , xn. We
say that S holds “for large x0 (given x1, · · · , xn)” or “when x0 is large (given x1, · · · , xn)”
if it holds for any fixed values of x1, · · · , xn in their respective domains and x0 ≥ a0 where
a0 is some positive number depending on the fixed values of x1, · · · , xn. In case a0 is an
absolute constant, the phrase “(given x1, · · · , xn)” will be dropped. We use “for small
x0” or “when x0 is small” with or without the qualifying phrase “(given x1, x2, · · · , xn)”
in similar situations if the statement S holds instead for 0 < x0 ≤ a0. Throughout this
paper the order notations O(.),Θ(.), o(.) etc. are assumed to be with respect to n→∞
while keeping all the other involved parameters (such as `, η etc.) fixed. We will use
C1, C2, . . . to denote constants, and each Ci will denote the same number throughout of
the rest of the paper.

2 Proof of the upper bound

Let η′ be a multiple of η by a constant bigger than 1 whose precise value is to be
selected. Set ` = b1/η′c and let Nη′ be the number of “(λ, 1)-light” paths of length `. We
assume η < 1 so that ` ≥ 1. As outlined in the introduction, we shall first control Nη′ .

It is clear that the distribution of the total weight of a path of length k follows a
Gamma distribution Γ(k, 1/n), where the density fθ,k(z) of Gamma(k, θ) is given by

fθ,k(z) = θkzk−1e−θz/(k − 1)! for all z ≥ 0, θ > 0 and k ∈ N. (2.1)

By (2.1) and the Stirling’s formula, we carry out a straightforward computation and get
that

ENη′ = (1 + o(1))× n`+1 × P
(

Gamma(`, 1/n) ≤ λ`−
√
`
)

= (1 + o(1))× n`+1 × e−(λ`−
√
`)/n(λ`−

√
`)`

`!n`

= (1 + o(1))C0(η)αeeη/η′
√
η′e−e/

√
η′n, (2.2)

where C0(η)→ 1 as η → 0, and α is a positive constant. Furthermore the factors 1 + o(1)

are strictly less than 1.
We also need a bound on the second moment of Nη′ to control its concentration around
ENη′ . For γ ∈ Π`, define Fγ to be the event that γ is (λ, 1)-light. Then clearly we have
Nη′ =

∑
γ∈Π`

1Fγ . In order to compute E(Nη′)
2, we need to estimate P(Fγ ∩ Fγ′) for

γ, γ′ ∈ Π`. In the case E(γ) ∩E(γ′) = ∅, we have Fγ and Fγ′ independent of each other
and thus P(Fγ′ |Fγ) = P(Fγ′). In the case |E(γ) ∩ E(γ′)| = j > 0, we have

P(Fγ′ |Fγ) ≤ P
(
Gamma(`− j, 1/n) ≤ λ`

)
≤ 1

(`−j)!
(λ`)`−j

n`−j
. (2.3)

Further notice that if |E(γ) ∩ E(γ′)| = j, then |V (γ) ∩ V (γ′)| is at least j + 1 as γ ∩ γ′ is
acyclic. So given any γ ∈ Π`, the number of paths γ′ such that |E(γ) ∩ E(γ′)| = j is at
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most O(n`−j). Altogether, we obtain that

EN2
η′ =

∑
γ,γ′∈Π`

P(Fγ ∩ Fγ′) =
∑
γ∈Π`

P(Fγ)
∑
γ′∈Π`

P(Fγ′ |Fγ)

≤
∑
γ∈Π`

P(Fγ)
( ∑
γ′:E(γ′∩γ)=∅

P(Fγ′) +
∑

1≤j≤`

∑
γ′:|E(γ′∩γ)|=j

1

(`− j)!
(λ`)`−j

n`−j

)
=
∑
γ∈Π`

P(Fγ)
( ∑
γ′:E(γ′∩γ)=∅

P(Fγ′) +
∑

1≤j≤`

O(n`−j)

(`− j)!
(λ`)`−j

n`−j

)
≤
∑
γ∈Π`

P(Fγ)
(
ENη′ +O(1)

)
= ENη′

(
ENη′ +O(1)

)
. (2.4)

Since ENη′ = Ω(1) as implied by (2.2), (2.4) yields that

EN2
η′ = (ENη′)

2(1 + o(1)). (2.5)

As a consequence of Markov’s inequality (applied to |Nη′ − ENη′ |2), we get that

P
(
Nη′ ≥ 2ENη′

)
= o(1). (2.6)

Next, we set out to show that any long λ-light path should have a large number of
subpaths which are (λ, 1)-light. Let π be a path of length δn for some δ > 0. Denote
its successive edge weights by X1, X2, . . . Xδn and let Sk =

∑k
i=1Xi for 1 ≤ k ≤ δn.

Probabilities of events involving edge weights of π, unless specfically mentioned, will be
assumed to be conditioned on “{A(π) ≤ λ}” throughout the remainder of this section.
Now divide π into edge-disjoint subpaths of length ` (with the last subpath of length
possibly less than ` in the case ` does not divide δn) and denote the k-th subpath by bπk
for 1 ≤ k ≤ δn/`. Call any such subpath a downcrossing if it is (λ, 1)-light. Let Dπ

k,η′,n be
the event that bπk is a downcrossing. The following well-known result about exponential
random variables (see, e.g., [3, Theorem 6.6]) will be very useful.

Lemma 2.1. Let W1,W2, . . . ,WN be i.i.d. exponential random variables with mean 1/θ,
and let Sk =

∑k
i=1Wi for 1 ≤ k ≤ N . Then the random vector (W1

SN
, . . . , WN−1

SN
) follows

Dirichlet(1N ) distribution, SN follows Gamma(N ; θ) distribution, and they are indepen-
dent of each other. Here 1N is the N -dimensional vector whose all entries are 1.

We will also require the following simple lemma which we prove for sake of complete-
ness.

Lemma 2.2. Let Z1, Z2, . . . , ZN be i.i.d. exponential random variables with mean 1 and
let SN =

∑N
i=1 SN . Then

P(SN ≥ N + α) ≤ e−α
2/4N for all 0 < α ≤ (2−

√
2)N , (2.7)

P(SN ≤ N − α) ≤ e−α
2/2N , for all α > 0 . (2.8)

Proof. By Markov’s inequality, we get that for any α > 0 and 0 < θ < 1,

P(SN ≥ N + α) = P(eθSN ≥ eθ(N+α)) ≤ e−θN−θα

(1−θ)N .

When θ ≤ 1 − 1/
√

2, the right hand side is bounded above by eNθ
2−αθ. So setting

θ = α/2N yields (2.7) as long as 0 < α/2N ≤ 1− 1/
√

2. One can prove (2.8) in the same
manner.

As hinted in the introduction, let us begin with the intent to prove that the number
of downcrossings along the first half of π (or any fraction of it) dominates a Bino-
mial random variable Bin(δn/2`, p) for some positive, absolute constant p. So essen-
tially we need to prove that a subpath bπk can be a downcrossing with probability p
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Percolation of averages in the stochastic mean field model

regardless of the first (k − 1)` edges of π that precede it. Now conditional distribution
of X(k−1)`+1, X(k−1)`+2, · · · , Xδn given X1, X2, · · · , X(k−1)` and A(π) ≤ λ is essentially

the the distribution of X(k−1)`+1, X(k−1)`+2, · · · , Xδn conditioned on
∑δn
i=(k−1)`+1Xi ≤

λδn − S(k−1)`. On the other hand we get from Lemma 2.1 that conditional mean and
variance of W (bπk ) given Sδn − S(k−1)` = µ(δn− (k − 1)`) are µ` and µ2`(1 + o(1)) respec-
tively for all µ > 0 and k ≤ δn/2. Hence it is plausible to expect that probability of the
event {W (bπk ) ≤ Λk(`− C

√
`)} conditional on any set of values for X1, X2, · · · , X(k−1)` is

bounded away from 0 for large ` and n, where Λk = Λπk = (Sδn − S(k−1)`)/(δn− (k − 1)`)

and C is some positive number. Let us denote the event {W (bπk ) ≤ Λk(` − C
√
`)} by

AC,πk,η′,δ,n. Thus it seems more immediate to prove the stochastic domination for number

of occurrences of AC,πk,η′,n’s which, for the time being, can be treated as a “proxy” for the
number of downcrossings. The formal statement is given in the next lemma where we
use 6 as the value of C since this allows us to avoid unnecessary named variables and
also suits our specific needs for the computations carried out at the end of this section.

Lemma 2.3. Let Nπ
η′,n be the number of occurrences of events Aπk,η′,n = A6,π

k,η′,n for
1 ≤ k ≤ δn/2`. Then for any 0 < η′ < η0 where η0 is a positive, absolute constant and any
0 < δ0 < 1 there exists a positive integer nd = nd(δ0, η

′) and an absolute constant c > 0

such that for all δ ≥ δ0 and n ≥ nd the conditional distribution of Nπ
η′,n given {A(π) ≤ λ}

stochastically dominates the binomial distribution Bin(δn/2`, c).

Proof. Notice that it suffices to prove that there exist positive absolute constants `0, c
such that uniformly for µ > 0, ` ≥ `0 and large L (given `)

P(S` ≤ SL
L (`− 6

√
`)|SL = µL) ≥ c .

To this end, we see that for L > `

P(S` ≤ SL
L (`− 6

√
`)|SL = µL) = P( S`SL ≤ (`− 6

√
`)/L|SL = µL)

= P( S`SL ≤ (`− 6
√
`)/L) , (2.9)

where the last equality follows from Lemma 2.1. Since distribution of S`
SL

does not depend
on the mean of the underlying Xj ’s, we can in fact assume that Xj ’s are i.i.d. exponential
variables with mean 1 for purpose of computing (2.9). By (2.8), we have

P
(
SL/L ≤ 1− 1/(2

√
`)
)
≤ e−L/8` .

So for `− 6
√
` > 0, we get

P(S` ≤ SL
L (`− 6

√
`)) ≥ P(S` ≤ `− 6.5

√
`)− e−L/8`. (2.10)

By central limit theorem there exist absolute numbers `0, c
′ > 0 such that P(S` ≤

` − 6.5
√
`) ≥ c′ for ` ≥ `0. Hence from (2.10) it follows that for any ` ≥ `0 there exists

L0 = L0(`) such that the right hand side of (2.9) is at least c = 0.99c′ for L ≥ L0.

Now what remains to show is that the number of downcrossings Ñπ
η′,n along π is

bigger than Nπ
η′,n with high probability. Notice that the occurrence of Aπk,η′,n \Dπ

k,η′,n

implies that Λk must be “significantly” above λ. But that can only be caused by a
substantial drop in Sk for some 1 ≤ k ≤ δn/2, an event that occurs with small probability.

Lemma 2.4. Denote by Eπη′,n the event that Λk is more than λ+
√
η′ for some 1 ≤ k ≤ δn

2` .
Then for any 0 < η′ < 1/4 and 0 < δ0 < 1 there exists a positive integer ns = ns(δ0, η

′)

such that,
P(Eπη′,n|A(π) ≤ λ) ≤ 2ne−δnη

′/16 for all δ ≥ δ0 and n ≥ ns . (2.11)
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Proof. For 1 ≤ k ≤ δn/2`, let `k = (k − 1)`, ns = d2`/δ0e and Eπk,η′,n = {Λk ≥ λ +
√
η′}.

Assume n ≥ ns so that δn/2` ≥ 1. On Eπk,η′,n, we have

S`k
Sδn
≤ `kSδn/δn−

√
η′(δn− `k)

Sδn
≤ `k
δn
−
√
η′(δn− `k)

δn
,

where the last inequality holds since we are conditioning on Sδn ≤ λδn and λ ≤ 1 when
η′ < 1/4 (recall that η < η′). Therefore, we get

P(Eπk,η′,n|A(π) ≤ λ) ≤ P(S`k ≤ Sδn
δn

(
`k −

√
η′(δn− `k))) (2.12)

Now we evaluate the right hand side of (2.12). Analogous to (2.9) in the proof of
Lemma 2.3, we can assume without loss of generality that X1, X2, . . . XL are i.i.d. expo-
nential variables with mean 1. It is routine to check that

(1 +
√
η′/2)×

(
`k −

√
η′(δn− `k)

)
≤ `k −

√
η′δn/4 , for all 1 ≤ k ≤ δn/2` .

Thus, for all 1 ≤ k ≤ δn/2` we get

P
(
S`k ≤

Sδn
δn

(
`k −

√
η′(δn− `k)

))
≤ P

(
S`k ≤ `k −

√
η′δn/4

)
+ P

(Sδn
δn
≥ 1 +

√
η′/2

)
≤ e−δnη

′/16 + e−δnη
′/16,

where the second inequality follows from (2.8) and (2.7) respectively. Combined with
(2.12), it gives that

P(Eπk,η′,n|A(π) ≤ λ) ≤ 2e−δnη
′/16 , for all 1 ≤ k ≤ δn/2` .

An application of a union bound over k completes the proof of the lemma.

Proof of Theorem 1.1: upper bound. Assume that η′ < 1/4 ∧ η0 where η0 is same as
given in the statement of Lemma 2.3. Fix a δ0 = δ0(η′) in (0, 1) and let n0 = n0(δ0, η

′) =

nd(δ0, η
′) ∨ ns(δ0, η′), where nd, ns are as stated in Lemmas 2.3 and 2.4 respectively. In

the remaining part of this section we will assume that n ≥ n0 and δ ≥ δ0, so that Lemmas
2.3 and 2.4 become applicable. Now let π be a path with length δn. From Lemma 2.4 we
get that with large probability Λk ≤ λ+

√
η′ for all k between 1 and δn/2`. But it takes

a routine computation to show that Aπn,k,η′ \ {Λk ≤ λ+
√
η′} ⊆ Dπ

n,k,η′ when η′ is small.

Thus Ñπ
η′,n ≥ Nπ

η′,n except on Eπη′,n. Consequently Lemma 2.3 allows us to use binomial

distribution to bound quantities like P(Ñπ
η′,n ≤ x) with a “small error term” caused by

the rare event Eπη′,n. Formally,

P
(
Ñπ
η′,n ≤ 2ENη′ |A(π) ≤ λ

)
≤ P

(
Nπ
η′,n ≤ 2ENη′ |A(π) ≤ λ

)
+ P

(
Eη′,n|A(π) ≤ λ

)
≤ P

(
Nπ
η′,n ≤ 2ENη′ |A(π) ≤ λ

)
+ 2ne−δnη

′/16 ,

where the last inequality follows from Lemma 2.4. Therefore, by Lemma 2.3, we get that

P
(
Ñπ
η′,n ≤ 2ENη′ |A(π) ≤ λ

)
≤ P

(
Bin(δn/2`, c) ≤ 2ENη′

)
+ 2ne−δnη

′/16 . (2.13)

Next let us define a new event as

Ξη,δ0,n =
⋃
k≥δ0n

⋃
π∈Πk

{
Ñπ
η′,n ≥ 2ENη′ , A(π) ≤ λ

}
.

So Ξη,δ0,n is the event that there exists a λ-light path π with len(π) ≥ δ0n and which
contains at least 2ENη′ many downcrossings. Thus occurrence of Ξη,δ0,n implies that
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Percolation of averages in the stochastic mean field model

Nη′ ≥ 2ENη′ which has small probability owing to (2.6). On the other hand if Ξη,δ0,n does
not occur, L(n, λ) ≥ δ0n implies the existence of a λ-light path of length at least δ0n that
has no more than 2ENη′ many downcrossings. Formally,

P
(
L(λ, n) ≥ δ0n

)
= P

(
Ξη,δ0,n

)
+ P

(
{L(λ, n) ≥ δ0n} \ Ξη,δ0,n

)
≤ P

(
Nη′ ≥ 2ENη′

)
+ P

(⋃
k≥δ0n

⋃
π∈Πk

{
Ñπ
η′,n ≤ 2ENη′ , A(π) ≤ λ

})
≤ o(1) +

∑
k≥δ0n

∑
π∈Πk

P
(
Ñπ
η′,n ≤ 2ENη′ |A(π) ≤ λ

)
P
(
A(π) ≤ λ

)
. (2.14)

Now choose δ0 = δ0(η′) such that

δ0nη
′c/4 = 2ENη′ . (2.15)

Since 1/` ≥ η′, we then get from Binomial concentration that for δ ≥ δ0,

P
(

Bin(δn/2`, c) ≤ 2ENη′
)
≤ e−δnη

′c2/16 .

Plugging this into (2.13) we have

P
(
Ñπ
η′,n ≤ 2ENη′ |A(π) ≤ λ

)
≤ 2ne−len(π)η′/16 + e−len(π)η′c2/16 ,

whenever len(π) ≥ δ0n. A straightforward computation using (2.1) yields∑
π∈Πk

P
(
A(π) ≤ λ

)
≤ n√

2πk
eekη .

The last two displays and (2.14) together imply that

P
(
L(λ, n) ≥ δ0n

)
≤ o(1) +

∑
k≥δ0n(2ne−kη

′/16 + e−kη
′c2/16)eekη n√

2πk
. (2.16)

Setting η′ = 32eη/c2 we get from (2.16),

P
(
L(n, λ) ≥ δ0n

)
= o(1) .

It remains to be checked whether δ0 obtained from (2.15) has the correct functional form
as in (1.1). To this end recall from (2.2) that

2ENη′ ≤ 3αeeη/η′
√
η′e−e/

√
η′n ,

where η is small enough so that C0(η) in (2.2) is less than 3/2. Hence δ0 ≤ e−C2/
√
η for

some absolute constant C2 when η is small.

3 Proof of the lower bound

3.1 Existence of a large number of vertex-disjoint light paths

As we mentioned in the introduction, the proof of lower bound is divided into two
steps. In the first step we split the vertices into two parts and show that there exist
a large number of short (i.e. of O(1) length) vertex-disjoint λ-light paths containing
vertices from only one part. In the second step we use vertices in the other part as “links”
to connect a subcollection of the short paths obtained from step 1 into a long (i.e. of
Θ(n) length) and light path. The current and next subsections are devoted to these two
steps in respective order.

EJP 20 (2015), paper 124.
Page 8/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4111
http://ejp.ejpecp.org/


Percolation of averages in the stochastic mean field model

In light of the preceding discussion, let us first select a complete subgraphW∗n ofWn

containing n∗ = n∗;η,ζ1 = (1− ζ1η)n vertices where η, ζ1 ∈ (0, 1). To be specific we can
order the vertices ofWn in some arbitrary way and defineW∗n as the subgraph induced
by “first” n∗ vertices. It will be shown that there are substantially many short and light
paths that can be formed with the vertices in V (W∗n). We will in fact require slightly
more from a path than just being λ-light. For π ∈ Π` and some ζ2 > 0, define

Gπ = Gπ;η,ζ2 =
{
λ`− 1 ≤W (π) ≤ λ`,M(π) ≤ (ζ2/

√
η).(W (π)/λ`)

}
, (3.1)

whereM(π) is the maximum deviation of π away from the linear interpolation between
the starting and ending edges, formally given by

M(π) = sup
1≤k≤`

|
∑k
i=1Wei − k

`W (π) | . (3.2)

A similar class of events were considered in [4, 9] in order for second moment compu-
tation. As the authors mentioned in these papers, the factor W (π)/λ` provides some
technical ease in view of the following property which is a consequence of Lemma 2.1:

P(M(π) ≤ (ζ2/
√
η).(W (π)/λ`) | W (π) = w) ≡ constant for all w > 0. (3.3)

Call a path π ∈ Π` good if Gπ occurs. Since we are only interested in good paths whose
vertices come from V (W∗n), we need some related notations. For ` ∈ N, denote by
Π∗` = Π∗`;η,ζ1 the set of all paths of length ` inW∗n and by N∗` = N∗`;η,ζ1,ζ2 the total number
of good paths in Π∗` , i.e., N∗` =

∑
π∈Π∗`

1Gπ . In order to carry out second moment analysis

of N∗` we need to control the correlation between 1Gπ and 1Gπ′ where π, π′ ∈ Π∗` . It is
plausible that such correlation depends on the number of common edges between π

and π′ and in fact bounding the correlation in terms of the number of common edges
was sufficient for proving (2.5) in Section 2. But in this case we need an additional
measurement instead of just |E(π) ∩ E(π′)|. This is discussed in detail in [4, 9] and
some of their results will be used. Let π be a path in Π∗` and S ⊆ E(π). A segment of
π is called an S-component or a component of S if it is a maximal segment of π whose
all edges belong to S. Notice that S-components can be defined solely in terms of S.
For two paths π and π′, define a functional θ(π, π′) to be the number of S-components
where S = E(π) ∩ E(π′). As π and π′ are self-avoiding, θ(π, π′) is basically the number
of maximal segments shared between π and π′. We refer the readers to Figure 1 for an
illustration.

The following result ([4, Lemma 2.9]) relates cardinality of V (S), the union of all
endpoints of edges in S = E(π) ∩ E(π′), to θ(π, π′) and |S|.

|V (S)| = |S|+ θ(π, π′) .

The pair
(
θ(π, π′), |E(π)∩E(π′)|

)
turns out to be sufficient for bounding the correlation

between 1Gπ and 1Gπ′ from above. Consequently it makes sense to partition Π∗` based on
the value of this pair. More formally for π ∈ Π∗` and integers i ≤ j, define the set Ai,j as

Ai,j ≡ Ai,j(π) = {π′ ∈ Π∗` : θ(π, π′) = i, |E(π) ∩ E(π′)| = j}. (3.4)

We need a number of lemmas from [4].

Lemma 3.1. ([4, Lemma 2.10]) For any 1 ≤ ` ≤ n∗ and any π ∈ Π∗` , we have that for any
positive integers i ≤ j

|Ai,j(π)| ≤
(
`+1
2i

)(
n∗−i−j
`+1−i−j

)
2i(`+ 1− j)! ≤ `3in`+1−i−j

∗ .
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Figure 1 – Components of the set of edges common to two paths.
In this figure the sequences of vertices v1, v2, v3, v4, v5, v6, v7, v8, v9 and
v′1, v2, v

′
3, v3, v4, v

′
5, v6, v7, v8, v

′
9 define the paths π and π′ respectively. The

dark edges belong to S = E(π) ∩ E(π′). Here θ(π, π′) = 2 with the segments
(v3, v4) and (v6, v7, v8) being the two S-components.

Lemma 3.2. ( [4, Lemma 2.3]) Let Zi be i.i.d. exponential variables with mean θ > 0 for
1 ≤ i ≤ `. For 1/4 ≤ ρ ≤ 4, consider the variable

M` = sup
1≤k≤`

|
∑k
i=1Zi − ρk | . (3.5)

Then there exist absolute constants c∗, C∗ > 0 such that for all r ≥ 1 and ` ≥ r2,

e−C
∗`/r2 ≤ P(M` ≤ r |

∑`
i=1Zi = ρ`) ≤ e−c

∗`/r2 .

Lemma 3.3. [4, Lemma 3.2] Let Zi be i.i.d. exponential variables with mean θ > 0 for
i ∈ N. Consider 1 ≤ r ≤

√
` and the integer intervals [a1, b1], [a2, b2], · · · , [am, bm] such

that 1 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ am ≤ bm ≤ ` and q =
∑m
i=1(bi − ai + 1) ≤ ` − 1. Let

1/4 ≤ ρ ≤ 1 and M` be defined as in the previous lemma. Also write A = ∪mi=1[ai, bi] ∩N
and p` = P(M` ≤ r|

∑`
i=1 Zi = ρ`). Then for all zj such that∑bi

j=ai
zj − ρ(bi − ai + 1) ≤ 2r ,

we have

P(M` ≤ r|
∑`
i=1Zi = ρ`, Zj = zj for all j ∈ A) ≤ C3r

√
q ∧ (`− q)p`10100mreC

∗q/r2 , (3.6)

where C∗ is the constant from Lemma 3.2 and C3 > 0 is an absolute constant.

Remark 3.4. (1) Notice that the bounds in Lemma 3.2 and 3.3 do not depend on the
particular mean of Zi’s due to Lemma 2.1. (2) Although the bounds on p` in Lemma 3.2
do not contain any ρ (as it was restricted to a bounded interval), p` actually depends on
r only through the ratio r/ρ. This follows from an application of Lemma 2.1 with little
manipulation. (3) Lemma 3.3 is same as Lemma 3.2. in [4] except that in the latter q
is restricted to be at most ` − 10r. But we can easily extend this to all q ≤ ` − 1. To
see this assume `− 1 ≥ q ≥ `− 10r. Then the right hand side in (3.6) becomes at least
C3p`e

C∗`/r2e−10C∗/r. Now from Lemma 3.2 we get p`eC
∗`/r2 ≥ 1. So the right hand side

in (3.6) is bigger than C3e−10C∗ whenever `− 1 ≥ q ≥ `− 10r. Increasing C3 if necessary
we can make this number bigger than 1 and thus Lemma 3.3 follows.
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By second moment computation, we can hope to show that N∗` ∼ EN∗` with high
probability. Then the main challenge is to prove that a large fraction of the good paths
are mutually vertex-disjoint with high probability. To this end, we consider a graph Gn
where each vertex corresponds to a good path inW∗n and an edge is present whenever
the corresponding paths intersect at one vertex at least. Thus the presence of a large
number of vertex disjoint good paths in W∗n is equivalent to the existence of a large
independent subset (i.e., a subset that has no edge among them) in the graph Gn. The
following simple lemma is sometimes referred to as Turán’s theorem, and can be proved
simply by employing a greedy algorithm (see, e.g., [6]).

Lemma 3.5. Let G = (V,E) be a finite, simple graph with V 6= ∅. Then G contains an
independent subset of size at least |V |2/(2|E|+ |V |). Notice 2|E| is the total degree of
vertices in G.

In light of Lemma 3.5, we wish to show that with high probability the total degree of
vertices in Gn is not big relative to |V (Gn)|. For this purpose, it is desirable to show that
the typical number of good paths that intersect with a fixed good path π ∈ Π∗` is not big.
Thus, we need to estimate

∑
π′∈Π∗`,π

P(Gπ′ |Gπ) where Π∗`,π is the collection of all paths π′

inW∗n sharing at least one vertex with π. Drawing upon the discussions preceding (3.4),
we will first estimate P(Gπ′ |Gπ) for a specific value of the pair (θ(π, π′), |E(π) ∩ E(π′)|).
Our next lemma is very similar to Lemma 3.3 in [4].

Lemma 3.6. Let π ∈ Π∗` and π′ ∈ Ai,j with 1 ≤ i ≤ j ≤ `. Then there exist absolute
constants η1, C4 > 0 such that for 0 < η < η1, ζ2 > 1 ∨

√
2C∗/e and ` ≥ ζ2

2/η we have

P(Gπ′ |Gπ) ≤ C4(1 + o(1))P(Gπ)nj
√
`/ηe−jηe1000ζ2i/

√
η . (3.7)

Proof. Denote by S and S′ the sets E(π) ∩ E(π′) and E(π′) \ E(π) respectively. By
standard calculus, there exists 0 < η1 ≤ 1 such that 1 + eη ≥ e(1+e/2)η for all 0 < η < η1.
Note that P(Gπ′ | Gπ) = p1 · p2, where

p1 = P(λ`− 1 ≤W (π′) ≤ λ` | Gπ) ,

p2 = P
(
M(π′) ≤ (ζ2/

√
η).(W (π′)/λ`) | Gπ, λ`− 1 ≤W (π′) ≤ λ`

)
.

Since the maximum deviation of a good path from its linear interpolation between
starting and ending edges is at most ζ2/

√
η, the weight of an S-component, say s, is

at least W (π)|s|/` − 2ζ2/
√
η when π is good. Here |s| denotes the number of edges in

s. Adding over all the θ(π, π′) components of S we get that
∑
e∈SWe ≥ W (π)|S|/` −

2θ(π, π′)ζ2/
√
η on Gπ. As π′ ∈ Ai,j and weight of a good path is at least λ` − 1, the

previous inequality implies that on Gπ,∑
e∈SWe ≥ λj − 1− 2iζ2/

√
η .

Consequently when j ≤ `− 1,

p1 ≤ P(
∑
e∈S′We ≤ λ|S′|+ 1 + 2iζ2/

√
η | Gπ) (3.8)

= P
(
Gamma(`− j, 1/n) ≤ λ(`− j) + 1 + 2iζ2/

√
η
)

≤ C ′4n
−(`−j)(`− j)−1/2(1 + eη)`−je

2ieζ2√
η(1+eη) , (3.9)

where C ′4 > 0 is an absolute constant and the last inequality used (2.1). For the second
term in the right hand side of (3.8), we can apply (3.3) and Lemma 3.3 to obtain

p2 ≤ C3P
(
M(π) ≤ ζ2/

√
η | W (π) = λl

)√
j ∧ (`− j)/η10100iζ2/

√
ηeC

∗jη/ζ22 , (3.10)
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when j ≤ ` − 1 and ` ≥ ζ2
2/η (see the conditions in Lemma 3.3). Using (3.3) again, we

get that

P
(
M(π) ≤ ζ2/

√
η | W (π) = λ`

)
= P

(
M(π) ≤ (ζ2/

√
η).(W (π)/λ`) |λ`− 1 ≤W (π) ≤ λ`

)
= P(Gπ)/P(λ`− 1 ≤W (π) ≤ λ`)
= P(Gπ)/P

(
λ`− 1 ≤ Gamma(`, 1/n) ≤ λ`

)
≤ C ′′4 (1 + o(1))P(Gπ)`!

(
n/λ`

)`
,

where C ′′4 > 0 is an absolute constant and the last inequality follows from (2.1). Plug-
ging the preceding inequality into (3.10) and using the fact `! ≤ e

√
`(`/e)` (Stirling’s

approximation)

p2 ≤ eC3C
′′
4 (1 + o(1))P(Gπ)n`

√
`(`− j)/η(1 + eη)−`10100iζ2/

√
ηeC

∗jη/ζ22 .

Combined with (3.9), it yields that

P(Gπ′ |Gπ) ≤ eC3C
′
4C
′′
4 ζ2(1 + o(1))P(Gπ)

√
`/ηnj(1 + eη)−j10100iζ2/

√
ηeC

∗jη/ζ22 e
2ieζ2√
η(1+eη) .

Since ζ2 ≥
√

2C∗/e and η < η1 we have

P(Gπ′ |Gπ) ≤ eC3C
′
4C
′′
4 (1 + o(1))P(Gπ)nj

√
`/ηe−jηe1000ζ2i/

√
η

provided j ≤ `− 1. The case j = ` can also be easily accommodated. To this end let us
first compute P(Gπ). It follows from (2.1) and Lemma 3.2 that

P(Gπ) ≥ (1 + o(1))(1− e−1/λ)(λ`/n)`(1/`!)e−C
∗`η/ζ22 .

Applying Stirling’s formula again, we get that for ζ2 ≥
√

2C∗/e and η < η1,

P(Gπ) ≥ C ′′′4 (1 + o(1))n−``−1/2e`η ,

for an absolute constant C ′′′4 > 0. Hence, with the choice of C4 = 1/C ′′′4 ∨ eC3C
′
4C
′′
4 the

right hand side of (3.7) is at least 1, and thus (3.7) holds in this case.

Armed with Lemma 3.6, we can now obtain an upper bound on
∑
π′∈Π∗`,π

P(Gπ′ |Gπ).

Similarly we can bound
∑
π′∈Π∗`

P(Gπ′ |Gπ) which is useful for the computation of

E((N∗` )2) in view of the following simple observation:

E((N∗` )2) =
∑
π∈Π∗`

P(Gπ)
∑
π′∈Π∗`

P(Gπ′ |Gπ) = E(N∗` )
∑
π′∈Π∗`

P(Gπ′ |Gπ) , (3.11)

where the last equality follows from the fact that
∑
π′∈Π∗`

P(Gπ′ |Gπ) is independent of π.

Lemma 3.7. Let 0 < ζ1 < 1/4 and let ζ2, `, η satisfy the same conditions as stated in
Lemma 3.6. Then there exists an absolute constant C5 > 0 such that,∑

π′∈Π∗`,π
P(Gπ′ |Gπ) ≤ C5(1 + o(1))e1000ζ2/

√
η
√
`7/η

EN∗`
n , (3.12)∑

π′∈Π∗`
P(Gπ′ |Gπ) ≤ (1 + o(1))EN∗` . (3.13)

Proof. By Lemmas 3.6 and 3.1, we get that for 1 ≤ i ≤ j ≤ `,∑
π′∈Ai,jP(Gπ′ |Gπ) ≤ (1 + o(1))n`+1

∗ P(Gπ) ξ(η,`,i,j,ζ1)
ni

≤ (1 + o(1))EN∗`
ξ(η,`,i,j,ζ1)

ni , (3.14)
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where ξ(η, `, i, j, ζ1) is a number depending only on (η, `, i, j, ζ1) (so in particular, ξ(η, `, i, j,
ζ1) does not depend on n). It is also clear that∑

π′∈A0,0
P(Gπ′ |Gπ) ≤

∑
π′∈A0,0

P(Gπ′) ≤ EN∗` .

Combined with (3.14), it yields (3.13). It remains to prove (3.12). To this end, we note
that the major contribution to the term

∑
π′∈Π∗`,π

P(Gπ′ |Gπ) comes from those paths π′

with θ(π, π′) = 1 or |V (π′) ∩ V (π)| = 1. Thus, we revisit (3.14) for the case of i = 1. By
Lemmas 3.6 and 3.1 again, we get that∑

1≤j≤`
∑
A1,j

P(Gπ′ |Gπ) ≤ 2
C4

n
(1 + o(1))e

1000ζ2√
η

√
`7

η n
`+1
∗ P(Gπ)

∑
1≤j≤`e

−jη(1− ζ1η)−j

≤ 2
C4

n
(1 + o(1))e

1000ζ2√
η

√
`7

η EN
∗
` (1− e−

η
2 )−1

≤ 8C4(1 + o(1))e
1000ζ2√

η

√
`7

η3
EN∗`
n , (3.15)

where the last two inequalities follow from the facts that ζ1 < 1/4 and e−η/2 ≤ 1− η/4
whenever 0 < η < 1. We still need to consider paths that share vertices with π but no
edges. For 1 ≤ i ≤ `, define Bi to be the collection of paths which shares i vertices with
π but no edges, i.e.,

Bi = {π′ ∈ Π∗` : |V (π′) ∩ V (π)| = i, E(π′) ∩ E(π) = ∅} .

We need an upper bound on the size of Bi. To this end notice that there are
(
`+1
i

)
many

choices for V (π′) ∩ V (π) as cardinality of the latter is i and these vertices can be placed
along π′ in at most

(
`+1
i

)
i! many different ways. Also the number of ways we can choose

the remaining `+ 1− i vertices is at most n`+1−i
∗ . Multiplying these numbers we get

|Bi| ≤
(
`+1
i

)2
i!n`+1−i
∗ .

Since the edge sets are disjoint, P(Gπ′ |Gπ) = P(Gπ) for all π′ ∈ Bi and 1 ≤ i ≤ `. So we
have∑

π′∈BiP(Gπ′ |Gπ) ≤ (1 + o(1))
(
`+1
i

)2
i!(1− ζ1η)−i

EN∗`
ni ≤ (8 + o(1))`2

EN∗`
n . (3.16)

Combined with (3.15), it completes the proof of (3.12).

We will now proceed with our plan of finding a large independent subset of Gn. For
any two paths π and π′ in Π∗` , define an event

Hπ,π′ = Hπ,π′;η,ζ2 =

{
Gπ ∩Gπ′ if V (π) ∩ V (π′) 6= ∅ ,
∅, otherwise .

Writing N ′` = N ′`;η,ζ1,ζ2 =
∑
π,π′∈Π∗`

1Hπ,π′ , we see that N ′` = 2|E(Gn)| + |V (Gn)|. Also

notice that N∗` = |V (Gn)|. As an immediate consequence of Lemma 3.7, we can compute
an upper bound of EN ′` as follows:

EN ′` =
∑
π∈Π∗`

P(Gπ)
∑
π′∈Π∗`,π

P(Gπ′ |Gπ) ≤ C5(1 + o(1))e1000ζ2/
√
η
√
`7/η3 (EN∗` )2

n . (3.17)

If N∗` and N ′` are concentrated around their respective means in the sense that N∗` =

EN∗` (1 + o(1)) and N ′` = EN ′`(1 + o(1)) with high probability, then we can use Lemma 3.5
and (3.17) to derive a lower bound on the size of a maximum independent subset
of Gn. For this purpose, it suffices to show that E((N∗` )2) = (EN∗` )2(1 + o(1)) and
E((N ′`)

2) = (EN ′`)
2(1 + o(1)). The former has already been addressed by (3.13) (see

(3.11)). For the latter we need to estimate contributions from terms like P(Hπ1,π2
∩Hπ3,π4

)

in the second moment calculation for N ′`. Our next lemma will be useful for this purpose.
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Lemma 3.8. Let π1, π2, π3, π4 be paths in Π∗` such that |E(π3 ∪ π4)| = 2`− j and |E(π1 ∪
π2)∩E(π3∪π4)| = j′ where 0 ≤ j ≤ ` and 1 ≤ j′ ≤ 2`−j. Also assume that V (π3∩π4) 6= ∅.
Then,

|V (π3) ∩ V (π4)|+ |V (π3 ∪ π4) ∩ V (π1 ∪ π2)| ≥ j + j′ + 2 . (3.18)

Figure 2 – Removing edges from union of two paths. In
these figures the sequences of vertices v1, v2, v3, v4, v5, v6, v7, v8, v9 and
v′1, v2, v3, v4, v

′
5, v6, v7, v8, v

′
9 define the paths π4 and π3 respectively. CO1 and

CO2 are the two connected components of π3 ∩ π4. In the figure at the top, the
vertices v4, v5, v6, v

′
5 define a cycle. After removing the edge (v4, v5) from the

only segment in E(π4) \ E(π3) between CO1 and CO2 , we get an acyclic graph
displayed at the bottom.

Proof. Suppose the graph π3 ∩ π4 has exactly k + 1 (connected) components namely
CO1 , · · · , COk+1. Notice that k is nonnegative as π3 ∩ π4 6= ∅. Since |E(π3 ∩ π4)| = j and
π3 ∩ π4 is acyclic with k + 1 components, we have that |V (π3 ∩ π4)| = j + k + 1. Now
suppose it were shown that π3 ∪ π4 can be made acyclic by removing at most k edges
while keeping the vertex set same and call this new graph as H. One would then have,

|V
(
H ∩ (π1∪π2)

)
| ≥ |E

(
H ∩ (π1∪π2)

)
|+ 1 ≥ |E

(
(π3∪π4)∩ (π1∪π2)

)
|−k+ 1 = j′−k+ 1 .

Adding this to |V (π3 ∩ π4)| = j + k + 1 would immediately give (3.18). In the remaining
part of this proof we will show that one can remove k edges from π3 ∪ π4 so that the
resulting graph becomes acyclic.

Let C be a cycle in π3 ∪ π4. Since π3 and π4 are acyclic, C consists of an alternating
sequence of segments in E(π4) \ E(π3) and E(π3) \ E(π4) interspersed with segments
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in any one of the COi ’s (possibly trivial i.e. consisting of a single vertex). This implies
that for some 1 ≤ i, i′ ≤ k + 1, C contains a (nontrivial i.e. of positive length) segment in
E(π4) \ E(π3) joining COi and COi′ . In fact i 6= i′ since π4 is acyclic. Hence the only case
we need to consider is when k ≥ 1. As π4 is a path, CO1 , C

O
2 , · · · , COk+1’s are vertex-disjoint

segments (possibly trivial) aligned along π4 in some order with k intervening (nontrivial)
segments in E(π4) \E(π3). Pick one edge from each of these k segments. It follows from
the discussions so far that C must contain one of these edges. Consequently removing
these k edges from π3 ∪ π4 would make the resulting graph acyclic. We refer the readers
to Figure 2 for an illustration.

We will now use (3.18) and Lemma 3.7 to show that N∗` and N ′` concentrate around
their expected values.

Lemma 3.9. Assume the same conditions on ζ1, ζ2, ` and η as in Lemma 3.7. Then there
exists g`,η = g`,η;ζ1,ζ2 : N 7→ [0,∞) depending on `, η (and ζ1, ζ2) with g`,η(n) → 0 as
n→∞ such that the following hold:
(1) P

(
|N∗` − EN∗` | ≤ g`,η(n)EN∗`

)
→ 1 as n→∞;

(2) P
(
|N ′` − EN ′`| ≤ g`,η(n)EN ′`

)
→ 1 as n→∞.

Proof. The proof of (1) is rather straightforward. By (3.11) and (3.13) we see that

E((N∗` )2) ≤ (EN∗` )2(1 + o(1)) .

An application of Markov’s inequality then yields Part (1). In order to prove Part (2),
we first argue that EN ′` = Θ(n). Similar to the computation of (2.2), we can show that
EN∗` is O(n). But then (3.17) tell us that same is also true for EN ′`. For the lower bound,
notice that given any path π1 in Π∗` , there are Θ(n`) many paths in Π∗` that intersect π1

in exactly one vertex. Furthermore for any such pair (π1, π2) we have

P(Hπ1,π2) = (P(Gπ))2 = Θ(n−2`),

where the last equality follows from (2.1) (see the computation in (2.2)) and Lemma 3.2.
Therefore, we obtain that

EN ′` = Θ(n`+1)
∑
π2∈Π∗`,π1

P(Gπ1
∩Gπ2

) ≥ Θ(n`+1)Θ(n`)Θ(n−2`) = Θ(n).

Next we estimate E((N ′`)
2). For this purpose, we first consider two fixed π1, π2 ∈ Π∗` such

that V (π1)∩V (π2) 6= ∅. For 0 ≤ j ≤ ` and 1 ≤ j′ ≤ 2`− j, let Π`,j,j′

π1,π2
be the collection of all

pairs of paths (π3, π4) ∈ Π∗` such that |E(π1∪π2)∩E(π3∪π4)| = j′ and |E(π3∪π4)| = 2`−j.
For (π3, π4) ∈ Π`,j,j′

π1,π2
, we see that |E(π3 ∪ π4) \ E(π1 ∪ π2)| = 2` − j − j′ and thus by a

similar reasoning as employed in (2.3) we get

P(Hπ3,π4
|Hπ1,π2

) = O(nj+j
′−2`) .

Now let Π`,j,j′

π1,π2
(n1, n2) ⊆ Π`,j,j′

π1,π2
contain all the pairs (π3, π4) such that |V (π3) ∩ V (π4)| =

n1 ≥ 1 and |V (π3∪π4)∩V (π1∪π2)| = n2. Then |V (π3∪π4)\V (π1∪π2)| = 2`+ 2−n1−n2

and consequently |Π`,j,j′

π1,π2
(n1, n2)| = O(n2`+2−n1−n2). By Lemma 3.8, we know that for

n1 + n2 ≥ j + j′ + 2 for (π3, π4) ∈ Π`,j,j′

π1,π2
(n1, n2). Therefore,∑

(π3,π4)∈Π`,j,j
′

π1,π2

P(Hπ3,π4 |Hπ1,π2) =
∑

1≤n1,n2≤2`+2

∑
(π3,π4)∈Π`,j,j

′
π1,π2

(n1,n2)

P(Hπ3,π4 |Hπ1,π2) = O(1) .

This implies that ∑
(π1,π2),(π3,π4)P(Hπ1,π2

∩Hπ3,π4
) = O(1)EN ′` .
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where the sum is over all such pairs such that |E(π1 ∪ π2) ∩ E(π3 ∪ π4)| 6= ∅. In addition,∑
(π1,π2),(π3,π4)P(Hπ1,π2

∩Hπ3,π4
) = (1 + o(1))(EN ′`)

2 .

where the sum is over all such pairs such that |E(π1 ∪ π2) ∩ E(π3 ∪ π4)| = ∅ (thus in this
case H(π1,π2) is independent of H(π3,π4)). Combined with the fact that EN ′` = Θ(n), it
gives that E((N ′`)

2) = (1 + o(1))(EN ′`)
2. At this point, another application of Markov’s

inequality completes the proof of the lemma.

We are now well-equipped to prove the main lemma of this subsection. For conve-
nience of notation, write

f(`, η) = fζ2(`, η) = e−1000ζ2/
√
η
√
η3/`7 . (3.19)

Lemma 3.10. Assume the same conditions on ζ1, ζ2, ` and η as in Lemma 3.7. Let
Sn,η,` = Sn,η,`;ζ1,ζ2 be a set with maximum cardinality among all subsets of Π∗` containing
only pairwise disjoint good paths. Then there exists an absolute constant C6 > 0 such
that,

P(|Sn,η,`| ≥ C6f(`, η)n)→ 1 as n→∞ . (3.20)

Proof. Let h(`, η) = C5e1000ζ2/
√
η
√
`7/η3. By Lemma 3.9 and (3.17), we assume without

loss of generality that

|N∗` − EN∗` | ≤ g`,η(n)EN∗` and N ′` ≤ (1 + o(1))h(`, η)
(EN∗` )2

n (1 + g`,η(n)),

where g`,η(n) is defined as in Lemma 3.9. Since N ′` = 2|E(Gn)|+ |V (Gn)|, by Lemma 3.5
we get that the graph Gn has an independent subset of size at least

N∗`
2/N ′` ≥ n(1 + o(1))/h(`, η).

Therefore, with high probability |Sn,η,`| ≥ n/2h(`, η) which leads to (3.20) for C6 =

1/2C5.

3.2 Connecting short light paths into a long one

We set ζ1 = 1/5 and ζ2 = 1+
√

2C∗/e in this subsection. Note that this choice satisfies
the conditions in Lemma 3.10. Denote by En,η,` the event {|Sn,η,`| ≥ C6f(`, η)n)}.
The remaining part of our scheme is to connect a fraction of these disjoint good paths in
a suitable way to form a light and long path γ. In order to describe our algorithm for
the construction of γ, we need a few more notations. Denote the vertex sets V (W∗n) and
V (Wn) \V (W∗n) by V1 and V2 respectively. Let δ > 0 be a number and ν > 0 be an integer
satisfying

1 ≤ δn/` ≤ |Sn,η,`| and δnν/` ≤ |V2|. (3.21)

Now label the paths in Sn,η,` as π1, π2, . . . in some arbitrary way. Our aim is to build up
the path γ in step-by-step fashion starting from π1. In each step we will connect γ to
some πj by a path of length 2 whose middle vertex is in V2. These paths will be referred
to as bridges. To leverage additional flexibility we also demarcate two segments of length
b`/4c one on each end of the paths πj ’s which we call end segments. These end segments
will allow us to “choose” endpoints of πj ’s while connecting them (as such, it is possible
that we only keep half of the vertices of πj in γ). A vertex v will be said to be adjacent to
a path or an edge if it is an endpoint of that path or edge. If an edge e has exactly one
endpoint in S, we denote that endpoint by ve,S . The following algorithm, referred to as
BRIDGE(ν, `, δ), will construct a long path γ. See Figure 3 for an illustration.
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Initialization. γ = π1, T is the set of all vertices which are in end segments of πj ’s
for j ≥ 2, M = V2, P = ∅ and designate an end segment of γ as the open end γO. Also let
v be the endpoint of γ not in γO.

Now repeat the following sequence of steps bδn/`c − 1 times:

Step 1. Repeat ν times: find the lightest edge e between γO and M , remove ve,M
from M and include it in P . These ν edges will be called predecessor edges (so at the
end of this step, |P | = ν).

Step 2. Find the lightest edge between P and T . Call it e′. Then ve′,T comes from an
end segment of some path in Sn,η,`, say π.

Step 3. The edge e′ and the unique predecessor edge adjacent to ve′,P defines a path
b of length 2 (so b connects a vertex in γO to a vertex in π). Let w be the endpoint of π
not in the end segment that ve′,T came from. Then there is a unique path γ′ in the tree
γ ∪ b ∪ π between v and w. Set γ = γ′ and γO = the end segment of π containing w.

Step 4. Remove the vertices on the end segments of π from T and reset P at ∅.

Figure 3 – Illustrating an iteration of BRIDGE for ν = 2 and ` = 4. The
edges e′ and e′′ define the path b. So in this iteration the paths γ and π are
shortened slightly before being joined via b.

Notice that the conditions in (3.21) ensure that we never run out of vertices in T or M
during first bδn/`c − 1 iterations of steps 1 to 4. Thus what we described above is a valid
algorithm for such choices of δ and ν. Denote the length and average weight of the path
γ generated by BRIDGE(ν, `, δ) as LBRIDGE(ν, `, δ) and ABRIDGE(ν, `, δ) respectively when
δ, ν, ` satisfy these inequalities. For sake of completeness we may define these quantities
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to be 0 and ∞ respectively and regard the output path γ as “empty” if any one of the
inequalities in (3.21) fails to hold. We are now just one lemma short of proving the lower
bound in (1.1).

Lemma 3.11. For any 0 < η < η2 where η2 > 0 is an absolute constant there exist
positive integers ν = ν(η), ` = `(η) ≥ ζ2

2/η and a positive number δ = δ(η) such that

P
(
LBRIDGE(ν, `, δ) ≥ e−C7/

√
ηn and ABRIDGE(ν, `, δ) ≤ 1/e + 12η | En,η,`

)
→ 1

as n tends to infinity. Here C7 > 0 is an absolute constant.

Proof. We will omit the phrase “conditioned on En,η,`” while talking about probabilities
in this proof (barring formal expressions) although that is to be implicitly assumed. We
use Exp(1/θ) to denote the distribution of an exponential random variable with mean
θ > 0. Define Bn,η,ν,`,δ to be the event that the total weight of bridges does not exceed
3`η×bδn/`c. Notice that if any one of the inequalities in (3.21) does not hold, γ is “empty”
and hence Bn,η,ν,`,δ is a sure event. Suppose δ, ν and ` are such that (3.21) is satisfied.
We will first bound the average weight A(γ) of γ assuming that Bn,η,ν,`,δ occurs. Let `i
be the length of the segment selected by the algorithm in the i-th iteration. We see that
its weight can be no more than λ`i + 2ζ2/

√
η, since the segment is chosen from a good

path of average weight at most λ and maximum deviation from its linear interpolation
is at most ζ2/

√
η (see (3.1) as well as the proof for Lemma 3.6). Thus the total weight

of edges in γ from the good paths is bounded by λL+ bδn/`c.(2ζ2/
√
η) where L =

∑
i `i.

Adding this to the total weight of bridges we get with probability tending to 1 as n→∞

W (γ) ≤ L(1/e + η) + bδn/`c · (2ζ2/
√
η) + bδn/`c3`η.

Since the algorithm selects at least `/2 edges from each of the bδn/`c good paths it
connects, we have `i ≥ `/2 for each i and thus L ≥ bδn/`c × `/2. Therefore,

A(γ) ≤ 1/e + η + bδn/`c.(2ζ2/L
√
η) + bδn/`c3`η/L

≤ 1/e + η + 4ζ2/`
√
η + 6η .

If ` ≥ ζ2/η
3/2, then from the last display we can conclude A(γ) ≤ 1/e + 12η. We can

assume this restriction on ` for now. Indeed, later we will specify the value of ` and it
will satisfy the condition ` ≥ ζ2/η3/2.

So it remains to find positive numbers δ, ν, ` as functions of η and an absolute constant
η2 > 0 such that the following three hold for all 0 < η < η2: (a) P(Bn,η,ν,`,δ | En,η,`) → 1

as n → ∞, (b) ` ≥ ζ2/η
3/2 ∨ ζ2

2/η (see the statement of the lemma as well as the last
paragraph) and (c) γ has the desired length. In the next paragraph we will find a triplet
(δ, ν, `) and an absolute constant η′′2 > 0 such that (a) holds for 0 < η < η′′2 . In the final
paragraph we will show that our choice of (δ, ν, `) also satisfies (b) and (c) whenever
0 < η < η2 where η2 < η′′2 is an absolute constant.

Let us begin with the crucial observation that, at the start of each iteration the
edges between M and γO are still unexplored. The same is true for the edges between
P and T at the end of Step 1 in any iteration. Consequently their weights are i.i.d.
Exp(1/n) regardless of the outcomes from the previous iterations. Therefore, all the
bridge weights are independent of each other. Now suppose the mean and variance of
each bridge weight can be bounded above by 2`η and σ2 respectively and we emphasize
that the latter does not depend on n. By Markov’s inequality it would then follow that
limn→∞P(Bn,η,ν,`,δ | En,η,`) = 1. To that end let us consider the bridge obtained from the
m-th iteration where 1 ≤ m ≤ bδn/`c − 1. Note that here we implicitly assume (3.21),
but this would be shortly shown to be implied by some other constraints involving δ, ν
and `. Let e′ be the lightest edge between P , T in Step 2 and e be the predecessor
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edge adjacent to e′ (for this iteration). So the bridge weight is simply We′ + We. By
discussions on independence at the beginning of the proof, it follows that We′ and We

are independent of each other and also of the weights of bridges already chosen. Since
these weights are minima of some collections of i.i.d. exponentials, they will be of small
magnitude provided that we are minimizing over a large collection of exponentials, i.e.,
|T |, |M | and ν are big. It follows from the description of the algorithm that at each
iteration we lose 2b`/4c many vertices from T and ν many vertices from M . By simple
arithmetic we then get,

|T | ≥ C6b`/4cf(`, η)n and |M | ≥ ζ1ηn/2 , (3.22)

for all 1 ≤ m ≤ bδn/`c − 1 provided

δ ≤ C6f(`, η)`/2 and νδ/` ≤ ζ1η/2 . (3.23)

Notice that these inequalities automatically imply δn/` ≤ C6f(`, η)n and δnν/` ≤ |V2|.
Thus if δ, ν, ` satisfy (3.25), (3.21) would also be satisfied for all large n (given δ, `).
Assume for now that (3.23) holds. Since We′ is minimum of ν × |T | many independent
Exp(1/n) random variables, it is distributed as Exp(ν|T |/n). As for We, it is bounded
by the maximum weight of the ν predecessor edges. From properties of exponential
distributions and description of the algorithm it is not difficult to see that this maximum
weight is distributed as E1 +E2 + . . . Eν , where Ei+1 is exponential with rate (|M | − i)×
1/n× b`/4c. By (3.22), we can then bound the expected weight of the bridge from above
by

1
C6b`/4cf(`,η)n ×

1
ν × n + ν(

ζ1η
2 −

ν
n

)
b`/4c

≤ 5
C6ν`f(`,η) + 11ν

ζ1η`
, (3.24)

where the last inequality holds for ` ≥ 20 and large n (given η, ν). By the same line
of arguments, we get that the its variance is bounded by a number that depends only
on η, ` and ν (so in particular independent of n). To make the right hand side of (3.24)
bounded above by 2`η, we may require each of the summands in (3.24) to be bounded by
`η. After a little simplification this amounts to

ν ≥ 5/C6`
2ηf(`, η) , and ζ1(`η)2 ≥ 11ν . (3.25)

So we need to pick a positive δ = δ(η), positive integers ν = ν(η), ` = `(η) and an absolute
constant η′′2 > 0 such that (3.23) and (3.25) hold for 0 < η < η′′2 . We will deal with (3.25)
first which is in fact equivalent to

ζ1(`η)2/11 ≥ ν ≥ 5/C6`
2f(`, η) . (3.26)

Let us try to find an integer ` satsfying ζ1(`η)2/11 ≥
(
10/C6`

2f(`, η)
)
∨ 2 since this

will ensure the existence of a positive integer ν such that ν, ` satisfy (3.26). Using
f(`, η) = e−1000ζ2/

√
η
√
η3/`7, we get that this amounts to

` ≥ C′7e2000ζ2/
√
η

η9 ∨ C′′7
η ,

for some positive, absolute constants C ′7 and C ′′7 . Hence there exists an absolute constant
η′′′2 > 0 such that the integers ` = de2001ζ2/

√
ηe and ν = bζ1(`η)2/11c satisfy (3.26)

whenever 0 < η < η′′′2 . Now we need to find δ that would satisfy (3.23) which can be
rewritten as,

δ ≤ (C6f(`, η)`/2) ∧ (ζ1η`/2ν) . (3.27)
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Again substituting f(`, η) = e−1000ζ2/
√
η
√
η3/`7, we can simplify (3.27) to

δ ≤ (C6e−1000ζ2/
√
η η3/2

2`5/2
) ∧ (ζ1η`/2ν) . (3.28)

Since ν = bζ1(`η)2/11c, (3.28) would be satisfied if

δ ≤ (C6e−1000ζ2/
√
η η3/2

2`5/2
) ∧ (11/2`η) .

The last display together with our particular choice of ` i.e. de2001ζ2/
√
ηe imply that there

exists a positive, absolute constant η′′2 < η′′′2 such that δ = e−7000ζ2/
√
η satisfies (3.27) for

0 < η < η′′2 . Thus our choice of the triplet (δ, ν, `) satisfies (3.23) and (3.25) for 0 < η < η′′2
and consequently the event Bn,η,ν,`,δ occurs with high probability for this choice.

As to the constraint on `, it is also clear that there exists a positive, absolute constant
η′2 < η′′2 such that ` = de2001ζ2/

√
ηe is larger than ζ2/η

3/2 ∨ ζ2
2/η for all 0 < η < η′2.

Finally it is left to ensure whether γ has the length required by the lemma. Since our
particular choice of the triplet (δ, ν, `) satisfies (3.21) for large n (given η), we have
that LBRIDGE(ν, `, δ) ≥ bδn/`c × `/2. It then follows that there exists a positive, absolute
constant η2 < η′2 such that LBRIDGE(ν, `, δ) ≥ e−7001ζ2/

√
ηn for these particular choices of

ν, ` and δ whenever 0 < η < η2 and n is large (given η). This completes the proof of the
lemma.

Combining Lemmas 3.10 and 3.11 completes the proof of the lower bound in Theo-
rem 1.1.
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