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Abstract

We obtain sharp asymptotic estimates for hitting probabilities of a critical branching
Brownian motion in one dimension with killing at 0. We also obtain sharp asymptotic
formulas for the tail probabilities of the number of particles killed at 0. In the special
case of double-or-nothing branching, we give exact formulas for both the hitting
probabilities, in terms of elliptic functions, and the distribution of the number of killed
particles.
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1 Introduction

Branching Brownian motion is a stochastic particle system in which each individual
particle moves along a Brownian trajectory, and at a random, exponentially distributed
time independent of its motion is replaced by a random collection of identical offspring
particles. The motions, gestation times, and offspring numbers of different particles are
conditionally independent, given the times and locations of their births. Thus, conditional
on the event that at time t there are Zt particles at locations x1, x2, . . . , xZt , the law of
the post-t evolution is identical to that of Zt mutually independent branching Brownian
motions started by individual particles at the locations xi. A formal construction of the
process is outlined in section 2 below.

The process Zt that records the total number of particles at time t is a continuous-
time Galton-Watson process: see [AN72], ch. 2 for the basic theory of these. Branching
Brownian motion is said to be supercritical, critical or subcritical according as the mean
of the offspring distribution is greater, equal or less than 1. In the critical and subcritical
cases, the particle population eventually dies out, with probability one, provided the
population starts with only finitely many particles; in the supercritical case, however,
there is positive probability that the population blows up, that is, Zt → ∞ as t → ∞.
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Critical branching Brownian motion with killing

Thus, the questions that are germane to the supercritical case are different from those
of interest in the critical case.

It has been known since the work of McKean [M75] that supercritical branching
Brownian motion is intimately related to the behavior of solutions to the Fisher-KPP
equation. In particular, this equation governs the cumulative distribution function
u(t, x) = P0(Mt ≤ x) of the position Mt of rightmost particle at time t. Using this fact,
McKean gave a probabilistic proof of the Kolmogorov, Petrovsky, and Piscounov [KPP37]
theorem, which asserts that the solution of the KPP equation with Heaviside initial data
stabilizes as a traveling wave of velocity

√
2. Subsequently, Bramson [B78] used the

connection with supercritical branching Brownian motion to obtain sharp estimates for
the center of the wave, and Lalley and Sellke [LS87] showed that the limiting traveling
wave w(x) can be represented as a as a mixture of extreme-value distributions.

When the branching mechanism is critical or sub-critical, a more natural object of
study is the random variable

M = sup
t>0

Mt,

the rightmost location ever reached by a particle of the branching Brownian motion.
Critical branching Brownian motion has been proposed as a model for the spatial
displacement of alleles without selective advantage or disadvantage, and in this context
the distribution of M plays an important role (see, for example, [CG76], [S76], [SF79]
and references therein). Sawyer and Fleischman [SF79] proved that if the offspring
distribution has mean 1, positive variance σ2 and finite third moment, then the tail of the
distribution of M satisfies the power law

P(M ≥ x) ∼ 6

σ2x2
as x→∞. (1.1)

Modifications of branching Brownian motion and branching random walk in which
the laws of reproduction and/or particle motion depend on particle location arise in
various contexts. See, for instance, Lalley and Sellke [LS88], [LS89], in which particle
reproduction is allowed only in certain favored regions of space; Kesten [K78], Aldous
[A], Addario-Berry and Broutin [AB11], Aïdékon, Hu, and Zindy [AHZ13], Berestycki et
al. [BBS13] and Maillard [M13] where particles are killed upon entering the half-line
(−∞, 0]; and Lalley and Sellke [LS92] and Korostelev and Korosteleva [KK03], [K04],
[KK04], where particles move according to spatially-inhomogeneous diffusion laws. In
the articles [AB11], [AHZ13], [M13], and [BBHM15], the branching law is supercritical,
but particle production is balanced by the killing in (−∞, 0] so that Mn/n→ 0.

This paper will focus on the modification of critical branching Brownian motion (that
is, where the mean number of offspring at reproduction events is 1) in which particles
are killed upon reaching the interval (−∞, 0]. Clearly, the number Zt of particles alive at
time t in this process is dominated by the corresponding random variable for the critical
branching Brownian motion with no killing, and so Zt = 0 eventually, with probability 1.
Furthermore, the distribution of the maximal particle location M is dominated by that of
the maximal particle location in critical branching Brownian motion with no killing, and
so the results of Sawyer and Fleischman [SF79] imply that for any ε > 0 and any initial
particle location y > 0,

Py{M ≥ x} ≤ (6 + ε)

σ2x2

for all sufficiently large x.
It is by no means evident, however, that the tail behavior should be the same as

for branching Brownian motion with no killing. In fact we will prove that when the
branching process is initiated by a single particle at a location y > 0 near zero, the
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Critical branching Brownian motion with killing

tail follows a power law with exponent 3 rather than 2. In particular, we will prove in
Theorem 6.1 that for each fixed y > 0,

Py(M > x) ∼ C3y

x3
as x→∞

where C3 > 0 is a constant depending on the offspring distribution but not on x or y. On
the other hand, we will show that for initial particle locations y = sx whose distances
from the killing zone are proportional to the target x, the exponent of the power law
reverts to 2; in particular, there exists a continuous function C4(s) of s ∈ (0, 1) such that

Psx(M > x) ∼ C4(s)

x2
as x→∞.

Furthermore, we will show that in the Moranian case, where the offspring law is double-
or-nothing, the tail probability Py(M > x) can be explicitly written as a Weierstrass
P−function. All of these results will be deduced from an analysis of a boundary value
problem in the variable y satisfied by the hitting probability Py(M > x).

Also of interest is the total number N of particles killed at 0. For supercritical
branching Brownian motion with particle drift and killing at 0, Maillard [M13] and
Berestycki et al. [BBHM15] have, under various hypotheses concerning the drift and
the reproduction mechanism, obtained sharp estimates for the tail of the distribution
of N . For critical branching Brownian motion with killing, T. Y. Lee [L90-1] proved a
conditional limit theorem for the distribution of N given that N ≥ 1: in particular, he
showed that as the position y of the initial particle→∞, so that Py(N ≥ 1)→ 0, the Py−
conditional distribution of N/P y(N ≥ 1) converges to a non-degenerate limit distribution.
(See also [L90-2] for a time-dependent analogue.)

We will study the distribution of N for critical branching Brownian motion with killing
at 0 under a fixed Py. In section 7 we will show that, for offspring distributions with
mean 1, positive finite variance σ2, and finite third moment,

k∑
j=1

jPy(N ≥ j) ∼ Cy
√
k as k →∞.

Under certain additional hypotheses on the offspring distribution, we will show that the
distribution of N obeys a power law with exponent 3/2, and in addition, we will show
that the N obeys an asymptotic local limit theorem. In particular, we will prove that

Py(N ≥ k) ∼ C7y

k3/2
,

and

Py(N = k) ∼ C8y

k5/2
,

where C7, C8 > 0 are constants depending on the offspring distribution. Finally, in the
Moranian case, we will give in Theorem 7.9 an explicit formula for the tail distribution of
N .

2 Construction and Monotonicity Properties

Branching Brownian motions with initial particle locations at points y ∈ R+ can
be constructed on any probability space that supports countably many (i) independent
standard Wiener processes W i; (ii) independent, identically distributed unit exponential
random variables Ti; and (iii) independent, identically distributed random variables Li all
distributed according to the prescribed offspring distribution. We dub this construction
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the discrete Brownian snake, as it is the natural discrete analogue of Le Gall’s Brownian
snake: see [L99] for details.

The construction proceeds by using the random variables {Li}i≥0 to construct a
Galton-Watson tree. This construction is standard: see [AN72]. If the offspring distribu-
tion has mean 1, as we shall assume throughout, then the resulting Galton-Watson tree is
almost surely a finite, rooted tree with vertices arranged in generations, beginning with
the root at generation 0. To each vertex v is attached one of the random variables Li,
with L0 attached to the root; for each vertex v the random variable Li determines the
number of offspring vertices. The random variables Li can be attached to vertices in any
number of different ways, the most common being the breadth-first rule, in which the
values Li are read successively from the stack generation-by-generation, left-to-right.

Given the realization of the Galton-Watson tree, we attach unit exponential random
variables Ti and standard Wiener processes W i to the edges of the tree in such a way
that the index i = i(v) matches the index of the random variable Li attached to the lower
vertex v of the edge (the incident vertex with higher generation number). The random
variable Ti attached to an edge determines the real time elapsed between reproduction
events, and the Wiener process W i determines the displacement of the particle in real
time from its position at the last reproduction event. Thus, the particles alive at (real)
time t are in one-to-one correspondence with the vertices v of the tree such that∑

w<v

Ti(w) < t ≤
∑
w≤v

Ti(w);

here the symbols < and ≤ indicate the ordering of vertices w along the geodesic path in
the tree from the root to v. The spatial position of the particle represented by vertex v at
time t is

y +
∑
w<v

W i(w)(Ti(w)) +W v(t−
∑
w<v

Ti(w)).

Observe that these rules yield a simultaneous construction of branching Brownian mo-
tions from all initial positions y. It is evident from this construction that the distribution
of the maximum position M attained by a point of the branching Brownian motion is
stochastically monotone in the initial position y.

Branching Brownian motion with killing at 0, or more generally with killing at any
point z ≤ 0, can be constructed using the same marked tree as for branching Brownian
motion with no killing. The rule is simple: once a trajectory along an edge enters (−∞, z],
the tree is pruned at that point. This leaves a subtree of the original Galton-Watson tree
in which certain edges (those corresponding to particles that are killed at 0) are cut.
The vertices of this subtree represent particles of the branching Brownian motion with
killing at z. Thus, the set of particles alive in the branching Brownian motion with killing
is a subset of the set of particles in the branching Brownian motion with no killing, which
we will henceforth refer to as the enveloping branching Brownian motion.

This construction makes it obvious that the distribution of M is dominated by that for
branching Brownian motion with no killing at z, and that if z2 < z1 then the distribution
of M for branching Brownian motion with killing at z1 is stochastically dominated by that
for branching Brownian motion with killing at z2. Furthermore, the implied inequalities
among the cumulative distribution functions are strict : for instance, if w2(x) and w1(x)

are the tail distributions of M for branching Brownian motions with killing at z2 < z1 ≤ 0,
respectively, when both are initiated by a single particle at 0 (that is, wi(x) is the
probability that M ≥ x) then

w1(x) < w2(x). (2.1)

To see this, observe that there is positive probability that a branch will be pruned when
there is killing at z1 but not when the killing is at z2, and that this branch will extend
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in such a way that it gives rise to a particle that reaches location x. Finally, branching
Brownian motions with killing at z converge as z → −∞ to branching Brownian motion
with no killing. Thus, for any x > 0,

lim
z→∞

wz(x) = w∞(x), (2.2)

where wz(x) is the probability that M ≥ x for branching Brownian motion with killing at
−z and w∞(x) is the corresponding probability for branching Brownian motion with no
killing (both with initial particles located at 0).

It should be obvious that minor variations of the construction just outlined can be
used to build a variety of related processes. One that will prove useful in certain of the
arguments to follow is branching Brownian motion with freezing, in which particles that
reach a target point 0 (or, more generally, a closed set B) are frozen in place, ceasing
all motion and reproduction thereafter, but not dying. In a critical branching Brownian
motion with freezing of particles at location 0, eventually all existing particles will be
frozen at 0; moreover, the number Nt of particles frozen at time t is the same as the
number of particles killed at 0 up to time t in the corresponding branching Brownian
motion with killing at 0.

Henceforth, we shall assume that all branching Brownian motions are critical and
that the offspring distribution has positive, finite variance σ2, and we shall denote by

Ψ(z) =

∞∑
k=0

P(L = k)zk (2.3)

the probability generating function of the offspring distribution.

3 Product Martingales and Differential Equations

The key to our analysis will be the fact that hitting probabilities and related expec-
tations for critical branching Brownian motion, viewed as functions of the initial point
y, are governed by a nonlinear second-order differential equation. This differential
equation is well known, but since we will have occasion to consider expectations of
complex-valued random variables, we shall spell out the boundary value problems in
detail.

Say that a sequence f : Z+ → C is multiplicative if it is a geometric sequence of the
form f(n) = zn for some z ∈ C. For any A ∈ (0,∞], let Py be the law of a branching
Brownian motion with initial point y ∈ [0, A] in which particles are frozen upon reaching
either 0 or A. For i = 0 and i = A define

Ni = number of particles frozen at i. (3.1)

Both N0 and NA are almost surely finite, since only finitely many particles are born in
the course of a critical branching Brownian motion. Clearly, NA = 0 when A =∞.

Proposition 3.1. If f, g : Z+ → C are bounded, multiplicative sequences, then the
function ϕ(y) = Ey [f(N0)g(NA)] satisfies the second order differential equation

1

2
ϕ′′(y) = ϕ(y)−Ψ(ϕ(y)) for all y ∈ (0, A). (3.2)

In the special case where A = ∞ and f(n) = δ0(n) this was stated and proved by
Sawyer and Fleischman [SF79], and this proof was subsequently cited by Lee [L90-1].
But the proof in [SF79] seems to have a gap: the derivation of the differential equation
relies on the smoothness of the function ϕ(y), but to prove this the authors quote the
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version of Weyl’s Lemma given in [M69] to conclude that a weak solution must be C∞.
We do not understand this argument, as Weyl’s Lemma, in the form stated in [M69],
applies only to linear parabolic differential operators, while the differential operators in
[SF79], section 2, and in our Proposition 3.1 are nonlinear. Therefore, we will sketch
another approach to the proof of Proposition 3.1 that uses an interesting class of product
martingales. (Similar martingales for supercritical branching Brownian motion were
used in [LS88] and [N88]). Let h : [0, A]→ C be a function bounded in absolute value by
1, and denote by X1(t), . . . , XZ(t)(t) the locations of the particles alive at time t (including
those frozen at one of the endpoints 0, A) in a branching Brownian motion with freezing
at 0 and A; define

Y (t) = Yh(t) =

Z(t)∏
i=1

h(Xi(t)). (3.3)

Proposition 3.2. If h(y) satisfies the differential equation 1
2h
′′ = h−Ψ(h) in the interval

(0, A) then Y (t) is a bounded martingale, relative to the standard filtration for the
branching Brownian motion, under Py, for any y ∈ [0, A].

Proof of Proposition 3.1 (Sketch). Given Proposition 3.2, we proceed as follows. Fix f, g,
and let h : [0, A]→ C be the unique solution to the boundary value problem

1

2
h′′ = h−Ψ(h);

h(0) = f(1),

h(A) = g(1).

(When A = ∞, the boundary condition should be replaced by h(A) = g(0) = 1.) The
existence and uniqueness of solutions follows by standard arguments in the theory of
ordinary differential equations; we omit the details.1 By Proposition 3.2, the process
Y (t) defined by (3.3) is a bounded martingale, and so for any t <∞,

EyY (t) = Y (0) = h(y).

But for all sufficiently large t, all particles will be frozen at either 0 or A, so eventually
Y (t) coincides with f(N0)g(NA). (For this the product structure of the martingale is
essential.) Therefore, by the bounded convergence theorem,

h(y) = Eyf(N0)g(NA).

Proof of Proposition 3.2 (Sketch). By the Markov property, it suffices to show that for
any initial configuration of particles y = (y1, y2, . . . , ym) the expectation EyY (t) is con-
stant in time. Since each of the m particles engenders its own independent branching
Brownian motion, the expectation EyY (t) factors as

EyY (t) =

m∏
i=1

EyiY (t);

1At any rate the argument is routine in the case where f(1) and g(1) take values in the unit interval [0, 1]; in
this case existence follows by a routine phase-portrait analysis for the associated first-order system, using the
nonnegativity of the forcing term Ψ(h). When f(1) and g(1) are complex-valued, however, other methods must
be used. See the proof of Lemma 7.14 in section 7 below for a proof in the case needed for the theorems on
the distribution of the number of killed particles.
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consequently, it suffices to prove that for any y ∈ [0, A] the expectation EyY (t) is constant
in time, and for this it is enough to show that

d

dt
EyY (t) = 0.

But for this another conditioning shows that it is enough to prove that the derivative
is zero at t = 0. This can be accomplished by a routine argument, by partitioning the
expectation into the expectations on the events that the initial particle reproduces or
not by time t and using the fact that h is bounded and C2 and satisfies the differential
equation h′′/2 = h−Ψ(h).

4 Weierstrass’ P−Functions
In the special case of double-or-nothing branching (the Moranian case), the proba-

bility generating function of the offspring distribution is the quadratic function Ψ(s) =
1
2 (1 + s2). In this case the differential equation (3.2) reduces, as we will show, to the
differential equation of the Weierstrass P−function. For a given period lattice

L = {mω + nω̃,m, n ∈ N} ,

where ω and ω̃ are nonzero complex numbers whose ratio is not real, Weierstrass’
P−function with period lattice L is the meromorphic function on C defined by

PL(z) =
1

z2
+

∑
l∈L,l 6=0

(
1

(z − l)2
− 1

l2

)
. (4.1)

See [K84] or [MM99] for expositions of the basic theory. Clearly, (4.1) defines a doubly-
periodic function of z whose periods are the elements of the lattice L. It is also evident
from (4.1) that P−functions with proportional period lattices are related by a scaling
law: in particular, for any β 6= 0 and any lattice L,

PβL(βz) =
1

β2
PL(z) for all z ∈ C. (4.2)

It is known (cf. [K84] or [MM99]) that the restrictions of PL and its derivative
P ′L to a fundamental parallelogram are branched covers of the Riemann sphere Ĉ of
degrees 2 and 3, respectively, and so for all but three exceptional values w ∈ C the
equation PL(z) = w has two solutions z1, z2 in each fundamental parallelogram, and
P ′L(z1) = −P ′L(z2). Furthermore, the function PL(z) satisfies the differential equation

P ′L(z)2 = 4PL(z)3 − g2(L)PL(z)− g3(L), (4.3)

where the constants g2(L) and g3(L) are given by the Eisenstein series

g2(L) = 60
∑

l∈L,l 6=0

1

l4

g3(L) = 140
∑

l∈L,l 6=0

1

l6
.

For any two complex numbers A,B such that A3− 27B2 6= 0, there exists (cf. Proposition
III.13 in [K84]) a lattice L such that

g2(L) = A and (4.4)

g3(L) = B.
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Proposition 4.1. Let A and B be two constants such that A3 − 27B2 6= 0, and Let u(z)

be a C1 function on an open interval J ⊂ R with derivative u′(x) 6= 0 for all x ∈ J that
satisfies the differential equation

u′(z)2 = 4u(z)3 −Au(z)−B. (4.5)

Then for some lattice L and some α ∈ C,

u(x) = PL(x+ α) for all x ∈ J. (4.6)

Proof. Without loss of generality, assume that 0 ∈ J and that u′(0) 6= 0. The differential
equation (4.5) implies that in some neighborhood of x = 0, for one of the two branches
of the square root function,

u′(x) =
√

4u(x)3 −Au(x)−B. (4.7)

Since u′(0) 6= 0, the right side of this equation is a Lipshitz continuous function of u(x)

for x near 0, and so the Picard-Lindelöf theorem guarantees that the equation (4.7) has
a unique solution with initial value u(0).

Let L be a lattice such that equations (4.4) hold. Because the Weierstrass P−function
is a double covering of C, there exist two arguments α, α′ ∈ C such that PL(α) =

PL(α′) = u(0), and for one of these (say α) it must be the case that P ′L(α) = u′(0). Since
the functions PL(x+ α) and PL(x+ α′) both satisfy the differential equation (4.5), one
of them (say PL(x + α)) must also satisfy (4.7). By the Picard-Lindelöf theorem, the
equation (4.6) must hold in J .

The connection between the differential equation (3.2) and the Weierstrass P−function
is easily explained. If h(z) = z2, then the forcing term in (3.2) is quadratic, and so after
a rescaling (3.2) can be written in the form

u′′(y) = 6u(y)2. (4.8)

Multiplying both sides by u′(y) and integrating yields

(u′(y))2 = 4u(y)3 + C, (4.9)

where C is a constant of integration. This is the characteristic equation for a P−function
whose period lattice satisfies g2(L) = 0.

Proposition 4.2. The Weierstrass function u = PL satisfies the differential equation
(4.9) for some C ∈ C \ {0} if and only if the period lattice is of the form

L = {mω + nωeπi/3} (4.10)

for some ω 6= 0; furthermore, C > 0 in (4.9) if and only if the lattice has the form (4.10)
with

ω = |ω|eπi/6. (4.11)

In this case, u has real poles at integer multiples of
√

3|ω|, and takes only real values
on R; furthermore, its only zeros in the fundamental parallelogram are at

√
3|ω|/3 and

2
√

3|ω|/3, and u is strictly increasing on (2
√

3|ω|/3,
√

3|ω|).

Proof. The Eisenstein series for the lattice L = {mω + nω̃} can be written as

g2(L) = 60

∗∑
m,n

(mω + nω̃)−4 = 60ω−4G4(ξ) and

g3(L) = 140

∗∑
m,n

(mω + nω̃)−6 = 140ω−6G6(ξ)

(4.12)
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where ξ = ω̃/ω is the ratio of two fundamental periods and the sum is over all pairs
of integers except (0, 0). By convention, the periods are ordered so that =ξ > 0; with
this convention, G4 and G6 are modular forms of weights 4 and 6 (cf. [K84], section
III.2). By the residue theorem for modular forms (cf. [K84], Proposition III.2.8), any
nonzero modular form of weight 4 has precisely two zeros in the closure of the standard
fundamental polygon of the modular group, at the points ξ− = eπi/3 and ξ+ = e2πi/3.
Therefore, any Weierstrass function u = PL that satisfies the differential equation (4.9)
must have period lattice of the form (4.10) (as the choices ξ− and ξ+ lead to the same
lattice).

The lattice (4.10) is invariant under rotation by π/3 (that is, L = eπi/3L), and so by
averaging over the six rotations ekπi/3 one finds that

G6(eπi/3) = G6(e2πi/3) =

∗∑
m,n

1

m6 + n6
> 0. (4.13)

Consequently, if g3(L) = −C < 0 then L must be of the form (4.10) for some ω such that
ω6 < 0, that is, ω is a positive multiple of a primitive 12th root of unity. Thus, in the case
g3(L) = −C < 0 the lattice L must have the form (4.10) with ω = |ω|eπi/6.

Assume now that L is of the form (4.10) for some ω satisfying (4.11). Then by the
addition law for the elliptic curve y2 = 4x3 − g3 (cf. [K84], section I.7; see especially
Problem 8),

PL(
√

3|ω|/3) = PL(2
√

3|ω|/3) = 0.

Since PL has degree 2, it has only two zeros in a fundamental parallelogram, and by
equation (4.9) the derivatives P ′L(

√
3|ω|/3) = −P ′L(2

√
3|ω|/3) must be the two square

roots of C. It is easily seen that the unique solution of (4.9) with initial conditions
u(y0) = 0 and u′(y0) > 0 must be strictly increasing, with increasing derivative, on any
interval (y0, y1) on which the solution u is well-defined and finite. This implies that
P ′L(
√

3|ω|/3) is negative, and hence P ′L(2
√

3|ω|/3) is positive. It then follows that u is
strictly increasing in (2

√
3|ω|/3,

√
3|ω|).

Remark 4.3. The case where C = −g3(L) = −1 in equation (4.9) is known as the
equianharmonic case; cf. [AS72] for further information. In the equianharmonic case the
period lattice is of the form (4.10), but with ω > 0, i.e., the lattice is of the same form as
in the case where C = 1 but rotated by −π/6. Call the case where C = −g3(L) = +1 the
anti-anharmonic case; then by the scaling law, the P−functions for the equianharmonic
and the anti-anharmonic cases are related by

PAAH(eπi/6z) = e−πi/3PEAH(z) for all z ∈ C.

Thus, mapping properties and special values of the P-function in the anti-anharmonic
case can be read off from those for the equianharmonic case, which have been extensively
tabulated.

As far as we know, the occurrence of the P−function in critical branching processes
was first observed by the first author in [L09], sec. 1.8. However, [L09] mistakenly
asserts that the differential equation (4.9) with C > 0 falls into the equianharmonic case,
and consequently the formulas in [L09], sec. 1.8 are off by factors of eπi/6 and eπi/3.

5 Distribution of M : Moranian Case

In this section we consider the Moranian case [SF79], where the number of offspring
is either zero or two, each with probability 1

2 . In this case the probability generating
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function is Ψ(t) = 1
2 + 1

2 t
2. For 0 ≤ y < x define

ux(y) = Py{M ≥ x} (5.1)

to be the probability that the maximum position M attained by a particle of the branching
Brownian motion initiated by a particle at y, with freezing of particles at 0, will exceed x.
The function ϕx(y) = 1− ux(y) is of the form covered by Proposition 3.1, so it satisfies
the differential equation (3.2) with Ψ(z) = (1 + z2)/2, and consequently ux satisfies

u′′x(y) = 2

[
1

2
+

1

2
(1− ux(y))2 − (1− ux(y))

]
= ux(y)2. (5.2)

Theorem 5.1. For branching Brownian motion with Moranian offspring distribution and
killing at 0, the tail distribution function ux(y) = Py(M ≥ x) is given by

ux(y) = 6PLx
(y + 2ωx/3), (5.3)

where PLx
(z) is the Weierstrass P function with period lattice

Lx =

{
m
ωx√

3
eπi/6 + n

ωx√
3
eπi/2 : m,n ∈ Z

}
(5.4)

for some ωx > 0. The positive period ωx is uniquely determined by the boundary condition

6PLx(x+ 2ωx/3) = 1. (5.5)

Remark 5.2. The value of ωx can be computed numerically, by exploiting the fact that
the inverse of the Weierstrass P−function w = PL(z) is given by the elliptic integral

z =

∫ ∞
w

dt√
4t3 − g2(L)t− g3(L)

. (5.6)

For lattices of the form (5.4), we have g2(L) = 0. Consequently, the boundary condition
(5.5) implies that

x =

∫ 1
6

0

dt√
4t3 − g3(L)

. (5.7)

This equation (5.7) determines g3(L), and hence, using the identities (4.12), the value of
ωx. For x = 1, the values are

g3(L1) = −0.023786 · · · and ω1 = 9.88285 · · · .

The large x dependence of ωx on x will be further clarified below, in Corollary 5.4.

The proof of Theorem 5.1 will rely on the uniqueness theorem for solutions of the
differential equation for the P−function (Proposition 4.1). For this, it will be necessary
to know that u′x(y) 6= 0 for any y ∈ [0, x].

Lemma 5.3. The function y 7→ ux(y) has strictly positive derivative u′x(y) on the interval
[0, x].

Proof. Since ux(y) is a cumulative distribution function, it is non-decreasing, and so
its derivative must be nonnegative. Moreover, the differential equation u′′x(y) = ux(y)2

implies that the derivative is increasing at every y where ux(y) > 0. It is easily seen that
a branching Brownian motion started at any y > 0 has positive probability of putting a
particle at x, so ux(y) > 0 for all y ∈ (0, x].
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It remains to show that u′x(0) > 0. The differential equation u′′ = u2 can be rewritten
as the autonomous system

u′ = v,

v′ = u2.

The vector field in this system is clearly Lipshitz continuous, so solutions to the initial
value problem are unique. Since u ≡ v ≡ 0 is the unique solution with initial conditions
u(0) = v(0) = 0, it follows that any non-constant solution of u′′ = u2 satisfying u(0) = 0

cannot have derivative u′(0) = 0.

Proof of Theorem 5.1. Set ũx(y) = 1
6ux(y); then (5.2) becomes

ũx(y)′′ = 6ũx(y)2,

the differential equation encountered earlier in (4.8). The integrated form is (4.9). By
Lemma 5.3, the derivative u′x(y) is strictly positive on y ∈ [0, x], and so the same is
obviously true of ũx(y). Hence, by Proposition 4.1, ũx must coincide with a translate of
a P−function, and so for each x > 0 there exists a unique period lattice and a unique
αx ∈ C such that

ũx(y) = PL(y + αx) for all y ∈ [0, x].

Since there is no linear term in the equation (4.8), the period lattice L must be of the
form (5.4).

Finally, the boundary condition ux(0) = 0 and (5.3) imply that αx is a zero for PL(z).
Since ux(y) is increasing in y and PL(z) is doubly periodic, the constant αx must be the
larger zero of PL(z) in (0, ωx), and in particular, by Proposition 4.2,

αx = 2ωx/3. (5.8)

All of the P−functions that occur in Theorem 5.6 are scaled versions of PL1 . By (4.2),
if the positive periods ω1 and ωx of the lattices L1 and Lx, respectively, are related by

λx :=
ω1

ωx
, (5.9)

then
PLx

(z) = λ2xPL1
(λxz). (5.10)

It is obvious that limx→∞ ωx =∞, because the function ux(y) is an increasing func-
tion on (0, x), and hence cannot have a positive period smaller than x. Although the
dependence of ωx on x is not linear, it is asymptotically linear, as the next corollary
shows.

Corollary 5.4.

lim
x→∞

ωx
x

= lim
x→∞

ω1

λxx
= 3. (5.11)

Proof. The scaling law (4.2) and the boundary conditions for the functions ux and u1
imply that

PL1
(2ω1/3 + λxx) =

1

6λ2x
. (5.12)

Since (6λ2x)−1 →∞ as x→∞, it follows that 2ω1/3 + λxx converges to ω1, as this is the
smallest positive pole of PL1

. The result now follows from the equation (5.9).
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Remark 5.5. By exploiting the fact that PL1
(ω1 − z) ∼ 1/z2 as z → 0, one can obtain

from the equation (5.12) the sharper approximation

ωx = 3x+ 3/
√

6 + o(1) as x→∞. (5.13)

The scaling laws (5.10) and the period asymptotics (5.11) now combine to provide
the large−x asymptotic behavior of the hitting probability function ux(y).

Theorem 5.6. For branching Brownian motion with Moranian offspring distribution and
killing at 0, the tail distribution function ux(y) = Py(M ≥ x) of the maximum attained
position M satisfies

lim
x→∞

x3ux(y) = C1 · y for each y > 0, (5.14)

where C1 = 6c31P ′L1
(2ω1/3) = 33.0822 · · · and c1 = ω1/3 = 3.29428 · · · are constants that

do not depend on x or y. Furthermore, for each fixed 0 < s < 1,

lim
x→∞

x2ux(sx) = C2(s) (5.15)

where C2(s) = 6c21PL1(2ω1/3 + sc1).

Proof of Theorem 5.6. By equations (5.3) and (5.2), the function PL1
satisfies the second-

order differential equation

P ′′L1
(z) = 6PL1

(z)2. (5.16)

Using the abbreviation αx = 2ωx/3 and the fact that PL1(α1) = 0 (cf. Proposition 4.2), it
follows by taking successive derivatives that

P ′′L1
(α1) = 0,

P ′′′L1
(α1) = 0, and

P(4)
L1

(α1) = 12
(
P ′L1

(α1)
)2
.

Lemma 5.3 implies that P ′L1
(α1) > 0, since this is proportional to u′1(0). Consequently,

since λx → 0 as x→∞, Taylor expansion around the point α1 yields

ux(y) = 6PLx(αx + y) = 6λ2xPL1(α1 + λxy)

= 6λ2x

(
P ′L1

(α1)λxy + P(4)
L1

(α1)λ4xy
4 + · · ·

)
= 6P ′L1

(α1)λ3xy +O(λ6x),

Therefore, by Corollary 5.4,

lim
x→∞

x3ux(y) = 6c31P ′L1
(α1)y = C1y.

and (5.14) follows.

To prove (5.15), notice that for y = sx, we have

x2ux(y) = 6x2PLx
(αx + y) = 6(λxx)2PL1

(α1 + s(λxx))

By the continuity of PL1
(z) on the interval (α1, ω1), it follows that

lim
x→∞

x2ux(y) = 6c21PL1
(α1 + sc1) = C2(s).
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6 Distribution of M : General Case

In this section we will show that the asymptotic formulas (5.14) and (5.15) extend to
branching Brownian motions with arbitrary mean 1 offspring distributions with finite
third moments. The main result is as follows.

Theorem 6.1. Assume that the offspring distribution has mean 1, positive variance σ2,
and finite third moment. Then for each y > 0, the probability ux(y) = Py{M ≥ x} that
a particle of the branching Brownian motion with initial particle at location y reaches
location x satisfies

lim
x→∞

x3ux(y) = C3 · y, (6.1)

where C3 = C1/σ
2. In addition, for each fixed 0 < s < 1,

lim
x→∞

x2ux(sx) = C4, (6.2)

where C4 = C2/σ
2. Here C1, C2 are the constants in Theorem 5.6.

This theorem will be deduced from Theorem 5.6 by comparison arguments for differ-
ential equations. The strategy is similar to that used by Lee [L90-1]: the key is that for
small values of ux(y), the forcing term h(ux(y)) in the differential equation

u′′x = h(ux) (6.3)

(which follows from Proposition 3.1 as in the Moranian case) is well-approximated by the
quadratic function σ2ux(y)2. To see this, let Ψ(z) be the probability generating function
of the offspring distribution. If the offspring distribution has finite third moment, then
by Taylor expansion

Ψ(1− z) = Ψ(1)−Ψ′(1)z +
1

2
Ψ′′(1)z2 +O(z3) as z → 0.

By hypothesis, the offspring distribution has mean 1 and positive variance 0 < σ2 <∞,
so Ψ′(1) = 1 and Ψ′′(1) = σ2. Consequently, as z → 0,

h(z) = 2 [Ψ(1− z)− (1− z)] = σ2z2 +O(z3). (6.4)

Our arguments will use the following comparison principle for solutions to differential
equations and inequalities. This is a minor modification of the Comparison Lemma in
[L90-1]; because the result is standard and its proof involves only elementary calculus,
we shall omit it.

Lemma 6.2 (Comparison Principle). Let v1, v2 be positive functions on an interval [y1, y2]

such that for some constant a > 0,

v′′1 (y)− av1(y)2 ≤ 0 and (6.5)

v′′2 (y)− av2(y)2 ≥ 0

for all y1 < y < y2. If

v1(y1) ≥ v2(y1) and (6.6)

v1(y2) ≥ v2(y2), (6.7)

then
v1(y) ≥ v2(y) for all y1 ≤ y ≤ y2. (6.8)

Next, we record several monotonicity properties of the functions ux(y) = Py{M ≥ x}.
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Proposition 6.3. The function ux(y) is strictly decreasing in x and strictly increasing in
y, and u′x(0) is strictly decreasing in x.

Proof. The monotonicity of ux(y) in y and in x follow directly from the construction of
the branching Brownian motion outlined in section 2.

To prove that u′x(0) is strictly decreasing in x, recall that for each x > 0 the function
ux satisfies the differential equation u′′ = h(u), together with the boundary conditions
ux(0) = 0 and ux(x) = 1. Hence, by the uniqueness theorem for differential equations, if
0 < x1 < x2 then u′x1

(0) 6= u′x2
(0), because otherwise the functions uxi(y) would be equal

for all y ∈ [0, x1], which is impossible because ux2(x1) < 1.
Thus, to complete the proof it suffices to show that if 0 < x1 < x2 then u′x1

(0) <

u′x2
(0) is impossible. But since ux1

(0) = ux2
(0) = 0, if u′x1

(0) < u′x2
(0) then for all y in

some neighborhood (0, ε) we would have ux1
(y) < ux2

(y). This would contradict the
monotonicity of ux(y) in x.

To study the behavior of ux(y) near y = x, we introduce the function

wx(t) = ux(x− t) (6.9)

Observe that wx(t) is the probability that a branching Brownian motion with killing at
−(x − t) and initial particle at 0 will produce a particle that reaches location t. The
construction in section 2 shows that wx(t) is strictly monotone in both x and t, and that

lim
x→∞

wx(t) = w∞(t) (6.10)

where w∞(t) is the probability that a branching Brownian motion with no killing started
at location 0 will produce a particle that reaches location t (cf. equation (2.2)). The
convergence (6.10) holds uniformly for t in any finite interval [0, t∗]. The function w∞(t)

is the same as the function p(x) in the d = 1 case studied in [SF79], who proved that

w∞(t) =
6

σ2t2
+O(

1

t3
) as t→∞. (6.11)

To prove Theorem 6.1, we must determine the behavior of wx(t) for large t, and in
particular for t within distance O(1) of x. The basic strategy will be as follows. For any
ε > 0 there exists t∗ < ∞ so large that w∞(t∗) < ε. This implies that wx(t∗) < ε, or
equivalently ux(x− t∗) < ε, for all large x. Thus, in the interval [0, x− t∗] the function
ux will be bounded above by ε, and so h(ux) will be well-approximated by the quadratic
function σ2u2x. The analysis of sections 4–5 shows that the differential equation (3.2)
with h(u) = Cu2 admits an exact solution in terms of a Weierstrass P−function, so it will
follow from the comparison principle above that in the interval [0, x− t∗] the function ux
will be trapped between two such P−functions. By taking ε→ 0, we will obtain sharp
asymptotic approximations to ux.

Taylor expansion of h(z) shows that for all 0 < δ < 1 there exists ε = ε(δ) > 0 such
that if 0 ≤ ux(y) ≤ ε, then

σ2(1− δ)u2x(y) ≤ h (ux(y)) ≤ σ2(1 + δ)u2x(y). (6.12)

On the other hand, (6.11) and the monotonicity of w∞(t) imply that for each ε ∈ (0, 1),
there exists tε such that w∞(tε) = ε and w∞(t) ≤ ε for all t ≥ tε. By (6.10), for all
0 ≤ y ≤ x− tε,

ux(y) = wx(x− y) ≤ w∞(x− y).

Therefore, (6.12) applies for all 0 ≤ y ≤ x− tε. Define

η(x, ε) = ux(x− tε);
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then for each ε > 0 the function η(x, ε) is increasing in x, and so

η(x, ε) = wx(tε) ↑ w∞(tε) = ε as x→∞. (6.13)

Corollary 6.4 (Pinching). Let tε and η(x, ε) be as above, and define{
a+ = σ2(1 + δ) > 0

a− = σ2(1− δ) > 0.
(6.14)

If ux(y), u+x (y) and u−x (y) satisfy the boundary value problems
u′′x(y) = h(ux(y))

ux(0) = 0

ux(x− tε) = η(x, ε),


u±′′x (y) = a±u

±2
x (y)

u±x (0) = 0

u±x (x− tε) = η(x, ε),

(6.15)

then
u+x (y) ≤ ux(y) ≤ u−x (y) for all 0 ≤ y ≤ x− tε. (6.16)

Proof. This is an immediate consequence of the comparison principle (Lemma 6.2).

The differential equations (6.15) for the functions u±x are, except for the constants
a±, identical to the differential equation (4.8) for the P−function. Consequently, they
are related by a simple scaling law.

Lemma 6.5. Suppose that the functions u±x (y) satisfy (6.15), and set

û±x (y) = u±x

(
y
√
a±

)
. (6.17)

Then the functions û±x satisfy the boundary value problems
û±′′x (y) = û±2x (y)

û±x (0) = 0

ûx(
√
a±(x− tε)) = η(x, ε).

(6.18)

Proof. This is an immediate consequence of the definition (6.17) and equation (6.15).

Proof of Theorem 6.1. The differential equation in (6.18) is the same as in the Moranian
case, so

û±x (y) = 6PL±
x

(
α±x + y

)
,

where the period lattice L±x has fundamental periods ω±x and ω±x e
2πi/3. The center-

ing constant α±x is the larger zero of PL±
x

(z) on (0, ω±x ). By the scaling laws for the
P−functions,

û±x (y) = 6λ±2x PL1

(
α1 + λ±x y

)
. (6.19)

where λ±x = ω1/ω
±
x . The boundary conditions at y =

√
a±(x − tε) in (6.18) and (6.19)

imply that

PL1
(α1 +

√
a±λ

±
x (x− tε)) =

η(x, ε)

6λ±2x
. (6.20)

By (6.13), limx→∞ η(x, ε) = ε, and furthermore x − tε ∼ x, since tε = O(1) as x → ∞.
Hence, λ±x → 0, by (5.9). Consequently, the right hand side of (6.20) goes to∞ as x→∞.
It follows that α1 +

√
a±λ

±
x x→ ω1, as x→∞. Therefore,

lim
x→∞

λ±x x =
ω1 − α1√

a±
=

c1√
a±

. (6.21)
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Equations (6.17) and (6.19) imply that

u±x (y) = û±x (
√
a±y) = 6λ±2x PL1(α1 + λ±x

√
a±y). (6.22)

Consequently, when 0 ≤ y ≤ x− tε is fixed, Taylor expansion of PL1
(z) around z = α1 as

in the Moranian case yields

lim
x→∞

x3u±x (y) = lim
x→∞

6x3λ±2x PL1
(α1 +

√
a±λ

±
x y)

= lim
x→∞

6(λ±x x)3
√
a±P ′L1

(α1)y +O(λ±3x )

(6.21)
=

6c31P ′L1
(α1)y

a±
=
C1y

a±
.

Similarly, if y = sx for some fixed 0 < s < 1, then by the continuity of PL1
(z) on (α1, ω1)

and (6.21),

lim
x→∞

x2u±x (sx) = lim
x→∞

6(xλ±x )2PL1
(α1 + s

√
a±λ

±
x x)

(6.21)
=

6c21PL1
(α1 + sc1)

a±
=
C2(s)

a±
.

Here C1 and C2(s) are as in Theorem 5.6.
Finally, by Corollary 6.4,

for each y fixed ,
C1y

a+
≤ lim
x→∞

x3ux(y) ≤ C1y

a−
; and

for each 0 < s < 1 fixed ,
C2(s)

a+
≤ lim
x→∞

x2ux(sx) ≤ C2(s)

a−
.

Letting δ → 0, so that a± → σ2, we obtain (6.1) and (6.2).

7 The Number of Killed Particles

In this section we discuss the distribution of the number N = N0 of particles killed
during the course of a critical branching Brownian motion with killing at 0 initiated by a
single particle at position y > 0. Our primary interest is in the tail of the distribution,
that is, in the large-k behavior of the probabilities Py{N ≥ k}.
Theorem 7.1. If the offspring distribution has mean 1, positive variance σ2, and finite
third moment then

m∑
k=1

kPy(N ≥ k) ∼ 2C7y
√
m where C7 =

σ√
6π
. (7.1)

The proof, which will use a form of Karamata’s Tauberian theorem, will be given in
section 7.4.

If we knew that the sequence kPy(N ≥ k) were monotone then we could conclude
from (7.1) that Py(N ≥ k) ∼ C7y/k

3/2. However, it seems unlikely that monotonicity of
the sequence kPy(N ≥ k) holds in general. Thus, to obtain sharp asymptotic results
about the individual probabilities Py(N = k), we will impose more restrictive hypotheses
on the offspring distribution that will allow us to avoid the use of Karamata’s theorem.
In its place, we will use a result of Flajolet and Odlyzko [FO90] that allows one to extract
information about the asymptotic behavior of the coefficients of a power series from
information about its behavior on the circle Γ of convergence. Our hypotheses are most
conveniently formulated in terms of the functions

h(s) = 2[Ψ(1− s)− (1− s)] and κ(s) =

∫ s

0

h(s′) ds′, (7.2)
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where Ψ is the probability generating function of the offspring distribution. Since the
power series for a probability generating function has radius of convergence 1, the
function h extends to an analytic function h(z) in the disk of radius 1 centered at z = 1,
as does its integral κ. If the offspring distribution has finite support then the functions
h and κ are polynomials, and consequently are well-defined and analytic in the entire
plane C. Observe that κ has a zero of degree 3 at s = 0, since h(s) = s2 +O(|s|3).

Theorem 7.2. Assume that the offspring distribution has mean 1, positive variance σ2,
and that the function h(z) extends analytically to a disk of radius 2 + ε centered at 0. If
the indefinite integral κ(s) has no zeros in the punctured disk 0 < |s| ≤ 2, then for each
y > 0,

Py(N ≥ k) ∼ C7y

k3/2
where C7 =

σ√
6π
. (7.3)

and

Py(N = k) ∼ C8y

k5/2
where C8 =

3σ

2
√

6π
. (7.4)

For the double-or-nothing (Moranian) offspring distribution, the functions h(z) and
κ(z) are given by h(z) = z2 and κ(z) = z3/3, and so the conclusions of Theorem 7.2 hold.
(In this case, we will exhibit an explicit closed-form representation of the distribution, in
Theorem 7.9 below.) Consequently, by Rouche’s theorem, the hypotheses of Theorem 7.2
hold for all finitely-supported offspring distributions in a neighborhood of the double-
or-nothing distribution, in the following sense: for any integer m ≥ 3 there exists αm ∈
(0, 1/2) such that the hypotheses of Theorem 7.2 hold for any probability distribution
{qn}0≤n≤m such that min(q0, q2) > αm.

Theorem 7.2 should be compared with recent results of Maillard [M13] and Berestycki
et al. [BBHM15], which give sharp tail probability estimates for the number of killed
particles in the somewhat different context of supercritical branching Brownian motion
with particle drift. Both [M13] and [BBHM15] also use the Flajolet-Odlyzko theorem, and
so must also contend with the issue of analytic continuation of the generating function.
In [BBHM15], the reproduction mechanism is simple binary fission, and so there is no
need to impose additional conditions. In [M13], the offspring distribution is arbitrary,
but must have exponentially decaying tails and mean greater than 1. In all three cases,
it would be of interest to determine optimal hypotheses on the offspring distribution.

The proof of Theorem 7.2 will be given in section 7.5. In sections 7.1, 7.2, and 7.4,
we shall assume only that the hypotheses of Theorem 7.1 are in force; in section 7.3 we
shall assume that the offspring distribution is the double-or-nothing distribution; and in
section 7.5 we shall assume that the offspring distribution satisfies the hypotheses of
Theorem 7.2.

7.1 Expected number of killed particles

Proposition 7.3.
Ey[N ] = 1. (7.5)

The proof will use the following a priori bound on the expectation.

Lemma 7.4.
Ey[N ] ≤ 1

Proof. For each time t, let Nt denote the total number of particles frozen at 0 by time t,
and Zt the total number of particles in the enveloping branching Brownian motion with
no particle freezing (see the construction in section 2). The counting process {Nt}t>0 is
clearly increasing in t, and

lim
t→∞

Nt = N.
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Consequently, by the monotone convergence theorem, it will suffice to show that Ey[Nt] ≤
1 for any t > 0.

Let Z̃t be the total number of particles at time t in the branching Brownian motion
with freezing (including those particles frozen at 0), and Wt the initial particle’s location
at time t ≥ 0. Define T to be the time of the first reproduction event (recall that this is a
unit exponential random variable independent of the branching Brownian motion) and
τ0 the first time that a particle reaches the origin. Since the offspring distribution has
mean 1,

EyZT∧τ0 = 1.

Now a particle that reaches zero will, in the enveloping branching Brownian motion,
engender a critical descendant branching Brownian motion, and so by the strong Markov
property,

E0[Zt−(T∧τ0)] = 1.

This implies that Ey[Z̃t] = Ey[Zt] = 1. Clearly Nt ≤ Z̃t, so Ey[Nt] ≤ Ey[Z̃t] = 1 for any
t > 0.

Proof of Proposition 7.3. Let
Z∗t = Z̃t −Nt (7.6)

be the number of particles of the branching Brownian motion alive at time t that are not
frozen. Since Ey[Z̃t] = 1 for any t > 0, it is enough to show that EZ∗t → 0 as t→∞.

Clearly, Z∗t ≤ Zt, because the particles counted in Z∗t are contained in the set of
particles counted by Zt. In fact,

Z∗t =

Zt∑
i=1

1{particle i trajectory ⊂ (0,∞)} =⇒

EyZ∗t = Ey
Zt∑
i=1

1{particle i trajectory ⊂ (0,∞)}.

To evaluate the last expectation, we use the discrete Brownian snake representation
of branching Brownian motion described in section 2. Recall that in this construction
particles are represented by vertices of a Galton-Watson tree, and their locations are
obtained by running conditionally independent Wiener processes along the edges. Thus,
for any particle i counted in Zt, the conditional distribution of the trajectory {W i

s}s≤t of
particle i up to time t, given the realization of the skeletal branching process, is that of
Brownian motion started at y. Hence,

EyZ∗t = Ey
Zt∑
i=1

1{particle i trajectory ⊂ (0,∞)}

= EZtP
y{Ws does not hit 0 by time t}

= P y{Ws does not hit 0 by time t}
−→ 0 as t→∞.

7.2 Probability Generating Function of N

Define

ϕ(y, s) = Ey[sN ] =

∞∑
k=0

Py{N = k}sk (7.7)
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to be the probability generating function of the random variable N under the probability
measure Py. Because the sequence sn is multiplicative, Proposition 3.1 implies that for
each complex number s in the disk |s| < 1 the function y 7→ ϕ(y, s) is C2 and satisfies the
differential equation

1

2
∂yyϕ(y, s) = ϕ(y, s)−Ψ(ϕ(y, s)) for y > 0. (7.8)

Furthermore, ϕ satisfies the boundary conditions

ϕ(0, s) = s and (7.9)

ϕ(∞, s) = 1.

Because we are interested in the tail of the distribution, we will find it useful to refor-
mulate the boundary value problem for ϕ as an equivalent problem for the generating
function

H(y, s) =

∞∑
k=1

Py(N ≥ k)sk. (7.10)

Proposition 7.5. For each s such that |s| < 1, the function H(y, s) satisfies the differen-
tial equation

∂yyH(y, s) =
s

1− s
h

(
1− s
s

H(y, s)

)
. (7.11)

where h(z) = 2[Ψ(1− z)− (1− z)]. In addition, H(y, s) satisfies the following boundary
conditions:

H(0, s) = s, (7.12)

H(∞, s) = 0, and (7.13)

lim
s→1

H(y, s) = 1. (7.14)

Proof. The generating functions H and ϕ are related by

ϕ(y, s) =

∞∑
k=0

Py(N = k)sk

=

∞∑
k=0

Py(N ≥ k)sk −
∞∑
k=0

Py(N ≥ k + 1)sk

= 1 +H(y, s)

(
s− 1

s

)
.

(7.15)

Thus, the differential equation (7.11) follows directly from that for ϕ, as do boundary
conditions (7.12) and (7.13). Finally, the additional boundary condition (7.14) follows
from the hypothesis that the branching Brownian motion is critical, as this makes
EyN = 1, by Proposition 7.3, and

lim
s→1

H(y, s) =

∞∑
k=1

Py(N ≥ k) = Ey[N ].
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7.3 The Moranian Case

Consider now the Moranian case, where the number of offspring is either 0 or 2, each
with probability 1

2 . In this case the function h in the differential equation (7.11) reduces
to h(z) = z2, and so (7.11) becomes

∂yyH(y, s) =
1− s
s

H2(y, s). (7.16)

The boundary conditions (7.12) and (7.14) uniquely determine the solution, which can
be written explicitly as

H(y, s) = s

(
1√
6
y
√

1− s+ 1

)−2
(7.17)

Remark 7.6. The function

H̃(y, s) = s

(
1√
6
y
√

1− s− 1

)−2
also satisfies the boundary value problem, but since it has a pole at y =

√
6/(1− s), it

cannot be a probability generating function for all y > 0.

Similarly, let
u(y, s) = 1− ϕ(y, 1− s), (7.18)

then the differential equation (7.8) and the boundary conditions (7.9) become

∂yyu(y, s) = u2(y, s)

u(0, s) = s

u(∞, s) = 0,

(7.19)

which has the solution

u(y, s) =
6s

(y
√
s+
√

6)2
.

so by (7.18), the generating function ϕ(y, s) is

ϕ(y, s) = 1− u(y, 1− s) = 1− 6(1− s)
(y
√

1− s+
√

6)2
. (7.20)

The equation (7.20) completely determines the distribution of N under Py. In The-
orem 7.9 below, we will use (7.20) to provide explicit formulas for the probabilities
Py(N ≥ k). But before doing so, we will show that (7.20) leads to the asymptotic
formulas (7.3) and (7.4).

Theorem 7.7. In the Moranian case,

lim
k→∞

k
3
2Py(N ≥ k) =

y√
6π

:= C5y, (7.21)

and

lim
k→∞

k
5
2Py(N = k) =

3y

2
√

6π
:= C6y. (7.22)

The proof will rely on the following theorem of Flajolet and Odlyzko [FO90].

Theorem 7.8 (Corollary 2, [FO90]). Assume that the power series A(z) =
∑∞
n=1 anz

n

defines an analytic function in |z| < 1 that has an analytic continuation to a Pacman
domain

D◦b,δ := {|z| < 1 + δ} ∩ {|arg(z − 1)| > β}
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for some δ > 0 and 0 ≤ β < π/2. If

A(z) ∼ K(1− z)α as z → 1 in Dα,δ, (7.23)

then as n→∞,

an ∼
K

Γ(−α)
n−α−1. (7.24)

provided α /∈ {0, 1, 2, · · · }.

Proof of Theorem 7.7. The functions H and ϕ given by equations (7.17) and (7.20) have
algebraic singularities at s = 1, but for each y have unique analytic continuations to the
slit plane C \ {1 < s <∞}. Expansion around s = 1 yields

H(y, s) = s/

(
1√
6
y
√

1− s+ 1

)2

= 1− 2y√
6

(1− s) 1
2 +O(|1− s|).

(7.25)

and

ϕ(y, s) = 1− (1− s)/
(

1 +
2y√

6
(1− s) 1

2 +
y2

6
(1− s)

)
= s+

2y√
6

(1− s) 3
2 +O(|1− s|2).

(7.26)

Thus, the hypotheses of Theorem 7.8 are satisfied, and so the relations (7.21) and (7.22)
follow.

Because H is a simple algebraic function of the argument s, its power series coeffi-
cients can be determined exactly. These provide an explicit formula for the distribution
of N in the Moranian case.

Theorem 7.9. In the Moranian case,

Py(N ≥ k) = Ak +Bk, (7.27)

where

Ak = k(k + c2)
c2k−2

(c2 − 1)k+1
, (7.28)

Bk = 2c
∑

i+j=k,i,j=0,1,···

(2i− 3)!!

2ii!

jc2j−2

(c2 − 1)j+1
, (7.29)

and
c =

y√
6
. (7.30)

Proof. The equation (7.17) for the generating function H(y, s) can be rewritten as

H(y, s) = s(1 + c
√

1− s)−2.

Expanding around s = 0 yields

1[
1 + c

√
1− s

]2 =

[
1− c

√
1− s

]2[
1 + c

√
1− s

]2 [
1− c

√
1− s

]2
=

1− 2c
√

1− s+ c2(1− s)
[1− c2(1− s)]2

=
1

[(1− c2) + c2s]
2 −

2c
√

1− s
[(1− c2) + c2s]

2 + c2
(1− s)

[(1− c2) + c2s]
2

= I + II + III.
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For I, we have

I =

[
1

(1− c2) + c2s

]2
=

1

(1− c2)2

(
1

1− c2

c2−1s

)2

=
1

(1− c2)2

( ∞∑
i=0

(
c2

c2 − 1

)i
si

)
·

 ∞∑
j=0

(
c2

c2 − 1

)j
sj


=

1

(1− c2)2

∞∑
k=0

(k + 1)

(
c2

c2 − 1

)k
sk

=

∞∑
k=0

(k + 1)
c2k

(c2 − 1)k+2
sk.

(Here s must be taken to lie in a neighborhood of 0, to ensure that the geometric series
converges. Since we are only interested in establishing formulas for the coefficients of
the power series for H(y, s), however, the radius of convergence is irrelevant, as long as
it is positive.) Now let

αk = (k + 1)
c2k

(c2 − 1)k+2
; (7.31)

then for III, we have

III = c2(1− s) · I

= c2

( ∞∑
k=0

αks
k −

∞∑
k=0

αks
k+1

)

= c2

( ∞∑
k=0

αks
k −

∞∑
k=1

αk−1s
k

)

= c2

(
α0 +

∞∑
k=1

(αk − αk−1)sk

)
(7.31)

= c2

(
1

(c2 − 1)2
+

∞∑
k=1

c2k−2

(c2 − 1)k+1

[
c2

c2 − 1
(k + 1)− k

]
sk

)

=

∞∑
k=0

c2k

(c2 − 1)k+1

[
c2

c2 − 1
(k + 1)− k

]
sk.

Next, set

βk =
c2k

(c2 − 1)k+1

[
c2

c2 − 1
(k + 1)− k

]
; (7.32)

then we find that Ak+1 = αk + βk by direct computation.
It remains to show that

II =

∞∑
k=0

Bk+1s
k.

By Newton’s binomial formula,

(1− s)1/2 =

∞∑
i=0

(
1/2

i

)
(−s)i. (7.33)
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Consequently,

II = −2c

( ∞∑
i=0

(
1/2

i

)
(−s)i

) ∞∑
j=0

αjs
j


=− 2c

( ∞∑
i=0

(−1)i−1(2i− 3)!!

2ii!
(−1)isi

) ∞∑
j=0

αjs
j


= 2c

( ∞∑
i=0

(2i− 3)!!

2ii!
si

) ∞∑
j=0

αjs
j


= 2c

∞∑
k=0

 ∑
i+j=k,i,j=0,1···

(2i− 3)!!

2ii!
αj

 sk

(7.31)
=

∞∑
k=0

Bk+1s
k.

7.4 Proof of Theorem 7.1

In the general case, where the offspring distribution is assumed only to have mean 1,
variance σ2 > 0, and finite third moment, the behavior of the generating functions ϕ(y, s)

and H(y, s) as s → 1− can be deduced from that in the Moranian case by comparison
arguments, as in section 6. This derivation exploits the fact that for s near 1 the
differential equation for H looks like that for the Moranian case, for which we have exact
solutions. The result, the details of whose proof we defer to section 7.6, is as follows.

Lemma 7.10. For each y > 0, the generating functions ϕ(y, s) and H(y, s) satisfy

ϕ(y, s)− s ∼ 2σy√
6

(1− s)3/2 and (7.34)

H(y, s)− 1 ∼ −2σy√
6

(1− s)1/2 (7.35)

as s ↑ 1.

Because the generating functions ϕ(y, s) and H(y, s) are defined by power series with
nonnegative coefficients, the singular behavior of their derivatives can be deduced from
Lemma 7.10, by the following elementary fact.

Lemma 7.11. Let A : [0, 1]→ R+ be an absolutely continuous, nonnegative, increasing
function whose derivative A′ is non-decreasing on (0, 1). If for some constants C > 0 and
α ∈ (0, 1),

A(1)−A(s) ∼ C(1− s)α as s ↑ 1, (7.36)

then
A′(s) ∼ Cα(1− s)α−1 as s ↑ 1. (7.37)

Proof. Since A is absolutely continuous,

A(s1)−A(s0) =

∫ s1

s0

A′(t) dt for all 0 < s0 < s1 ≤ 1.

Suppose that for some δ > 0 there were a sequence sn → 1− along which A′(sn) <

Cα(1 − δ)(1 − sn)α−1. Since A′ is non-decreasing, it would then follow that A′(s) <
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Cα(1− δ)(1− sn)α−1 for all s < sn, and so for any ε > 0,

A(sn)−A(sn(1− ε)) ≤ Cα(1− δ)(1− sn)α−1ε.

But this would lead to a contradiction of the hypothesis (7.36) provided ε is sufficiently
small relative to δ. A similar argument shows that it is impossible for A′(sn) > Cα(1 +

δ)(1− sn)α−1 along a sequence sn → 1−.

Corollary 7.12. For each y > 0, as s→ 1−,

d

ds
H(y, s) =

∞∑
k=1

kPy(N ≥ k)sk−1 ∼ σy√
6

(1− s)−1/2. (7.38)

Theorem 7.1 follows directly from Corollary 7.12 and Karamata’s Tauberian theorem
(cf. [BGT87], Corollary 1.7.3), which we now recall.

Theorem 7.13. Let A(z) =
∑
anz

n be a power series with nonnegative coefficients an
and radius of convergence 1. If, for some constants C, β > 0,

A(s) ∼ C/(1− s)β as s ↑ 1, (7.39)

then as n→∞.
n∑
k=1

ak ∼ Cnβ/Γ(1 + β). (7.40)

7.5 Proof of Theorem 7.2

In this section we assume that the offspring distribution satisfies the conditions
enumerated in Theorem 7.2, in particular, that the function κ(z) defined by (7.2) has
no zeros z such that 0 < |z| ≤ 2. We will once again make use of the Flajolet–Odlyzko
theorem (Theorem 7.8), which requires (a) that the function defined by the power series
in question should vary regularly as functions of s near the singularity s = 1, and (b)
that this function has an analytic continuation to a Pacman domain. Lemma 7.10 implies
that ϕ(y, s) and H(y, s) vary regularly as s → 1− along the real axis from below. The
following lemma ensures that they have analytic continuations to a Pacman domain, and
that the regular variation persists in this region.

Lemma 7.14. If the offspring distribution satisfies the hypotheses of Theorem 7.2, then
for each y > 0 the generating functions H(y, s) and ϕ(y, s) have analytic continuations
H(y, z) and ϕ(y, z) to a slit disk {|z| < 1 + δ} \ {1 ≤ z < 1 + δ}, and the relations (7.34)
and (7.35) hold as s→ 1 in the slit domain.

Proof. In view of the relation (7.15), to prove that the function H(y, s) has an analytic
continuation it suffices to show that the probability generating function ϕ(y, s) can be
analytically continued, or alternatively that the function

u(y, z) := 1− ϕ(y, 1− z)

has an analytic continuation to a slit disk {|1− z| < 1 + δ} \ {1 ≤ 1− z < 1 + δ}. Recall
(Proposition 3.1) that for all real z in the interval |1− z| < 1 the function u(y, z) satisfies
the boundary value problem

∂yyu(y, z) = h(u(y, z)),

u(0, z) = z,

u(∞, z) = 0.

(7.41)
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Integration of this differential equation , as in section 3 of [SF79], leads to the equation∫ z

u(x,z)

dy√
κ(y)

= x where κ(y) := 2

∫ y

0

h(y′) dy′. (7.42)

(The upper limit of integration is z because u(0, z) = z.)

It is easily checked that in any region of the z−plane where the equation (7.42) has
a solution u(x, z), the solution will satisfy the boundary value problem (7.41). Thus, to
prove the first assertion of the lemma it will suffice to show that the integral equation
(7.42) implicitly defines u(x, z) as an analytic function of z for z in a slit disk.

Define a function of two complex variables z, w by

G(w, z) :=

∫ z

w

dy√
κ(y)

.

This function is analytic in z and w in any domain D̂ ⊂ C2 such that there exists a simply
connected domain D ⊂ C in which 1/

√
κ is analytic and such that for any z, w ∈ C there

is a path from z to w in D. Moreover,

∂G

∂z
= 1/

√
κ(z) and

∂G

∂w
= 1/

√
κ(w).

Therefore, by the complex implicit function theorem, the equation G(w(z), z) = x defines
w(z) as an analytic function of z in a neighborhood of any solution G(w0, z0) = x where
1/
√
κ(w0) 6= 0.

The function ϕ(x, z) is analytic in the unit disk and, since it is a probability generating
function, satisfies |ϕ| < 1. Consequently, the function u(x, z) = 1− ϕ(x, 1− z) is analytic
in the disk D1 := {|1− z| < 1} and satisfies u(x, z) ∈ D1 for all z ∈ D1. By hypothesis, the
functions h(z) and κ(z) have analytic continuations to a disk of radius 2 + δ > 2 centered
at 0, and the only zero of κ(z) in this disk is at z = 0. Therefore, the functional equation

G(u(x, z), z) = x (7.43)

holds for all z ∈ D1.

We claim that for any point ξ ∈ ∂D1 except ξ = 0, the function u(x, z) converges as
z → ξ to a value u(x, ξ) such that u(x, ξ) ∈ D1. This is clearly equivalent to the assertion
that for any point eiθ 6= 1 of the unit circle, the function ϕ(x, z) converges as z → eiθ to a
value ϕ(x, eiθ) of absolute value less than 1. To see that this is so, recall that ϕ(x, z) is
the probability generating function of the random variable N under P x. It is easily seen
(for instance, using the discrete Brownian snake construction) that for any x > 0,

P x{N = k} > 0 for every k = 0, 1, 2, . . . .

But this implies that |ExeiθN | is less than 1 for every θ ∈ [−π, π] \ {0}.
It now follows that the functional equation (7.43) extends by continuity to all z ∈ ∂D1

except z = 0, and that at any such boundary point, u(x, z) 6= 0. Hence, the function
1/
√
κ(w) is analytic and nonzero in a neighborhood of w = u(x, z). This implies that

u(x, z) has an analytic continuation to a neighborhood of every z ∈ ∂D1 except the
singular point z = 0.

Next, we must prove that u(x, z) has an analytic continuation to a slit neighborhood
of z = 0. Since ϕ(x, 1) = 1, the function u(x, z) converges to 0 as z → 0 in the disk
{|1 − z| < 1}; thus, the function κ(u) approaches 0. Our assumptions on the offspring
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distribution imply that

h(z) = σ2z2 +

∞∑
j=3

hjz
j and hence

κ(z) =
2

3
σ2z3 +

∞∑
j=4

kjz
j ;

consequently,
1√
κ(z)

= Kz−3/2(1 +R(z))

where K =
√

3/2σ2 and R(z) is an analytic function in some neighborhood of z = 0 and
satisfies R(0) = 0. Now the integral equation (7.42) and the implicit function theorem
imply that, for fixed x > 0, the function u = u(x, z) satisfies the differential equation

du

dz
=

√
κ(u)√
κ(z)

=
u3/2

z3/2
(1 +R(z))

(1 +R(u))

for all z in a domain {|1− z| < 1}∩ {|z| < δ}. Using the analyticity of R, we conclude that

u−1/2

(
1 +

∞∑
k=1

bku
k

)
= z−1/2

(
1 +

∞∑
k=1

bkz
k

)
+ C,

where C is a constant of integration. Squaring both sides exhibits u as a meromorphic
function of

√
z. This shows that u has an analytic continuation to a slit disk {|z| <

δ} \ (−δ, 0], and so it follows, by the relations u(x, z) = 1−ϕ(x, 1− z) and equation (7.15),
that ϕ(x, z) and H(x, z) admit analytic continuations to a slit disk {|1− z| < δ′} \ [1, 1 + δ′].

Finally, we must prove that the relations (7.34) and (7.35) hold as z → 1 in the
extended domain of definition of the functions ϕ(x, z) and H(x, z). But the analytic
continuation argument above shows that, in a slit disk centered at z = 1, the functions
ϕ(x, z)− z and H(x, z)− 1 are meromorphic functions of

√
1− z, and hence have Puiseux

expansions in powers of (1− z)1/2. Since (7.34) and (7.35) hold as s ↑ 1, it follows that
they persist in the slit disk.

Proof of Theorem 7.2. Lemma 7.14 implies that the generating functions ϕ(y, s) and
H(y, s) meet the requirements of the Flajolet-Odlyzko theorem (Corollary 7.8). Therefore,
Theorem 7.2 follows from relation (7.24) (since Γ(− 1

2 ) = −2
√
π and Γ(− 3

2 ) = 4
3

√
π).

7.6 Proof of Lemma 7.10

The strategy is similar to that of section 6. As s→ 1,

u(y, 1− s)→ 0

1− s
s

H(y, s)→ 0,

and so for s near 1 the differential equations (7.41) and (7.11) for u(y, 1− s) and H(y, s)

have forcing terms that are nearly quadratic. Taylor expansion of h shows that for any
δ > 0 there exists ε > 0 such that for 1− ε < s < 1,

a−u
2(y, 1− s) ≤h(u(y, 1− s)) ≤ a+u2(y, 1− s) and

a−

[
1− s
s

H(y, s)

]2
≤h
(

1− s
s

H(y, s)

)
≤ a+

[
1− s
s

H(y, s)

]2
,
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where a± are defined in (6.14). Let u±(y, 1− s) and H±(y, s) satisfy the boundary value
problems


∂yyu±(y, 1− s) = a±u

2
±(y, 1− s)

u±(0, s) = s

u±(∞, s) = 0,


∂yyH±(y, s) = a±

1− s
s

H2
±(y, s)

H±(0, s) = s

H±(∞, s) = 0,

and set ϕ±(y, s) = 1− u±(y, 1− s). By the same argument as in Corollary 6.4,

u+(y, 1− s) ≤u(y, 1− s) ≤ u−(y, 1− s)
ϕ−(y, s) ≤ϕ(y, s) ≤ ϕ+(y, s)

H+(y, s) ≤H(y, s) ≤ H−(y, s).

(7.44)

Define re-scaled versions

û±(y, 1− s) = u±

(
y
√
a±

, 1− s
)

Ĥ±(y, s) = H±

(
y
√
a±

, s

)
;

(7.45)

these satisfy the boundary value problems


∂yyû±(y, 1− s) = û2±(y, 1− s)

û±(0, s) = s

û±(∞, s) = 0,


∂yyĤ±(y, s) =

1− s
s

Ĥ2
±(y, s)

Ĥ±(0, s) = s

Ĥ±(∞, s) = 0,

which are the same as in the Moranian case. Hence, ϕ̂±(y, s) = 1 − û±(y, 1 − s) and
Ĥ±(y, s) have the same asymptotics as (7.26) and (7.25):

ϕ̂±(y, s) = s+
2y√

6
(1− s) 3

2 +O
(
|1− s|2

)
Ĥ±(y, s) = 1− 2y√

6
(1− s) 1

2 +O (|1− s|)

as s→ 1. Hence, applying (7.45) yields

ϕ±(y, s) = s+
2y
√
a±√
6

(1− s) 3
2 +O

(
|1− s|2

)
H±(y, s) = 1−

2y
√
a±√
6

(1− s) 1
2 +O (|1− s|) .

Finally, as δ → 0 we have a± → σ2, and so (7.44) implies

ϕ(y, s)− s ∼ 2σy√
6

(1− s) 3
2

H(y, s)− 1 ∼ −2σy√
6

(1− s) 1
2 .

as s→ 1.
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