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Abstract

We continue the work started in Part I [6], showing how the addition of noise can
stabilize an otherwise unstable system. The analysis makes use of nearly optimal
Lyapunov functions. In this continuation, we remove the main limiting assumption of
Part I by an inductive procedure as well as establish a lower bound which shows that
our construction is radially sharp. We also prove a version of Peskir’s [7] generalized
Tanaka formula adapted to patching together Lyapunov functions. This greatly simpli-
fies the analysis used in previous works.
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1 Introduction

In Part I of this work [5], we investigated the following complex-valued dynamics{
dzt = (azn+1

t + anz
n
t + · · ·+ a0) dt+ σ dBt

z0 ∈ C
(1.1)

where n ≥ 1 is an integer, a ∈ C \ {0}, ai ∈ C, σ ≥ 0, and Bt = B
(1)
t + iB

(2)
t is a complex

Brownian motion defined on a probability space (Ω,F ,P). There, we studied how the
presence of noise (σ > 0 in (1.1)) could stabilize the unstable underlying deterministic
system (σ = 0 in (1.1)). To prove stability in the stochastic perturbation, we developed a
framework for building Lyapunov functions and applied it to (1.1) assuming that the drift
in equation (1.1) did not contain any “significant" lower-order terms; that is, we assumed
that aj = 0 for bn2 c ≤ j ≤ n. This was done in order to focus on the overarching elements
of the construction of Lyapunov functions and to avoid any additional complexities
caused by the presence of such lower-order terms. In this paper, we give an inductive
asymptotic argument which shows how to remove this assumption, thereby proving the
full version of Theorem 3.1 of Part I [5]. Here, we also provide a radially sharp lower

*Iowa State University, USA . E-mail: dherzog@iastate.edu
†Duke University, USA. E-mail: jonm@math.duke.edu

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v20-4048
http://arXiv.org/abs/1404.0955v2
mailto:dherzog@iastate.edu
mailto:jonm@math.duke.edu


Noise-induced stabilization of planar flows II

bound on the decay rate of the invariant measure’s density as stated in Theorem 5.3 of
Part I [5]. This work extends and strengthens a stream of results on similar problems
[1, 2, 3, 4, 7].

As first glance, it is surprising that the general case is substantially more complicated
than those cases covered in Part I [5], as intuition suggests that the behavior of the
process zt at infinity is determined by the leading-order term zn+1 and the noise. We will
see here, however, that there is a range in which each of the intermediate lower-order
terms becomes dominant in the angular direction at infinity as one moves towards to
regions where noise dominates. The scaling analysis of Section 7.1 of Part I [5] hinted
at this possibility when we employed our simplifying assumption, for it implied that
the dominant balance of terms transferred directly from the leading order term zn+1

to the angular diffusion term without any interference from the remaining lower-order
terms. In this paper, we will perform the analogous analysis for the general case in
Section 3, showing how to correctly study the process at infinity in the presence of
the intermediate lower-order terms. We will see, in particular, that the analysis used
in Section 7.1 of Part I [5] breaks down in “small" regions containing the explosive
trajectories of the deterministic system (σ = 0 in equation (1.1) ) and that the additional
terms produce intermediate boundary layers which surround the inner most layer where
noise dominates.

We begin in Section 2 by recalling the general setup of Part I [5]. There, we also state
the main results we will prove in this paper. In Section 3, we perform the asymptotic
analysis which guides and motivates the rest of the work. Specifically, we will use the
asymptotically dominant operators yielded from it to define our Lyapunov functions
in Section 4 by using a succession of associated PDEs based on these operators. In
Section 5, we analyze boundary flux terms in order to show that the local Lyapunov
functions can be patched together to produce a global Lyapunov function. Using these
calculations, we verify the needed global Lyapunov structure in Section 6. In Section 7,
we show that the family of Lyapunov functions we have constructed are radially optimal
by establishing a matching lower bound at infinity of the invariant probability density
function. In Section 8, we prove a version of Peskir’s generalized Tanaka formula [6]
which allows to avoid C2-smoothing along the boundaries of the local Lyapunov functions.
Being able to avoid such smoothing greatly simplifies former similar analyses [1, 3, 4].
In Section 9, we make some concluding remarks and suggestions for possible directions
of future research.

2 Preliminaries

In this section, we will both recall the general setup of Part I [5] and state the main
results to be proved in this paper. Throughout this remainder of this work, we will study
more generally the complex-valued SDE

dzt = [azn+1
t + F (zt, z̄t)] dt+ σ dBt (2.1)

where a ∈ C \ {0}, n ≥ 1, σ > 0, Bt = B1
t + iB2

t is a complex Brownian motion and F (z, z̄)

is a complex polynomial in the variables (z, z̄) with F (z, z̄) = O(|z|n) as |z| → ∞. This is a
slight generalization of the system (1.1) in that F (z, z̄) need not be a complex polynomial
in the variable z only.

The main goal of this work is to prove the following result.

Theorem 2.1. The Markov process defined by (2.1) is non-explosive and possesses a
unique stationary measure µ. In addition, µ satisfies:∫

C

(1 + |z|)γ dµ(z) <∞ if and only if γ < 2n.
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Noise-induced stabilization of planar flows II

Furthermore, µ is ergodic and has a probability density function ρ with respect to
Lebesgue measure on R2 which is smooth and everywhere positive.

In addition to proving Theorem 2.1, we will also characterize the convergence of
the process zt defined by (2.1) to the unique stationary measure µ. To state this result,
for any measurable function w : C → [1,∞), let Mw(C) denote the set of probability
measures ν on C satisfying w ∈ L1(ν) and define the weighted total variation metric dw
onMw(C) by

dw(ν1, ν2) = sup
φ:C→R
|φ(z)|≤w(z)

[ ∫
φ(z) ν1(dz)−

∫
φ(z) ν2(dz)

]
.

Theorem 2.2. Let Pt denote the Markov semi-group corresponding to (2.1) and let
α ∈ (0, n) be arbitrary. Then there exists a function Ψ: C→ [0,∞) and positive constants
c, d,K such that

c|z|α ≤ Ψ(z) ≤ d|z|α+n
2 +1

for all |z| ≥ K and such that if w(z) = 1 + βΨ(z) for some β > 0, then νPt ∈Mw(C) for
all t > 0 and any probability measure ν on C. Moreover, with the same choice of w, there
exist positive constants C, γ such that for any two probability measures ν1, ν2 on C and
any t ≥ 1

dw(ν1Pt, ν2Pt) ≤ Ce−γt‖ν1 − ν2‖TV .

Most of the results stated above will be established by constructing certain types
of Lyapunov functions. In Part I [5] of this work, however, we used a slightly more
general formulation of a Lyapunov function than usually employed in existing literature.
Therefore, we now recall what we mean by Lyapunov pairs as introduced in Section 4 of
Part I [5].

Definition 2.3. Let ξt denote a time-homogeneous Itô diffusion on Rk with C∞ co-
efficients and define stopping times τn = inf{t > 0 : |ξt| ≥ n} for n ∈ N. Let
Ψ,Φ : Rk → [0,∞) be continuous. Then we call (Ψ,Φ) a Lyapunov pair correspond-
ing to ξt if:

1. Ψ(ξ) ∧ Φ(ξ)→∞ as |ξ| → ∞;

2. There exists a locally bounded and measurable function g : Rk → R such that the
following equality holds for all ξ0 ∈ Rk, n ∈ N and all bounded stopping times υ:

Eξ0Ψ(ξυ∧τn) = Ψ(ξ0) + Eξ0

∫ υ∧τn

0

g(ξs) ds+ Flux(ξ0, υ, n)

where Flux(ξ0, υ, n) ∈ (−∞, 0] and Flux(ξ0, t, l) ≤ Flux(ξ0, s, n) for all 0 ≤ s ≤ t,
n ≤ l, ξ0 ∈ Rk.

3. There exist constants m, b > 0 such that for all ξ ∈ Rk

g(ξ) ≤ −mΦ(ξ) + b.

The function Ψ in a Lyapunov pair (Ψ,Φ) is called a Lyapunov function.

For an explanation of the differences between the usual notion of a Lyapunov function
and the notion used here, consult Remark 4.2 of Part I [5].

Most of the paper will be spent proving the following result giving the existence of
certain types of Lyapunov pairs corresponding to the dynamics (2.1).
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Theorem 2.4. For each γ ∈ (n, 2n) and δ = δγ > 0 sufficiently small, there exist
Lyapunov pairs (Ψ,Ψ1+δ) and (Ψ, |z|γ) corresponding to the dynamics (2.1) such that the
bound

c|z|γ−n ≤ Ψ(z) ≤ d|z|γ−n+n
2 +1

is satisfied for all |z| ≥ K for some positive constants c, d,K.

By the results of Section 4 of Part I [5], Theorem 2.4 implies almost all of the main
results. In particular, all consequences of Theorem 2.1 and Theorem 2.2 follow except∫

C

(1 + |z|)γ dµ(z) =∞ if γ ≥ 2n. (2.2)

To prove (2.2), we will show the following stronger result.

Theorem 2.5. Let ρ(x, y) denote the invariant probability density function of (2.1) with
respect to Lebesgue measure on R2. Then there exist positive constants c,K such that

|(x, y)|2n+2ρ(x, y) ≥ c for |(x, y)| ≥ K (2.3)

where |(x, y)| =
√
x2 + y2 denotes the standard Euclidean distance on R2.

Throughout, we will assume that the reader is familiar with Section 6 of Part I [5]
which gives the general outline of the construction procedure used to produce Lyapunov
pairs. These Lyapunov pairs will be constructed using this procedure in Sections 3-6,
thus proving Theorem 2.4. In Section 7, we change our focus from constructing Lyapunov
pairs to proving Theorem 2.5. Section 8 contains the proof of a version of Peskir’s result
[6].

Remark 2.6. Throughout the proofs of the main results, we will assume without loss
of generality that a = 1 in equation (2.1). Indeed one can get from either system to the
other by multiplying the solution by a non-zero complex constant and using the fact that
eiθBt, θ ∈ R, is also a complex Brownian motion.

3 The asymptotic operators and their associated regions

As in Part I [5], we will identify the asymptotically dominant terms in equation
(2.1) at infinity by analyzing the time-changed Markov generator L of the process zt as
r = |z| → ∞. Because doing this is substantially more involved than in Part I [5], we
have provided a summary of the analysis that follows in Section 3.2 and added Figure 1
to help illustrate the regions and the corresponding deterministic flow.

By Remark 2.6, we may assume without loss of generality that a = 1 in equation
(2.1) throughout the analysis. Hence, after making the time change t 7→ τ =

∫ t
0
|zs|nds,

the time-changed generator L has the following form when written in polar coordinates
(r, θ):

L = r cos(nθ)∂r + sin(nθ)∂θ + P (r, θ)∂r +Q(r, θ)∂θ +
σ2

2rn
∂2
r +

σ2

2rn+2
∂2
θ (3.1)

where

P (r, θ) =

n+2∑
k=0

rk−n−2fk(θ) and Q(r, θ) =

n+1∑
k=0

rk−n−2gk(θ) (3.2)

for some collection of smooth real-valued functions fk, gk which are 2π-periodic. As
we recall, the inclusion of the k = 0 terms is not needed to encapsulate all terms in
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the generator of the process (2.1). However, their presence is required to deal with a
secondary calculation needed in the proof of Theorem 2.5.

As in Section 6.2 and Section 6.3 of [5], we will build our Lyapunov function for all
(r, θ) by restricting analysis of L to the principal wedge

R = {(r, θ) : r ≥ r∗, −πn ≤ θ ≤
π
n}.

In [5], we recall that to do this construction, we divided R into four regions: a “priming”
region S0 to initialize the construction, a transport region S1, a transition region S2

to blend between the transport region S1 and a region S3 where the noise still plays
a role at infinity. Moreover, this division of the principal wedge R was implied by the
asymptotic analysis of L carried out in Section 7.1 of [5]. Here, too, we will see that
a division of R holds in the general case, but this time there are many more regions.
Initially, the analysis in the general case will exactly coincide with the analysis done
previously. Specifically, the first two regions, S0 and S1, will be of the same form as before.
Afterwards, however, the dynamics at infinity undergoes further incremental changes,
and this results in a significant increase in the number of regions and, consequently, the
number of asymptotic operators.

As in Section 7.1 of [5], we introduce the family of scaling transformations

Sλα : (r, θ) 7→ (λr, λαθ)

where λ > 0 and α ≥ 0. This is done to facilitate the identification of the dominant
balances in L as r →∞ with (r, θ) ∈ R. Operationally, we study the scaling properties of

L ◦ Sλα(r, θ) = r cos(nθλ−α)∂r + λα sin(nθλ−α)∂θ + λ−2−n σ
2

2rn
∂2
r

+ λ2α−n−2 σ2

2rn+2
∂2
θ + λ−1P (λr, λ−αθ)∂r + λαQ(λr, λ−αθ)∂θ.

as λ→∞ for different choices of α ≥ 0.
As done in Section 7.1 of Part I [5], we begin by studying L as r →∞, (r, θ) ∈ R, in

regions where |θ| is bounded away from zero; that is, we first consider L ◦ Sλ0 as λ→∞.
Observing that

L ◦ Sλ0 = r cos(nθ)∂r + sin(nθ)∂θ +O(λ−1) as λ→∞,

we still expect

T1 = r cos(nθ)∂r + sin(nθ)∂θ (3.3)

to satisfy L ≈ T1 for r � 0 with (r, θ) restricted to a region S1 of the form

S1 = {(r, θ) ∈ R : 0 < θ∗1 ≤ |θ| ≤ θ∗0 ≤ π
n} (3.4)

where θ∗0 , θ
∗
1 are any positive constants.

To see what happens in the remainder of R, we now turn to analyzing L ◦ Sλα as
λ→∞ for α > 0 fixed. By fixing the constant θ∗1 > 0 from the definition of S1 above to
be sufficiently small, it is reasonable to assume that the dominant behavior of L ◦ Sλα in λ
can be discovered in R\S1 by considering the power series expansion of the coefficients
of L. Fixing a J > n

2 + 6, we write

L = r∂r + nθ∂θ + P(r, θ)∂r + Q(r, θ)∂θ +
σ2

2rn
∂2
r +

σ2

2rn+2
∂2
θ
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with

P(r, θ) =

J−1∑
i=1

αirθ
i +

n+1∑
i=0

J−1∑
j=0

βijr
−iθj +RP(r, θ)

Q(r, θ) =

n+1∑
i=1

γir
−i +

J−1∑
i=2

δiθ
i +

n+2∑
i=1

J−1∑
j=1

εijr
−iθj +RQ(r, θ)

(3.5)

where αi, βij , γi, δi, εij are constants and the remainder functions RP and RQ satisfy

|RP(r, θ)| ≤ CP(r + 1)|θ|J , |RQ(r, θ)| ≤ CQ|θ|J , J >
n

2
+ 6, (3.6)

for some positive constants CP, CQ. We have switched from P and Q to P and Q because,
in P and Q, we include higher order terms from the power series expansion of r cos(nθ)

and sin(nθ), respectively.
We begin by considering the region just next to S1; that is, we analyze L ◦ Sλα as

λ → ∞ when α > 0 is fixed and small. Looking at L ◦ Sλα for λ > 0 large, the following
four terms are candidates for any dominant balance of L as r →∞:

r∂r + nθ∂θ +

bn2 c+1∑
i=1

λα−iγir
−i∂θ + λ2α−(n+2) σ2

2rn+2
∂2
θ = (I) + (II) +

bn2 c+1∑
i=1

(IIIi) + (IV )

(3.7)

where bxc is the greatest integer less than or equal to x. Note that we have neglected
the δiθi∂θ, i ≥ 2, terms since for |θ| small they are dominated by nθ∂θ. Similarly, we have
neglected all of the εijr−iθj∂θ terms since for θ small the corresponding (IIIi) = γir

−i∂θ
term always dominates it. We have also neglected all of the αirθi∂r and βijr−iθj∂r terms
since they are always dominated by the r∂r term for r large and θ small. The terms (IIIi)

must be included since there is always a region, dictated by the value of α > 0, where θ
is small enough so that (II) is dominated by some collection of the (IIIi) as r →∞.

It is also important to realize why we have truncated the sum
∑

(IIIi) at i = bn2 c+ 1.
Comparing the diffusion term (IV ) with the terms (IIIi), observe that we need only
consider indices i of (IIIi) satisfying α− i ≥ 2α− (n+ 2). Rearranging this conditions
produces the restriction i ≤ n+ 2− α. To obtain the claimed condition i ≤ bn2 c+ 1, we
must first understand the relevant range of α. When 2α − (n + 2) = 0 the term (II)

balances the term (IV ). Solving this condition to find α = n
2 + 1 and substituting this

value of α into i ≤ n+ 2− α, we obtain the claimed bound i ≤ bn2 c+ 1.
Assumption 5.4 from [5] translated to this context implies that γi = 0 for i ∈

{1, . . . bn2 c + 1}; and hence in the case considered previously, none of the (IIIi) terms
we have retained in (3.7) are present. To further illustrate the differences encountered
here, we now analyze L ◦ Sλα as λ→∞ for α > 0 fixed in the relevant range (0, bn2 c+ 1].

For 0 < α < 1, observe that

(I) + (II)�
bn2 c+1∑
i=1

(IIIi) + (IV ) as λ→∞.

When α = 1, however, as λ→∞ we see that

(I) + (II) + (III)1 �
bn/2c+1∑
i=2

(IIIi) + (IV ) . (3.8)

Hence we expect

T2 = r∂r + nθ∂θ (3.9)
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to satisfy L ≈ T2 as r → ∞ when all paths to infinity are restricted to a region of the
form

{(r, θ) ∈ R : r ≥ r∗, b(r) ≤ |θ| ≤ θ∗1}

where θ∗1 > 0 is small enough and

b(r) = cr−1 + o(r−1) as r →∞ (3.10)

for some large constant c > 0. Note that c > 0 is chosen to be large to assure that the
term (III)1 is not also dominant in the region defined above. We also leave open the
choice of a specific curve b because what will happen in the remaining part of R:

{(r, θ) ∈ R : r ≥ r∗, |θ| ≤ b(r)}

will suggest its definition.
When α = 1, (III)1 also becomes dominant suggesting that

r∂r + nθ∂θ + γ1r
−1∂θ (3.11)

should be the asymptotic operator in the next region. However if γ1 6= 0, then on the
curve nθ = −γ1r

−1

nθ∂θ + γ1r
−1∂θ = 0.

and all of the ∂θ terms in (3.11) vanish. Hence we must turn to the terms neglected
above and do a further analysis of L ◦ Sλα as λ → ∞ to find the dominant ∂θ term. In
fact, it is likely that the dominant balance expressed in (3.11) will fail to hold before the
terms above exactly cancel.

To help see which terms need to be included in a neighborhood of the curve defined by
nθ = −γ1r

−1, we make a convenient change of coordinates. The basic idea is to remove
the term (III)1 by means of a coordinate transformation, returning us to a setting like
that considered above when α ∈ (0, 1). Introducing the mapping (r, θ) 7→ (r, φ3) where φ3

is defined by

φ3 = rθ +
γ1

n+ 1
, (3.12)

we see that the operator L transforms to

L(r,φ3) = r ∂r + (n+ 1)φ3 ∂φ3
+ P3 ∂r + Q3 ∂φ3

+
σ2

2rn
∂2
φ3

+
( σ2

2rn
∂2
r

)
(r,φ3)

(3.13)

where

P3(r, φ3) =

n+J∑
i=0

J−1∑
j=0

α
(3)
ij r
−iφj3 +RP3

Q3(r, φ3) =

n+J+1∑
i=1

γ
(3)
i r−i +

n+J+1∑
i=1

J∑
j=1

β
(3)
ij r

−iφj3 +RQ3 ,

(3.14)

α
(3)
ij , γ

(3)
i , β

(3)
ij are constants and, because |θ| ≤ θ∗1 ≤ C, the remainders RP3

, RQ3
satisfy

|RP3(r, φ3)| ≤ CP3(r + 1)[|r−1φ3|J + r−J ]

|RQ3(r, φ3)| ≤ CQ3(r + 1)[|r−1φ3|J + r−J ].

We have chosen not to write out the term σ2

2r ∂
2
r in (3.13) in the variables (r, φ3) because

it is too long of an expression and since it is always dominated, by considering the
appropriate scaling transformation, by the other terms in L(r,φ3) as r →∞.
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After this change of variables, note that (II)+(III)1 has transformed into (n+1)φ3∂φ3
,

hence we have “removed" (III)1. However, note that a new γ
(3)
1 r−1 term is generated,

playing the same role as (III)1 did in the previous coordinate system. While this may
not seem like progress, notice that angular diffusion term (analogous to (IV )) now has
a coefficient r−n where it was r−n−2 in the old coordinates. Hence this term is more
powerful. By a similar line of reasoning to the above, only the terms analogous to (IIIi)

with i ∈ {1, . . . , bn2 c} are not dominated by the noise. This is one less than previously.
Therefore by performing such substitutions iteratively, we will be able to remove enough
terms so that in the final coordinate system, the angular diffusion term will dominate all
analogous terms to the (IIIi)’s . An important point which makes this iteration possible
is that P3 and Q3 have that same forms as P and Q, respectively, in that the lower limits
of the sums do not change. Even though the upper limits of the sums will increase, these
added contributions are of lower order so they do not change the analysis.

To finish the analysis in the variables (r, φ3), we need to complete our understanding
of the boundary |θ| = b(r), extract the dominant operator which replaces T2 after we
cross this boundary, and determine the lower limit of the region where this new operator
remains dominant.

To do this, we again consider L(r,φ3) under the scaling transformation Sλα(r, φ3) :=

(λr, λ−αφ3). First, we note that when α = 0

L(r,φ3) ◦ Sλ0 = r∂r + (n+ 1)φ3∂φ3
+ o(1) as λ→∞

implying that

T3 = r∂r + (n+ 1)φ3∂φ3
(3.15)

satisfies L(r,φ3) ≈ T3 as r → ∞ when paths to infinity are restricted to a region where
|φ3| is bounded and bounded away from zero. Thus we choose the second region to be

S2 = {(r, θ) ∈ R : r ≥ r∗, |φ3| ≥ φ∗, |θ| ≤ θ∗1}. (3.16)

Notice that this choice of boundary |φ3| = φ∗ is consistent the previous requirement on
the boundary function b(r) in the (r, θ) variables given in (3.10) provided φ∗ > γ1/(n+ 1).
In a subset of the region |φ3| < φ∗, the approximation L(r,φ3) ≈ T3 holds as r → ∞. To
discover the boundary of this region, we now study L(r,φ3) ◦ Sλα for α > 0.

As before in the previous coordinate system, there are four terms which are potentially
involved in any dominant balance of the terms in L(r,φ3) ◦ Sλα as λ→∞:

r∂r + (n+ 1)φ3∂φ3 + λα−1γ
(3)
1 r−1∂φ3 + λ2α−n σ

2

2rn
∂2
φ3

= (I)3 + (II)3 + (III)3 + (IV )3.

Notice that the terms (I)3, (II)3, (III)3, (IV )3 are completely analogous the terms
(I), (II), (III)1, (IV ) from the preceding discussion.

As already noted, after the change to the (r, φ3) coordinates, only terms γ(3)
i r−i with

i ∈ {1, . . . , bn2 c} could possibly dominate or balance the angular diffusion term (IV )3, and
the term (III)3 is the leading order term of this form. Hence when n = 1 or n = 2, there
is only one such dominant term of this form, namely (III)3, and it is of either the same
(case n = 2) or lesser (case n = 1) order as (IV )3. In general (n ≥ 3), we will have to
perform additional transformations to remove all of the possibly dominant terms. Before
considering general n ≥ 3, we pause to finish the analysis in the cases when n = 1 and
n = 2.
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3.0.1 Remaining operators and regions when n = 1

For every α ≥ 0, we see that

(I)3 + (II)3 + (IV )3 � (III)3 as λ→∞.

If 0 ≤ α < 1
2 , then

(I)3 + (II)3 � (IV )3 as λ→∞.

When α = 1/2, the term (IV )3 also becomes dominant in λ. In particular, the region
where we expect L(r,φ3) ≈ T3 as r →∞ is precisely

S3 = {(r, θ) ∈ R : r ≥ r∗, η∗r− 1
2 ≤ |φ3| ≤ φ∗, |θ| ≤ θ∗1}, (3.17)

for some η∗ > 0. Additionally, the operator

A = r∂r + 2φ3∂φ3
+
σ2

2r
∂2
φ3

(3.18)

contains the dominant part of L(r,φ3) in the region

S4 = {(r, θ) ∈ R : r ≥ r∗, |φ3| ≤ min(η∗r−1/2, φ∗), |θ| ≤ θ∗1}. (3.19)

Summing this up, we have seen that when n = 1, the approximating operators are
T1, T2, T3, A with corresponding regions S1,S2,S3,S4 where we expect the approximation
to be valid for r > 0 large.

Remark 3.1. We have already introduced a number of parameters (e.g. θ∗1 , φ∗, η∗, r∗)
thus far that will have to be chosen to satisfy a number of properties. Instead of writing
these properties explicitly, we simply need to make sure that we vary the parameters
in a consistent way to obtain them. That is, we will always choose θ∗1 > 0 small enough,
then pick φ∗ = φ∗(θ∗1) > 0 large enough, then choose η∗ = η∗(θ∗1 , φ

∗) > 0 large enough,
and then finally pick r∗ = r∗(θ∗1 , φ

∗, η∗) > 0 large enough. For example, to assure that
S3 and S4 defined above are of the required form outlined in Section 6.2 of [5], we can
choose the parameters θ∗1 , φ∗, η∗, and r∗ in this way to see that in fact

S3 = {(r, θ) ∈ R : r ≥ r∗, η∗r− 1
2 ≤ |φ3| ≤ φ∗},

S4 = {(r, θ) ∈ R : r ≥ r∗, |φ3| ≤ η∗r−1/2}.

3.0.2 Remaining operators and regions when n = 2.

Notice that for 0 ≤ α < 1

(I)3 + (II)3 � (III)3 + (IV )3 as λ→∞.

When α = 1, then (III)3 + (IV )3 also becomes dominant in λ. Therefore, this suggests
that the region where T3 ≈ L(r,φ3) as r →∞ is of the form

S3 = {(r, θ) ∈ R : r ≥ r∗, η∗r−1 ≤ |φ3| ≤ φ∗} (3.20)

for some η∗ > 0. Here again, we have picked the parameters in the way discussed in
Remark 3.1. Notice also that the operator

A = r∂r + 3φ3∂φ3
+ γ

(1)
1 r−1∂φ3

+
σ2

2r2
∂2
φ3

(3.21)

contains the dominant part of L(r,φ3) as r →∞ in the region

S4 = {(r, θ) ∈ R : r ≥ r∗, |φ3| ≤ η∗r−1} (3.22)

where we have again picked φ∗ and r∗ according to Remark 3.1. Summing this up, we
have seen that when n = 2, the asymptotic operators are T1, T2, T3, A with corresponding
regions S1,S2,S3,S4 where the approximation is expected to be valid.
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3.1 Remaining analysis when n = 3, 4.

If 0 ≤ α < 1, then

(I)3 + (II)3 � (III)3 + (IV )3 as λ→∞.

Therefore, we have that L(r,φ3) ≈ T3 as r →∞ in some region of the form

{(r, θ) ∈ R : r ≥ r∗, b(r) ≤ |φ3| ≤ φ∗} (3.23)

where b satisfies

b(r) = cr−1 + o(r−1) as r →∞

for some c > 0. If α ≥ 1 however, it is not clear if the terms in L(r,φ3) corresponding to
(I)3 + (II)3 + (III)3 + (IV )3 contain the dominant part of the operator because

(n+ 1)φ3∂φ3 + γ
(3)
1 r−1∂φ3 = 0

when (n + 1)φ3 = −γ(3)
1 r−1. Hence to analyze L(r,φ3) around this other potentially

dangerous curve, we make another substitution (r, φ3) 7→ (r, φ4) where

φ4 = rφ3 + c3.

and c3 =
γ
(3)
1

n+2 . As before, we use the new variables (r, φ4) to define the boundary curve b
precisely by setting

S3 = {(r, θ) ∈ R : r ≥ r∗, |φ4| ≥ φ∗, |φ3| ≤ φ∗}. (3.24)

Now write L(r,φ3) in the variables (r, φ4) to see that

L(r,φ4) = r∂r + (n+ 2)φ4∂φ4
+ P4∂r + Q4∂φ4

+
σ2

2rn−2
∂2
φ4

+

(
σ2

2rn
∂2
r

)
(r,φ4)

where

P4 =
∑

i≥0,j≥0

α
(4)
ij r
−iφj4 +RP4

Q4 =
∑
i≥1

γ
(4)
i r−i +

∑
i≥1,j≥1

β
(4)
ij r

−iφj4 +RQ4

where α(4)
ij , γ

(4)
i , β

(4)
ij are constants, all sums above are finite sums and, since φ4 will be

bounded by φ∗ in any subsequent region, RP4
and RQ4

satisfy

|RP4 | ≤ CP4(r + 1)[|r−2φ4|J + r−J ]

|RQ4 | ≤ CQ4(r2 + 1)[|r−2φ4|J + r−J ]

for some positive constants CP4
, CQ4

. Here, note that both CP4
and CQ4

can be chosen
independent of φ∗ by picking r∗ > φ∗4. Considering the effect of L(r,φ4) under Sλα(r, φ4) :=

(λr, λ−αφ4), α ≥ 0, we again consider the following four terms in L(r,φ4) ◦ Sλα which could
become dominant in λ as λ→∞:

r∂r + (n+ 2)φ4∂φ4
+ λα−1γ

(4)
1 r−1∂φ4

+ λ2α−(n−2) σ2

2rn−2
∂2
φ4

= (I)4 + (II)4 + (III)4 + (IV )4.

Similarly, we can now uncover all asymptotic operators and their associated regions
when n = 3 and n = 4 because the angular noise term (IV )4 is of sufficient strength in λ.
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3.1.1 Remaining operators and regions when n = 3

Analogous to the case when n = 1,

T4 = r∂r + 5φ4∂φ4 (3.25)

satisfies L(r,φ4) ≈ T4 as r → ∞ when paths to infinity are restricted to a region of the
form

S4 = {(r, θ) ∈ R : r ≥ r∗, η∗r− 1
2 ≤ |φ4| ≤ φ∗} (3.26)

where the parameters η∗, φ∗ > 0 have been chosen according to Remark 3.1. Also,

A = r∂r + 5φ4∂φ4
+
σ2

2r
∂2
φ4

(3.27)

can be used to approximate L(r,φ4) asymptotically for large r in a region of the form

S5 = {(r, θ) ∈ R : r ≥ r∗, |φ4| ≤ η∗r−
1
2 } (3.28)

where we have again picked the parameters as described in Remark 3.1. Thus, when
n = 3, we obtain the approximating operators T1, T2, T3, T4, A with corresponding regions
S1,S2,S3,S4,S5 where the approximation is expected to be valid.

3.1.2 Remaining operators and regions when n = 4

Similar to the case when n = 2, the region where

T4 = r∂r + 6φ4∂φ4

is in good approximation to L(r,φ4) for r > 0 large is given by

S4 = {(r, θ) ∈ R : r ≥ r∗, η∗r−1 ≤ |φ4| ≤ φ∗}

where the parameters have been chosen appropriately. Also,

A = r∂r + 6φ4∂φ4
+ γ

(4)
1 r−1∂φ4

+
σ2

2r2
∂2
φ4

contains the dominant, large r behavior corresponding to L(r,φ4) in

S5 = {(r, θ) ∈ R : r ≥ r∗, |φ4| ≤ η∗r−1}.

Thus when n = 4, we obtain the asymptotic operators T1, T2, T3, T4, A and their regions
S1,S2,S3,S4,S5 of approximation.

3.2 All operators and regions for general n ≥ 1:

We continue until this inductive procedure until it stops. More precisely, if n = 2j + 1

or n = 2j + 2 for some j ≥ 0, then the analysis yields the asymptotic operators

T1, T2, . . . , Tj+3, A

and respective regions

S1,S2, . . . ,Sj+3,Sj+4.

To write each of them explicitly, set φ2 := θ for m ≥ 3 and let

φm = rφm−1 + cm−1. (3.29)

EJP 20 (2015), paper 113.
Page 11/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4048
http://ejp.ejpecp.org/


Noise-induced stabilization of planar flows II

where c2 = γ1
n+1 and cm =

γ
(m)
1

n+m−1 for m ≥ 3. We see that T1, . . . , Tj+3 are given by

T1 = r cos(nθ)∂r + sin(nθ)∂θ

Tm = r∂r + (n+m− 2)φm∂φm , m = 2, 3, . . . , j + 3.

If n = 2j + 1, then the diffusive operator A satisfies

A = r∂r + (3j + 2)φj+3∂φj+3
+
σ2

2r
∂2
φj+3

.

On the other hand if n = 2j + 2, we have

A = r∂r + (3j + 3)φj+3∂φj+3
+ γ

(j+3)
1 r−1∂φj+3

+
σ2

2r2
∂2
φj+3

.

Choosing the parameters θ∗1 , φ
∗, η∗, r∗ according to Remark 3.1, we may write all corre-

sponding regions as follows. Note first that S1,S2, . . . ,Sj+2 are given by

S1 = {(r, θ) ∈ R : r ≥ r∗, 0 < θ∗1 ≤ |θ| ≤ θ∗0}
S2 = {(r, θ) ∈ R : r ≥ r∗, |φ3| ≥ φ∗, |θ| ≤ θ∗1}
Sm =

{
(r, θ) ∈ R : r ≥ r∗, |φm+1| ≥ φ∗, |φm| ≤ φ∗

}
for m = 3, . . . , j + 2. If n = 2j + 1, the final two regions satisfy

Sj+3 =
{

(r, θ) ∈ R : r ≥ r∗, η∗r− 1
2 ≤ |φj+3| ≤ φ∗

}
Sj+4 =

{
(r, θ) ∈ R : r ≥ r∗, |φj+3| ≤ η∗r−

1
2

}
On the other hand if n = 2j + 2, then Sj+3 and Sj+4 are given by

Sj+3 =
{

(r, θ) ∈ R : r ≥ r∗, η∗r−1 ≤ |φj+3| ≤ φ∗
}

Sj+4 =
{

(r, θ) ∈ R : r ≥ r∗, |φj+3| ≤ η∗r−1
}
.

It is also important to notice that L, when written in the variables (r, φm) for m =

3, . . . , j + 3, satisfies

L(r,φm) = r∂r + (n+m− 2)φm∂φm + Pm∂r + Qm∂φm +
σ2

2rn−2m+6
∂2
φm +

(
σ2

2rn
∂2
r

)
(r,φm)

(3.30)

where

Pm =
∑
i,j≥0

α
(m)
ij r−iφjm +RPm

Qm =
∑
i≥1

γ
(m)
i r−i +

∑
i≥1,j≥1

β
(m)
ij r−iφjm +RQm

where α(m)
ij , γi, β

(m)
ij are constants, all sums are finite sums, and by the choice of J > n

2 +6

the remainders satisfy the following bounds on Sm

|RPm | ≤ CPmr−2, |RQm | ≤ CQmr−2,

m = 3, . . . , j + 4. Note that the constants CPm and CQm , m ≥ 3, depend on φ∗ but they
do not depend on r∗.
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θ

0

r

−θ∗1 θ∗1

r∗

S2S2

S3S3

S4S4 S5

Figure 1: Recalling that the constants ci were introduced below equation (3.29), a sketch
of the regions Si, i = 2, 3, 4, 5, is plotted when n = 3, c2 = 1/2, c3 = 1, φ∗ = 10, and
η∗ = 5. A simple example of an operator which has this same region decomposition is
L = r∂r + (3θ + 2r−1 + 5r−2)∂θ + σ2

r3 ∂
2
r + σ2

r5 ∂
2
θ . In the absence of noise, the dynamics

defined by r3L explodes in finite time along the solid trajectory splicing the interior of
S5 in the figure above. The formula of this unstable trajectory is given by the equation
φ4 = r2θ + r

2 + 1 = 0. Moreover, away from this trajectory in the absence of noise,
solutions along r3L push away from this unstable trajectory, eventually exiting though
one of the boundaries θ = ±θ∗1 . The dashed curves plotted above are a few representative
stable trajectories for the system corresponding to the operator r3L. The general formula
for these stable trajectories is given by θ = φ4(0)r3 − 1

2r −
1
r2 , φ4(0) ∈ R 6=0, .
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4 The construction of Ψ on R in the general case

Employing the asymptotic analysis of the previous section, we now define our candi-
date Lyapunov function Ψ on the principal wedge R. Recalling Section 6.3 on Part I of
this work [5], we break up the definition of Ψ on R as follows

Ψ(r, θ) =
{
ψi(r, θ) if (r, θ) ∈ Si

where i = 0, 1, . . . , j + 4, n = 2j + 1 or n = 2j + 2.
As in Part I [5], to initialize the propagation procedure used to define all of the ψi’s

we need one more region S0 (hence the i = 0 above) defined by

S0 = {(r, θ) ∈ R : r ≥ r∗, θ∗0 ≤ |θ| ≤ π
n}

where θ∗0 ∈ ( π2n ,
π
n ), and we define the initial function ψ0 on S0 by

ψ0(r, θ) = rp

for some p ∈ (0, n). We recall that this choice is made because the radial dynamics along
T1 is decreasing in S0.

4.1 The construction in the transport regions

We first turn our attention to defining the functions ψ1, ψ2, . . . , ψj+3 respectively
on the regions S1,S2, . . . ,Sj+3 as solutions to boundary-value problems involving the
asymptotic operators T1, . . . , Tj+3. Because the number of indices will be daunting
otherwise, we adopt the following conventions.

Convention 4.1. When it is clear which coordinate system in which we are working,
(r, φm) will be written more simply as (r, φ). For example, ψm(r, φm) for m = 3, . . . , j + 3

will often be written as ψm(r, φ).

Convention 4.2. In the expressions we will derive for ψ1, . . . , ψj+3, there will be several
parameters with double indices, e.g. see pl,m and ql,m below in Lemma 4.1. The second
index m simply corresponds to the function ψm. Thus when it is clear that we are working
with ψm, we will often write pl,m and ql,m more compactly as pl and ql, respectively.

It is convenient in our analysis that the boundary conditions given for the Poisson
equation defining ψj+4 on the inner most region Sj+4 (the one dominated by diffusion)
are symmetric under reflection in the angular coordinate φ in Sj+3. Thanks to this
symmetry, the value of ψj+4 at the time of exit of the diffusion from Sj+4 depends only on
the time of exit and not on which side of the boundary it exits (each being possible since
the dynamics in Sj+4 is diffusive). As we will see below, this allows us to define ψj+4

more simply. Here, we will accomplish this desired symmetry by forcing the penultimate
function ψj+3 to satisfy

ψj+3(r,−φ) = ψj+3(r, φ) . (4.3)

for (r, θ(r, φ)) ∈ Sj+3.
The cost of producing this symmetry in the penultimate region can be seen in the

need to carefully choose the h±i below in all of the preceding regions since both the
regions and the corresponding dominant operators are inherently asymmetric in the
angular coordinate. Since we will have to make different choices of defining problems
above and below φ = 0 in each region to produce the symmetry, we will break up the
definition of ψm in two pieces as follows

ψm(r, φ) =

{
ψ+
m(r, φ), (r, θ(r, φ)) ∈ Sm, φ > 0

ψ−m(r, φ), (r, θ(r, φ)) ∈ Sm, φ < 0.
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The construction in S1

Let ψ±1 satisfy the following PDEs on S1:{(
T1ψ

±
1

)
(r, θ) = −h±1 rp|θ|−q

ψ±1 (r,±θ∗0) = ψ0(r,±θ∗0).
(4.4)

where q ∈ ( pn , 1) is fixed and h+
1 , h

−
1 > 0 will be determined later (to produce the reflective

symmetry).

Since θ∗0 >
π
2 , we recall from Section 7.3 of Part I [5] that the equations above are not

well-defined with the given boundary data because some characteristics along T1 cross
r = r∗ before reaching the lines θ = ±θ∗0 . This can be easily remedied by enlarging the
domain of definition of the equation (4.4) to

S̃1 =
{

(r, θ) ∈ R : 0 < θ∗1 ≤ |θ| ≤ θ∗0 , r| sin(nθ∗0)| 1n ≥ r∗
}
.

With this modification of the domain, solving (4.4) with the method of characteristics
produces

ψ±1 (r, θ) =
rp

| sin(nθ)| pn

(
| sin(nθ∗0)|+ h±1

∫ ±θ∗0
θ

| sin(nα)|
p
n

|α|q sin(nα)
dα

)
(4.5)

for (r, θ) ∈ S1. In particular, we observe that ψ1 is homogeneous under Sλ0 , ψ1(r, θ) > 0

for all (r, θ) with r > 0 and |θ| ∈ (0, πn ), and ψ1(r, θ)→∞ as r →∞, (r, θ) ∈ S1 .

The construction in S2

In a similar fashion, let ψ±2 solve{(
T2ψ

±
2

)
(r, θ) = −h±2 rp|θ|−q

ψ±2 (r,±θ∗1) = ψ±1 (r,±θ∗1)
(4.6)

on S2 where h+
2 , h

−
2 > 0. Note that we may solve (4.6) explicitly using the method of

characteristics to obtain the following expression for ψ±2 :

ψ±2 (r, θ) = d±12

rp

|θ| pn
+ d±22

rp

|θ|q
(4.7)

where

d±12 = |θ∗1 |
p
nψ±1 (1,±θ∗1)− h±2

|θ∗1 |
p
n−q

qn− p
and d±22 =

h±2
qn− p

.

Observe that ψ±2 consists of two terms, each of which is homogeneous under Sλα for every
α ≥ 0. Moreover,

ψ±2 (r, θ) ≥ |θ∗1 |
p
nψ±1 (1,±θ∗1)

rp

|θ| pn
(4.8)

on S2. Thus we see that ψ2 > 0 on S2 and ψ2(r, θ)→∞ as r →∞, (r, θ) ∈ S2.
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The inductive construction in the remaining transport regions

We can now use the same idea employed above for ψ2 to define ψ3, . . . , ψj+3 inductively.
Thus for m = 3, . . . , j + 3, define ψm as the solution of{

(Tmψ
±
m)(r, φ) = −h±mrpm |φ|−qm

ψ±m(r,±φ∗) = ψm−1(r, φm−1(±φ∗))
(4.9)

for all (r, θ(r, φ)) ∈ Sm where pm, qm, h±m > 0. We again recall that we have suppressed
the index m in (r, φ) using our convention. We have also suppressed the second index m
in pm and qm above; that is, pm,m = pm and qm,m = qm.

Inductively, pm and qm are chosen to satisfy

p2 = p, q2 = q,

pm = pm−1 + qm−1, m = 3, . . . , j + 3 (4.10)

qm ∈
(
qm−1 ∨ pm

n+m−2 , 1
)

m = 3, . . . , j + 3.

While these choices at the outset may seem mysterious, they are all determined by
the exit distribution of the diffusion generated by A from Sj+4 and by the scaling
relationships of the ψi’s along common boundaries. For further information, see the
discussion in Section 7.4 of Part I [5].

We now prove a lemma which gives an expression for ψm which is convenient for
further analysis. Although we will need them, at first glance it is important to ignore the
many relations that the constants in the statement of the result satisfy. The basic form of
ψ±m is what is most important.

Lemma 4.1. For each m = 3, . . . , j + 3 we may write

ψ±m(r, φ) =

m∑
l=1

d±l
rpl

|φ|ql
(4.11)

where the positive constants pl = pl,m and ql = ql,m satisfy

p1,2 = p2,2 = p q1,2 =
p

n
, q2,2 = q,

pl,m = pl,m−1 + ql,m−1 l < m, l,m = 3, . . . , j + 3

pm,m = pm−1,m = pm m = 3, . . . , j + 3 (4.12)

ql,m =
pl,m

n+m− 2
, l < m, l,m = 3, . . . , j + 3

qm,m = qm, m = 3, . . . , j + 3.

Moreover, the constants d±l = d±l,m are such that ψm > 0 on Sm and

ψm(r, φ)→∞ (4.13)

as r →∞, (r, θ(r, φ)) ∈ Sm.

Remark 4.2. By inducting on m, notice that (4.12) and (4.10) imply the following
ordering of the constants pl,m, ql,m for m > 2

p1,m < p2,m < · · · < pm−1,m = pm,m (4.14)

q1,m < q2,m < · · · < qm−1,m < qm,m < 1.

The above relations will be especially helpful later when we do asymptotic analysis of
ψm.

EJP 20 (2015), paper 113.
Page 16/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4048
http://ejp.ejpecp.org/


Noise-induced stabilization of planar flows II

Remark 4.3. In the proof of Lemma 4.1 we will, in addition, derive some properties of
the constants d±l = d±l,m. These will be collected in the statement of Corollary 4.4 below,
and they will be used, in particular, to show that we can choose the constants h±m > 0 in
a natural way so that the symmetry property (4.3) is satisfied.

Corollary 4.4. For l < m with l,m ∈ {3, . . . , j + 3}, define the following constants

b±l,m =
|φ∗|ql,m

|cm−1 ∓ φ∗|ql,m−1
, em = |φ∗|qm−1,m−qm,m .

Then for l < m− 1, l,m ∈ {3, . . . , j + 3}, we have

d±l,m = d±l,m−1b
±
l,m

and for m = 3, . . . , j + 3

d±m,m =
h±m

qm(n+m− 2)− pm
d±m−1,m = d±m−1,m−1b

±
m−1,m − d±m,mem.

Before proving the lemma and corollary above, we state another lemma which shows
that, assuming the conclusions of Lemma 4.1 and Corollary 4.4, we can pick the constants
h±m in a reasonable way so as to have (4.3).

Lemma 4.5. Fixing a constant K0 > 0, for all ε > 0 there exists a constant K1 > 0

so that the following holds. If h+
1 , h

+
2 , . . . , h

+
j+3 is a collection of positive parameters

with h+
i ≤ K0 for all i then for any φ∗ ≥ K1 there exist a unique choice of positive

h−1 , h
−
2 , . . . , h

−
j+3 so that

ψ+
j+3(r,−φ) = ψ−j+3(r, φ)

for all (r, φ) with (r, θ(r, φ)) ∈ Sj+3 and

|h+
m − h−m| ≤ ε

for all m = 1, 2, . . . , j + 3.

Remark 4.6. Later, we will use the parameters h+
i to ensure that the fluxes across the

boundaries between osculating regions where θ > 0 have the desired sign just as we
did in Section 8.1 of Part I [5]. We will then need to choose the h−i to both satisfy the
boundary flux condition and make the ψj+3 have the desired symmetry. Note that since
as φ∗ → ∞ the regions become increasingly symmetric in the angular variable φ, it
is intuitively clear that the h−i which produce a symmetric φ are close the h+

i which
were already chosen. Hence, the h−i which produce symmetry also satisfy the needed
boundary flux condition.

Remark 4.7. Notice that the choice of φ∗ determined by the lemma above is consistent
with our process of picking parameters as outlined in Remark 3.1.

We first give the proof of Lemma 4.1 and Corollary 4.4 together and then prove
Lemma 4.5 immediately afterwards.

Proof of Lemma 4.1 and Corollary 4.4. The proof will be done by induction on m ≥ 3.
Suppose first that m = 3. Using the method of characteristics, one can easily derive the
desired expression for ψ3 and all claimed relations in Lemma 4.1 and Corollary 4.4. To
check (4.13) is valid for ψ±3 , consider the dynamics along T3

ṙ = r and φ̇ = (n+ 1)φ,
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and let τ∗ = inft>0{|φt| = φ∗}. Using the inequality (4.8), notice for all (r, φ) such that
(r, θ(r, φ)) ∈ S3

ψ±3 (r, φ) = ψ±2

(
rτ∗ , θ(rτ∗ , φτ∗)

)
+ h±3

∫ τ∗

0

rp3t
|φt|q3

dt

≥ ψ±2
(
rτ∗ , θ(rτ∗ , φτ∗)

)
= ψ±2 (rτ∗ , r

−1
τ∗ (φ∗ − γ1

n+ 1
))

≥ c r
p1,3

|φ|q1,3

for some constant c > 0. Hence we now see that ψ3 > 0 on S3 and ψ3 → ∞ as r → ∞,
(r, θ(r, φ)) ∈ S3.

Now assume all conclusions are valid for some m − 1 ≥ 3. Using the method of
characteristics and the inductive hypothesis, we can obtain the claimed expression for
ψm as well as all relationships between constants in the statements of Lemma 4.1 and
Corollary 4.4. To obtain (4.13), we may assume inductively that

ψ±m−1(r, φ) ≥ c r
p1,m−1

|φ|q1,m−1

for all (r, φ) with (r, θ(r, φ)) ∈ Sm−1 where c > 0 is a constant (which is in general
different from the one used above). As before, consider the dynamics along Tm:

ṙ = r and φ̇ = (n+m− 2)φ

and let, recycling notation, τ∗ = inft>0{|φt| = φ∗}. Then we similarly obtain

ψ±m(r, φ) = ψ±m−1

(
rτ∗ , φm−1(rτ∗ , φτ∗)

)
+ h±m

∫ τ∗

0

rpmt
|φt|qm

dt

≥ ψ±m−1

(
rτ∗ , φm−1(rτ∗ , φτ∗)

)
= ψ±m−1(rτ∗ , r

−1
τ∗ (φ∗ − cm−1))

≥ c r
p1,m

|φ|q1,m

for some c > 0 which is different from the c used above. This now finishes the proof of
the result.

Proof of Lemma 4.5. Let h+
1 , h

+
2 , . . . , h

+
j+3 be a bounded collection of positive parameters

and fix ε > 0. We will see that there is a unique choice of h−1 , h
−
2 , . . . , h

−
j+3 which gives

d+
m,j+3 = d−m,j+3 (4.15)

for all m = 1, . . . , j + 3. By Corollary 4.4 and Lemma 4.1, the first conclusion of the
lemma will then follow immediately since the ψ±j+3 are a linear combination functions

with coefficients d±m,j+3 respectively. The closeness of the h’s will follow for all φ∗ large

enough by inspection of the choice of the h−j ’s giving (4.15) for all m = 1, . . . , j + 3.
We proceed inductively and begin by analyzing the equality

d+
j+3−m,j+3 = d−j+3−m,j+3

for m = 0. Note that Corollary 4.4 implies that

d+
j+3,j+3 = d−j+3,j+3 ⇐⇒ h+

j+3 = h−j+3.
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This, in particular, forces us to choose h−j+3 = h+
j+3. Now consider the equality d+

j+2,j+3 =

d−j+2,j+3. By Corollary 4.4 again and the fact that d+
j+3,j+3 = d−j+3,j+3, notice

d±j+2,j+3 = d±j+2,j+2b
±
j+2,j+3 − d

+
j+3,j+3ej+3.

Hence

d+
j+2,j+3 = d−j+2,j+3 ⇐⇒ h−j+2 = h+

j+2

b+j+2,j+3

b−j+2,j+3

implying that we must pick

h−j+2 = h+
j+2

b+j+2,j+3

b−j+2,j+3

.

Using the expressions given in Corollary 4.4 for the b’s, a simple argument employing
Taylor’s theorem gives the following asymptotic formula as φ∗ →∞:

b+j+2,j+3

b−j+2,j+3

= 1 +O
(
(φ∗)−1

)
.

Therefore

h−j+2 = h+
j+2 +O

(
(φ∗)−1

)
(4.16)

as φ∗ →∞. In particular, this implies that the unique choice of h+
j+2 (which is positive

for φ∗ large enough) determined by the relation d+
j+2,j+3 = d−j+2,j+3 has the desired

closeness property |h+
j+2−h

−
j+2| < ε for all φ∗ large enough. To continue by induction, we

need one more step to see how to proceed in general. Notice that this is only necessary
if j ≥ 1 where n = 2j + 1 or n = 2j + 2. By Corollary 4.4, observe that

d±j+1,j+3 = d±j+1,j+2b
±
j+1,j+3 = (d±j+1,j+1b

±
j+1,j+2 − d

±
j+2,j+2ej+2)b±j+1,j+3

and, by the right most equality, d+
j+1,j+3 = d−j+1,j+3 is equivalent to

d−j+1,j+1 =
(
d+
j+1,j+1

b+j+1,j+2

b−j+1,j+2

− d+
j+2,j+2

ej+2

b−j+1,j+2

)b+j+1,j+3

b−j+1,j+3

+ d−j+2,j+2

ej+2

b−j+1,j+2

.

By (4.16) and Corollary 4.4, we have

d+
j+2,j+2 = d−j+2,j+2 +O

(
(φ∗)−1

)
ej+2

b−j+1,j+2

= (φ∗)qj+1−qj+2

(
1 +O

(
(φ∗)−1

))
as φ∗ →∞. Again, by Taylor’s theorem we also have

b+j+1,j+2

b−j+1,j+2

= 1 +O
(
(φ∗)−1

)
b+j+1,j+3

b−j+1,j+3

= 1 +O
(
(φ∗)−1

)
as φ∗ →∞. Putting these formulas together, since h+

1 , h
+
2 , . . . , h

+
j+3 were assumed to be

bounded and qj+1 − qj+2 < 0 by (4.10) we obtain

d−j+1,j+1 = d+
j+1,j+1 +O

(
(φ∗)−1

)
h−j+1 = h+

j+1 +O
(
(φ∗)−1

)
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as φ∗ →∞. This finishes the result in this case. To see in general when d+
m,j+3 = d−m,j+3

for general m = 2, . . . , j, assume by induction that

d−m+1,m+1 = d+
m+1,m+1 +O

(
(φ∗)−1

)
and note by successively applying d±l,m = d±l,m−1b

±
l,m we obtain

d±m,j+3 = d±m,j+2b
±
m,j+3 = d±m,m+1b

±
m,m+2b

±
m,m+3 · · · b

±
m,j+3

= (d±m,mb
±
m,m+1 − d

±
m+1,m+1em+1)b±m,m+2b

±
m,m+3 · · · b

±
m,j+3.

Therefore, d+
m,j+3 = d−m,j+3 is equivalent to

d−m,m =
(
d+
m,m

b+m,m+1

b−m,m+1

− d+
m+1,m+1

em+1

b−m,m+1

)b+m,m+2 · · · b
+
m,j+3

b−m,m+2 · · · b
−
m,j+3

+ d−m+1,m+1

em+1

b−m,m+1

.

Similarly, using Taylor’s theorem and the asymptotic formulas above, we see that

d−m,m = d+
m,m +O

(
(φ∗)−1

)
h−m = h+

m +O
(
(φ∗)−1

)
.

Thus we have established the result for h±2 , h
±
3 , . . . , h

±
j+3. Finally, to obtain the equality

d+
1,j+3 = d−1,j+3

realize that it is equivalent to the relation

d−1,2 = d+
1,2

b+1,3 · · · b
+
1,j+3

b−1,3 · · · b
−
1,j+3

. (4.17)

Since

d±1,2 = |θ∗1 |
p
nψ±1 (1,±θ∗1)− h±2

|θ∗1 |
p
n−q

qn− p

and

b−1,3 · · · b
−
1,j+3

b+1,3 · · · b
+
1,j+3

= 1 +O
(
(φ∗)−1

)
as φ∗ →∞, one can easily deduce from (4.5) that for fixed θ∗1 , as φ∗ →∞ the choice of
h−1 determined by the symmetry condition (4.17) approaches h+

1 . Note that this finishes
the proof of the result.

Now that we have the desired symmetry we turn to defining the final function ψj+4 in
the region Sj+4 where noise does play a role.

4.2 The construction in the noise region Sj+4

Here, let (r, φ) = (r, φj+3) and define ψj+4 on Sj+4 as the solution of the following
PDE {

Aψj+4(r, φ) = −hj+4 r
pj+4

ψj+3 = ψj+3 on ∂(Sj+3 ∩ Sj+4)
(4.18)
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for all (r, φ) such that (r, θ(r, φ)) ∈ Sj+4 where hj+4 > 0 and

pj+4 =

{
pj+3 +

qj+3

2 if n = 2j + 1, j ≥ 0

pj+3 + qj+3 if n = 2j + 2, j ≥ 0.
(4.19)

We assume that the reader is familiar with the content of Section 7.3 of [5] which outlines
how one is able to solve the PDE above.

To solve for ψj+4, for simplicity let

pm,j+4 =

{
pm,j+3 +

qm,j+3

2 if n = 2j + 1, j ≥ 0

pm,j+3 + qm,j+3 if n = 2j + 2, j ≥ 0

form = 1, 2, . . . , j+3. Also, let (rt, φt) denote the diffusion defined byA and τ = inft>0{(rt, φt) /∈ Sj+4}.
Recalling the definition of ∂(Sj+3 ∩ Sj+4), we then see that

ψj+4(r, φ) = E(r,φ)ψj+3(rτ , φτ ) + hj+1E(r,φ)

∫ τ

0

r
pj+4

t dt (4.20)

=

j+3∑
m=1

d+
m,j+3

(η∗)qm
rpmE(r,φ)e

pmτ +
hj+4

pj+4
rpj+4E(r,φ)(e

pj+4τ − 1)

where we have concatenated pm,j+4 and qm,j+3 to pm and qm respectively.
To see that the maps (r, φ) 7→ E(r,φ)e

pmτ for m = 1, 2, . . . , j + 4 are well-defined and
smooth on Sj+4, first observe that the process

ηt =

{
r

1
2
t φt if n = 2j + 1

rtφt + cj+3 if n = 2j + 2

satisfies the Gaussian SDE

dηt =
(

3
2n+ 1

)
ηt dt+ σ dWt. (4.21)

Hence, we may write

τ =

{
inf{t > 0 : ηt /∈ [−η∗, η∗]} if n = 2j + 1

inf{t > 0 : ηt /∈ [−η∗ + cj+2, η
∗ + cj+2]} if n = 2j + 2.

Applying Lemma 7.4 of Part I [5], by choosing η∗ > |cj+2| large enough, it suffices to
show that the constants pm = pm,j+4 satisfy

p1,j+4 < p2,j+4 < · · · < pj+4,j+4 <
3n+2

2 .

The fact that

p1,j+4 < p2,j+4 < · · · < pj+4,j+4

follows by Remark 4.2 and the definition of the constants pm,j+4, m = 1, 2, . . . , j + 4. The
remaining bound can be obtained inductively in either case (n = 2j + 1 or n = 2j + 2) by
using the definition of pj+4,j+4 = pj+4, the relations (4.10), and the choice of p ∈ (0, n).

To show that ψj+4 is strictly positive on Sj+4 and ψj+4(r, φ)→∞ as r →∞ with (r, φ)

such that (r, θ(r, φ)) ∈ Sj+4, using (4.20) we see that for some constant c > 0

ψj+4(r, φ) ≥ E(r,φ)ψj+3(rτ , φτ )

≥ cE(r,φ)
r
p1,j+3
τ

|φτ |q1,j+3
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where the last inequality follows by the inductive argument proving both Lemma 4.1 and
Corollary 4.4. We thus obtain the desired bound

ψj+4(r, φ) ≥ cE(r,φ)
r
p1,j+3
τ

|φτ |q1,j+3

≥ c

(η∗)q1,j+4
rp1,j+4E(r,φ)e

p1,j+4τ > c′rp1,j+4

for some c′ > 0.

4.3 Summary of the construction

Now that we have finished defining our Lyapunov function on each region Si, i =

1, . . . , j + 4, we pause for a moment to provide a summary of the construction up to this
point. In the following sections, we will finish proving Theorem 2.4 by making sure the
boundary-flux conditions of Corollary 6.4 of Part I [5] are satisfied and that each ψi is
indeed a local Lyapunov function on its domain of definition Si.

4.3.1 Regions and asymptotic operators

Recalling that n = 2j+1 or n = 2j+2, the analysis of Section 3 uncovered the asymptotic
operators

T1, . . . , Tj+3, A

and corresponding regions where we expect each to approximate well the time-changed
Markov generator L as r →∞. The analysis of this section is summarized in the following
three tables.

Remark 4.8. Recall that the constants ci, i = 2, . . . , j + 2, were defined inductively
and depend on the Taylor expansion of the coefficients of L at θ = 0. Also recall that
θ∗0 ∈ ( π2n ,

π
n ) is fixed and the constants θ∗1 , φ∗ and η∗ are chosen in the way outlined in

Remark 3.1.

Region Si, i = 0, . . . , j + 2 Asymptotic Operator Coordinates
S0 = {r ≥ r∗, θ∗0 ≤ |θ| ≤ π

n} ∩ R T1 = r cos(nθ)∂r + sin(nθ)∂θ r, θ

S1 = {r ≥ r∗, 0 < θ∗1 ≤ |θ| ≤ θ∗0} ∩ R T1 = r cos(nθ)∂r + sin(nθ)∂θ r, θ

S2 = {r ≥ r∗, |φ3| ≥ φ∗, |θ| ≤ θ∗1} ∩ R T2 = r∂r + nθ∂θ r, θ

S3 = {r ≥ r∗, |φ4| ≥ φ∗, |φ3| ≤ φ∗} ∩ R T3 = r∂r + (n+ 1)φ3∂φ3
r, φ3 = rθ + c2

S4 = {r ≥ r∗, |φ5| ≥ φ∗, |φ4| ≤ φ∗} ∩ R T4 = r∂r + (n+ 2)φ4∂φ4
r, φ4 = rφ3 + c3

...
...

...
Sm = {r ≥ r∗, |φm+1| ≥ φ∗, |φm| ≤ φ∗} ∩ R Tm = r∂r + (n+m− 2)φm∂φm r, φm = rφm−1 + cm−1

...
...

...
Sj+2 = {r ≥ r∗, |φj+3| ≥ φ∗, |φj+2| ≤ φ∗} ∩ R Tj+2 = r∂r + (n+ j)φj+2∂φj+2 r, φj+2 = rφj+1 + cj+1

Regions Sj+3, Sj+4, n = 2j + 1 Asymptotic Operator Coordinates

Sj+3 = { r ≥ r∗, η∗r− 1
2 ≤ |φj+3| ≤ φ∗} ∩ R Tj+3 = r∂r + (3j + 2)φj+3∂φj+3 r, φj+3 = rφj+2 + cj+2

Sj+4 = {r ≥ r∗, |φj+3| ≤ η∗r−1/2} ∩ R A = r∂r + (3j + 2)φj+3∂φj+3
+ σ2

2r ∂
2
φj+3

r, φj+3 = rφj+2 + cj+2

Regions Sj+3, Sj+4, n = 2j + 2 Asymptotic Operator Coordinates
Sj+3 = { r ≥ r∗, η∗r−1 ≤ |φj+3| ≤ φ∗} ∩ R Tj+3 = r∂r + (3j + 3)φj+3∂φj+3 r, φj+3 = rφj+2 + cj+2

Sj+4 = {r ≥ r∗, |φj+3| ≤ η∗r−1} ∩ R A = r∂r + [(3j + 3)φj+3 + γ
(j+3)
1 r−1]∂φj+3

+ σ2

2r ∂
2
φj+3

r, φj+3 = rφj+2 + cj+2

EJP 20 (2015), paper 113.
Page 22/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4048
http://ejp.ejpecp.org/


Noise-induced stabilization of planar flows II

4.3.2 Properties of the Lyapunov function in each region

Below we give a summary of some of the basic properties of our Lyapunov function Ψ

on the principal wedge R in each region Si. We recall that the constants p, q satisfy
p ∈ (0, n), q ∈ ( pn , 1) and the constants d±l,m are determined by the boundary conditions in

each Poisson equation. As mentioned in Remark 4.6, the constants h±i > 0 will be chosen
so that both the reflective symmetry (4.3) and the boundary-flux conditions are satisfied.

Region S Asymptotic Operator O Ψ|S O(Ψ|S) on S
S0 T1 rp p cos(nθ)rp

S1 T1 eqn. (4.5) −h±1 rp|θ|−q
S2 T2 d±12

rp

|θ|p/n + d±22
rp

|θ|q −h±2 rp|θ|−q

S3 T3

∑3
l=1 d

±
l,3

rpl,3

|φ|ql,3 −h±3 rp3 |φ3|−q3
...

...
...

...

Sm Tm
∑m
l=1 d

±
l,m

rpl,m

|φm|ql,m −h±mrpm |φm|−qm
...

...
...

...

Sj+3 Tj+3

∑j+3
l=1 d

±
l,j+3

rpl,j+3

|φj+3|ql,j+3 −h±j+3r
pj+3 |φj+3|−qj+3

Sj+4 A eqn. (4.20) −hj+4r
pj+4

5 Boundary-flux calculations

Here show how one can choose the positive parameters h+
i , θ∗1 , φ∗, η∗ so that the

jump conditions of Corollary 6.4 of Part I [5] are also satisfied. We must be careful to see
that all choices are consistent with Remark 3.1 and Lemma 4.5. Each boundary has two
disjoint parts, implying that we must check two, although very similar, flux conditions.
We proceed from boundary to boundary, starting with the:

5.1 Boundary between S0 and S1

We begin on the side of the boundary where θ > 0. We must pick the parameters so
that [

∂ψ0

∂θ
− ∂ψ+

1

∂θ

]
θ=θ∗0

≤ 0 (5.1)

for r ≥ r∗. By inspection of the formula (4.5), we first note that ψ+
1 (r, θ) = rpψ+

1 (1, θ).
Using this and the equation (4.4) defining ψ+

1 , observe also that

−h+
1 r

p|θ|−q =
∂ψ+

1

∂r
r cos(nθ) +

∂ψ+
1

∂θ
sin(nθ).

Rearranging this produces

∂ψ+
1

∂θ
= −rp

(p cos(nθ)ψ+
1 (1, θ) + h+

1 |θ|−q

sin(nθ)

)
. (5.2)

Therefore combining ∂ψ0

∂θ = 0 with (5.2) gives[
∂ψ0

∂θ
− ∂ψ+

1

∂θ

]
θ=θ∗0

= rp
(p cos(nθ∗0)ψ+

1 (1, θ∗0) + h+
1 |θ∗0 |−q

sin(nθ∗0)

)
.

Because ψ+
1 (1, θ∗0) = 1, sin(nθ∗0) > 0 and cos(nθ∗0) < 0, picking

0 < h+
1 < p(θ∗0)q| cos(nθ∗0)| (5.3)
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results in (5.1).
On the side of the boundary where θ < 0, we must see that this choice of h+

1 also
implies [

∂ψ−1
∂θ
− ∂ψ0

∂θ

]
θ=−θ∗0

≤ 0 (5.4)

for r ≥ r∗. By Lemma 4.5, we have already picked h−1 and we recall that as φ∗ → ∞,
h−1 → h+

1 . Using the very same process as above, (5.4) is satisfied provided

0 < h−1 < p(θ∗0)q| cos(nθ∗0)|. (5.5)

Therefore, both quantities can be seen to be negative by first picking

0 < h+
1 < p(θ∗0)q| cos(nθ∗0)| (5.6)

and then taking φ∗ > 0 sufficiently large. Note that this is consistent with the flow of
choices outlined in Remark 3.1.

5.2 Boundary between S1 and S2

We proceed in a similar fashion by first doing the computation on the side of the
boundary where θ > 0. We first show that[

∂ψ+
1

∂θ
− ∂ψ+

2

∂θ

]
θ=θ∗1

≤ 0 (5.7)

for r ≥ r∗ whenever θ∗1 > 0 is small enough. Using ψ+
2 (r, θ) = rpψ+

2 (1, θ) and the equation
ψ+

2 satisfies, we obtain

∂ψ+
2

∂θ
= −rp

[
pψ+

2 (1, θ) + h+
2 |θ|−q

nθ

]
.

Since ψ+
1 (1, θ∗1) = ψ+

2 (1, θ∗1), notice[
∂ψ+

1

∂θ
− ∂ψ+

2

∂θ

]
θ=θ∗1

= −rp
[
− pψ+

1 (1, θ∗1) + h+
2 |θ∗1 |−q

nθ∗1
+
p cos(nθ∗1)ψ+

1 (1, θ∗1) + h+
1 |θ∗1 |−q

sin(nθ∗1)

]
= − rp

|θ∗1 |q+1

[(
p cos(nθ∗1)

sin(nθ∗1)
− p

nθ∗1

)
ψ+

1 (1, θ∗1)|θ∗1 |q+1 +

(
h+

1

sin(nθ∗1)
− h+

2

nθ∗1

)
|θ∗1 |
]
.

The expression (4.5) implies that ψ+
1 (1, θ∗1)|θ∗1 |q → 0 as θ∗1 ↓ 0. Using this fact and

expanding sin(nθ∗1) and cos(nθ∗1) in power series about θ∗1 = 0, we arrive at the asymptotic
formula [(

p cos(nθ∗1)

sin(nθ∗1)
− p

nθ∗1

)
ψ+

1 (1, θ∗1)|θ∗1 |q+1 +

(
h+

1

sin(nθ∗1)
− h+

2

nθ∗1

)
|θ∗1 |
]

=

(
h+

1

n
− h+

2

n

)
+ o(1)

as θ∗1 ↓ 0. Therefore, for every choice of

h+
2 < h+

1 (5.8)
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we may pick θ∗1 > 0 sufficiently small so that the flux across the boundary where θ > 0 is
negative. On the side of the boundary where θ < 0, a similar line of reasoning shows
that the choice

h−2 < h−1 (5.9)

results in a negative flux for all θ∗1 > 0 small. Recall, also, that this is consistent with
both Remark 3.1 and Lemma 4.5 by, after choosing θ∗1 > 0 small, choosing φ∗ > 0 large.

5.3 Boundary between S2 and S3

For illustrative purposes, we perform one more boundary-flux estimate before pro-
ceeding on to the general, inductive calculation in the remaining transport regions. We
begin on the side of the boundary where φ3 > 0. Note that for φ∗ > 0 large, it is also true
that θ > 0 on this side.

As opposed to the previous cases, it is more convenient to use the explicit expressions
obtained for ψ±2 and ψ±3 . In doing this, we first note that[

∂ψ+
2

∂θ
− ∂ψ+

3

∂θ

]
φ3=φ∗

≤ C1(φ∗)rp+q+1 + C2(φ∗)rp+
p
n+1 (5.10)

where

C1(φ∗) = −
q2d

+
2,2

|φ∗ − c1|q2+1
+

q2,3d
+
2,3

|φ∗|q2,3+1
+

q3d
+
3,3

|φ∗|q3+1

and C2(φ∗) is a constant depending on φ∗. Our goal is to see that for φ∗ large enough,
C1(φ∗) < 0. Hence for r∗ > 0 large enough, the quantity (5.10) will also be negative.
Recalling the dependence of d+

2,3 on φ∗ in Corollary 4.4 and that q3 > q2, we note that

C1(φ∗) = −(φ∗)−q2−1
(
(q2 − q2,3)d+

2,2 + o(1)
)

as φ∗ →∞. Since d+
2,2 is positive and independent of φ∗ and

q2,3 =
p2,3

n+ 1
=
p2,2 + q2,2

n+ 1
=
p+ q

n+ 1

where q2 = q ∈ ( pn , 1), we find that q2 > q2,3. Hence, choosing φ∗ > 0 large enough,
C1(φ∗) is negative. Thus for r∗ > 0, the quantity on the left-hand side of (5.10) is also
negative. A nearly identical computation will yield the desired result on the other side of
the boundary.

5.4 The boundaries between the remaining transport regions

We now consider the flux across the two boundaries between Sm and Sm+1 where
k = 3, . . . , j + 2. As done in the previous case, we focus on the side of the boundary
where φm+1 > 0. Note, too, with φ∗ > 0 large enough, φm is also positive on that side of
the boundary. Using the expressions derived in Lemma 4.1, realize that[

∂ψ+
m

∂θ
−
∂ψ+

m+1

∂θ

]
φm+1=φ∗

≤ C1(φ∗)rpm+1+m−1 + C2(φ∗)rc, (5.11)

where c < pm+1 +m− 1,

C1(φ∗) = −qm
d+
m,m

(φ∗ − cm)qm+1
+ qm,m+1

d+
m,m+1

(φ∗)qm,m+1+1
+ qm+1

d+
m+1,m+1

(φ∗)qm+1+1
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and C2(φ∗) is a constant that depends on φ∗. Using Corollary 4.4 to write out d+
m,m+1

and recalling that qm+1 > qm, note that as φ∗ →∞

C1(φ∗) = −(φ∗)−qm−1

(
(qm − qm,m+1)d+

m,m + o(1)

)
.

Recalling that

qm,m+1 =
pm,m+1

n+m− 1
=

pm + qm
n+m− 1

and qm ∈ ( pm
n+m−2 , 1) we see that qm > qm,m+1 giving that C1(φ∗) is negative for φ∗ large

enough. Thus for r∗ > 0 large enough the quantity on the left-hand side of (5.11) is
negative. A nearly identical result holds on the other side of the boundary.

5.5 Boundary between Sj+3 and Sj+4

In the following computation, we will need to employ Lemma 7.4 of Part I [5] since the
expression for ψj+4 in (4.20) is not explicit. Also, we only show the case when n = 2j + 1,
j ≥ 0, as the other case is similar.

Consider the side of the boundary where φj+3 > 0. Recalling the notation Ga,c
introduced in Section 8.1 of Part I [5], observe that[

∂ψj+3

∂θ
− ∂ψj+4

∂θ

]
η=η∗

≤ C1(η∗)rpj+4+j+ 3
2 + C2(η∗)rc (5.12)

for some c < pj+4 + j + 3
2 where

C1(η∗) = −
[
d+
j+3,j+3

(η∗)qj+3
+
hj+4

pj+4

]
G′pj+4,0(η∗)−

d+
j+3,j+3 qj+3

(η∗)qj+3+1

and C2(η∗) is a constant which depends on η∗. Choosing

hj+4 = hpj+4(η∗)−qj+3

for some h > 0 and applying the Lemma 7.4 of Part I [5], realize that as η∗ →∞

C1(η∗) = (η∗)−qj+3−1

(
d+
j+3,j+3

2pj+4

3n+ 2
− d+

j+3,j+3qj+3 +
2h

3n+ 2
+ o(1)

)
.

Using (4.19) and the relations qj+3 > pj+3/(n+ j + 1) and n = 2j + 1, we see that

2pj+4

3n+ 2
< qj+3

Picking h small enough implies that C1(η∗) < 0 for η∗ > 0 large enough. Therefore
choosing r∗ > 0 large enough implies that the quantity on the left-hand side of (5.12) is
negative. A similar result is easily seen to hold on the other side of the boundary.

6 Checking the global Lyapunov bounds

6.1 Checking the local Lyapunov property

Here we check that the approximating operators T1, T2, . . . , Tj+3, A were chosen cor-
rectly so that ψ0, ψ1, . . . , ψj+4 are actually locally Lyapunov functions on their respective
domains S0,S1, . . . ,Sj+4. This simply involves replacing each asymptotic operator with
L and estimating the remainder locally on each region. Factoring in the time change,
the required bound for Lψi on Si will then follow easily.
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Region S0

Since ψ0(r, θ) = rp, it is not hard to see that as r →∞, (r, θ) ∈ S0,

Lψ0(r, θ) = prp cos(nθ) + o(rp). (6.1)

Since cos(nθ) ≤ −c < 0 for (r, θ) ∈ S0, the relation (6.1) implies that there exist positive
constants c0, d0 such that

Lψ0(r, θ) ≤ −c0rp + d0

for all (r, θ) ∈ S0. Undoing the time change, we see that there exist positive constants
C0, D0 such that on S0

Lψ0(r, θ) ≤ −C0r
p+n +D0. (6.2)

Region S1

First observe that by definition of ψ±1 , we see that

Lψ±1 (r, θ) = T1ψ
±
1 (r, θ) + (L− T1)ψ±1 (r, θ)

= −h±1
rp

|θ|q
+ (L− T1)ψ±1 (r, θ)

on S1 where the ± indicates the values of the functions above when θ is, respectively,
positive or negative. To bound the remainder term (L− T1)ψ±1 (r, θ), recall by (4.5) we
may write ψ±1 (r, θ) = rpψ±1 (1, θ) where the mapping θ 7→ ψ±1 (1, θ) is a smooth and positive
function in θ for all 0 < θ∗1 ≤ |θ| ≤ θ∗0 . In particular, since 0 < θ∗1 ≤ |θ| ≤ θ∗0 for (r, θ) ∈ S1,
we see that as r →∞, (r, θ) ∈ S1,

Lψ±1 (r, θ) = −h±1
rp

|θ|q
+ o(rp).

From this, we obtain the inequality

Lψ±1 (r, θ) ≤ −c1
rp

|θ|q
+ d1

for some constants c1, d1 > 0, for all (r, θ) ∈ S1. Undoing the time change, we see that
there exist constants C1, D1 > 0 such that on S1

Lψ±1 (r, θ) ≤ −C1
rp+n

|θ|q
+D1. (6.3)

Region S2

By definition of ψ±2 , first observe that on S2

Lψ±2 (r, θ) = T2ψ
±
2 (r, θ) + (T1 − T2)ψ±2 (r, θ) + (L− T1)ψ±2 (r, θ)

= −h±2
rp

|θ|q
+ (T1 − T2)ψ±2 (r, θ) + (L− T1)ψ±2 (r, θ).

Using the Taylor expansions for sin(nθ) and cos(nθ) notice that there exists a constant
C > 0 so that

(T1 − T2)ψ±2 (r, θ)

≤ Cθ2

[(
|θ∗1 |

p
nψ±1 (1,±θ∗1) + h±2

|θ∗1 |
p
n−q

qn− p

)
rp

|θ|p/n
+

h2

qn− p
rp

|θ|q

]
≤ C(θ∗1)2

[(
|θ∗1 |

p
nψ±1 (1,±θ∗1) + h±2

|θ∗1 |
p
n−q

qn− p

)
rp

|θ|p/n
+

h±2
qn− p

rp

|θ|q

]
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for all (r, θ) ∈ S2. Since ψ±1 (1,±θ∗1) = O((θ∗1)−1) as θ∗1 ↓ 0, it follows that for all θ∗1 > 0

sufficiently small

(T1 − T2)ψ±2 (r, θ) ≤ h+
2 ∧ h

−
2

2

rp

|θ|q

for all (r, θ) ∈ S2. Therefore, for all θ∗1 > 0 small enough we have the bound

Lψ±2 (r, θ) ≤ −h
±
2

2

rp

|θ|q
+ (L− T1)ψ±2 (r, θ)

on S2.
To control the remaining term, first recall the definition of the region S2. Notice then

that there exists a positive constant C = C(φ∗, r∗) such that on S2

(L− T1)ψ±2 (r, θ) ≤ C(r∗, φ∗)
rp

|θ|q

where C(r∗, φ∗) > 0 satisfies the following property: For every ε > 0, there exists K > 0

such that for φ∗ ∧ r∗ ≥ K

C(r∗, φ∗) ≤ ε.

Hence we may pick K > 0 large enough so that for φ∗ ∧ r∗ ≥ K

Lψ±2 (r, θ) ≤ −c2
rp

|θ|q
+ d2

for all (r, θ) ∈ S2. Undoing the time change, we then determine the existence of positive
constants C2, D2 such that on S2

Lψ±2 ≤ −C2
rp+n

|θ|q
+D2 (6.4)

Remark 6.1. Before proceeding onto the remaining regions, it is important to note
that Corollary 4.4 and the relations (4.14) imply that for m ∈ {3, 4, . . . , j + 3} and
l ∈ {1, 2, . . . ,m− 1}:

d±l,m = O((φ∗)ql,m−ql) as φ∗ →∞ (6.5)

where the constant in the asymptotic formula above is independent of θ∗1 , η∗ and r∗. The
above fact will be helpful when controlling remainder terms in what follows.

Region Sm, m = 3, . . . , j + 2

In the following computations, it is helpful to consult (3.30) and the remainder estimate
immediately below it. For lack of better notation, we will also use ψ±m to denote the
function of (r, θ) determined by ψ±m = ψ±m(r, φ). Let

N =

(
σ2

2rn
∂2
r

)
(r,φ)

(6.6)

and write

Lψ±m(r, θ) = L(r,φ)ψ
±
m(r, φ)

= Tmψ
±
m(r, φ) + (L(r,φ) − Tm −N)ψ±m(r, φ) +Nψ±m(r, φ)

= −h±m
rpm

|φ|qm
+ (L(r,φ) − Tm −N)ψ±m(r, φ) +Nψ±m(r, φ)
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where each equality above is valid on Sm. We first focus on estimating (L(r,φ) − Tm −
N)ψ±m(r, φ) for all (r, φ) such that (r, θ(r, φ)) ∈ Sm. Using the simple nature of the
expression derived for ψ±m as well as Remark 6.1, we note that the bound

|(L(s,φ) − Tm −N)ψ±m(r, φ)| ≤ C1(r∗, φ∗)
rpm

|φ|qm

holds on Sm where C1(r∗, φ∗) is a constant which can be chosen to be a small as we wish
by first picking φ∗ > 0 large and then picking r∗ > 0 large. Therefore, making such
choices we see that

Lψ±m(r, θ) ≤ −h
±
m

2

rpm

|φ|qm
+Nψ±m(r, φ).

To estimate the remaining term Nψ±m(r, φ), first recall that

φ = rm−2θ + rm−3c2 + · · ·+ cm−1

and so we may write

N =
σ2

2rn

(
∂r + [(m− 2)r−1φ+ r−1Y (r)]∂φ

)2

where Y is a polynomial in r of degree at most m− 3. Using this allows us to obtain a
similar bound

|Nψ±m(s, φ)| ≤ C2(r∗, φ∗)
spm

|φ|qm

where C2(r∗, φ∗) is a constant satisfying the same property as C1(r∗, φ∗) above. Hence,
we may choose φ∗ > 0 large enough and then r∗ > 0 large enough so that for some
positive constants cm, dm

Lψ±m(r, θ) ≤ −cm
rpm

|φ|qm
+ dm.

for all (s, φ) with (r, θ(r, φ)) ∈ Rm. Undoing the time change, we see that there exist
positive constants Cm, Dm such that on Sm

Lψ±m(r, θ) ≤ −Cm
rpm+n

|φ|qm
+Dm. (6.7)

Region Sj+3

Here, we again use ψ±j+3 to also denote the function of (r, θ) defined by ψ±j+3(r, φ). The
estimate in this region is nearly identical to the one that precedes it, except that the
lower bound in the definition of Sj+3 is slightly different depending on the parity of n.
Nevertheless, we may essentially trace through the inequalities in the previous case
to see that the same estimates hold, except that the constants C1 and C2 in this case
depend on, in addition to φ∗ and r∗, η∗. We may, however, still pick the parameters
according to Remark 3.1 to arrive at the desired estimate on Sj+3

Lψ±j+3(r, θ) ≤ −Cj+3
rpj+3+n

|φ|qj+3
+Dj+3 (6.8)

for some positive constants Cj+3, Dj+3.
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Region Sj+4

The estimates in this case are also very similar to the previous ones. In fact, fact they
are a little easier since we include more terms of L in the approximating operator A. In
what follows, we again use ψj+4 to denote the function of (r, θ) determined by ψj+4(r, φ)

where (r, φ) = (r, φj+3). Notice that for all (r, φ) with (r, θ(r, φ)) ∈ Sj+4

Lψj+4(r, θ) = L(r,φ)ψj+4(r, φ)

= Aψj+4(r, φ) + (L(r,φ) −A−N)ψj+4(r, φ) +Nψj+4(r, φ)

= −hj+4r
pj+4 + (L(r,φ) −A−N)ψj+4(r, φ) +Nψj+4(r, φ)

where the operator N was defined in (6.6). Using the very same ideas in the previous
two regions and recalling that γ(j+3)

1 r−1∂φ is included in A when n = 2j+ 2, we note that
for all (r, φ) with (r, θ(r, φ)) ∈ Sj+4

|(L(r,φ) −A−N)ψj+4(r, φ)|+ |Nψj+4(r, φ)| ≤ C(r∗, η∗, φ∗)rpj+4

where C(r∗, η∗, φ∗) is a constant which can be made arbitrarily small by picking r∗, η∗, φ∗

according to Remark 3.1. Thus choosing these parameters accordingly, we see that there
exist constants cj+4, dj+4 > 0 such that

Lψj+4(r, θ) ≤ −cj+4r
pj+4 + dj+4

for all (s, φ) with (r(s, φ), θ(s, φ)) ∈ Sj+4. Undoing the time change, we determine the
existence of positive constants Cj+4, Dj+4 such that on Sj+4

Lψj+4(r, θ) ≤ −Cj+4r
pj+4+n +Dj+4. (6.9)

6.2 Checking the specific Lyapunov bounds

Here we show that we can pick parameters so that the conditions of Proposition 6.6
of Part I [5] are satisfied when γ ∈ (n, 2n) is arbitrary. By the estimates of the previous
section, all we need is the following proposition.

Proposition 6.2. There exist positive constants li, ui such that

ψ0(r, θ) = rp (r, θ) ∈ S0

l1r
p ≤ψ1(r, θ) ≤ u1r

p (r, θ) ∈ S1

l2
rp

|θ| pn
≤ψ2(r, θ) ≤ u2

rp

|θ|q
(r, θ) ∈ S2

lm
rp1,m

|φ|q1,m
≤ψm(r, φ) ≤ um

rpm

|φ|qm
(r, θ(r, φ)) ∈ Sm

lj+4r
p1,j+4 ≤ψj+4(r, φ) ≤ uj+4r

pj+4 (r, θ(r, φ)) ∈ Sj+4

where m = 3, . . . , j + 3 and (r, φ) = (r, φj+3) in the last inequality.

Proof of Proposition 6.2. The lower bounds have already been established and the upper
bounds follow directly from the expressions derived for each ψi.

7 Optimality

Recalling that µ denotes the invariant measure of (2.1) and ρ its density with respect
to Lebesgue measure on R2, in this section we prove Theorem 2.5. Before giving the
precise details, let us give the intuitive idea behind the proof. To study the process zt
defined by (2.1) is a neighborhood of the point at infinity, it is convenient to make a
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substitution which maps the point at infinity to 0 and 0 to the point at infinity. There
are many changes of variables which accomplish precisely this, but only one gives the
desired bound on the invariant density: wt = 1/znt . The reason for this choice is that
the drift of the process wt is non-zero and bounded at w = 0. In particular, the invariant
measure for the process wt cannot possibly vanish nor can it blow up at w = 0. By
construction, |z|2n+2ρ(z, z̄) when written in the variables (w, w̄) is this invariant measure;
hence, by positivity of this quantity as |z| → ∞, Theorem 2.5 would then follow. However
in the proof of Theorem 2.5, we will never actually make the substitution wt = 1/znt
described above because the inversion of the mapping w = 1/zn is multi-valued and this
leads to unnecessary complications. Nonetheless, this transformation can be seen to
motivate many of the manipulations performed.

In the proof of Theorem 2.5 we will need the following result which is a corollary of
the proof of Theorem 2.4. The result gives uniform bounds in the initial condition on
return times to large compact sets of the process, time-changed to accommodate the
“substitution" wt = 1/znt , determined by the adjoint L ∗.

Corollary 7.1. Consider the stochastic differential equation on C \ {0}

dz∗t = −|z∗t |−(n−1)

(
P(z∗t , z

∗
t ) +

σ2(n+ 1)

z∗t

)
dt+ σ|z∗t |−

n−1
2 dBt

where P(z, z̄) = zn+1 + F (z, z̄), and F , n, σ and Bt are as in equation (2.1). For γ > 0,
let Sγ = inf{t > 0 : |z∗t | ≤ γ}. Then the stopped process z∗t∧Sγ is non-explosive and for
each γ > 0 sufficiently large we have:

sup
z∈C\{0}

Pz[Sγ =∞] = 0.

Additionally, for each t, ε > 0 there exists γ > 0 large enough so that

inf
z∈C\{0}

Pz[Sγ ≤ t] ≥ 1− ε.

Proof of Corollary 7.1. Let a ∈ C be such that an = −1 and consider the process az∗t∧Sγ .

Our goal is to show that azt∧Sγ has a Lyapunov pair (Ψ,Ψ1+δ) for some δ > 0. Non-
explosivity will follow from Lemma 4.5 of Part I [5], and the remaining conclusions
concerning the entrance times Sγ , γ > 0, will follow from Proposition 4.8 of [5]. Note
first that the generator M of az∗t∧Sγ is of the following form when written in polar
coordinates (r, θ):

M = rL

where L is of the form (3.1). Hence, because of the form of M , our Lyapunov function Ψ

will be the same one constructed in Section 4. Upon replacing n by 1 in the inequalities
(6.2), (6.3), (6.4), (6.7), (6.8), and (6.9), and then applying Proposition 6.8, we see that
the chosen Ψ has the required local Lyapunov estimate for (r, θ) ∈ Sm, m = 0, 1, . . . , j+ 4:

(MΨ)(r, θ) ≤ −CΨ(r, θ)1+δ +D

where C,D and δ are positive constants. Since the boundary flux contributions will have
the appropriate sign, the result now follows.

Proof of Theorem 2.5. First note that the generator L of the process zt has the following
form when written in the variables (z, z̄):

L = P(z, z̄)∂z + P(z, z̄)∂z̄ + σ2∂z∂z̄
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where P(z, z̄) = zn+1 + F (z, z̄). Let L ∗ denote the formal adjoint of L . Motivated by
the discussion of the substitution wt = 1/znt at the beginning of the section, define
c(z, z̄) = |z|2n+2ρ(z, z̄) where ρ is the invariant probability density function with respect
to Lebesgue measure on R2. Since L ∗ is elliptic and L ∗ρ = 0, observe that c is a smooth
function everywhere since ρ is smooth everywhere. To see which equation c satisfies,
write ρ = c|z|−2n−2 and use the fact that L ∗ρ = 0 to see that

(|z|−2n−2Mc)(z, z̄) = 0 for z 6= 0,

whereM is of the form

M = L ∗ − σ2(n+ 1)

z̄
∂z −

σ2(n+ 1)

z
∂z̄ + f(z, z̄)

and the potential f satisfies

f(z, z̄) = −∂z(P(z, z̄))− ∂z̄(P(z, z̄))

+
(n+ 1)

z
P(z, z̄) +

(n+ 1)

z̄
P(z, z̄) +

σ2(n+ 1)2

|z|2
.

In particular, we also note that c solves the equation for z 6= 0

(|z|−n−1Mc)(z, z̄) = 0. (7.1)

Using (7.1), we will now apply Feynman-Kac to obtain an expression for c(z, z̄) that can
be analyzed as |z| → ∞.

Now consider the time-changed process z∗t∧Sγ , γ > 2, introduced in Corollary 7.1.

Observe that the generator of z∗t∧Sγ constitutes every term in |z|−(n−1)M except for

multiplication by the potential function |z|−(n−1)f(z, z̄) which is smooth in (z, z̄) for z 6= 0

and satisfies

|z|−(n−1)f(z, z̄) = O(1) as |z| → ∞.

Hence, in particular, |z|−(n−1)f(z, z̄) is bounded on the set {z ∈ C : |z| ≥ γ} for all
γ > 0. Let Sγ,n be the first exit time of z∗t from the annulus Aγ,n = {γ < |z| < n}. By
Feynman-Kac, we have for γ ≥ 2

c(z, z̄) = E(z,z̄)c(z
∗
t∧Sγ,n , z

∗
t∧Sγ,n)e

∫ t∧Sγ,n
0 |z∗s |

−(n−1)f(z∗s ,z
∗
s ) ds, z ∈ Aγ,n.

By Corollary 7.1, we have that z∗t∧Sγ is non-explosive. Thus by Fatou’s lemma, taking the
lim infn→∞ of both sides of the above we obtain for |z| ≥ γ ≥ 2

c(z, z̄) ≥ E(z,z̄)c(z
∗
t∧Sγ , z

∗
t∧Sγ )e

∫ t∧Sγ
0 |z∗s |

−(n−1)f(z∗s ,z
∗
s ) ds.

Applying Corollary 7.1 again, for γ > 0 large enough Sγ < ∞ almost surely. Hence,
applying Fatou’s lemma and taking the lim inft→∞ of both sides of the previous inequality
we see that

c(z, z̄) ≥ E(z,z̄)c(z
∗
Sγ , z

∗
Sγ

)e
∫ Sγ
0 |z∗s |

−(n−1)f(z∗s ,z
∗
s ) ds. (7.2)

We now bound the right-hand side of (7.2) from below. Since

(|z|−n−1Mc)(z, z̄) = 0 for z 6= 0

and the operator |z|−n−1M is elliptic for z 6= 0, there exists a constant C(γ) > 0 such
that

c(z, z̄) ≥ C(γ) > 0, |z| = γ.
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Moreover, since |z|−(n−1)f is bounded for |z| ≥ γ, there exists a constant D(γ) > 0 such
that

||z|−(n−1)f(z, z̄)| ≤ D(γ), |z| ≥ γ.

Hence, we obtain

c(z, z̄) ≥ C(γ)E(z,z̄)e
−SγD(γ)

≥ C(γ)E(z,z̄)e
−SγD(γ)1{Sγ≤t}

≥ C(γ)e−tD(γ)P(z,z̄)[Sγ ≤ t]

where the inequality above holds for all γ, t > 0. Applying Corollary 7.1 once more, we
see that for each t > 0 there exists γ > 0 such that

inf
|z|≥γ

c(z, z̄) > 0

finishing the result.

8 Generalized Itô’s formula

In this section, we give a differently packaged proof of a weaker version of Peskir’s
extension of Tanaka’s formula [6] which still affords the structure needed to build
the Lyapunov functions contained in this paper and Part I [5]. Instead of making use
of Tanaka’s formula as in [6], we opt to mollify along interfaces where the function
is not C2 and then take limits. For convenience, we deal solely with the case of a
time-homogeneous diffusion process ξt on Rm with generator

L =

d∑
j=1

f j(ξ)∂ξj +

d∑
i,j=1

1

2
gij(ξ)∂2

ξiξj

where f i, gij are locally Lipschitz and the matrix (gij) is non-negative definite. Further-
more, assume that ϕ ∈ C(Rm : R) is such that

ϕ(x) =

{
ϕ1(x) xm ≤ b(x1, x2, . . . , xm−1)

ϕ2(x) xm ≥ b(x1, x2, . . . , xm−1)

where the ϕi’s are C2 on the domains above and b ∈ C2(Rm−1 : R). The case of finitely
many non-intersecting boundaries is a simple consequence of the following result.

Theorem 8.1. Let τn = inf{t > 0 : |ξt| ≥ n}. Then for all ξ ∈ Rm, n ∈ N and all bounded
stopping times υ:

Eξϕ(ξυ∧τn) = ϕ(ξ) + Eξ

∫ υ∧τn

0

[
1
2Lϕ(ξ1

s , . . . , (ξ
m
s )+) + 1

2Lϕ(ξ1
s , . . . , (ξ

m
s )−)

]
ds (8.1)

+ Flux(ξ, υ, n)

where

(Lϕ)(ξ1, . . . , (ξm)+) = lim
xm↓ξm

(Lϕ)(ξ1, . . . , ξm−1, xm)

(Lϕ)(ξ1, . . . , (ξm)−) = lim
xm↑ξm

(Lϕ)(ξ1, . . . , ξm−1, xm)

and Flux(ξ, t, n) satisfies the following properties:
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• If ∂xmϕ2(x) − ∂xmϕ1(x) ≤ 0 for all x ∈ Rm with xm = b(x1, . . . , xm−1), then
Flux(ξ, υ, n) ∈ (−∞, 0] and Flux(ξ, t, k) ≤ Flux(ξ, s, n) for s ≤ t and n ≤ k.

• If ∂xmϕ2(x) − ∂xmϕ1(x) ≥ 0 for all x ∈ Rm with xm = b(x1, . . . , xm−1), then
Flux(ξ, υ, n) ≥ 0 and the maps υ 7→ Flux(ξ, υ, n), n 7→ Flux(ξ, υ, n) are increas-
ing.

Proof of Theorem 8.1. Because we will stop the process ξt at time τn, without loss of
generality we may assume that ϕ has compact support (e.g. in a ball centered at the
origin with radius much larger than n). Let χ : Rm → R be a smooth mollifier, set
χε(ξ) = ε−mχ(ε−1ξ) and define

ϕε(ξ) =

∫
Rm

χε(ξ − x)ϕ(x) dx.

Applying Dynkin’s formula we have

Eξϕε(ξυ∧τn)− ϕε(ξ) = Eξ

∫ υ∧τn

0

(Lϕε)(ξs) ds. (8.2)

To obtain the desired formula, we begin computing partial derivatives of ϕε. To keep
expressions compact, we will use ∂ξj to denote ∂

∂ξj . Write

ϕε(ξ) =

∫
U−

χε(ξ − x)ϕ1(x) dx+

∫
U+

χε(ξ − x)ϕ2(x) dx.

where U− = {xm < b(x1, . . . , xm−1)} and U+ = {xm ≥ b(x1, . . . , xm−1)}. Integrate by
parts once and use the fact that ϕ1 and ϕ2 agree on the boundary Γ = {x ∈ Rm : xm =

b(x1, . . . , xm−1)} to see that

∂ξjϕε(ξ) = −
∫
U−

∂xjχε(ξ − x)ϕ1(x) dx−
∫
U+

∂xjχε(ξ − x)ϕ2(x) dx

=

∫
U−

χε(ξ − x)∂xjϕ1(x) dy +

∫
U+

χε(ξ − x)∂xjϕ2(x) dx.

Using the equality on the previous line, apply ∂ξi to both sides and then integrate by
parts in the same fashion to obtain

∂2
ξiξjϕε(ξ) =

∫
U−

χε(ξ − x)∂2
xixjϕ1(x) dx+

∫
U+

χε(ξ − x)∂2
xixjϕ2(x) dx (8.3)

+

∫
Γ

χε(ξ − x)
(
∂xjϕ2 − ∂xjϕ1

)
(x)σi dSΓ(x)

where Γ = {x : xm = b(x1, . . . , xm−1)} and σi is the i-th component of the unit surface
normal vector σ = (−∇b(x), 1)/

√
1 + |∇b(x)|2 of Γ. We now claim that for x ∈ Γ and

j = 1, . . . ,m− 1

(∂xjϕ2 − ∂xjϕ1)(x) =
(
∂xmϕ2 − ∂xmϕ1

)
(x)σj

√
1 + |∇b(x)|2.

To prove this claim, for x ∈ Rm define

h(x1, . . . , xm−1) = ϕ(x1, . . . , xm−1, b(x1, . . . , xm−1)).

Since b ∈ C1(Rm−1 : R), h ∈ C1(Rm−1 : R). Moreover, ϕi are C2 on their closed domains
of definition, each of which include the boundary Γ. Hence, computing derivatives we
see that for j = 1, . . . ,m− 1 and i = 1, 2

∂xjh(x1, . . . , xm−1) = (∂xjϕi)(x
1, . . . , xm−1, b(x1, . . . , xm−1))

+ (∂xmϕi)(x
1, . . . , xm−1, b(x1, . . . , xm−1))∂xj b(x

1, . . . , xm−1)
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for i = 1, 2. Therefore

0 = ∂xjh(x1, . . . , xm−1)− ∂xjh(x1, . . . , xm−1)

= (∂xjϕ2)(x1, . . . , xm−1, b(x1, . . . , xm−1))− (∂xjϕ1)(x1, . . . , xm−1, b(x1, . . . , xm−1))

+ (∂xmϕ2)(x1, . . . , xm−1, b(x1, . . . , xm−1))∂xj b(x
1, . . . , xm−1)

− (∂xmϕ1)(x1, . . . , xm−1, b(x1, . . . , xm−1))∂xj b(x
1, . . . , xm−1),

from which the claim now follows. Since σm = 1/
√

1 + |∇b|2, the claim in particular
allows us to write

∂2
ξiξjϕε(ξ) =

∫
U−

χε(ξ − x)∂2
xixjϕ1(x) dx+

∫
U+

χε(ξ − x)∂2
xixjϕ2(x) dx (8.4)

+

∫
Γ

χε(ξ − x)
(
∂xmϕ2 − ∂xmϕ1

)
(x)σiσj

√
1 + |∇b(x)|2 dSΓ(x).

for i, j = 1, 2, . . . ,m.
Let us now see what the computations above tell us. Letting ∗ denote convolution,

we can now write (8.2) as

Eξϕε(ξυ∧τn)− ϕε(ξ) (8.5)

−Eξ

m∑
j=1

∫ υ∧τn

0

f j(ξs)(χε ∗ 1U−∂ξjϕ1)(ξs) + f j(ξs)(χε ∗ 1U+∂ξjϕ2)(ξs) ds

− 1

2
Eξ

m∑
i,j=1

∫ υ∧τn

0

gij(ξs)(χε ∗ 1U−∂ξiξjϕ1)(ξs) + gij(ξs)(χε ∗ 1U+∂ξiξjϕ2)(ξs) ds

=
1

2
Eξ

∫ υ∧τn

0

∫
Γ

(
∂xmϕ2 − ∂xmϕ1

)
(x)χε(ξs − x)

√
1 + |∇b(x)|2

m∑
i,j=1

gij(ξs)σ
iσj dSΓ(x)ds

Since f i, gij are locally bounded, by dominated convergence we may pass the the limit
as ε ↓ 0 through all integrals on the lefthand side to see that

Eξϕ(ξυ∧τn)− ϕ(ξ)− 1
2Eξ

∫ υ∧τn

0

[(Lϕ)(ξ1
s , . . . , (ξ

d
s )+)] ds− 1

2Eξ

∫ υ∧τn

0

[(Lϕ)(ξ1
s , . . . , (ξ

d
s )−)] ds

= lim
ε↓0

1

2
Eξ

∫ υ∧τn

0

∫
Γ

(
∂xmϕ2 − ∂xmϕ1

)
(x)χε(ξs − x)

√
1 + |∇b(x)|2

m∑
i,j=1

gij(ξs)σ
iσj dSΓ(x)ds

:= Flux(ξ, υ, n).

To see that Flux(ξ, υ, n) has the claimed properties, note that since the matrix (gij) is
non-negative we have that

χε(ξs − x)
√

1 + |∇b(x)|2
∑
i,j

gij(ξs)σ
iσj ≥ 0.

Also, the surface measure dSΓ is a nonnegative measure. In particular, Flux(ξ, υ, n)

satisfies all claimed properties of the result.

9 Conclusions

The techniques developed in this and its accompanying work provide a general
framework for constructing a Lyapunov function well adapted to the dynamics of a
particular problem. This systematic approach began in [1]. Here, however, a significant
number of advances have been made, allowing us to both cover a much larger class of
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problems and simplify many details in the analysis. In particular, the use of a generalized
Tanaka formula [6] greatly simplifies the patching together of the piecewise-defined
Lyapunov functions when compared to the treatments of the similar situations in [1, 2, 3].

A few considerations remain incomplete in this work. Section 2.4 in Part I [5] makes
a compelling argument supported by numerical simulations for the scaling of large
excursions. Although many of the details can be extracted from the current work, it
would be interesting to add the missing details, producing a rigorous argument. A
possible path one could take to achieve this (and also some of the results of this paper)
is to work in the coordinate variable w = 1/zn as done in Section 7. One could then
obtain path properties of the diffusion wt = 1/znt near the origin in the w-plane by
controlling the martingale part using the exponential martingale inequality. If present,
the lower-order terms in the drift would then have to be dealt with, perhaps by using
time-changes and Girsanov transformations and/or further substitutions inspired by
those made in Section 3 of this paper.

There also is a number of possible directions for generalization. Here we have only
considered complex polynomials whose highest order term is the monomial azn+1. More
generally, one could consider leading-order monomial terms of the form azkz̄j where
k + j = n+ 1. If k > j + 1, then the system with noise added can be proven to be stable
by essentially the same arguments used in this and its companion paper [5]. In this
case, the invariant measure will again have polynomial decay at infinity. If k = j, then
the system is trivially stable if a < 0 and trivially unstable if a > 0. In this case, the
norm-squared |z|2 is easily shown to be a Lyapunov function if a < 0. If j < k then the
deterministic flow rotates towards the unstable directions and not away from them as
was the case when k < j. Here one expects to be able to prove that they system blows-up
with probability one. More interesting is the case when the leading order monomial is
replaced by a polynomial made up of terms which all have homogeneity n+ 1 under the
radial scaling z 7→ λz. This will produce a richer collection of possibilities. Nonetheless,
we expect the ideas contained in these notes to be very useful in determining and proving
stability properties when noise is added.

Another possible direction of generalization would be to consider state-dependent
noise, e.g. σ dBt 7→ σ(z, z̄) dBt where σ(z, z̄) is a suitable polynomial. In many cases,
analysis of the resulting stochastic system should be possible so long as σ(z, z̄) does not
grow too fast at infinity (relative to the leading-order drift term azn+1). Also, the analysis
may be greatly simplified in some cases by transforming to an equation with additive
noise by a time change and/or substitution. A more difficult direction of generalization
would be to consider higher dimensional unstable ODEs under the addition of noise.
Here the geometry of the underlying, deterministic dynamics can be quite complicated,
if not chaotic. In this work, we relied on the simplicity of the underling dynamics in
our analysis. Understanding how different regions patch together could be much more
complicated, if not intractable, in higher dimensions. The most interesting and wide-open
direction to pursue would be to consider an unstable deterministic PDE and show that it
stabilizes under the addition of noise.
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