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Noise-induced stabilization of planar flows I
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Abstract

We show that the complex-valued ODE (n ≥ 1, an+1 6= 0):

ż = an+1z
n+1 + anz

n + · · ·+ a0,

which necessarily has trajectories along which the dynamics blows up in finite time,
can be stabilized by the addition of an arbitrarily small elliptic, additive Brownian
stochastic term. We also show that the stochastic perturbation has a unique invariant
probability measure which is heavy-tailed yet is uniformly, exponentially attracting.
The methods turn on the construction of Lyapunov functions. The techniques used in
the construction are general and can likely be used in other settings where a Lyapunov
function is needed. This is a two-part paper. This paper, Part I, focuses on general
Lyapunov methods as applied to a special, simplified version of the problem. Part II
[11] extends the main results to the general setting.
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1 Introduction

We study the following complex-valued system{
dzt = (an+1z

n+1
t + anz

n
t + · · ·+ a0) dt+ σ dBt

z0 ∈ C
(1.1)

where n ≥ 1 is an integer, ai ∈ C, an+1 6= 0, σ ≥ 0 is constant, and Bt = B
(1)
t + iB

(2)
t is

a complex Brownian motion defined on a probability space (Ω,F ,P). (We in fact prove
many results for the slightly more general form given in (3.1).)

When σ = 0 in equation (1.1), the resulting deterministic system blows up in finite
time for some susbset of the initial data1. In particular even with the addition of noise
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†Duke University, USA. E-mail: jonm@math.duke.edu
1This can be intuited by noting that the asymptotic equation żt = an+1z

n+1
t at infinity has n explosive

trajectories (see Figure 1).
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(a) ż = z2 (case: n = 1)
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(b) ż = z6 (case: n = 5)

Figure 1: The orbits of ż = zn+1. Trajectories with initial condition z0 = reiθ satisfying
r > 0 and θ = 2πk

n , k ∈ Z, explode to infinity in finite time.

(σ > 0 in (1.1)), one cannot employ the general results in [20] as the drift vector field
does not point inward radially. Interestingly, however, we will see that when σ > 0

in (1.1), not only does the system stabilize so that solutions to (1.1) exist for all initial
conditions and all finite times, but the dynamics settles down into a unique statistical
steady state with corresponding invariant measure. Strikingly, too, we will find that this
invariant measure has the following two properties. First, it possesses an everywhere
positive density (with respect to Lebesgue measure on C) which decays polynomially in
|z| at infinity. Second, it attracts all initial conditions exponentially fast in time. Note that
these two properties cannot be simultaneously realized in a gradient system with additive
noise and nominal growth assumptions on the potential, but it is possible here because
the system is strongly non-reversible with a nontrivial probability flux in equilibrium.
See Remark 3.5 for a further discussion of this point.

We will see that the polynomial decay follows from a delicate balance between the
noise and unstable dynamics resulting in a global circulation in equilibrium. Such
circulation produces what might be called “intermittent” behavior. Namely, the system
spends long periods of time in an order one region about the origin but at approximately
exponential times the system “spikes”, making rapid excursions to large values followed
by equally rapid returns to order one values (see Figure 2). The balance of noise and
explosion that produces the polynomial decay at infinity also implies a specific scaling
between the level of the spike and the parameter which determines the distribution of
times between spikes. This and its relationship to the equilibrium flux are highlighted in
the heuristic discussions in Section 2.

Although the results obtained here are specific to the equation (1.1) (and the gen-
eralization (3.1)), the methods used should be applicable to a wide range of problems.
That is, to establish the main results, a sequence of “optimal" Lyapunov functions is
constructed, and because of the delicate interplay between the noise and the instabilities
of the underlying deterministic system, it forces one to know how to build such functions
well. Although we do not claim to have a step-by-step algorithmic procedure which
would produce a Lyapunov function for a given stochastic differential equation, we at
least give a framework that could be molded to handle a variety of situations. That is,
we believe that the core ideas can be applied quite broadly.

It is important to remark that the system (1.1) and other similar planar systems
have been studied before [1, 2, 3, 4, 6, 10, 19]. In the case when n = 1 in (1.1), the
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asymptotic behavior of the invariant density was first studied in [6] to help extract
information on the distribution of spacing between close, heavy particles transported by
moderately turbulent flows. Subsequent works [1, 2, 3, 6, 10] have since investigated
(1.1) in special cases of the polynomial drift term. In particular focusing on complex
Langevin dynamics, the authors in [1, 2] study numerically the equilibrium distribution
when n = 2 in equation (1.1). In addition to proving results for the general system
(1.1), we will also improve upon the existing ones in these special cases. Specifically,
our results will be seen to be optimal in the following sense: If µ denotes the unique
invariant measure for (1.1), then for any γ ∈ (0, 2n) we will succeed in constructing a
Lyapunov function for (1.1) whose growth at infinity will imply that∫

C

(1 + |z|γ)dµ(z) <∞,

yet we will see that for any γ ≥ 2n∫
C

(1 + |z|γ)dµ(z) =∞.

Hence it would be impossible to build a Lyapunov function with power growth at infinity
which grows faster than those we construct.

Figure 2: A realization of the process |zt| plotted on the time interval [0, 15000] where
zt solves equation (1.1) with n = 1, a2 = 1, a1 = a0 = 0 and σ = 1. See Section 2.4 for a
discussion of the spacing between the “spikes.”

The layout of this paper is as follows. In Section 2, we give two non-rigorous
arguments which suggest a possible rate of decay at infinity for the invariant probability
density function. The first argument given relies on formal asymptotic matching at the
level of the PDE solved by the invariant density and the second argument is based on
the stochastic dynamics near the point at infinity. While the first argument is shorter,
the second is more informative in that it not only allows us to understand the the decay
rate of the invariant density but it also allows us to understand the inter-spike spacing
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distribution as displayed in Figure 2 and confirm all results predicted with numerics. It
is also almost certainly possible to make the second discussion rigorous. In Section 3,
we state the main rigorous results of this paper, Part I, and its continuation, Part II [11],
which henceforth will be referred to as the sequel. In Section 4, we give the precise
definition of a Lyapunov function we will use and list some of the consequences of its
existence. It is interesting to note that, although our notion of a Lyapunov function is
similar to that of Meyn and Tweedie [15] and Khasminskii [12], we only require Lyapunov
functions to be piecewise C2 and globally continuous rather than globally C2. While
this is useful in constructing Lyapunov functions, it forces us to employ a generalized
Itô-Tanaka formula due to Peskir [18] to estimate contributions along curves where our
Lyapunov function is not C2. This allows us to avoid smoothing or mollifying along the
boundaries which leads to a substantial reduction in the complexity of the argument
when compared to previous works [3, 6, 10, 4]. In Section 5, we state the precise
results we will actually prove which, when combined with the results in Section 4, will
imply the main results as stated in Section 3. In Section 6, the key initial steps of the
construction procedure that will produce the required Lyapunov functions are discussed.
In particular, we show how we plan to apply Peskir’s result [18], allowing us to work
with less regular Lyapunov functions. To illustrate our general methods, in Section 7 we
build our Lyapunov functions corresponding to the system (1.1) assuming that there are
no “significant" lower-order terms in the drift of (1.1). Section 8 finishes the remaining
details in this special case.

In the sequel (Part II of this paper) [11], we prove the results given in Section 5
pertaining to (1.1) but in the general setting without this simplifying assumption. Ex-
tending the result is subtly intricate as the presence of higher-order polynomial terms
with degree ≤ n drastically alters the nature of the process at infinity. Moreover, we will
also give a short proof of a weaker version of Peskir’s result [18] suitable for our needs.
In Section 9, we summarize what has been accomplished in Part I of the paper with the
advantage of hindsight. We postpone discussions of possible future directions to Part II
of the work.

2 Heuristic discussions of the decay at Infinity and spike spacing

In this section, we present some heuristic, non-rigorous arguments which give
information about the possible structure of the invariant measure at infinity as well as
the structure of the inter-spike distribution displayed in Figure 2. Here we focus our
efforts on the simplified equation

dzt = zn+1
t dt+ σdBt (2.1)

where zt ∈ C, n ≥ 1, σ > 0, and Bt is a complex Brownian motion. Although matters
could be complicated by the presence of lower order terms in the drift, studying the
equation above is a good starting point as it reveals much of the structure of the general
equation (1.1).

In Section 2.1, we start by giving an asymptotic matching argument which suggests a
possible decay rate at infinity for the invariant probability density function. In Section 2.2,
we will then develop a heuristic model of the dynamics informed by a detailed scaling
analysis carried out later in Section 7.1. In Section 2.3, we analyze this heuristic model
and see that it implies the same decay as predicted in Section 2.1. One advantage that
the heuristic model has over the scaling argument given in Section 2.1 is that it gives a
more dynamic picture of the processes which lead to the polynomial decay at infinity
of the stationary measure. Moreover, we will be able to, in Section 2.4, use the same
heuristic model to explore the spike spacing illustrated in Figure 2 as well as validate
many of the results obtained in this paper with numerical simulations.
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Figure 3: The trajectories of ż = z6 + 2000z2 plotted on [−10, 10]2 (left) and [−40, 40]2

(right). For |z| small, the dynamics qualitatively resembles that of ż = z2 (see Figure 1a).
As |z| becomes larger, the dynamics starts to resemble that of ż = z6 (see Figure 1b).

2.1 Scaling argument

Let L denote the generator of the process (xt, yt) where xt = Re(zt), yt = Im(zt) and
zt satisfies (2.1). Since the formal adjoint L∗ of L with respect to Lebesgue measure on
R2 is uniformly elliptic and has C∞ coefficients, any invariant probability density function
ρ(x, y) with respect to Lebesgue measure on R2 must be globally positive, C∞, and satisfy
the equation L∗ρ = 0 on R2. To analyze the behavior of ρ(x, y) as |(x, y)| → ∞, we first
convert the equation L∗ρ = 0 to polar coordinates. Letting ρ̃(r, θ) = ρ(r cos(θ), r sin(θ))

we see that ρ̃ satisfies the following equation for r > 0

rn
[
(2n+ 2) cos(nθ)ρ̃+ r cos(nθ)∂rρ̃+ sin(nθ)∂θρ̃

]
− σ2

[ 1

2r
∂rρ̃+

1

2
∂2
r ρ̃+

1

2r2
∂2
θ ρ̃
]

= 0 .

Considering the effect of the scaling transformation (r, θ) 7→ (λr, θ) on the equation above
produces

λnrn
[
(2n+2) cos(nθ)ρ̃+r cos(nθ)∂rρ̃+sin(nθ)∂θρ̃

]
− σ

2

λ2

[ 1

2r
∂rρ̃+

1

2
∂2
r ρ̃+

1

2r2
∂2
θ ρ̃
]

= 0 .

Observe that this transformation allows us to gauge the asymptotic behavior of ρ̃, hence
ρ, along a fixed radial direction. Extracting the leading order λn term assuming that
∂θρ̃ = 0 and cos(nθ) 6= 0, we obtain the leading order equation

(2n+ 2)ρ̃+ r∂rρ̃ = 0.

Solving this equation produces

ρ(x, y) = ρ̃(r, θ) ∼ 1

r2n+2
. (2.2)

We will see later that, in fact, that this scaling is essentially correct.

2.2 The heuristic model

First observe that the rotated process Zt := ei
2πk
n zt solves the equation

dZt = Zn+1
t dt+ σ dB̃t
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where B̃t is also a complex Brownian motion. In particular, this fact allows us to reduce
our analysis of the process zt restricted to the set (in polar coordinates)

R = {(r, θ) : r ≥ r∗, −πn ≤ θ ≤ π
n} (2.3)

as the analysis in the remaining wedge-shaped regions Rk, k ∈ Z, given by

Rk = {(r, θ) : (r, θ − 2πk/n) ∈ R}

can be carried out in a similar fashion.
As we will see in Section 7.1, to leading order inside of R the noise only has an effect

inside of the region

S(η∗, r∗) = {(r, θ) ∈ R : |θ|r n+2
2 ≤ η∗} ∩ {(r, θ) : r ≥ r∗}

where r∗, η∗ > 0 are both large and fixed. In order to study the process zt = rte
iθi in this

region, it is convenient to introduce the variable

ηt := θtr
n+2
2

t

which, when paired with rt, still completely determines the state of the system at time t.
Moreover, after making the time change

t 7→
∫ t

0

rns ds, (2.4)

we will see later that the (ηt, rt) dynamics are well-approximated in S(η∗, r∗) by

dηt =
(3

2
n+ 1

)
ηtdt+ σdWt and ṙt = rt (2.5)

where Wt is a standard scalar Brownian Motion. In contrast, when the process belongs
to the set S(η∗, r∗), it approximately follows the deterministic equation ż = zn+1 (or
rather ż = zn+1|z|−n after the time change). The orbits of this system are concentric
loops which share a single common point z = 0. Indexing each loop by its maximal
distance from the origin K, we see that the K-th loop is the locus of points

J (K) =
{

(r, θ) : r = K| sin(nθ)| 1n , 0 < |θ| < π

n

}
. (2.6)

Combining these two approximate dynamics, we obtain a model for the behavior far
from the origin. It is not hard to argue that the most probable route to a point ζ ∈ R far
from the origin, with |ζ| > r∗, is to first enter S(η∗, r∗) through the set {(r, θ) : r = r∗}.
The trajectory system will then spend a random about of time in S(η∗, r∗) before exiting
at time

τ = inf{t > 0 : zt 6∈ S(η∗, r∗)} = inf{t > 0 : |ηt| > η∗} .

Since we are using the approximate dynamics (2.5) in S(η∗, r∗), it is not hard to approxi-
mate both the exit time τ and exit location from S(η∗, r∗). Clearly, ητ = ±η∗. Moreover,
it is also easy to see from (2.5) that rτ = r∗eτ . Since

|ητ | = r
n+2
2

τ |θτ | = η∗,

we can also solve for |θτ |. More importantly, we can find the value of K which
parametrizes the orbit J (K) passing through (rτ , θτ ), the point of exit from S(η∗, r∗).
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There is a small ambiguity in the sign of θτ , however none of the properties of interest
will depend on this sign, so we take to positive value for definiteness.

Letting Kτ denote the value of K at the exit point, we see that since |θ| is small in
S(η∗, r∗)

Kτ =
rτ

| sin(nθτ )| 1n
≈ rτ

|nθτ | 1n
=

(r∗)
3n+2
2n

(nη∗)
1
n

e
3n+2
2n τ . (2.7)

Once outside of S(η∗, r∗) on the orbit J (Kτ ), the dynamics is taken to be deterministic.
Hence the probability of ending up on any point on J (K) is determined by the probability
that Kτ = K. Therefore we now further explore the distribution of the exit time τ .

In our model dynamics, ηt is a one-dimensional (unstable) Ornstein-Uhlenbeck pro-
cess. Letting qt(η, η′) be the transition density of ηt starting from η and killed whenever
|ηt| = η∗, it is not hard to see that

P(τ > t) =

∫ η∗

−η∗
qt(η, η

′)dη′ .

Standard spectral theory gives the existence of functions ck(η, η′) so that if 0 < λ1 <

λ2 < λk < · · · are the eigenvalues of

(Qf)(η) = −σ
2

2
∂2
ηf +

(
3n+2

2

)
∂η(ηf)

on the domain [−η∗, η∗] with zero boundary conditions, then

qt(η, η
′) =

∞∑
k=1

ck(η, η′)e−λkt .

Hence for t large

P(τ > t) ≈ e−λ1t

∫ η∗

−η∗
ck(η, η′)dη′ . (2.8)

Clearly, λ1 is a function of η∗. However, it is not hard to see that as η∗ →∞, λ1 → 3n+2
2 .

Another way of seeing this is to note that the solution to (2.5) with η0 = 0 can be
written as

ητ = σe
3n+2

2 τ

∫ τ

0

e−
3n+2

2 sdWs.

Since we are interested in large r∗, by the scaling of the equation we can consider σ
small for a fixed r∗. Since |ητ | = η∗, rearranging the above equation produces

η∗
σ
e−

3n+2
2 τ =

∣∣∣ ∫ τ

0

e−
3n+2

2 sdWs

∣∣∣.
When σ is small, τ will be large and effectively conditionally independent of the bulk of
the Brownian trajectory {Wt : t ∈ [0, τ ]}, particularly {Wt : t ∈ [0, τ/2]} which makes the
dominate contribution for τ large. Making this leap, for large τ > 0 the righthand side
of the equation above is approximately Gaussian with mean zero and variance ≈ 1

3n+2 .
Solving for τ gives

τ ≈ 2

3n+ 2
log(

η∗
σ

) (2.9)
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for σ small (or equivalently η∗ big).

Both this pathwise calculation and the more classical PDE calculation presented first
have their individual merits. We are not married to either. Since we have chosen to
take a Lyapunov function approach, however, we tend to need expectations of various
quantities for which the PDE methods are well suited. For this reason and the fact that
we wish to avoid developing both modes of calculation in parallel, we slightly favor the
PDE calculations in this note. Nevertheless, many ideas presented in this packaging
were first developed by using a more pathwise reasoning.

To summarize our model of the dynamics: In equilibrium, trajectories are injected
into the wedge S(η∗, r∗) a certain rate through the boundary {r = r∗}. The most likely
way for a trajectory to reach a large value is to spend enough time in the wedge S(η∗, r∗),
hence having a large enough exit time τ . The tails of this exit time are approximately
exponential and are given by (2.8). Once the process exits S(η∗, r∗), it follows the
deterministic trajectory contained in J (Kτ ) where the constant Kτ was set by the exit
point from S(η∗, r∗) using (2.7). We will now use this caricature of the dynamics to study
the decay of the invariant measure and spike spacing distribution.

2.3 Tails of the invariant measure

As already mentioned, the maximal distance from the origin on a given orbit J (K)

is K. Note that this maximal distance is realized along this orbit precisely when θ =

±π/(2n) as | sin(nθ)|1/n = 1 when θ = ±π/(2n). As previously noted, the most likely way
to reach a point far from the origin in the principal wedge R is to pass though S(η∗, r∗)

and exit on the curve J (Kτ ) with the parameter Kτ large. In turn, the trajectory upon
exit from S(η∗, r∗) then follows a deterministic orbit eventually reaching a distance Kτ

from the origin.

Since our Heuristic model was of the time-changed process obtained through (2.4),
we will first study the tails of the invariant measure of the time-changed process and
then undo the time change at the end. Let µ̃ denote the stationary measure of the
time-changed process, Pµ̃ the probability measure of the time-changed Markov process
with initial distribution µ̃, and P(r,θ) the probability measure of the time-changed Markov
process with initial condition (r, θ).

In light of the heuristic model, for for R > 0 large

Pµ̃(|z| ≥ R) ≈ cP(r∗,0)(Kτ > R)

where c > 0 is a positive constant capturing the flux into S(η∗, r∗) around r∗ in equilib-
rium. Using the relation (2.7), we find that for R > 0 large

Pµ̃(|z| ≥ R) ≈ cP(r∗,0)(τ >
2n

3n+2 log R
R0

)

for some positive constant R0. Now pick η∗ > 0 large enough so that λ1 ≈ 3n+2
2 . Thus

for R > 0 large enough, (2.8) gives

Pµ̃(|z| ≥ R) ≈ cR−
2nλ1

3n+2 ≈ cR−n .

One can also obtain the fact that P(r∗,0)(Kτ ≥ R) ≈ cR−n by combining the calculation
used to obtain (2.9) and (2.7).

Letting ρ(r, θ) denote density of µ̃, for θ 6= 0 we have

− c

Rn+1
≈ ∂

∂R
Pµ̃(|z| ≥ R) =

∂

∂R

∫ ∞
R

∫ 2π

0

ρ(r, θ) dθ r dr = −R
∫ 2π

0

ρ(R, θ) dθ .
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From this we conclude that

Pµ̃(|z| ∈ dR) ≈ c

Rn+2
dR

for large R. Hence if µ denotes the stationary measure of the original system (2.1)
without the time change we see that

Pµ(|z| ∈ dR) ≈ c

R2n+2
dR

which agrees with the scaling argument of Section 2.1.

2.4 Spacing of the excursions

We now investigate the distribution of the time between “spikes" of size R > 0, as
illustrated in Figure 2.

It is reasonable to assume that for a large but fixed value of r∗ > 0, trajectories with
high probability spend a random amount of time in {r ≤ r∗} before passing through
S(η∗, r∗) to hit larger radial values. For any R� 2r∗, define the following sequence of
stopping times: S0 = 0 and for i ≥ 1 set

Ti = inf{t ≥ Si−1 : rt ≥ R} and Si = inf{t ≥ Ti : rt ≤ r∗} .

We are interested in the distribution of the time between “spikes" Ti+1 − Ti. We will see
that Ti+1 − Ti is distributed as a compound-geometric with geometric parameter that
scales like R−n. Hence we expect

E
(
Ti+1 − Ti

)
= cRn

for some positive constant c.
We begin by defining successive exit times from the set {r < 2r∗} with an intervening

return to the set {r ≤ r∗}: Let s0 = 0 and for i ≥ 1

ti = inf{t ≥ si−1 : rt ≥ 2r∗} and si = inf{t ≥ ti : rt ≤ r∗} .

With high probability, each exit from {r < R} happens through the region S(η∗, 2r∗). In
turn, the locations of the exits through the boundary of S(η∗, 2r∗) determine which of
the orbits J (K) the dynamics follows. As in the discussion at the start of this section, let
τ denote the exit time from S(η∗, 2r∗) and let Kτ be the value of the constant K used to
index the orbit J (K) when the dynamics leaves S(η∗, 2r∗).

If we define pR = P(height of spike is ≥ R) on a given entry into S(η∗, 2r∗) from the
{r = 2r∗} boundary, then using the same logic as in the previous section

pR = P(Kτ > R) ≈ cR−
2nλ1

3n+2 ≈ cR−n.

It is reasonable to assume that the K(i)
τ associated to ith entry into S(η∗, 2r∗) is inde-

pendent of the K(j)
τ with j 6= i. Letting n

(i)
R denote the number of excursions to level

2r∗ needed to produce an spike greater than R after time Ti−1, we observe that under

the independence assumption n(i)
R is geometric with parameter pR. Hence, En(i)

R = 1/pR.
Since

Tj+1 − Tj =

Nj+1∑
i=Nj

(ti − ti−1) where Nj = Nj−1 + n
(j)
R
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n Slope (no time change) Slope (time change)
1 1.031 1.035
2 2.034 1.960
3 3.175 3.001

Figure 4: Simulation results of logE[Tj+1 − Tj ] versus log(R) without the time change
(left) and with the time change (right). Points sufficiently far from 0 but with enough
data (in green) are fitted with a least squares approximation. Slopes of each line in
either case are given in the table above and are as predicted.

we see that Tj+1 − Tj is a compound-geometric random variable. Hence we have

E
[
Tj+1 − Tj

]
≈ E

[
n

(j)
R

]
E
[
t2 − t1

]
≈ E

[
t2 − t1

]
pR

≈ cRn

Hence we expect the average spacing between peaks of spikes greater than R should
grow like Rn. Consult Figure 4 for numerical results which agree with this heuristic
prediction.

All of the analysis above holds equally well even if the dynamics has not been time-
changed using (2.4). The critical quantity is the location at which the process exits
from S(η∗, 2r∗) and this is unchanged by the time-change. The time-change only affects
the time between entrances into S(η∗, 2r∗) and the time it takes to traverse the spike
excursion out to level R (see Figure 4), in particular it has no effect on the probability
pR. The numerical confirm that the predictions still hold.
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3 Main results: ergodicity, mixing, and the behavior of the sta-
tionary measure at infinity

Although we have thus far only discussed equation (1.1), we will see that our main
results, to be stated in this section, hold for more general complex-valued SDEs. In
particular, our analysis can tolerate more general lower-order terms in the drift. There-
fore, throughout the remainder of this paper and the sequel [11] we assume that the
complex-valued process zt satisfies more generally the following SDE

dzt = [an+1z
n+1
t + F (zt, z̄t)] dt+ σ dBt (3.1)

where an+1 ∈ C \ {0}, n ≥ 1, σ > 0, Bt = B1
t + iB2

t is a complex Brownian motion and
F (z, z̄) is a complex polynomial in (z, z̄) with F (z, z̄) = O(|z|n) as |z| → ∞. Notice that
equation (1.1) is the special case of equation (3.1) where F (z, z̄) ≡ F (z) is a complex
polynomial in the variable z only with degree(F ) ≤ n.

The global-in-time existence of the Markov process induced by (3.1) is neither ob-
vious nor certain given the unstable nature of the underlying deterministic dynamics.
Consequently, even if it is shown that the process does not explode in finite time, the
existence of an invariant measure is still in question. Assuming, however, both issues can
be settled, the formal asymptotic calculations of Section 2 suggest that the probability
density function of the invariant probability measure has a certain polynomial decay rate
at infinity. The following result, one of the principal rigorous results of this article and
the sequel [11], shows that these formal computations are essentially correct.

Theorem 3.1. The Markov process defined by (3.1) is non-explosive and possesses a
unique stationary measure µ. In addition, µ satisfies:∫

C

(1 + |z|)γ dµ(z) <∞ if and only if γ < 2n.

Furthermore, µ is ergodic and has a probability density function ρ with respect to
Lebesgue measure on R2 which is smooth and everywhere positive.

Given the existence and uniqueness of the stationary measure, it is also natural
to explore if initial distributions converge to it and, if so, to determine the rate of
convergence. To see what happens in the present context, given any measurable
function w : C → [1,∞), let Mw(C) denote the set of probability measures ν on C

satisfying w ∈ L1(ν) and define the weighted total variation metric dw onMw(C) by

dw(ν1, ν2) = sup
φ:C→R
|φ(z)|≤w(z)

[ ∫
φ(z) ν1(dz)−

∫
φ(z) ν2(dz)

]
.

Theorem 3.2. Let Pt denote the Markov semi-group corresponding to (3.1) and let
α ∈ (0, n) be arbitrary. Then there exists a function Ψ: C→ [0,∞) and positive constants
c, d,K such that

c|z|α ≤ Ψ(z) ≤ d|z|α+n
2 +1

for all |z| ≥ K and such that if w(z) = 1 + βΨ(z) for some β > 0, then νPt ∈Mw(C) for
all t > 0 and any probability measure ν on C. Moreover, with the same choice of w, there
exist positive constants C, γ such that for any two probability measures ν1, ν2 on C and
any t ≥ 1

dw(ν1Pt, ν2Pt) ≤ Ce−γt‖ν1 − ν2‖TV .
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Remark 3.3. In the statement of Theorem 3.2, ‖ν1 − ν2‖TV denotes the total variation
distance between the measures ν1 and ν2. Note that ‖ν1 − ν2‖TV = dw(ν1, ν2) when
w ≡ 1.

Remark 3.4. It is interesting to note that all results stated in Theorem 3.2 hold for
a fixed but arbitrary noise intensity σ > 0. It is therefore natural to wonder how
exponential convergence to the invariant probability measure depends on the parameter
σ > 0. Although we will not be able to extract this dependence rigorously in the general
system (3.1), we will be able to in the monomial case (2.1) in the total variation distance.

To see the dependence in the monomial case, let z(t, σ, z0) denote the solution of (2.1)
with initial condition z0 ∈ C and noise intensity σ > 0. Here, we naturally emphasize the
dependence of the solution z(t, σ, z0) on the noise intensity σ > 0 and the initial condition
z0 because we will rescale both space and time, making use of the homogeneity of the
drift term zn+1

t . Now observe that

z̃(t, σ, z0) := σlz(tσl
′
, 1, σ−lz0), l =

2

n+ 2
, l′ =

2n

n+ 2

has the same distribution as z(t, σ, z0) for all times t ≥ 0. Define a probability measure
πσ on the Borel subsets A of C by πσ(A) = π1(σ−lA) where π1 denotes the invariant
probability measure corresponding to the process (2.1) with noise intensity 1 and suppose
that C, γ and w in the statement of Theorem 3.2 correspond to the case (2.1) when the
noise intensity is 1. Then we have by Theorem 3.2

‖P(z(t, σ, z0) ∈ · )− πσ( · )‖TV = ‖P(z(tσl
′
, 1, σ−lz0) ∈ · )− π1( · )‖TV

≤ Ce−γσl
′
t‖δσ−lz − π1‖TV

≤ Ce−γσl
′
t = Ce−γσt

where γσ := γσl
′
. In particular, πσ is the unique invariant probability measure corre-

sponding to the process (2.1) with noise intensity σ and, moreover, when measuring
the convergence to equilibrium in the total variation distance, the only constant that
depends on σ is γσ, and it is related to the constant γ corresponding to the process
z(t, 1, z0) via γσ = γσl

′
.

For the general system (3.1), this simple argument fails since the drift is no longer
homogeneous under radial scalings. In particular, in trying to replicate this argument,
one cannot rescale time and/or space to arrive at a process independent of σ like we
were able to above. Therefore, uncovering the dependence on σ is more nuanced for the
general system (3.1). Although we will not do it here or in the sequel, however, one could
obtain bounds on C and γ in the statement of Theorem 3.2 in terms of σ by carefully
tracking the dependence of our Lyapunov functions on σ and applying the results of [9].

Remark 3.5. As mentioned in the introduction, an interesting feature of the system (1.1)
is that the equilibrium attracts all initial conditions exponentially fast yet the equilibrium
density only decays polynomially at infinity (and not exponentially as one might expect
in a system with additive noise). Due to the structure of the invariant density, this
cannot happen in a gradient system with additive noise under a nominal uniform growth
assumption on the potential. To see why, consider the following equation on Rk

dXt =−∇V (Xt)dt+ dWt

where Wt = (W 1
t , . . . ,W

k
t ) is a k-dimensional Brownian motion and the potential V ∈ C2

satisfies V (x) ≥ c|x| for |x| ≥ K for some c,K > 0. Since the invariant density is
proportional to e−αV (x) for some α > 0, we see that it must decay exponentially at infinity.
If, for example, V ∈ C2 satisfies V (x) = p log(|x|) for |x| ≥ K for some constant K > 0
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and some constant p > 0 sufficiently large (depending on the dimension), then the system
possesses a unique invariant density which decays polynomially at infinity. However, this
implies that the drift in the above SDE is of the form −px/|x|2 for |x| ≥ K. Such drifts
are known to have slow return times to the “center" of the phase space which ultimately
lead to sub-exponential convergence to equilibrium. See [13] for a general example and
[7, 8] for some further, interesting examples.

4 Consequences of Lyapunov structure and implications for the
invariant measure

Most of the results in Section 3 turn on the existence of a certain type of Lyapunov
function corresponding to the dynamics (3.1). Because we require the additional flexibil-
ity, we make use of a slightly more general notion of a Lyapunov function than usually
employed in the context of diffusion processes. In this section, therefore, we will define
what we mean by a Lyapunov function and give some results which follow from its
existence. Because it is simpler, in this section we will work more generally within the
context of a time-homogeneous Itô diffusion ξt on Rk with smooth (C∞) coefficients.
Also, because it is not clear that ξt exists for all finite times, we make use of the stopping
times τn = inf{t > 0 : |ξt| ≥ n}, n ∈ N.

Definition 4.1. Let Ψ,Φ : Rk → [0,∞) be continuous. We call (Ψ,Φ) a Lyapunov pair
corresponding to ξt if:

a) Ψ(ξ) ∧ Φ(ξ)→∞ as |ξ| → ∞;

b) There exists a locally bounded and measurable function g : Rk → R such that the
following equality holds for all ξ0 ∈ Rk, n ∈ N and all bounded stopping times υ:

Eξ0Ψ(ξυ∧τn) = Ψ(ξ0) + Eξ0

∫ υ∧τn

0

g(ξs) ds+ Flux(ξ0, υ, n)

where Flux(ξ0, υ, n) ∈ (−∞, 0] and Flux(ξ0, t, l) ≤ Flux(ξ0, s, n) for all 0 ≤ s ≤ t,
n ≤ l, ξ0 ∈ Rk. The meaning of the flux term and the reason for its name is
discussed in Remark 4.2.

c) There exist constants m, b > 0 such that for all ξ ∈ Rk

g(ξ) ≤ −mΦ(ξ) + b.

The function Ψ in a Lyapunov pair (Ψ,Φ) is called a Lyapunov function.

Remark 4.2. One usually requires Ψ in Definition 4.1 to be globally C2, in which case
conditions b) and c) are replaced by the global bound

L Ψ ≤ −mΦ + b

where L denotes the infinitesimal generator of ξt. Since our Lyapunov function Ψ will
only be globally continuous, we will need the more general formulation given above in
order to make use of an extension of Tanaka’s formula due to Peskir [18]. A consequence
of this extended formula is that one is now permitted to take the Itô differential of
Ψ(ξt) above so long as Ψ is continuous on Rk and Ψ is C2 everywhere except on a finite
collection of certain non-intersecting, sufficiently smooth (k − 1)-dimensional surfaces.
In such cases, if Ψ is not globally C2, then the differential dΨ(ξt) contains a finite number
of local time contributions, each of which corresponds to the local time of the flux (in
the normal direction) of Ψ on the boundary of a given surface where Ψ is not C2. Hence,
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this is precisely why the term Flux(ξ0, υ, n) appears in the formula above. For further
discussions on this topic, we refer the reader to [18] (see also Section 6.2 of this paper
and Section 8 of Part II [11]).

Remark 4.3. Another way to think about the generalized notion of a Lyapunov function
given here is that it affords the structure needed to work with certain types of weak
(as opposed to classical) sub-solutions of the PDE L Ψ = −mΦ + b. The flux term
naturally arises when integrating by parts to show that Ψ is indeed a weak sub-solution
of L Ψ = −mΦ + b and, for Ψ to be a sub-solution, we need the flux term to be ≤ 0.

Remark 4.4. To keep this section concise, most of the proofs in this section will be
given in the Appendix. Although each proof is a somewhat natural extension of results
in the references [3, 8, 9, 12, 15], special care is taken precisely because our Lyapunov
function will not be globally C2.

The first result we state gives the basic consequences of the existence of a Lyapunov
pair (Ψ,Φ).

Lemma 4.5. If ξt possesses a Lyapunov pair (Ψ,Φ), then the following conclusions hold:

a) ξt is non-explosive; that is, if τ∞ = limn→∞ τn, then

Pξ0 [τ∞ =∞] = 1

for all ξ0 ∈ Rk. In particular, for every initial condition ξ0 ∈ Rk, ξt is well-defined
for all finite times t ≥ 0 almost surely.

b) ξt has an invariant probability measure π satisfying∫
Rk

Φ(ξ)π(dξ) <∞.

Proof. See the Appendix.

Motivated by the setup in the previous section, if w : Rk → [1,∞) is measurable, we
let Mw(Rk) denote the set of probability measures ν on Rk satisfying w ∈ L1(ν) and
define a metric dw onMw(Rk) by

dw(ν1, ν2) = sup
|ϕ|≤w

[ ∫
Rk

ϕ(ξ)ν1(dξ)−
∫
Rk

ϕ(ξ)ν2(dξ)

]
where the supremum is taken over ϕ : Rk → R measurable satisfying the global bound
|ϕ| ≤ w. We also have the following results which give uniqueness of the invariant
measure and characterize the convergence rate of the process ξt to this equilibrium.

Theorem 4.6. Suppose that ξt has a uniformly elliptic diffusion matrix and a Lyapunov
pair (Ψ,Φ), and let Pt denote the Markov semigroup corresponding to ξt. Then the
following conclusions also hold:

a) ξt possesses a unique invariant probability measure π. Moreover, π is ergodic,
satisfies ∫

Rk

Φ(ξ)π(dξ) <∞,

and has a smooth and everywhere positive density with respect to Lebesgue
measure on Rk.
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b) If Φ = Ψ and w(ξ) = 1 + βΨ(ξ) for some β > 0, then there exist constants C, η > 0

such that

dw(ν1Pt, ν2Pt) ≤ Ce−ηtdw(ν1, ν2)

for all times t ≥ 0 and all ν1, ν2 ∈Mw(Rk).

c) If Φ = Ψ1+δ for some δ > 0 and w(ξ) = 1 + βΨ(ξ) for some β > 0, then the
conclusion in part b) also holds. Moreover, νPt ∈ Mw(Rk) for t > 0 and any
probability measure ν on Rk and there exist positive constants C̃, η̃ such that

dw(ν1Pt, ν2Pt) ≤ C̃e−η̃t‖ν1 − ν2‖TV

for all t ≥ 1 and all probability measures ν1, ν2 on C.

Remark 4.7. The uniform ellipticity assumption is not needed for many of the results
to hold. However, it simplifies our discourse significantly. See [3, 6] for examples
considering degenerate noise in setting similar to this paper.

Proof of Theorem 4.6. The existence in part a) follows from the previous lemma. Unique-
ness of π and the existence of a smooth and everywhere positive density are well-known
consequences of uniform ellipticity of the diffusion matrix and the fact that ξt satisfies
an SDE with smooth coefficients. The property∫

Rk

Φ(ξ)π(dξ) <∞

follows by uniqueness of the invariant probability measure and by Lemma 4.5 b). Parts
b) and c) of the result are proven in the Appendix.

As we saw in the previous lemma, if ξt possesses a Lyapunov pair of the form (Ψ,Ψ1+δ)

for some δ > 0, then the standard geometric ergodicity bound given in part b) can be
improved in the sense that the right-hand side no longer depends on the initial state for
t ≥ 1. This is also reflected in the following theorem, as return times to large compact
sets are small and independent of where the process ξt starts.

Theorem 4.8. Suppose that ξt has a Lyapunov pair (Ψ,Ψ1+δ) for some δ > 0 and that the
diffusion matrix corresponding to ξt is uniformly elliptic. Define υγ = inf{t > 0 : |ξt| ≤ γ}
for γ > 0. Then for each γ > 0 sufficiently large

inf
ξ0∈Rk

Pξ0 [υγ <∞] = 1.

Moreover, for each t, ε > 0 there exists γ > 0 large enough so that

sup
ξ0∈Rk

Pξ0 [υγ ≥ t] ≤ ε.

Proof. See the Appendix.

5 Proving the main results: an outline

We now give two results which, when combined with the results of the previous
section, will yield all of main results of this paper and the sequel [11]. Theorem 5.1 below
will provide the needed Lyapunov pair, allowing us to apply the results of Section 4. And,
Theorem 5.3 below will give the required lower bound on the density of the invariant
probability measure whose existence will be now ensured by Theorem 5.1.
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First notice we may assume, without loss of generality, that an+1 = 1 in (3.1). Indeed,
the system can be rescaled and rotated so that it is one and, since any rotation of Bt is
also a complex Brownian motion, the resulting system will be of the form (3.1) but with
an+1 = 1. Hence for the remainder of the paper we will assume that (3.1) takes the form

dzt = [zn+1
t + F (zt, z̄t)] dt+ σ dBt (5.1)

where n ≥ 1, F , σ and Bt are as in equation (3.1). By a simple change of variables, all
results translate easily to the general system (3.1).

Theorem 5.1. For each γ ∈ (n, 2n) and δ = δγ > 0 sufficiently small, there exist a
function Ψ so that (Ψ,Ψ1+δ) and (Ψ, |z|γ) are Lyapunov pairs corresponding to the
dynamics (5.1). Moreover, Ψ satisfies the following bounds for |z| ≥ K

c|z|γ−n ≤ Ψ(z) ≤ d|z|γ−n+n
2 +1

for some positive constants c, d,K.

Remark 5.2. We will see that for a “very large" set X ⊂ C ∩ {|z| ≥ K}, the bound

C|z|γ−n ≤ Ψ(z) ≤ D|z|γ−n

holds for all z ∈ X for some C,D > 0. The only region Y in which Ψ grows faster than a
constant times |z|γ−n satisfies the property

lim
R→∞

λ(Y ∩ {|z| > R}) = 0

where λ denotes Lebesgue measure on C. As will be apparent later, any increase
in growth in Ψ is exactly compensated by the decrease in the measure of the set
Y ∩ {|z| > R} as R→∞. Although we did not state it this way in Theorem 5.1, we could
have also chosen the second function in the pair (Ψ, |z|γ) to have this property.

Translating back to the general system (3.1), notice by combining Lemma 4.5 and
Theorem 4.6, we see that Theorem 5.1 implies Theorem 3.2 as well as all results of
Theorem 3.1 except ∫

C

(1 + |z|)γ dµ(z) =∞ whenever γ ≥ 2n. (5.2)

To prove this last point, we will show the following stronger result.

Theorem 5.3. Let ρ(x, y) denote the invariant probability density function of (5.1) with
respect to Lebesgue measure on R2. Then there exist positive constants c,K such that

|(x, y)|2n+2ρ(x, y) ≥ c for |(x, y)| ≥ K. (5.3)

In this paper, our focus is to prove Theorem 5.1 under the following simplifying
assumption:

Assumption 5.4. In equation (5.1), either F is a constant function or

F (z, z̄) = O(|z|bn2 c−1) as |z| → ∞

for n ≥ 2. We do this in order to highlight the general procedure used to yield our
Lyapunov pairs and to avoid substantial complexities created by the presence of large
lower-order terms. The full proof of Theorem 5.1 and the proof of Theorem 5.3 are given
in Part II [11].
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6 Building Lyapunov functions: the key initial steps

In this section, we make some beginning observations which will help us get started
with constructing a Lyapunov function Ψ for the system (5.1). Everything done in this
section applies to equation (5.1) even if we do not employ Assumption 5.4.

6.1 The coordinate and time changes

When building Ψ, it is paramount that one first pick a convenient coordinate system
in which to work. For equation (5.1), there are at least three choices: standard Euclidean
coordinates (x, y), the two-dimensional complex system (z, z̄), and polar coordinates
(r, θ). Notice, however, since stability of the process (5.1) (or any Rk-valued process for
that matter) is completely determined by the distribution of the radial component r, the
polar system (r, θ) is arguably most natural.

Remark 6.1. Even though Ψ will be constructed using polar coordinates, all desired
bounds obtained using Ψ in (r, θ) will translate easily back to bounds in either (z, z̄)

or (x, y) coordinates, as we will set Ψ(r, θ) ≡ 0 on {r ≤ 1}. In particular, since the the
process (xt, yt), xt = Re(zt) and yt = Im(zt) where zt solves (5.1), is an Itô diffusion with
C∞ coefficients and has a uniformly elliptic diffusion matrix, we can indeed apply all
results in Section 4.

In light of the above, observe that the generator of the Markov process defined by
(5.1) has the following form when written in the variables (r, θ):

L = rn+1 cos(nθ)∂r + rn sin(nθ)∂θ +
σ2

2
∂2
r +

σ2

2r2
∂2
θ + rnP (r, θ)∂r + rnQ(r, θ)∂θ (6.1)

where P (r, θ) =
∑n+2
k=0 r

k−n−2fk(θ) and Q(r, θ) =
∑n+1
k=0 r

k−n−2gk(θ) for some collection
of smooth real-valued functions fk and gk which are 2π-periodic. In order to encapsulate
all terms in the generator, we certainly do not need the k = 0 terms in P and Q. However
when proving Theorem 5.3, we will need certain stability properties of a diffusion process
related to the formal adjoint L∗. Because there is one additional term in the generator
of this diffusion, we will construct the appropriate Lyapunov pairs assuming the slightly
more general form of P and Q above.

As suggested by the appearances of rn in (6.1), it is helpful to pull out a number
of factors of r so that the resulting underlying dynamics is stabilized at infinity. More
precisely, write L = rnL where

L = r cos(nθ)∂r + sin(nθ)∂θ +
σ2

2rn
∂2
r +

σ2

2rn+2
∂2
θ + P (r, θ)∂r +Q(r, θ)∂θ. (6.2)

We will see that using the operator L instead of L itself to define Ψ results in a number
of simplifications, the most notable of which is that the asymptotic flow along L is much
more straightforward than that of L. Notice that this is expected since the stochastic
dynamics (rt, θt) defined by L moves according to a slower clock at infinity than the
process (Rt,Θt) determined by L. Indeed, observe that (rTt , θTt) = (Rt,Θt) where Tt is
the time change

Tt =

∫ t

0

Rns ds.

Considering, too, the nature of Lyapunov functions, all results obtained in terms of L
will translate easily back to the original operator L since L = rnL and rn > 0.

6.2 The general structure of Ψ

We now take a look at some of the characteristics that our Ψ will exhibit. As dictated
by the dynamics and suggested by previous works [3, 6], it is easiest construct Lyapunov
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functions piecewise. More precise reasons for why this is the case are given in the
following section and in the sequel [11], but here we focus on, at least abstractly, how Ψ

will look in our context.
We begin by partitioning R2 into the open ball of radius r∗ > 0 about zero, denoted by

Br∗(0), and a collection of closed regions {Si : i = 0, . . . , l}, the union of which captures
all routes to infinity.

Definition 6.2. We say that a collection of subsets S = {Si : i = 0, . . . , l} is a Good
Radial Partition of U ⊂ R2 if the following conditions hold:

a) Each Si is closed and there exists an r∗ > 0 so that

l⋃
j=0

Sj = U ∩ {(r, θ) : r ≥ r∗}

b) For any i 6= j, interior(Si) ∩ interior(Sj) = ∅.

c) For all distinct i,j, and k, Si ∩ Sj ∩ Sk = ∅.

d) For any i 6= j, Si ∩ Sj is either empty or a collection of disjoint curves, each of
which can be written as {(r, f(r)) : r ≥ r∗} for some smooth function f .

Definition 6.3. Let Λ : R→ [0, 1] be a C∞ function with Λ(r) = 0 for r ≤ r∗ and Λ(r) = 1

for r ≥ 2r∗. If S = {Si : i = 0, . . . , l} is a good radial partition of U and fi : Si → R are C2,
we define the natural extension of the fi’s to U by

F (r, θ) =


0 if (r, θ) ∈ Br∗(0) ∩ U
Λ(r)fi(r, θ) if (r, θ) ∈ interior(Si)
Λ(r)

2 (fi(r, θ) + fj(r, θ)) if (r, θ) ∈ Si ∩ Sj .

In Section 7, we will succeed in constructing a good radial partition S = {Si : i =

0, . . . , l} of R2 and two collections of functions {ψi : Si → (0,∞) : i = 0, . . . , l} and
{ϕi : Si → (0,∞) : i = 0, . . . , l} such that all functions are continuous and the ψi are C2

on their domains, which we recall were assumed to be closed. Additionally, the pairs
(ψi, ϕi) will be such that ψi(r, θ) ∧ ϕi(r, θ)→∞ as r →∞, (r, θ) ∈ Si, and will satisfy the
following bound on Si with respect to L = r−nL

(Lψi)(r, θ) ≤ −miϕi(r, θ) + bi (6.3)

for some constants mi, bi > 0. The fact that each ψi is C2 on the closed set Si implies
that Lψi is continuous on Si up to and including its boundary. Undoing the time change
and using the fact that the number of inequalities is finite, it follows easily that on Si

(Lψi)(r, θ) ≤ −m[rnϕi(r, θ)] + b (6.4)

for some global choice of constants m, b > 0.
Let Ψ and Φ be the natural extensions to R2 of the ψi’s and ϕi’s respectively. By

equation (6.4) and Remark 4.2, it is clear that Ψ and Φ are locally a Lyapunov pair on
the interior of Si for each i = 0, 1, . . . , l. Unfortunately, we will see that this approach
does not naturally produce a Ψ which is C2. Rather, Ψ will only be globally continuous
as it is possible that the first and second derivatives may not match along the boundaries
between the regions Si and Sj . This prevents us from applying Itô’s formula in a
straightforward way to show that Ψ is a Lyapunov function in the sense of this paper.

A typical way around this difficulty is to smooth the function Ψ along these interfaces
rendering it C2. However when doing this, special care must be taken to preserve the
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Lyapunov property expressed in (6.4). This often leads to long and less than intuitive
calculations. This was the approach taken in [3, 6]. Here we take a different path.

To deal with the issue at hand, we employ a generalization of Itô’s Formula due to
Peskir [18]. This result allows us to apply the Itô differential to functions which are not
C2 along a collection of nonintersecting curves expressing θ as a function of r. We now
state a corollary of Peskir’s formula in the context of our problem. A more general and
detailed treatment is given in Section 8 of Part II [11] along with a repackaged proof of a
slightly weaker result suiting the needs of this paper. The proof of the following corollary
is a direct consequence of Theorem 8.1 of that section provided one establishes the key
jump conditions (6.5) along the curves of non-differentiability.

Corollary 6.4. Let S = {Si : i = 0, . . . , l} be a good radial partition of R2 and suppose
that {ψi : Si → (0,∞) : i = 0, . . . , l} is a collection of C2 functions and {ϕi : Si → (0,∞) :

i = 0, . . . , l} is a collection of continuous functions such that for each i ∈ {0, . . . , l} the
estimate in (6.3) holds. Furthermore, assume that the natural extension Ψ of the ψi’s is
everywhere continuous and satisfies the flux condition

lim
(R,Θ)→(r,θ)

Θ>θ

∂ΘΨ(R,Θ)− lim
(R,Θ)→(r,θ)

Θ<θ

∂ΘΨ(R,Θ) ≤ 0 (6.5)

for all (r, θ) ∈ R2 with r ≥ r∗. If Φ denotes the natural extension of the ϕi’s then (Ψ,Φ)

is a Lyapunov pair on R2.

Remark 6.5. The condition (6.5) speaks to the convexity along the curves where Ψ is
not differentiable. Hence it is related to the classical generalization of Itô’s formula to
functions which are the difference of two convex functions.

6.3 Reduction of the construction to the principal wedge

First observe that any system which can be described by (6.1) remains a system
which can be described by (6.1) (with perhaps different fk’s and gk’s) after being rotated
by θ 7→ θ + 2kπ

n for any integer k . In particular, we now note how we can use this fact to
reduce the construction of our Lyapunov pair from R2 \Br∗(0) to the principal wedge

R = {r ≥ r∗, −πn ≤ θ ≤ π
n}. (6.6)

Defining the remaining wedges by

Rk = {(r, θ) : (r, θ − 2kπ
n ) ∈ R},

we will now see that our construction onR will allow us to also build a Lyapunov Function
on all of the of the other Rk’s. This is the content of the following proposition, which is a
straightforward consequence of the above observation.

Proposition 6.6. Fix n ≥ 1 in (5.1). Assume that there exists positive constants γ,
δ and p so that for any system of the form (5.1), there exists a good radial partition
{Si : i = 0, . . . , l} of R and a collection of C2-functions {ψi : Si → (0,∞) : i = 0, . . . , l}
satisfying the bound

Lψi(r, θ) ≤ −m
[
rγ ∨ ψ1+δ

i (r, θ)] + b

on Si for i = 0, . . . , l and some positive constants m and b. Furthermore, assume that the
natural extension Ψ of the ψi’s satisfies the flux condition (6.5) for all (r, θ) ∈ R and is
such that Ψ(r, θ) = rp for all (r, θ) ∈ R with |θ − π

n | ∧ |θ + π
n | ≤ ε for some ε > 0. Then

(Ψ,Ψ1+δ) and (Ψ, |z|γ) are Lyapunov pairs corresponding to the dynamics (5.1).
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Remark 6.7. Since Ψ(r, θ) = rp in a neighborhood of θ = ±πn and the fk’s and gk’s in
equation (6.1) are 2π-periodic, we may rotate Ψ, initially defined only on the principle
wedge R, by integer multiples of 2π

n to produce the desired globally-defined Lyapunov
pairs. Moreover, after such rotations the flux condition (6.5) will be satisfied globally.

Remark 6.8. To prove Theorem 5.1, we construct Ψ on R satisfying the properties
above, the hypotheses of Proposition 6.6 with γ ∈ (n, 2n) arbitrary, and the following
bound on R

cΛ(r)rγ−n ≤ Ψ(r, θ) ≤ dΛ(r)rγ−n+n
2 +1 (6.7)

for some positive constants c, d, r∗. Recall that Λ : R→ [0, 1] is the smooth cutoff function
introduced in Definition 6.3.

7 The construction of Ψ on the principal wedge in a simple case

In this section, we will build Ψ on R under Assumption 5.4. We will see that this
assumption assures that the lower-order terms collected in F in the drift part of (5.1)
play no role in the arguments.

The layout of this section is as follows. First in Section 7.1, we study the asmyptotic
behavior of L as r → ∞. This will help yield the fundamental building blocks of the
construction procedure: the so-called asymptotic operators and their associated regions.
In Section 7.2, we explain the intuition behind how the local functions ψi will be defined
in Section 7.3 as solutions to certain PDEs involving these operators. In Section 7.3,
we will also see that each ψi is smooth and non-negative on Si and that ψi(r, θ)→∞ as
r →∞ with (r, θ) ∈ Si.

In Section 8, we will finish proving Theorem 5.1 under Assumption 5.4 by checking
the details outlined in Remark 6.8.

7.1 The asymptotic operators and their associated regions

It is intuitively clear that certain terms in the operator L are asymptotically dominant
over other terms as r → ∞ and such dominance can change from region to region in
the plane. Here our goal is to elucidate these ideas by studying more carefully L along
various paths to infinity. Doing such analysis is indispensable, as the dominant balances
of terms in L yielded from it will be used to construct the local Lyapunov functions ψi in
subsequent sections.

In order to parameterize various routes to infinity, we will make use of the scaling
transformations

Sλα : (r, θ) 7→ (λr, λ−αθ).

for any λ ≥ 1 and α ≥ 0. In particular, we will determine, heuristically, the behavior as
λ→∞ of

L ◦ Sλα(r, θ) = r cos(nθλ−α)∂r + λα sin(nθλ−α)∂θ + λ−2−n σ
2

2rn
∂2
r

+ λ2α−n−2 σ2

2rn+2
∂2
θ + λ−1P (λr, λ−αθ)∂r + λαQ(λr, λ−αθ)∂θ.

Because we have restricted the construction to the principal wedge R, we only consider
routes to infinity contained in R. The two cases α = 0 and α > 0 are qualitatively
different, so they are handled separately.

Suppose first that α = 0. Provided θ 6= 0, we see that the fist two terms in L ◦ Sλ0 (r, θ)

are unchanged and all other terms go to zero as λ→∞. More precisely,

L ◦ Sλ0 (r, θ) = r cos(nθ)∂r + sin(nθ)∂θ +O(λ−1) as λ→∞.
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We thus conclude that the leading order behavior of L as r → ∞ in R along the rays
traced out by λ 7→ Sλ0 (r, θ) (with θ 6= 0) is given by

T1 = r cos(nθ)∂r + sin(nθ)∂θ .

Of course one is not simply restricted to radial paths. So long as one does not asymptote
to the line θ = 0 then the same dominate balances hold. More precisely, L ≈ T1 as r →∞
when the paths to infinity are restricted to a region S1 of the form

S1 = {(r, θ) ∈ R : 0 < θ∗1 ≤ |θ| ≤ θ∗0 ≤ π
n} (7.1)

for any fixed positive constants θ∗0 > θ∗1 > 0.
The situation becomes more complicated if |θ| → 0 as r →∞. To see what happens,

we begin by considering L ◦ Sλα(r, θ) as λ→∞ for α > 0. In this setting as λ→∞,

L ◦ Sλα(r, θ) = r∂r + nθ∂θ + λd+α−(n+2)rd−(n+2)gd(0)∂θ + λ2α−(n+2) σ2

2rn+2
∂2
θ

+O(λ−1) + o(λd+α−(n+2))

where d ∈ {0, 1, . . . , n+ 1} is the largest index for which gd(0) 6= 0. Recall that the gk are
the coefficient functions of Q(r, θ) introduced in (6.1). If no such index exists, then

λd+α−(n+2)gd(0)∂θ + o(λd+α−(n+2))

is simply absent from the expression above and the following analysis still holds regard-
less.

First realize that if α > 0 is sufficiently small, the linearization of T1

T2 = r∂r + nθ∂θ

gives the leading order asymptotic behavior as r → ∞. Recalling the discussion of T1

above, we see that even when α = 0, we have that L is asymptotically well-approximated
by T2 provided |θ| is small since

L ◦ Sλ0 (r, θ) = r∂r + nθ∂θ +O(λ−1) +O(θ2) .

In particular, one has L ≈ T2 as r →∞ provided the paths to infinity are restricted to a
region of the form

S2 = {(r, θ) ∈ R : b(r) ≤ |θ| ≤ θ∗1}

were θ∗1 > 0 is small and the boundary curve b(r) has the property that b(r) → 0

sufficiently slowly as r → ∞. To define b explicitly and also discover what happens
to L when |θ| ≤ b(r), we must see for what powers of α other terms in the expansion
L ◦ Sλα(r, θ) become asymptotically relevant as λ→∞.

We now claim that Assumption 5.4 allows to disregard

λd+α−(n+2)rd−(n+2)gd(0)∂θ + o(λd+α−(n+2))

in L ◦ Sλα(r, θ) as λ → ∞ for all choices of α ≥ 0. Indeed if Assumption 5.4 is satisfied,
then it follows that d ≤ bn2 c. Hence, the value of α ≥ 0 where

λd+α−(n+2)rd−(n+2)gd(0)∂θ + λ2α−(n+2) σ2

2rn+2
∂2
θ +O(λ−1) + o(λd+α−(n+2)) (7.2)
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is O(1) as λ→∞ is precisely

α =
n+ 2

2
.

But note that for α ≥ n+2
2 , by Assumption 5.4 the term

λ2α−(n+2) σ2

2rn+2
∂2
θ

dominates all the remaining contributions in (7.2) in λ as λ→∞.

If Assumption 5.4 is not made, then the term

λd+α−(n+2)rd−(n+2)gd(0)∂θ (7.3)

initially dominates the remaining terms in (7.2) as λ → ∞. However, at a certain
threshold in α, (7.3) can cancel with nθ∂θ implying that we must expand L ◦ Sλα(r, θ)

further asymptotically in λ to uncover the next lower-order term. The total analysis in
the general case is quite involved and requires another novel idea. This, in addition to
our desire to focus first on the general elements of the construction, is why we save it
for Part II [11].

Operating under Assumption 5.4, observe that the above analysis suggests that the
operator

A = r∂r + nθ∂θ +
σ2

2rn+2
∂2
θ (7.4)

satisfies L ≈ A as r →∞ in the remaining portion of R, namely {(r, θ) ∈ R : |θ| ≤ b(r)}.
To determine the correct choice of b(r) note that

2α− (n+ 2) ≥ 0 ⇐⇒ α ≥ n+ 2

2
.

Specifically, the threshold α = n+2
2 is precisely where

r∂r + nθ∂θ + λ2α−(n+2) σ2

2rn+2
∂2
θ = O(1)

as λ→∞. Therefore, we now definitively set

S2 = {(r, θ) ∈ R : r ≥ r∗, η∗r−n+2
2 ≤ |θ| ≤ θ∗1}

S3 = {(r, θ) ∈ R : r ≥ r∗, |θ| ≤ η∗r−n+2
2 , |θ| ≤ θ∗1}

where η∗ > 0 is a constant which will be chosen later. Intuitively though, η∗ should be
thought of as large so that in S2 the term σ2

2rn+2 ∂
2
θ is small in comparison to the rest of A.

Hence we still expect the approximation L ≈ T2 as r →∞ to hold when paths to infinity
are restricted to S2 even though σ2

2rn+2 ∂
2
θ does not vanish on the lower boundary curve.

Remark 7.1. Notice that for any choice of η∗, θ∗1 > 0, we may always pick r∗ > 0 large
enough so that the bound |θ| ≤ θ∗1 can be removed from the definition of S3. In particular
after making this choice, S1,S2,S3 are a elements of a good radial partition of R as
discussed in Section 6.2 and Section 6.3.

In summary, under Assumption 5.4 we have found the asymptotic operators T1, T2 and
A which “approximate" L well for r > 0 large in the regions S1, S2, and S3 respectively.
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θ

r

0−π
n

π
n

−π
2n

π
2n

θ∗0−θ∗0 θ∗1−θ∗1

S3 S2 S1 S0S3S2S1S0
r∗

Figure 5: The regions S0,S1,S2,S3. In the diagram, θ∗1 > 0 is chosen much larger than
in reality to make visualization easier. The regions S1, S2, and S3 are discussed in
Section 7.1–7.3 while S0 is only introduced in Section 7.3.

7.2 Overview of local Lyapunov function construction

As mentioned in Section 6.2, most notably in Corollary 6.4, we will construct our
Lyapunov function in piecewise fashion. The regions used in the construction are
precisely the {Si : i = 1, 2, 3} from Section 7.1. In particular, we will construct a C2

function ψi : Si → [0,∞) such that

(Lψi)(r, θ) ≈ −c ϕi(r, θ) (7.5)

for r large, (r, θ) ∈ Si, and such that ψi(r, θ)→∞ as r →∞ in Si. In the expression above,
c > 0 is a constant and ϕi is a non-negative continuous function satisfying ϕi(r, θ)→∞
as r → ∞, (r, θ) ∈ Si. We will then use the natural extensions of the ψi’s and ϕi’s, as
defined in Section 6.2, to yield a Lyapunov pair.

To do this, we will heavily employ the asymptotic analysis carried out in Section
7.1. That is, we will aim to construct ψ1, ψ2, ψ3 satisfying (7.5) but with L replaced
by the respective asymptotic operators T1, T2, A. The advantage of this methodology
is that the operators T1, T2, A are much simpler than L yet they approximate L well
for r � 0 in the appropriate region in space. However, we must be careful to induce
certain homogeneities in the ψi so that the heuristic analysis in Section 7.1 can be made
rigorous, at least when L is applied to ψ1, ψ2, ψ3. Let us now further illustrate these
points.

For (r, θ) ∈ S1 with r � 0, we have that L ≈ T1. This suggests defining ψ1 as the
solution of the equation

(T1ψ1)(r, θ) = −c ϕ1(r, θ) (7.6)

on S1 with the appropriate boundary conditions. However, for (7.6) to imply that (7.5)
holds for large r in S1, we need to know that the terms in (L − T1)ψ1 are negligible
asymptotically as r →∞, (r, θ) ∈ S1, when compared to those in T1ψ1 . By the analysis of
Section 7.1, we expect the terms (L− T1)ψ1 to be negligible if ψ1 scales homogeneously
of degree p > 0 under Sλ0 , for then ψ1(r, θ) = rpC(θ) for some function C(θ), so the action
of L on ψ1 will mimic the action of Sλ0 on L.
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To see why we are able to construct ψ1 so as to have this homogeneously scaling
property, first observe that T1 scales homogeneously under Sλ0 . Therefore if one chooses
ϕ1 in (7.6) to scale homogeneously under Sλ0 , then as the solution to (7.6), ψ1 will, with
the appropriate boundary data, also scale homogeneously under Sλ0 with the same scaling
exponent as ϕ1. If we chose the scaling exponent to be positive and ϕ1 to be continuous,
then it will be relatively easy to see that both ψ1(r, θ), ϕ1(r, θ)→∞ as r →∞, (r, θ) ∈ S1,
and

(Lψ1)(r, θ) ≤ −mϕ1(r, θ) + b,

for some m, b > 0.
Jumping ahead to region S3, since L ≈ A for large r, it makes sense to choose ψ3 as

the solution of the equation

(Aψ3)(r, θ) = −c ϕ3(r, θ) (7.7)

on S3 where c > 0 and ϕ3(r, θ)→∞ as r →∞, (r, θ) ∈ S3. Since λ 7→ Sλn+2
2

(r∗, θ) covers

S3 as θ varies in S3 and A is invariant under Sλn+2
2

, the same reasoning used above

suggests that we should choose ϕ3 to be homogeneous of positive degree under Sλn+2
2

.

Again, it will then follow that, with the appropriate boundary data, ψ3 and all of its
derivatives are asymptotically homogeneous under Sλn+2

2

and that (L−A)ψ3 is negligible

relative to Aψ3. Thus by the results of Section 7.1, we anticipate the following bound

(Lψ3)(r, θ) ≤ −mϕ3(r, θ) + b,

on S3 for some positive constants m, b.
The set S2 serves as a transition region between the two other sets S1 and S3. Hence

ψ2 must connect ψ1, which scales homogeneously under Sλ0 in S1, to ψ3, which scales
homogeneously under Sλn+2

2

in S3. Thus we should setup the equation so that ψ2 and its

derivatives asymptotically scale homogeneously under both mappings, otherwise the ψi
together could not be extended to a continuous function as required in Corollary 6.4.
Requiring this duel scaling property is further suggested by the fact that both paths of
the form λ 7→ Sλ0 (r∗, θ) and λ 7→ Sλn+2

2

(r∗, θ) are required to cover S2.

Since L ≈ T2 for r > 0 large in S2, we take ψ2 as the solution of

(T2ψ2)(r, θ) = −c ϕ2(r, θ) (7.8)

on S2. Since T2 is homogeneous of degree zero under Sλα for any α ≥ 0, choosing ϕ2 to
scale homogeneously under Sλα for all α ≥ 0 with positive degree will, with the right
choice of boundary data, lead us to a ψ2 which will asymptotically scale homogeneously
under Sλα for all α ≥ 0 with the same positive degree.

7.3 Defining the local Lyapunov functions

So far we have subdivided the principal wedge R into the following three regions:

S1 = {r ≥ r∗, 0 < θ∗1 ≤ |θ| ≤ θ∗0 ≤ π
n}

S2 = {r ≥ r∗, |θ| ≤ θ∗1 , r
n+2
2 |θ| ≥ η∗}

S3 = {r ≥ r∗, |θ| ≤ θ∗1 , r
n+2
2 |θ| ≤ η∗}

where r∗, η∗ > 0 (see Figure 5). To initialize the construction procedure, we will in fact
need an additional region S0 given by

S0 = {r ≥ r∗, θ∗0 ≤ |θ| ≤ π
n}
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where we fix θ∗0 ∈ ( π2n ,
π
n ). Because the vector field induced by T1 points radially inward

in S0, defining

ψ0(r, θ) = rp, p > 0, (7.9)

and noting that ψ0 clearly scales homogeneous under Sλ0 , it will follow easily that

Lψ0(r, θ) ≤ −mrp + b,

on S0 for some positive constants m, b. The function ψ0 will now serve as the boundary
condition for the equation satisfied by ψ1 which is defined on the neighboring region S1.

Remark 7.2. Each of the regions comes with a number of parameters such as θ∗1 > 0,
η∗ > 0 and r∗ > 0. Instead of giving these constants specific values at the start, it is much
easier to leave them as parameters because they will need to be adjusted throughout
the construction. To assure that each of these adjustments is consistent, we note that
throughout we will always pick θ∗1 > 0 sufficiently small, then η∗ = η∗(θ∗1) > 0 sufficiently
large, and then r∗ = r∗(θ∗1 , η

∗) > 0 sufficiently large.

The construction in S1

Choosing p ∈ (0, n), the function ψ1 is defined as the solution of the following equation{
(T1ψ1)(r, θ) = −h1r

p|θ|−q
ψ1(r,±θ∗0) = ψ0(r,±θ∗0)

(7.10)

on S1 where h1 > 0 and q ∈ (p/n, 1).

Remark 7.3. The restrictions on p, q stem from the dynamics in S3. In particular, we
will eventually see why they are needed.

Notice that the form of the righthand side of (7.10) scales homogeneously under Sλ0
as suggested by the considerations in Section 7.2. The dependence on θ is introduced
to facilitate matching with ψ2 along the boundary S1 ∩ S2. Also, it is important to point
out that since we have picked θ∗0 >

π
2n , the PDE given in (7.10) is not well-defined with

the given boundary data since some of the characteristics along T1 cross r = r∗ before
reaching the lines |θ| = θ∗0 . Because it is convenient to only give data on the lines |θ| = θ∗0 ,
we slightly modify the domain of definition of the PDE to be

S̃1 =
{

(r, θ) ∈ R : 0 < θ∗1 ≤ |θ| ≤ θ∗0 , r| sin(nθ∗0)| 1n ≥ r∗
}
.

With this modification, all characteristics now exit the domain through the boundary
r ≥ r∗, |θ| = θ∗0 . Thus, solving (7.10), we see that for (r, θ) ∈ S̃1

ψ1(r, θ) =
rp

| sin(nθ)| pn

(
sin(nθ∗0)

p
n + h1

∫ θ∗0

|θ|

sin(nα)
p
n−1

αq
dα

)
. (7.11)

In particular, we note that ψ1 can be extended smoothly to all of S1 and is a homogeneous
function of degree p under Sλ0 . Moreover, ψ1(r, θ) ≥ 0 on S1 and ψ1(r, θ)→∞ as r →∞
with (r, θ) ∈ S1.

The construction in S2

Let ψ2 be defined on S2 by {
(T2ψ2)(r, θ) = −h2r

p|θ|−q
ψ2(r,±θ∗1) = ψ1(r,±θ∗1)

(7.12)
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where h2 > 0. This time, the PDE above is clearly well-defined. In light of Section 7.2,
observe that the righthand side of (7.12) scales homogeneously under Sλα for all α ≥ 0.

Using the method of characteristics we see that

ψ2(r, θ) =

(
(θ∗1)

p
nψ1(1, θ∗1)− h2

(θ∗1)
p
n−q

qn− p

)
rp

|θ| pn
+

h2

qn− p
rp

|θ|q (7.13)

In particular, we notice that ψ2 is homogeneous under Sλ0 of degree p and is the sum of
two terms, each of which is homogeneous under Sλα for every α ≥ 0 (though each term
has a different degree). Moreover, on S2

ψ2(r, θ) ≥ crp|θ|− pn

for some c > 0. Hence ψ2(r, θ) ≥ 0 on S2 and ψ2(r, θ)→∞ as r →∞ with (r, θ) ∈ S2.

The construction in S3

To define the final local Lyapunov function, we would like to assert that it is the solution
ψ3 on S3 of the problem {(

Aψ3

)
(r, θ) = −h3r

p3

ψ3(r, θ) = ψ2(r, θ), r
n+2
2 |θ| = η∗

(7.14)

where h3 > 0 and p3 = p+ q n+2
2 . The conditions in the results of Chapter 9 of [16] are

not met, however, so we cannot immediately apply them to see that solutions of the
PDE exist and are unique. Nevertheless, because the problem above can be essentially
converted to a one dimensional problem, we will see that defining ψ3 in this way is
indeed permissible.

To see why, let η = r
n+2
2 θ. Then in the variables (r, η), the PDE above transforms as

follows: {(
Âψ̂3

)
(r, η) = −h3r

p3

ψ̂3(r, η) = ψ̂2(r, η), |η| = η∗
(7.15)

where f̂(r, η) = f(r, θ(r, η)) = f(r, ηr−
n+2
2 ) and Â = r∂r +

(
3
2n+ 1

)
η∂η + σ2

2 ∂
2
η . Now let ηt

be the solution of the Gaussian SDE

dηt =
(

3
2n+ 1

)
ηt dt+ σ dWt (7.16)

and define τ = inf{t > 0 : |ηt| = η∗}. Since rt is strictly increasing for all t < τ and
r0 ≥ r∗, then formally solving the PDE (7.15) produces

ψ3(r, θ(r, η)) = c1r
p3Eηe

p3τ + c2r
p2Eηe

p2τ − c3rp3 (7.17)

where p2 = p+ p
n
n+2

2 and

c1 =
h3

p3
+

1

(η∗)q
h2

qn− p , c2 =
1

(η∗)p/n

[
(θ∗1)p/nψ1(1, θ∗1)− h2

(θ∗1)p/n−q

qn− p

]
, c3 =

h3

p3
.

In a moment, we will show that the expression (7.17) itself makes sense, in that η 7→
Eηe

piτ ∈ C2([−η∗, η∗]) for i = 2, 3, and that the righthand side of (7.17) is the unique
solution of (7.15) which is bounded for fixed r in η on [−η∗, η∗]. Hence, converting back
to the variables (r, θ),

ψ3(r, θ) = c1r
p3Eη(r,θ)e

p3τ + c2r
p2Eη(r,θ)e

p2τ − c3rp3 (7.18)

is the unique solution of the original PDE (7.14) with this boundedness property in η.
To establish the necessary claims, we prove the following result in the Appendix:
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Lemma 7.4. Fix a constant c ∈ R, let η∗ > |c| and define the stopping time

τc = inf
t>0
{t > 0 : ηt /∈ [−η∗ + c, η∗ + c]}.

If Ga,c(η) := Eηe
aτc and 0 < a < 3

2n + 1, then for all η∗ large enough we have the
following:

a) Ga,c ∈ C∞([−η∗ + c, η∗ + c]). Moreover,

G′a,c(±η∗ + c) = ∓ 2a

3n+ 2
(η∗)−1 + o((η∗)−1) as η∗ →∞. (7.19)

b) Ga,c is the unique solution of (9.9).

Remark 7.5. In this article we only need the case c = 0. However in the sequel [11], we
will need the full strength of Lemma 7.4; that is, all results above when c 6= 0.

Remark 7.6. Applying conclusion b) of the result, we see that the righthand side of
(7.17) solves (7.15).

Remark 7.7. Given that p ∈ (0, n) and q ∈ (p/n, 1), we see that

p2 < p3 <
3

2
n+ 1.

Hence by the lemma above, ψ3(r, θ) ∈ C∞(S3) for all η∗ > 0 large enough. Note that this
choice of η∗ is consistent with Remark 7.2.

Proof of Lemma 7.4. See the Appendix.

Considering the framework of the construction procedure outlined in Section 7.2,
upon taking another look at the expression (7.18) we see that ψ3 is the sum of three
terms, each of which is homogeneous under the scaling transformation Sλn+2

2

. Also, it is

not hard to see that on S3

ψ3(r, θ) ≥ crp2Eη(r,θ)e
p2τ

for some c > 0. Hence, ψ3(r, θ) ≥ 0 on S3 and ψ3(r, θ)→∞ as r →∞ with (r, θ) ∈ S3.

7.4 The relationship between the scaling of S1 and S3 and the origin of the
restriction on p

Now that the basic construction is finished, let us take a moment to elucidate the re-
lationship between the scaling exponents p and p2. We will show that the shape of region
S2 dictates the relationship between the two. This is fundamental to understanding the
problem since we saw that the equation for ψ3 places a restriction of the exponent p2

which in turn cascades through the remaining dependencies to place a restriction on p.
The function ψ2 consists of two terms: one comes from the boundary data propagated

along the flow and the other from integrating the right-hand side along the characteris-
tics. Denoting the part of solution ψ2 which comes from the boundary data by ψ̃2, setting
h2 = 0 in (7.13) gives that ψ̃2(r, θ) = crp|θ|− pn for some positive constant c. Hence, ψ̃2

is homogeneous of degree p(1 + α/n) under the scaling transformation Sλα. Since the
lower boundary of S2 is homogeneous under Sλα with α = n+2

2 , we see that ψ̃2 must be
homogeneous under Sλn+2

2

of of degree

p2 = p
(3n+ 2

2n

)
.
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Since we saw that p2 was required to be less than 3n+2
2 , we conclude p has to be less

than ( 2n

3n+ 2

)(3n+ 2

2

)
= n

which was the restriction placed on p when it was introduced when ψ1 was defined.
In summary, the solution of the exit problem associated to S3 is only well defined if
p2 <

3n+2
2 by Lemma 7.4.

8 Proof of Theorem 5.1

We now prove that under Assumption 5.4, the functions {ψi : i = 0, 1, 2, 3} together
with their corresponding domains of definition {Si : i = 0, . . . , 3} satisfy the hypotheses
of Proposition 6.6 with the appropriate choice of the parameters θ∗1 , η

∗, r∗, h1, h2, h3.
Having done so, we will have proven Theorem 5.1, as the bound (6.7) will follow almost
immediately.

The layout of this section is as follows. First, we will deduce the large r asymptotics
of the functions ψ1, ψ2, and ψ3, allowing us to validate the bound (6.7). Second, we will
show that for all r∗, η∗ sufficiently large and all θ∗1 sufficiently small (chosen, of course,
in the consistent way mentioned in Remark 7.2), the boundary-flux conditions given in
(6.5) are satisfied for some choice of the positive parameters h1, h2, h3. Lastly, we will
verify the local Lyapunov property from (6.4). The second and third items in the agenda
will check the hypotheses of Proposition 6.6.

Beginning with the large r asymptotics, the following proposition derives them quickly
from the construction of the ψi’s and the accompanying discussions.

Proposition 8.1. There exist positive constants li, ui such that

l1r
p ≤ψ1(r, θ) ≤ u1r

p (r, θ) ∈ S1

l2
rp

|θ| pn
≤ψ2(r, θ) ≤ u2

rp

|θ|q (r, θ) ∈ S2

l3r
p2 ≤ψ3(r, θ) ≤ u3r

p3 (r, θ) ∈ S3

(8.1)

where we recall that the constants p, p2, p3 satisfy p2 = p + p
n
n+2

2 and p3 = p + q n+2
2

where p ∈ (0, n) and q ∈ (p/n, 1).

Proof of Proposition 8.1. We begin with ψ1. Since ψ1 scales homogeneously under Sλ0
with degree p, for any (r, θ) ∈ S1 we have that

ψ1(r, θ) =
( r
r∗

)p
ψ1(r∗, θ)

and hence

m

(r∗)p
rp ≤ ψ1(r, θ) ≤ M

(r∗)p
rp

where M = sup{ψ1(r∗, θ) : θ ∈ [θ∗0 , θ
∗
1 ]} and m = inf{ψ1(r∗, θ) : θ ∈ [θ∗0 , θ

∗
1 ]}. Since

ψ1(r∗, θ) is continuous M ≥ m > 0. The bounds on ψ3 are handled in a completely
analogous way only using the scaling generated by Sλn+2

2

rather than Sλ0 . From (7.18), we

see that the terms which make up ψ3 do not all scale with the same degree. Hence we
obtain a upper bound of rp3 and a lower bound of rp2 . Since the region S2 requires both
scalings to reach all points, we would need a slightly more complicated construction
which mixed the two scaling to obtain the bounds on ψ2 using just the abstract scaling.
While this is not difficult, in light of the explicit representation of ψ2 given in (7.13), we
see that the quoted bounds follow by inspection.
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With these estimates in hand, we turn to the more techincal of the two remaining
topics.

8.1 Boundary-flux conditions

Boundary between S0 and S1

Because ψ1(r, θ) = rpψ1(1, θ) and

−h1r
p|θ|−q =

∂ψ1

∂r
r cos(nθ) +

∂ψ1

∂θ
sin(nθ)

one has

∂ψ1

∂θ
= −rp

(p cos(nθ)ψ1(1, θ) + h1|θ|−q
sin(nθ)

)
. (8.2)

Therefore combining ∂ψ0

∂θ = 0 with (8.2) produces

[∂ψ0

∂θ
− ∂ψ1

∂θ

]
θ=θ∗0

= rp
(p cos(nθ∗0)ψ1(1, θ∗0) + h1(θ∗0)−q

sin(nθ∗0)

)
.

Since ψj(r, θ) = ψj(r,−θ) on Sj for j = 0, 1, we note also that[∂ψ1

∂θ
− ∂ψ0

∂θ

]
θ=−θ∗0

=
[∂ψ0

∂θ
− ∂ψ1

∂θ

]
θ=θ∗0

. (8.3)

Since ψ1(1, θ∗0) = 1, sin(nθ∗0) > 0 and cos(nθ∗0) < 0, picking

0 < h1 < p(θ∗0)q| cos(nθ∗0)| (8.4)

implies that the quantity (8.3) is negative.

Boundary between S1 and S2

Similar to the previous computations, observe that ψ2(r, θ) = rpψ2(1, θ) implies

∂ψ2

∂θ
= −rp

[
pψ2(1, θ) + h2|θ|−q

nθ

]
.

Since ψ1(1, θ∗1) = ψ2(1, θ∗1), we then obtain[
∂ψ1

∂θ
− ∂ψ2

∂θ

]
θ=θ∗1

= −rp
[
p cos(nθ∗1)ψ1(1, θ∗1) + h1(θ∗1)−q

sin(nθ∗1)
− pψ1(1, θ∗1) + h2(θ∗1)−q

nθ∗1

]
= − rp

(θ∗1)q+1

[(
p cos(nθ∗1)

sin(nθ∗1)
− p

nθ∗1

)
ψ1(1, θ∗1)(θ∗1)q+1 +

(
h1

sin(nθ∗1)
− h2

nθ∗1

)
(θ∗1)

]
.

Using the expression (7.11), it is not hard to check that ψ1(1, θ∗1)(θ∗1)q is bounded as
θ∗1 ↓ 0. Employing the Taylor expansions for sin(nθ∗1) and cos(nθ∗1) about θ∗1 = 0, we thus
obtain [

∂ψ1

∂θ
− ∂ψ2

∂θ

]
θ=θ∗1

' − rp

|θ∗1 |q+1

(
h1

n
− h2

n

)
(8.5)
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as θ∗1 ↓ 0 where ' denotes asymptotic equivalence. Picking h2 < h1, for all θ∗1 > 0

sufficiently small the quantity on the left-hand side of (8.5) is negative for r ≥ r∗. Since
ψj(r,−θ) = ψj(r, θ) on Sj for j = 1, 2, notice that we also have the equality[

∂ψ2

∂θ
− ∂ψ1

∂θ

]
θ=−θ∗1

=

[
∂ψ1

∂θ
− ∂ψ2

∂θ

]
θ=θ∗1

Hence, the same choice of θ∗1 and h2 > 0 results in a negative sign for the flux across the
boundary θ = −θ∗1 as well.

Boundary between S2 and S3

Thus far it has been fairly straightforward to compute and analyze fluxes across bound-
aries where noise plays no role. In such cases, we saw that we could find convenient
expressions for ∂θψi, i = 0, 1, 2, simply by using the first-order PDEs these functions
satisfy. A similar approach, however, does not work when studying the flux across
the boundaries between S2 and S3 since the operator A contains second-order partial
derivatives in θ. Therefore, to study ∂θψ3 along these interfaces, we opt to employ the
somewhat explicit expression (7.18) derived in the previous section. Because there is
no closed form expression for the functions Gpi(η) := Eηe

piτ , i = 2, 3, the analysis is
slightly harder in this case. We did see (at least in the statement of Lemma 7.4), however,
that analysis of G′pi(η

∗) is possible for large η∗ > 0. One should have expected this
because, by the computations of Section 7.1, the noise term in A formally scales away
as r

n+2
2 |θ| → ∞. It turns out that this is all we need to see that the boundary flux terms

have the right sign.
We now apply the Lemma 7.4 to help control the flux terms across the boundaries

r
n+2
2 θ = ±η∗. By the symmetry Gpi(η) = Gpi(−η) for η ∈ [−η∗, η∗], we must only show

that for η∗ > 0 sufficiently large, h3 > 0 can be chosen so that the flux across the
boundary r

n+2
2 θ = η∗ > 0 is negative for r∗ > 0 sufficiently large. Observe that as r →∞[∂ψ2

∂θ
− ∂ψ3

∂θ

]
r
n+2
2 θ=η∗

= −
( qh2

qn− p
1

(η∗)q+1
+

1

(η∗)q
h2

qn− pG
′
p3(η∗) +

h3

p3
G′p3(η∗)

)
rp+

n+2
2 (q+1) + o(rp+

n+2
2 (q+1)).

Recalling the assumption that q > p/n, observe that (7.19) implies that for η∗ > 0 large
enough and h3 > 0 small enough the righthand sisde of the above expression above is
negative for all sufficiently large r∗.

8.2 The local Lyapunov property

We now verify the local Lyapunov property given in (6.4). To do so, we will not need
to change the values of the hi, i = 1, 2, set in the previous section. We will need to,
however, increase r∗, η∗ as well as decrease θ∗1 , but this will consistent with all previous
choices, including the choice of h3(η∗) made in the previous section, to assure that each
boundary-flux term had the appropriate sign.

Letting B denote the asymptotic operator corresponding to L in Si, this involves first
writing

Lψi(r, θ) = Bψi(r, θ) + (L−B)ψi(r, θ)

on Si. Since Bψi is of the desired form, all we must do is estimate the remainder term
(L−B)ψi to see that

|(L−B)ψi| � |Bψi|
as r →∞, (r, θ) ∈ Si. We proceed region by region starting with:

EJP 20 (2015), paper 111.
Page 30/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4047
http://ejp.ejpecp.org/


Noise-induced stabilization of planar flows I

Region S0

Since ψ0(r, θ) = rp, it is not hard to see that as r →∞, (r, θ) ∈ S0,

Lψ0(r, θ) = prp cos(nθ) + o(rp). (8.6)

Since cos(nθ) ≤ −c < 0 for (r, θ) ∈ S0 and some c > 0, the relation (8.6) implies that
there exist positive constants c0, d0 such that

Lψ0(r, θ) ≤ −c0rp + d0

for all (r, θ) ∈ S0. Undoing the time change, we find easily that on S0

Lψ0(r, θ) ≤ −C0r
p+n +D0 (8.7)

for some C0, D0 > 0.

Region S1

First observe that by definition of ψ1

Lψ1(r, θ) = T1ψ1(r, θ) + (L− T1)ψ1(r, θ)

= −h1r
p|θ|−q + (L− T1)ψ1(r, θ)

on S1. To bound the remainder term (L − T1)ψ1(r, θ), notice by (7.11) we may write
ψ1(r, θ) = rpg(θ) where g is a smooth and positive function in θ for all 0 < θ∗1 ≤ |θ| ≤ θ∗0 .
In particular, since 0 < θ∗1 ≤ |θ| ≤ θ∗0 for (r, θ) ∈ S1, we see that as r →∞ with (r, θ) ∈ S1

Lψ1(r, θ) = −h1
rp

|θ|q + o(rp). (8.8)

Using the asymptotic formula above as well as positivity and smoothness of g on the
domain for θ in S1, we obtain the inequality

Lψ1(r, θ) ≤ −c1
rp

|θ|q + d1

on S1 for some constants c1, d1 > 0. Undoing the time change, we also find that

Lψ1(r, θ) ≤ −C1
rp+n

|θ|q +D1 (8.9)

on S1 for some constants C1, D1 > 0.

Region S2

By definition of ψ2, first observe that on S2

Lψ2(r, θ) = T2ψ2(r, θ) + (L− T2)ψ2(r, θ) = −h2
rp

|θ|q + (T1 − T2)ψ2(r, θ) + (L− T1)ψ2(r, θ).

Using the Taylor expansions for sin(nθ) and cos(nθ) about θ = 0 notice that there exists a
constant C > 0 which is independent of θ∗1 > 0 such that

(T1 − T2)ψ2(r, θ) ≤ Cθ2

[(
(θ∗1)

p
nψ1(1, θ∗1) + h2

(θ∗1)
p
n−q

qn− p
) rp

|θ|p/n +
h2

qn− p
rp

|θ|q
]

≤ C(θ∗1)2

[(
(θ∗1)

p
nψ1(1, θ∗1) + h2

(θ∗1)
p
n−q

qn− p
) rp

|θ|p/n +
h2

qn− p
rp

|θ|q
]
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for all (r, θ) ∈ S2. In particular, since ψ1(1, θ∗1) = O((θ∗1)−1) as θ∗1 ↓ 0, it follows that for all
ε > 0, there exists θ∗1 > 0 small enough so that

(T1 − T2)ψ2(r, θ) ≤ ε r
p

|θ|q

for all (r, θ) ∈ S2. Therefore, in particular, we may choose θ∗1 > 0 small enough so that

Lψ2(r, θ) ≤ −h2

2

rp

|θ|q + (L− T1)ψ2(r, θ)

on S2. To control the remaining term (L− T1)ψ2(r, θ), recall that we are operating under
Assumption 5.4. Therefore, we find that there exists positive constants C,D independent
of η∗, r∗ such that on S2

(L− T1)ψ2(r, θ) ≤
( C
η∗

+
D

r∗

) rp
|θ|q .

Picking η∗, r∗ > 0 sufficiently large we see that there exist constants c2, d2 > 0 such that

Lψ2(r, θ) ≤ −c2
rp

|θ|q + d2

for all (r, θ) ∈ S2. Undoing the time change, we obtain the bound

Lψ2(r, θ) ≤ −C2
rp+n

|θ|q +D2 (8.10)

on S2 for some constants C2, D2 > 0.

Region S3

First decompose Lψ3 on S3 as follows

Lψ3(r, θ) = Aψ3(r, θ) + (T −A)ψ3(r, θ) + (L− T )ψ3(r, θ)

where

T = r cos(nθ)∂r + sin(nθ)∂θ +
σ2

2rn+2
∂2
θ .

Hence

Lψ3(r, θ) = −h3r
p3 + (T −A)ψ3(r, θ) + (L− T )ψ3(r, θ)

= −h3r
p3 + (T1 − T2)ψ3(r, θ) + (L− T )ψ3(r, θ).

Let us first see how to bound (T1 − T2)ψ3. Again, making use of the Taylor expansions
for sin(nθ) and cos(nθ), we see that there exists a constant C > 0 which is independent
of η∗ such that

(T1 − T2)ψ3(r, θ) ≤ Cθ2
(
|r∂rψ3(r, θ)|+ |∂θψ3(r, θ)|

)
.

To control derivatives of ψ3, recall the expression (7.18). Applying Lemma 7.4, we deduce
the existence of a constant C = C(η∗) > 0 such that

θ2(|r∂rψ3(r, θ)|+ |∂θψ3(r, θ)|) ≤ C(η∗)rp3−
(n+2)

2
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on S3. In particular, we have thus far obtained

Lψ3(r, θ) ≤ −h3(η∗)rp3 + C(η∗)rp3−
n+2
2 + (L− T )ψ3(r, θ) (8.11)

for all (r, θ) ∈ S3. To estimate the remaining term (L− T )ψ3, proceed in a similar fashion
using Assumption 5.4 to see that

(L− T )ψ3(r, θ) ≤ D(η∗)rp3−1 (8.12)

on S3. Putting (8.11) together with (8.12) and picking r∗ > 0 large enough, there exist
constants c3, d3 > 0 such that on S3

Lψ3(r, θ) ≤ −c3rp3 + d3. (8.13)

Undoing the time change, we also see that on S3

Lψ3(r, θ) ≤ −C3r
p3+n +D3. (8.14)

for some constants C3, D3 > 0.

Remark 8.2. Using the bounds obtained in Proposition 8.1 and the inequalities (8.7),
(8.9), (8.10), and (8.14) we can easily see that the bound for Lψi, i = 0, 1, 2, 3, on Si
required by Proposition 6.6 is satisfied. Because the boundary flux terms have the
appropriate sign by the arguments of Section 8.1, we have now finished proving Theorem
5.1 under Assumption 5.4.

9 Conclusion

We have given a general methodology for constructing Lyapunov functions and
applied it to study a family of equations in which the underlying deterministic dynamics
is stabilized under the addition of noise. The method incorporates global information of
the flow and hence is well suited in the setting where stability results from global rewiring
of trajectories due to the addition of a small amount of noise. The use of auxiliary PDEs to
define our Lyapunov functions was central to the construction as it allowed us to obtain
radially optimal results. There are a number of points which, though technical, allow
for a successful completion of the argument. We always use homogeneous operators
in our local constructions, as this allows us to create local Lyapunov functions through
the use of auxiliary PDEs which are the sum of homogeneously scaling terms. This
greatly simplifies the general analysis. The homogeneous operators are also drastically
simplified from the original generator. This makes many points of the analysis easier,
often allowing explicit representations of solutions. We also employ a extension of Itô
theorem which allows us to avoid smoothing the patched functions along interfaces.

Our construction of Lyapunov functions is closely related to the construction of
sub/super solutions to certain PDEs associated to the SDEs considered. In particular,
all of our results can be translated to the existence of a normalizable solutions with
polynomial decay at infinity to the PDE L∗ρ = 0 where L is the generator of the SDE
(5.1).

In Part II [11] of this paper, we will consider the same class of problems but in a more
general setting where Assumption 5.4 does not hold. In the conclusion of that paper we
will give a number directions of possible future work.

Appendix

In this section, we will prove the remaining technical results needed in this work; that
is, we will show Lemma 4.5, Theorem 4.6 parts b) and c), Theorem 4.8, and Lemma 7.4.
We start by proving Lemma 4.5.
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Proof of Lemma 4.5. To show non-explosivity of ξt, we follow the frame of the argument
proving Theorem 3.5 in [12]. Let τ∞ = limn↑∞ τn to be the explosion time of ξt. We need
to show that Pξ0 [τ∞ < ∞] = 0 for all ξ0 ∈ Rk. By Definition 4.1, there exist constants
m, b > 0 such that

Eξ0Ψ(ξt∧τn)−Ψ(ξ0) ≤ Eξ0

∫ t∧τn

0

(−mΦ(ξs) + b) ds (9.1)

for all t ≥ 0, n ∈ N. Since Φ ≥ 0, we obtain the bound

Eξ0Ψ(ξt∧τn) ≤ Ψ(ξ0) + bt (9.2)

for all t ≥ 0, n ∈ N. Because Ψ(ξ)→∞ as |ξ| → ∞, for n ∈ N large enough the inequality
above implies

Pξ0 [τn ≤ t] =
inf |x|≥n Ψ(x) ·Pξ0 [τn ≤ t]

inf |x|≥n Ψ(x)
≤ Eξ0 [Ψ(ξτn)1{τn≤t}]

inf |x|≥n Ψ(x)
≤ Ψ(ξ0) + bt

inf |x|≥n Ψ(x)

for all t ≥ 0. Using the fact that Ψ(ξ)→∞ as |ξ| → ∞, Fatou’s lemma gives

Pξ0 [τ∞ ≤ t] = 0 ∀t ≥ 0,

showing that ξt is non-explosive.
We now show the existence of an invariant probability measure π following the

argument for Proposition 5.1 in [8]. Since Ψ ≥ 0, the bound (9.1) implies

Eξ0

∫ t∧τn

0

Φ(ξs) ds ≤
Ψ(ξ0)

m
+

b

m
t

for all t ≥ 0, n ∈ N. Using nonnegativity of Φ, the Monotone convergence theorem and
the fact that τn ↑ ∞ almost surely, we obtain

Eξ0

∫ t

0

Φ(ξs) ds ≤
Ψ(ξ0)

m
+

b

m
t (9.3)

for all t ≥ 0. Letting AR = {ξ ∈ Rk : Φ(ξ) ≤ R}, we note that the bound above implies

1

t

∫ t

0

Pξ0 [ξs ∈ AcR] ds ≤ Ψ(ξ0) + bt

mRt
.

In particular, it follows that the sequence of measures

πξ0t ( · ) =
1

t

∫ t

0

Pξ0 [ξs ∈ · ] ds, t ≥ 1,

is relatively compact in the weak topology. The Krylov-Bogoliubov Theorem [14] (see
also the proof of sufficiency on pages 65-66 of [12]) now implies that there exists a
sequence of times tn ↑ ∞ such that πξ0tn converges weakly to a probability measure πξ0

on Rk. Moreover, by construction, πξ0 is an invariant probability measure corresponding
to the Markov process ξt.

We have left to show that πξ0 defined above satisfies∫
Rk

Φ(ξ)πξ0(dξ) <∞.

By (9.3), we note that the inequality

1

t
Eξ0

∫ t

0

[Φ(ξs) ∧R] ds ≤ Ψ(ξ0)

mt
+

b

m
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is valid for any R, t > 0. In particular, we obtain the inequality∫
Rk

[Φ(ξ) ∧R]πξ0(dξ) ≤ b

m

for any R > 0. Applying the Monotone Convergence Theorem, taking R → ∞ finishes
the proof of the result.

To prove Theorem 4.6 parts b) and c) and Theorem 4.8, we need the following lemma.

Lemma 9.1. Suppose that ξt has a Lyapunov pair (Ψ,Φ). Then for all ξ0 ∈ Rk and all
0 ≤ s ≤ t

Eξ0Ψ(ξt)−Eξ0Ψ(ξs) ≤ Eξ0

∫ t

s

g(ξu) du (9.4)

where Eξ0Ψ(ξt) is finite for all t ≥ 0 and Eξ0
∫ t
s
|g(ξu)| du is finite for all s, t ≥ 0. Moreover,

t 7→ Eξ0Ψ(ξt) is a right-continuous function on [0,∞) with no upward jumps.

Proof. We first claim that Eξ0
∫ t

0
|g(ξs)| ds <∞ for all t ≥ 0. Note that this will then easily

prove that Eξ0
∫ t
s
|g(ξu)| du is finite for all s, t ≥ 0. Observe that by definition and the fact

that g ≤ −mΦ + b ≤ b we have

Eξ0Ψ(ξt∧τn) ≤ Ψ(ξ0) + Eξ0

∫ t∧τn

0

g(ξs) ds

≤ Ψ(ξ0) + bt+ Eξ0

∫ t∧τn

0

g(ξs)1{g(ξs) ≤ 0} ds

for all t ≥ 0, n ∈ N. Rearranging the above and using non-negativity of Ψ produces the
inequality

Eξ0

∫ t∧τn

0

−g(ξs)1{g(ξs) ≤ 0} ds ≤ Ψ(ξ0) + bt. (9.5)

Applying the Monotone Convergence Theorem and non-explosivity of ξt, we see that

lim
n→∞

Eξ0

∫ t∧τn

0

−g(ξs)1{g(ξs) ≤ 0} ds = Eξ0

∫ t

0

−g(ξs)1{g(ξs) ≤ 0} ds <∞.

Moreover, using again the fact that g ≤ b we have

Eξ0

∫ t

0

|g(ξs)| ds = Eξ0

∫ t

0

−g(ξs)1{g(ξs) ≤ 0} ds+ Eξ0

∫ t

0

g(ξs)1{g(ξs) > 0} ds <∞,

establishing the claim. To finish proving the bound, note that since s ≤ t and Ψ ≥ 0 we
find

Ψ(ξt∧τn)−Ψ(ξs∧τn) = Ψ(ξt)1{t ≤ τn} −Ψ(ξs)1{s ≤ τn}+ Ψ(ξτn)(1{t > τn} − 1{s > τn})
≥ Ψ(ξt)1{t ≤ τn} −Ψ(ξs)1{s ≤ τn}.

Also note that by (9.2), continuity of Ψ, and Fatou’s lemma, Eξ0Ψ(ξt) ∈ [0,∞) for all t ≥ 0.
Thus, by the Dominated Convergence Theorem,

Eξ0Ψ(ξt)−Eξ0Ψ(ξs) = lim
n→∞

(Eξ0Ψ(ξt)1{t ≤ τn} −Eξ0Ψ(ξs)1{s ≤ τn})

≤ lim sup
n→∞

(Eξ0Ψ(ξt∧τn)−Eξ0Ψ(ξs∧τn))

= lim sup
n→∞

[
Eξ0

∫ t∧τn

s∧τn
g(ξu) du+ Flux(ξ0, t, n)− Flux(ξ0, s, n)

]
≤ lim sup

n→∞
Eξ0

∫ t∧τn

s∧τn
g(ξu) du = Eξ0

∫ t

s

g(ξu) du,
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finishing the proof of the bound.

We have left to show that t 7→ Eξ0Ψ(ξt) is a right-continuous function on [0,∞) with no
upward jumps. To see that Eξ0Ψ(ξt)→ Ψ(ξs) as t→ s+, note that since g ≤ −mΦ + b ≤ b
and Ψ ≥ 0 we have

lim inf
t→s+

Eξ0Ψ(ξt) ≤ lim sup
t→s+

Eξ0Ψ(ξt) ≤ lim sup
t→s+

(
Eξ0Ψ(ξs) + b(t− s)

)
= Eξ0Ψ(ξs).

On the other hand, by Fatou’s lemma, continuity of Ψ, and path continuity of ξt

Eξ0Ψ(ξs) ≤ lim inf
t→s+

Eξ0Ψ(ξt).

Therefore limt→s+ Eξ0Ψ(ξt) = Eξ0Ψ(ξs) as claimed. Hence t 7→ Eξ0Ψ(ξt) is right-
continuous on [0,∞). Note also that the bound

Eξ0Ψ(ξt) ≤ Eξ0Ψ(ξs) + b(t− s),

which is satisfied for all 0 ≤ s ≤ t, implies that for t > 0

lim inf
s→t−

Eξ0Ψ(ξs) ≥ lim inf
s→t−

(Eξ0Ψ(ξt)− b(t− s)) = Eξ0Ψ(ξt).

Hence, t 7→ Eξ0Ψ(ξt) has no upward jumps.

We will also need the following ODE comparison result.

Proposition 9.2. Fix T ∈ (0,∞) and let f ∈ C(R) be non-increasing. Suppose that
ψ ∈ C([0, T ]) satisfies

ψ(t) = ψ(s) +

∫ t

s

f(ψ(u)) du (9.6)

for all s, t with 0 ≤ s ≤ t ≤ T . If φ(t) is a right-continuous function on [0, T ] with no
upward jumps satisfying φ(0) = ψ(0) and the inequality

φ(t) ≤ φ(s) +

∫ t

s

f(φ(u)) du (9.7)

for all s, t with 0 ≤ s ≤ t ≤ T , then φ(t) ≤ ψ(t) for all 0 ≤ t ≤ T .

Proof. Suppose that there exists T0 ∈ (0, T ] such that φ(T0)− ψ(T0) > 0. Define

S0 = sup{t ∈ [0, T0] : φ(t)− ψ(t) ≤ 0}

and observe that φ−ψ is also a right-continuous function with no upward jumps on [0, T ]

as ψ is a continuous function. Hence it follows that S0 ∈ [0, T0), φ(S0)− ψ(S0) = 0 and
φ(t)− ψ(t) > 0 for t ∈ (S0, T0). Now use the relations (9.6) and (9.7) and the fact that f
is non-increasing to see that for t ∈ (S0, T0)

0 < φ(t)− ψ(t) ≤
∫ t

S0

f(φ(s))− f(ψ(s)) ds ≤ 0,

showing that no such T0 can exist. Hence φ(t) ≤ ψ(t) for all t ∈ [0, T ].

We are now able to prove Theorem 4.6 parts b) and c) and Theorem 4.8.
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Proof of Theorem 4.6 b), c). Letting Pt(ξ0, · ) = Pξ0 [ξt ∈ · ], we start by proving part b),
aiming to apply Theorem 1.3 of [9]. To connect with their notation, fix T0 > 0 and let
P(ξ0, · ) be the one step transition probability of the Markov chain ξnT0

, n = 0, 1, 2, . . .,
and Pn the associated semi-group. We first check that Assumption 1 of [9] is satisfied
under our hypotheses. By Lemma 9.1, we have for 0 ≤ s ≤ t

Eξ0Ψ(ξt) ≤ Eξ0Ψ(ξs) + Eξ0

∫ t

s

g(ξu) du ≤ Eξ0Ψ(ξs) + Eξ0

∫ t

s

(−mΨ(ξu) + b) du

= Eξ0Ψ(ξs) +

∫ t

s

(−mEξ0Ψ(ξu) + b) du

where the final equality follows from Tonelli’s theorem and the fact that each quantity
above is finite. Since t 7→ Eξ0Ψ(ξt) is right-continuous on [0,∞) with no upward jumps,
by Proposition 9.2 we obtain the bound

PtΨ(ξ0) = Eξ0Ψ(ξt) ≤ e−mtΨ(ξ0) +
b

m
(9.8)

for all t ≥ 0. In particular,

PΨ(ξ0) ≤ e−mT0Ψ(ξ0) +
b

m
.

Since e−mT0 ∈ (0, 1), this now validates Assumption 1 of [9]. To check that Assumption
2 of [9] is satisfied, recall that since ξt is an Itô diffusion with smooth coefficients and
that ξt has a uniformly elliptic diffusion matrix, ξt has a transition probability density
function pt(ξ0, ξ) with respect to Lebesgue measure dξ on Rk which is C∞ and strictly
positive for (t, ξ0, ξ) ∈ (0,∞)×Rk ×Rk. In particular using the notation in Assumption
2 of [9], if R > 2b/[a(1− e−mT0)], C = {ξ : Ψ(ξ) ≤ R} (C is compact as Ψ is continuous)
and B = {ξ : |ξ| ≤ 1}, then for any Borel set A ⊂ Rk

inf
ξ0∈C
P(ξ0, A) = inf

ξ0∈C

∫
A

pT0
(ξ0, ξ) dξ ≥ inf

ξ0∈C

∫
A∩B

pT0
(ξ0, ξ) dξ ≥ γλ(B)

λ(A ∩B)

λ(B)

where γ = minξ0∈C, ξ∈B pT0(ξ0, ξ) > 0 and λ denotes Lebesgue measure. That is, Assump-
tion 2 of [9] is also satisfied. Applying Theorem 1.3 of [9], letting wβ(ξ) = 1+βΨ(ξ), there
exists α ∈ (0, 1) and β̂ > 0 such that for any two probability measures ν1, ν2 ∈Mwβ (Rk)

dwβ̂ (ν1P, ν2P) ≤ αdwβ̂ (ν1, ν2).

In particular, iterating this bound produces

dwβ̂ (ν1Pn, ν2Pn) ≤ αndwβ̂ (ν1, ν2)

for all n ≥ 0. Now to get the bound for any β > 0 (not just for some β̂ > 0), first note that
for all β, β′ > 0 we have a constant Cβ,β′ > 0 such that

dwβ (ν1, ν2) ≤ Cβ,β′dwβ′ (ν1, ν2).

Hence for any β > 0, there exists a constant Cβ such that

dwβ (ν1Pn, ν2Pn) ≤ Cβαndwβ (ν1, ν2)

for all n ≥ 0. To finish part b), we have left to translate the above bound to the continuous
time. To do this, we first claim that νPt ∈Mwβ (Rk) for all t ≥ 0 whenever ν ∈Mwβ (Rk).
Indeed, this follows from the bound (9.8) and Tonelli’s Theorem as∫

Rk

wβ(ξ)νPt(dξ) =

∫
Rk

ν(dξ)(Ptwβ)(ξ) ≤
∫
Rk

(
βΨ(ξ) + 1 + β

b

m

)
ν(dξ) <∞.
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Therefore if t = nT0 + δ for some integer n ≥ 0 and δ ∈ [0, T0) we have by the semigroup
property, the claim and the Fubini-Tonelli Theorem

dwβ (ν1Pt, ν2Pt) = dwβ ((ν1Pδ)Pn, (ν2Pδ)Pn)

≤ Cβαndwβ (ν1Pδ, ν2Pδ)

= Cβα
n sup
|ϕ|≤wβ

[ ∫
Rk

Pδϕ(ξ)(ν1(dξ)− ν2(dξ))

]
≤ C ′βαndwβ (ν1, ν2)

≤ C ′′β (α1/T0)tdwβ (ν1, ν2)

where in the penultimate inequality we have used the bound (9.8). This finishes the
proof of part b) of the result.

To prove part c), first observe that if (Ψ,Ψ1+δ), δ > 0, is a Lyapunov pair correspond-
ing to ξt, then so is (Ψ,Ψ) since Ψ(ξ) → ∞ as |ξ| → ∞. In particular, the conclusion
in part b) also holds; that is, for β > 0 fixed and w = 1 + βΨ (here we choose not to
emphasize the dependence on β > 0), there exist positive constants C, η such that

dw(ν1Pt, ν2Pt) ≤ Ce−ηtdw(ν1, ν2)

for all t ≥ 0 and all ν1, ν2 ∈Mw(Rk). To improve this bound in the sense of the statement
in part c), we follow the reasoning given in Section 6 of [3]. That is, we will first show
that if (Ψ,Ψ1+δ) is a Lyapunov pair corresponding to ξt and t0 > 0, then there exists a
constant Kt0 > 0 such that

(PtΨ)(ξ0) ≤ Kt0

for all t ≥ t0 and all ξ0 ∈ Rk. Applying Lemma 9.1 and using the fact that g ≤ −mΨ1+δ+b

for some constants m, b > 0, we see that

Eξ0Ψ(ξt)−Eξ0Ψ(ξs) ≤ Eξ0

∫ t

s

g(ξu) du ≤ Eξ0

∫ t

s

(−mΨ(ξu)1+δ + b)

≤
∫ t

s

(−m[Eξ0Ψ(ξu)]1+δ + b) du

where the last inequality follows Tonelli’s Theorem and Jensen’s inequality. Now let

hξ0(t) := Eξ0Ψ(ξt) and T = inf{t > 0 : hξ0(t) ≤ (2bm−1)
1

1+δ }.

Observe that for all 0 ≤ s ≤ t ≤ T we have shown that

hξ0(t) ≤ hξ0(s) +

∫ t

s

(−mhξ0(u)1+δ + b) du ≤ hξ0(s)−
∫ t

s

m

2
hξ0(u)1+δ du.

Hence, in particular, this bound implies that for all times t ≥ T

hξ0(t) ≤ (2bm−1)
1

1+δ

as the map t 7→ hξ0(t) is strictly decreasing whenever hξ(t) ≥ (2bm−1)
1

1+δ . Moreover, by
Proposition 9.2, for all t ∈ [0, T ]

hξ0(t) = Eξ0Ψ(ξt) ≤
1

(mδt2 + Ψ(ξ0)−δ)1/δ
.

EJP 20 (2015), paper 111.
Page 38/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4047
http://ejp.ejpecp.org/


Noise-induced stabilization of planar flows I

Therefore, for all times t ≥ t0 > 0 we have that

PtΨ(ξ0) = Eξ0Ψ(ξt) ≤ Kt0 := max

{
(2bm−1)

1
1+δ ,

1

(mδt02 )1/δ

}
,

as claimed.
To finish proving the result, note by Tonelli’s Theorem: If ν is a probability measure

on Rk and t > 0, then∫
Rk

w(ξ)(νPt)(dξ) =

∫
Rk

(Ptw)(ξ)ν(dξ) ≤ Kt

∫
Rk

ν(dξ) <∞;

that is, νPt ∈ Mw(Rk) for t > 0 and any probability measure ν on Rk. Also, after
applying the proof of Proposition 6.2 of [3], we see that for any probability measures
ν1, ν2 on Rk and any t ≥ 1

dw(ν1Pt, ν2Pt) ≤ (1 + βK1)‖ν1 − ν2‖TV .

Hence, combining this bound with the bound obtained in part b) we see that for any
t ≥ 1 and any two probability measures ν1, ν2 on Rk

dw(ν1Pt, ν2Pt) = dw(ν1P1Pt−1, ν2P1Pt−1) ≤ Cβe−η(t−1)dw(ν1P1, ν2P1)

≤ C ′βe−ηt‖ν1 − ν2‖TV

as νiP1 ∈Mw(Rk). Note that this now finishes the proof of part c) and the result.

Proof of Theorem 4.8. We first show that for all γ > 0 large enough

Pξ0 [υγ <∞] = 1

for all ξ0 ∈ Rk. Let (Ψ,Ψ1+δ) be a Lyapunov pair corresponding to ξt. Since Ψ(ξ)→∞
as |ξ| → ∞, we may pick γ > 0 large enough so that for all |ξ| ≥ γ

−mΨ1+δ(ξ) + b ≤ −1,

where m, b > 0 are the constants given in the definition of Lyapunov pair. In particular,
we have that for γ > 0 large enough

inf
|ξ|≥γ

Ψ(ξ)Pξ0 [υγ ∧ τn ≥ t] ≤ Eξ0Ψ(ξt∧υγ∧τn)

≤ Ψ(ξ0) + Eξ0

∫ t∧υγ∧τn

0

(−mΨ(ξs)
1+δ + b) ds

≤ Ψ(ξ0) + Eξ0

∫ t∧υγ∧τn

0

−1 ds

≤ Ψ(ξ0)− tPξ0 [υγ ∧ τn ≥ t].

Rearranging the previous inequality produces the following bound

Pξ0 [υγ ∧ τn ≥ t] ≤
Ψ(ξ0)

inf |ξ|≥γ Ψ(ξ) + t

which holds for all t ≥ 0 and γ > 0 large enough. First take n → ∞, applying non-
explosivity of ξt, and then take t→∞ to see that for γ > 0 large enough

Pξ0 [υγ =∞] = 0,
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finishing the proof of the first part of the result.
To prove the second part of the result, we first note by the proof of Theorem 4.6 part

c), (t, ξ0) 7→ Eξ0Ψ(ξt) is bounded on [t0,∞) ×Rk for any t0 > 0. Hence, there exists a
constant K > 0 such that for all t ≥ t0 > 0 and ξ0 ∈ Rk:

K ≥ Eξ0Ψ(ξt) ≥ Eξ01{υγ≥t}Ψ(ξt)

≥ inf
|ξ|≥γ

Ψ(ξ) ·Pξ0 [υγ ≥ t].

Thus for γ > 0 large enough and t ≥ t0

Pξ0 [υγ ≥ t] ≤
K

inf |ξ|≥γ Ψ(ξ)
.

Since Ψ(ξ)→∞ as |ξ| → ∞, it follows that for each ε, t > 0 there exists a γ > 0 such that

sup
ξ0∈Rd

Pξ0 [υγ ≥ t] ≤ ε

finishing the proof of the result.

Proof of Lemma 7.4. Fixing c ∈ R and a ∈
(
0, 3

2n+ 1
)
, we first study the solution of the

boundary-value problem

σ2

2
G′′a,c(η) +

(3

2
n+ 1

)
ηG′a,c(η) + aGa,c(η) = 0 (9.9)

Ga,c(−η∗ + c) = Ga,c(η
∗ + c) = 1

and show all conclusions of Lemma 7.4 without assuming that we may write Ga,c(η) =

Eηe
aτc . In particular, we leave the proof that Ga,c(η) = Eηe

aτc until the end of the
argument. To further understand solutions of (9.9), we transform the equation to
Weber’s equation. To this end, we write

Ga,c(η) = e−βη
2/4H(

√
βη) (9.10)

where β = (3n+ 2)/σ2 and note that H satisfies

H ′′(v)−
(v2

4
+

1

2
− 2a

σ2β

)
H(v) = 0. (9.11)

The two linearly independent general solutions of (9.11), denoted by

U
( 2a

σ2β
− 1/2,±iv

)
,

have the following integral representations (cf. Chapter 12.5 of [5])

U
(
κ− 1/2,±iv

)
=

e
v2

4

Γ
(
κ
) ∫ ∞

0

t−1+κe−t
2/2∓ivt dt, v ∈ R.

where we have introduced κ = 2a
σ2β in the interest of brevity. Using these expressions, the

boundary conditions given in (9.9) and the assumption 0 < a < 3
2n+ 1 we may formally

write

Ga,c(η) =
D −B

AD −BC

∫ ∞
0

f(t) cos(
√
βηt) dt+

A− C
AD −BC

∫ ∞
0

f(t) sin(
√
βηt) dt (9.12)
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where f(t) = t−1+κe−
t2

2 and

A =

∫ ∞
0

f(t) cos(
√
β(η∗ + c)t) dt, B =

∫ ∞
0

f(t) sin(
√
β(η∗ + c)t) dt

C =

∫ ∞
0

f(t) cos(
√
β(η∗ − c)t) dt, D = −

∫ ∞
0

f(t) sin(
√
β(η∗ − c)t) dt.

The only question pertaining to the validity of (9.12) is that AD −BC could possibly be
zero. We will now show that this is not the case for all η∗ > |c| sufficiently large. It will
then follow easily that Ga,c ∈ C∞([−η∗ + c, η∗ + c]) for all η∗ > |c| large enough by (9.12).
Write

A = Γ(κ)e−β
(η∗+c)2

4 ReU
(
κ− 1

2
, i
√
β(η∗ + c)

)
B = −Γ(κ)e−β

(η∗+c)2
4 ImU

(
κ− 1

2
, i
√
β(η∗ + c)

)
C = Γ(κ)e−β

(η∗−c)2
4 ReU

(
κ− 1

2
, i
√
β(η∗ − c)

)
D = Γ(κ)e−β

(η∗−c)2
4 ImU

(
κ− 1

2
, i
√
β(η∗ − c)

)
.

One can then use the asymptotic formula for U(a, z) as z →∞ in Section 12.9 of [17] to
deduce that as η∗ →∞ one has

A = Γ(κ)
cos(π2κ)

(
√
βη∗)κ

{
1 +O

(
1
η∗

)}
, B = Γ(κ)

sin(π2κ)

(
√
βη∗)κ

{
1 +O

(
1
η∗

)}
,

C = Γ(κ)
cos(π2κ)

(
√
βη∗)κ

{
1 +O

(
1
η∗

)}
, D = −Γ(κ)

sin(π2κ)

(
√
βη∗)κ

{
1 +O

(
1
η∗

)}
.

From these formulas and the fact that 0 < κ < 1, we can easily conclude that for η∗

large enough AD − BC 6= 0. To see the claimed asymptotic formula for G′a,c, we may
differentiate under the integrals in (9.12) to obtain

G′a,c(±η∗ + c) = −
√
β

D −B
AD −BC

∫ ∞
0

tf(t) sin(
√
β(±η∗ + c)t) dt

+
√
β

A− C
AD −BC

∫ ∞
0

tf(t) cos(
√
β(±η∗ + c)t) dt.

Using a similar trick, we may write the functions∫ ∞
0

tf(t) sin(
√
β(±η∗ + c)t) dt and

∫ ∞
0

tf(t) cos(
√
β(±η∗ + c)t) dt

in terms of the function U as∫ ∞
0

tf(t) sin(
√
β(±η∗ + c)t) dt = −κΓ(κ)e−

β
4 (±η∗+c)2ImU

(
κ+

1

2
, i
√
β(±η∗ + c)

)
,

and ∫ ∞
0

tf(t) cos(
√
β(±η∗ + c)t) dt = κΓ(κ)e−

β
4 (±η∗+c)2ReU

(
κ+

1

2
, i
√
β(±η∗ + c)

)
.

Again, applying the asymptotic formula for U(a, z) as z →∞ in Section 12.9 of [5] with
those derived for A,B,C,D, we can obtain the claimed asymptotic formulas for G′a,c. To
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see the symmetry Ga,0(−η) = Ga,0(η) for η ∈ [−η∗ + c, η∗ + c], set c = 0 in (9.12) to see
that

Ga,0 =

∫∞
0
f(t) cos(

√
βηt) dt∫∞

0
f(t) cos(

√
βη∗t) dt

.

Finally, to see that Ga,c(η) = Eηe
aτc we first show that Eηeaτc <∞. Indeed, since ηt

with η0 = η is normally distributed with mean e( 3
2n+1)tη and variance

σ2

3n+ 2
(e(3n+2)t − 1),

we obtain

Eηe
aτc =

∫ ∞
0

Pη{eaτc > t} dt ≤ 2 +

∫ ∞
2

Pη{τc > a−1 log(t)} dt

≤ 2 +

∫ ∞
2

Pη{ηa−1 log(t) ∈ [−η∗ + c, η∗ + c]} dt

≤ 2 +K

∫ ∞
2

1√
t
3n+2
a − 1

dt

for some constant K > 0. Notice that the last integral above is finite since a ∈
(
0, 3

2n+ 1
)
.

To finish, since Ga,c is bounded on [−η∗ + c, η∗ + c], we may apply Dynkin’s formula to
obtain

Eηe
a(τc∧t)Ga,c(ητc∧t) = Ga,c(η)

for all finite times t ≥ 0. Since Eηe
aτc <∞ and Ga,c is bounded on [−η∗ + c, η∗ + c], we

may apply dominated convergence and take t→∞ to see that Ga,c(η) = Eηe
aτc .
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