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Abstract

Explicitly sufficient conditions on the hypercontractivity are presented for two classes
of functional stochastic partial differential equations driven by, respectively, non-
degenerate and degenerate Gaussian noises. Consequently, these conditions imply
that the associated Markov semigroup is L2-compact and exponentially convergent
to the stationary distribution in entropy, variance and total variational norm. As the
log-Sobolev inequality is invalid under the present framework, we apply a criterion
presented in the recent paper [15] using Harnack inequality, coupling property and
Gaussian concentration property of the stationary distribution. To verify the concen-
tration property, we prove a Fernique type inequality for infinite-dimensional Gaussian
processes which might be interesting by itself.
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1 Introduction

The hypercontractivity was introduced in 1973 by Nelson [10] for the Ornstein-
Ulenbeck semigroup. As applications, it implies the exponential convergence of the
Markov semigroup in entropy (and hence, also in variance) to the associated stationary
distribution, and it also implies the L2-compactness of the semigroup subject to the exis-
tence of a density with respect to the stationary distribution, see [15] for more details. In
the setting of symmetric Markov processes, Gross [9] proved that the hypercontractivity
of the semigroup is equivalent to the log-Sobolev inequality for the associated Dirichlet
form. This leads to an extensive study of the log-Sobolev inequality.

However, as explained in [3] the log-Sobolev inequality does not hold for the segment
solution to a stochastic delay differential equation (SDDE). As the segment solution
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Hypercontractivity for FSPDEs

is a process on a functional space, the equation is also called a functional stochastic
differential equation (FSDE). In this case, an efficient tool to prove the hypercontractivity
is the dimension-free Harnack inequality introduced in [11], where diffusion semigroups
on Riemannian manifolds are concerned. By using the coupling by change of measures,
this type Harnack inequality has been established for various stochastic equations, see
the recent monograph [14] and references within. The aim of the present paper is
to prove the hypercontractivity for functional stochastic partial differential equations
(FSPDEs) in Hilbert spaces. We will consider non-degenerate noise and degenerate
noise, respectively, so that the corresponding results derived in [3] for finite-dimensional
FSDEs as well as in [15] for degenerate SPDEs are extended.

In the recent paper [15], the second named author developed a general criterion on
the hypercontractivity by using the Harnack inequality of the semigroup, the concen-
tration property of the underlying probability measure, and the coupling property. In
general, let Pt be a Markov semigroup on L2(µ) for a probability space (E,F , µ) such
that µ is Pt-invariant. By definition, Pt is hypercontractive if ‖Pt‖2→4 = 1 holds for
large enough t > 0, where ‖ · ‖2→4 is the operator norm from L2(µ) to L4(µ). For any
(x, y) ∈ E ×E, a process (Xt, Yt) on E ×E is called a coupling for the Markov semigroup
with initial point (x, y) if

Ptf(x) = Ef(Xt), Ptf(y) = Ef(Yt), t ≥ 0, f ∈ Bb(E),

where Bb(E) stands for the set of all bounded measurable functions defined on E.
The general criterion due to Wang [15] is stated as follows.

Theorem 1.1 ([14]). Assume that the following three conditions hold for some measur-
able functions ρ : E × E 7→ (0,∞) and φ : [0,∞) 7→ (0,∞) such that limt→∞ φ(t) = 0 :

(i) (Harnack Inequality) There exist constants t0, c0 > 0 such that

(Pt0f(ξ))2 ≤ (Pt0f
2(η))ec0ρ(ξ,η)

2

, f ∈ Bb(E), ξ, η ∈ E;

(ii) (Coupling Property) For any (ξ, η) ∈ E × E, there exists a coupling (Xt, Yt) for
the Markov semigroup Pt such that

ρ(Xt, Yt) ≤ φ(t)ρ(ξ, η), t ≥ 0;

(iii) (Concentration Property) There exists ε > 0 such that (µ× µ)(eερ(·,·)
2

) <∞.

Then Pt is hypercontractive and compact in L2(µ) for large enough t > 0, and

µ((Ptf) logPtf) ≤ ce−αtµ(f log f), t ≥ 0, f ≥ 0, µ(f) = 1;

‖Pt − µ‖22 := sup
µ(f2)≤1

µ
(
(Ptf − µ(f))2

)
≤ ce−αt, t ≥ 0 (1.1)

hold for some constants c, α > 0.

We will apply the previous criterion to non-degenerate and degenerate FSPDEs,
respectively. To state our main results, we first introduce some notation.

For two separable Hilbert spaces H1,H2, let L (H1,H2) (respectively, LHS(H1,H2))
be the set of all bounded (respectively, Hilbert-Schmidt) linear operators from H1 to H2.
We will use | · | and 〈·, ·〉 to denote the norm and the inner product on a Hilbert space,
and let ‖ · ‖ and ‖ · ‖HS stand for the operator norm and the Hilbert-Schmidt norm for a
linear operator. Below we introduce our main results for non-degenerate FSPDEs and
degenerate FSPDEs, respectively.
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Hypercontractivity for FSPDEs

1.1 Non-Degenerate FSPDEs

Let H be a separable Hilbert space. For a fixed constant r0 > 0, let C = C([−r0, 0];H)

be equipped with the uniform norm ‖f‖∞ := sup−r0≤θ≤0 |f(θ)|. For t ≥ 0 and h ∈
C([−r0,∞);H), let ht ∈ C be such that ht(θ) = h(t+ θ), θ ∈ [−r0, 0].

Let W (t) be a cylindrical Wiener process on H under a complete filtered probability
space (Ω,F , {Ft}t≥0,P); that is,

W (t) =

∞∑
i=1

Bi(t)ei, t ≥ 0

for an orthonormal basis {ei}i≥1 on H and a sequence of independent one-dimensional
Wiener processes {Bi(t)}i≥1 on (Ω,F , {Ft}t≥0,P).

Consider the following FSPDE on H:

dX(t) = {AX(t) + b(Xt)}dt+ σdW (t), t > 0, X0 = ξ ∈ C , (1.2)

where (A,D(A)) is a densely defined closed operator on H generating a C0-semigroup
etA, b : C 7→ H is measurable, (σ,D(σ)) is a densely defined linear operator on H. We
assume that A, b and σ satisfy the following conditions.

(A1) (−A,D(A)) is self-adjoint with discrete spectrum 0 < λ1 ≤ λ2 ≤ · · · counting
multiplicities such that λi ↑ ∞. Moreover, there exists a constant δ ∈ (0, 1) such

that, for every t > 0, e−t(−A)1−δσ extends to a unique Hilbert-Schmidt operator on
H which is denoted again by e−t(−A)1−δσ and satisfies∫ 1

0

‖e−t(−A)1−δσ‖2HSdt <∞. (1.3)

(A2) There exists a constant L > 0 such that |b(ξ)− b(η)| ≤ L‖ξ − η‖∞, ξ, η ∈ C .

(A3) σ is invertible, i.e., there exists σ−1 ∈ L (H,H) such that σ−1H ⊂ D(σ) and
σσ−1 = I, the identity operator.

We first observe that assumptions (A1) and (A2) imply the existence and uniqueness
of continuous mild solutions to (1.2); that is, for any F0-measurable random variable
X0 = ξ ∈ C , there exists a unique continuous adapted process {X(t)}t≥r0 on H such that
P-a.s.

X(t) = etAξ(0) +

∫ t

0

e(t−s)Ab(Xs)ds+

∫ t

0

e(t−s)AσdW (s), t ≥ 0. (1.4)

To this end, it suffices to show that (1.3) implies∫ 1

0

‖etAσ‖2(1+ε)HS dt <∞ (1.5)

for some ε > 0, see, for instance, [14, Theorem 4.1.3]. To prove (1.5), we reformulate
condition (1.3) using the eigenbasis {ei}i≥1 of A, i.e., {ei}i≥1 is an orthonormal basis of
H such that Aei = −λiei, i ≥ 1. By noting that

‖e−t(−A)1−δσ‖2HS = ‖(e−t(−A)1−δσ)∗‖2HS =

∞∑
j=1

|(e−t(−A)1−δσ)∗ej |2 =

∞∑
j=1

e−2λ
1−δ
j t|σ∗ej |2,

(1.3) is equivalent to
∞∑
j=1

|σ∗ej |2

λ1−δj

<∞. (1.6)
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This implies that µj :=
|σ∗ej |2

λ1−δ
j

(j ≥ 1) gives rise to a finite measure on N, so that by

Hölder’s inequality,∫ 1

0

‖etAσ‖2(1+ε)HS dt =

∫ 1

0

( ∞∑
j=1

e−2λjt|σ∗ej |2
)1+ε

dt

=

∫ 1

0

( ∞∑
j=1

µje
−2λjtλ1−δj

)1+ε
dt ≤ C

∫ 1

0

( ∞∑
j=1

µjλ
(1+ε)(1−δ)
j e−2(1+ε)λjt

)
dt

≤ C
∞∑
j=1

|σ∗ej |2

λ
1−ε(1−δ)
j

<∞, ε ≤ δ

1− δ
,

where C := (
∑∞
i=1 µi)

ε. Thus, (1.3) implies (1.5) for ε ∈ (0, δ
1−δ ].

To emphasize the initial datum X0 = ξ ∈ C , we denote the solution and the segment
solution by {Xξ(t)}t≥−r0 and {Xξ

t }t≥0, respectively. Then the Markov semigroup for the
segment solution is defined as

Ptf(ξ) = Ef(Xξ
t ), f ∈ Bb(C ), ξ ∈ C , t ≥ 0. (1.7)

We are ready to state the main result in this part.

Theorem 1.2. Let (A1)-(A3) hold. If λ := sups∈(0,λ1]

(
s− Lesr0

)
> 0, then the following

assertions hold.

(1) Pt has a unique invariant probability measure µ such that µ(eε‖·‖
2
∞) <∞ for some

ε > 0.
(2) Pt is hypercontractive and compact in L2(µ) for large enough t > 0, and (1.1) holds

for some constants c, α > 0.
(3) For any t0 > r0, there exists a constant c > 0 such that

‖µξt − µ
η
t ‖var ≤ c‖ξ − η‖∞e−λt, t ≥ t0,

where ‖ · ‖var is the total variational norm and µξt stands for the law of Xξ
t for

(t, ξ) ∈ [0,∞)× C .

To illustrate the above result, we present below an example, where H = L2(D; dx)

for a bounded domain in Rd.

Example 1.1. For a bounded domain D ⊂ Rd, let H = L2(D; dx) and A = −(−∆)α,
where ∆ is the Dirichlet Laplacian on D and α > d

2 is a constant. Let σ = I be the identity

operator on H, and b(ξ) = L
∫ 0

−r0 ξ(r)ν(dr) for a signed measure ν on [−r0, 0] with total
variation 1; or b(ξ) = supr∈[−r0,0]〈ξ(r), g(r)〉 for some measurable g : [−r0, 0] → H with
‖g‖∞ ≤ L. Then assertions in Theorem 1.2 hold provided

λ := sup
s∈(0,(dπ2)αR(D)−2α)

(s− Lesr0) > 0,

where R(D) is the diameter of D.

Proof. Since A = −(−∆)α, it is well known that the eigenvalues {λi}i≥1 of A satisfy
λi ≥ ci

2α
d (i ≥ 1) for some constant c > 0. So, for α > d

2 assumptions (A1)-(A3) hold for

the above choices of H, A, σ and b. By Theorem 1.2, it remains to prove λ1 ≥ (dπ2)α

R(D)2α .

Letting λ1 be the first eigenvalue of −∆, by the definition of A this is equivalent to
λ1 ≥ dπ2

R(D)2 . As D is covered by a cube of edge length R(D), by the domain-monotonicity

and the shift-invariance of the first Dirichlet eigenvalue of −∆, λ1 is bounded below by
the first Dirichlet eigenvalue of −∆ on the cube [0, R(D)]d, which is equal to dπ2

R(D)2 with

eigenfunction u(x) :=
∏d
i=1 sin

(
πxi
R(D)

)
. Then the proof is finished.
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1.2 Degenerate FSPDEs

Let H = H1 × H2 for two separable Hilbert spaces H1 and H2, and let C =

C([−r0, 0];H) as in Subsection 1.1. Consider the following degenerate FSPDE on H:{
dX(t) = {A1X(t) +BY (t)}dt,
dY (t) = {A2Y (t) + b(Xt, Yt)}dt+ σdW (t),

(1.8)

where (Ai,D(Ai)) is a densely defined closed linear operator on Hi generating a C0-
semigroup etAi (i = 1, 2), B ∈ L (H2,H1), b : C 7→ H2 is measurable, (σ,D(σ)) is a
densely defined closed operator on H2, and W (t) is the cylindrical Wiener process on
H2. Corresponding to (A1)-(A3) in the non-degenerate case, we make the following
assumptions (see [15] for the case without delay, i.e., b(Xt, Yt) depends only on X(t) and
Y (t)).

(B1) (−A2,D(A2)) is self-adjoint with discrete spectrum 0 < λ1 ≤ λ2 ≤ · · · counting
multiplicities such that λi ↑ ∞, σ is invertible, and∫ 1

0

‖e−t(−A2)
1−δ0

σ‖2HSdt <∞

holds for some constant δ0 ∈ (0, 1).

(B2) There exist constants K1,K2 > 0 such that

|b(ξ1, η1)− b(ξ2, η2)| ≤ K1‖ξ1 − η1‖∞ +K2‖ξ2 − η2‖∞, (ξ1, η1), (ξ2, η2) ∈ C .

(B3) A1 ≤ δ − λ1 for some constant δ ≥ 0; i.e., 〈A1x, x〉 ≤ (δ − λ1)|x|2 holds for all
x ∈ D(A1).

(B4) There exists A0 ∈ L (H1,H1) such that BetA2 = etA1etA0B holds for t ≥ 0, and

Qt :=

∫ t

0

esA0BB∗esA
∗
0ds, t ≥ 0

is invertible on H1.

Obviously, when H1 = H2, σ = B = I and A1 = A2 with discrete spectrum {−λi}i≥1 such
that

∑∞
i=1

1

λ1−δ
i

<∞ holds for some constant δ ∈ (0, 1), then assumptions (B1), (B3) and

(B4) hold. See [15] for more examples, where H2 might be a subspace of H1.

Similarly to the case without delay considered in [15], assumptions (B3) and (B4)
will be used to prove the Harnack inequality. Moreover, as explained in Subsection 1.1
for the non-degenerate case, from [14, Theorem 4.1.3] we conclude that assumptions
(B1) and (B2) imply the existence, uniqueness and non-explosion of the continuous mild
solution (Xξ,η(t), Y ξ,η(t)) for any initial point (ξ, η) ∈ C . Let Pt be the Markov semigroup
generated by the segment solution. We have

Ptf(ξ, η) = E
[
f(Xξ,η

t , Y ξ,ηt )
]
, f ∈ Bb(C ), (ξ, η) ∈ C , t ≥ 0.

Theorem 1.3. Assume (B1)-(B4). If

λ′ :=
1

2

(
δ +K2 +

√
(K2 − δ)2 + 4K1‖B‖

)
< sup
s∈(0,λ1]

se−sr0 , (1.9)

then all assertions in Theorem 1.1 hold with λ := sups∈(0,λ1]

(
s− esr0λ′

)
.
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Examples 1.2. Let H1 = H2 = L2(D; dx) and σ = B = I,A1 = A2 = −(−∆)α for some
α > d

2 as in Example 1.1. Then assumptions (B1), (B3) and (B4) hold. See [15] for more
examples, where H2 might be a subspace of H1. To verify (B2) we take, for instances,

b(ξ, η) = K1

∫ 0

−r0
ξdν1 +K2

∫
−r0

ηdν2

for some signed measures ν1, ν2 on [−r0, 0] with total variations not larger than 1; or
simply b(ξ, η) = ‖K1ξ +K2η‖∞, where interactions exist between ξ and η.

The remainder of this paper is organized as follows. In Section 2 we present a
Fernique type inequality for infinite-dimensional Gaussian processes, which will be used
to prove the concentration condition required in Theorem 1.1(3). Theorems 1.2 and 1.3
are proved in Sections 3 and 4, respectively.

2 Infinite-dimensional Fernique’s inequality

In [8], Fernique introduced an inequality for the distribution of the maximum of
Gaussian processes. To prove the exponential integrability of ‖Xt‖∞ for FSPDEs, one
needs an infinite-dimensional version of this inequality. However, as the dimension
goes to infinity, existing Fernique’s inequality for multi-dimensional Gaussian processes
becomes invalid. So, we modify the inequality so that it holds also in infinite-dimensions.
To this end, we first recall the inequality for one-dimensional Gaussian processes (see,
e.g., [4, page 49] for the multi-dimensional case).

Lemma 2.1 (Fernique’s inequality). Let {γ(t)}t∈[0,1] be a continuous Gaussian process

on R with zero mean and Γ = supt∈[0,1](Eγ(t)2)
1
2 <∞. Let

φ(r) = sup
s,t∈[0,1],|s−t|≤r

(
E|γ(s)− γ(t)|2

) 1
2 , r ∈ [0, 1].

If θ :=
∫∞
1
φ(e−s

2

)ds <∞, then

P
(

max
t∈[0,1]

|γ(t)| ≥ r
(
Γ +

(
2 +
√

2
)
θ
))
≤ 5e

2

∫ ∞
r

e−
1
2 s

2

ds, r ≥
√

5.

Now, we call a process {γ(t)}t∈[0,1] on the Hilbert space H a cylindrical continuous
Gaussian process, if, for an orthonormal basis {ei}i≥1, every one-dimensional process
γi(t) := 〈γ(t), ei〉 is a continuous Gaussian process. For a cylindrical continuous Gaussian
process γ(t) with zero mean, let

φi(r) = sup
s,t∈[0,1],|s−t|≤r

(
E|γi(t)− γi(s)|2

) 1
2 , r ∈ [0, 1],

Γi = sup
t∈[0,1]

(Eγi(t)
2)

1
2 , δi = Γi +

(
2 +
√

2
) ∫ ∞

1

φi(e
−s2)ds, i ≥ 1.

Theorem 2.2. Let γ(t) be a cylindrical continuous Gaussian process on H with zero
mean such that

θ :=

∞∑
i=1

δ2i log(e + δ−1i ) <∞. (2.1)

Then, for any positive constant λ < mini≥1
log(e+δ−1

i )

2θ , there exists a constant c > 0 such
that

P
(

max
t∈[0,1]

|γ(t)| ≥ r
)
≤ ce−λr

2

, r ≥ 0. (2.2)
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Proof. Let λ̃ = mini≥1
log(e+δ−1

i )

2θ . Obviously, (2.1) implies limi→∞ δi = 0 so that λ̃ > 0. For

any λ ∈ (0, λ̃), it suffices to prove (2.2) for some constant c > 0 and large enough r > 0.
Below, we assume that

r2 ≥ 5θλ̃

λ̃− λ
. (2.3)

In this case,

ri :=
(r2 log(e + δ−1i )

θ

) 1
2 ≥ r√

θ
≥
√

5,

so that Lemma 2.1 implies

P
(

max
t∈[0,1]

|γi(t)| ≥ riδi
)
≤ 5e

2

∫ ∞
ri

e−
1
2 s

2

ds ≤ c1e−
1
2 r

2
i , i ≥ 1

for some constant c1 > 0. Then

P
(

max
t∈[0,1]

|γ(t)| ≥ r
)
≤ P

( ∞∑
i=1

max
t∈[0,1]

|γi(t)|2 ≥ r2
)

≤
∞∑
i=1

P
(

max
t∈[0,1]

|γi(t)|2 ≥
r2δ2i log(e + δ−1i )

θ

)
=

∞∑
i=1

P
(

max
t∈[0,1]

|γi(t)| ≥ riδi
)

≤ c1
∞∑
i=1

e−
1
2 r

2
i ≤ c1e−λr

2
∞∑
i=1

exp
[
− r2

( log(e + δ−1i )

2θ
− λ
)]
.

(2.4)

Since, by (2.3) and the definition of λ̃, we have

r2
( log(e + δ−1i )

2θ
− λ
)
≥ r2 log(e + δ−1i )

2θ

(
1− λ

λ̃

)
≥ 5

2
log(e + δ−1i ),

it follows from (2.1) that

∞∑
i=1

exp
[
− r2

( log(e + δ−1i )

2θ
− λ
)]
≤
∞∑
i=1

δ
5
2
i <∞.

Combining this with (2.4), we finish the proof.

3 Proof of Theorem 1.2

We will verify conditions (i)-(iii) in Theorem 1.1. Firstly, according to [14, Theorem
4.2.4], assumptions (A1)-(A3) implies that, for any t0 > r0, there exists a constant c0 > 0

such that the following Harnack inequality holds:(
Pt0f(η)

)2 ≤ (Pt0f
2(ξ)))ec0‖ξ−η‖

2
∞ , ξ, η ∈ C , f ∈ Bb(C ). (3.1)

That is, condition (i) holds for ρ(ξ, η) := ‖ξ − η‖∞.

To verify (ii) and (iii), we will need the condition that λ := sups∈(0,λ1](s− Lesr0) > 0.

Without loss of generality, we may and do assume that the maximum is attained at the
point λ1; otherwise, in the following it suffices to replace λ1 by λ′1 ∈ (0, λ1] which attains
the maximum. By (A1), (A2), and (1.4), one has

eλ1t|Xξ(t)−Xη(t)| ≤ |ξ(0)− η(0)|+ L

∫ t

0

eλ1s‖Xξ
s −Xη

s ‖∞ds.
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Then, we obtain that

eλ1t‖Xξ
t −X

η
t ‖∞ ≤ eλ1r0 sup

−r0≤θ≤0
(eλ1(t+θ)|Xξ(t+ θ)−Xη(t+ θ)|)

≤ eλ1r0
(
‖ξ − η‖∞ + L

∫ t

0

eλ1s‖Xξ
s −Xη

s ‖∞ds
)
.

(3.2)

Thus, by Gronwall’s inequality we derive that

‖Xξ
t −X

η
t ‖∞ ≤ eλ1r0e−λt‖ξ − η‖∞, t ≥ 0, ξ, η ∈ C . (3.3)

That is, condition (ii) holds.
To show condition (iii) in Theorem 1.1, we need to prove the exponential integrability

of the segment solution.

Lemma 3.1. Assume (A1) and (A2). If λ > 0, then there exists an r > 0 such that

sup
t≥0

Eer‖X
ξ
t ‖

2
∞ <∞, ξ ∈ C . (3.4)

Proof. (a) We first use Theorem 2.2 to prove

sup
t≥0

Eeε‖Zt‖
2
∞ <∞ (3.5)

for some ε > 0, where

Zt(θ) :=

∫ (t+θ)+

0

e(t+θ−s)AσdW (s), t ≥ 0, θ ∈ [−r0, 0]. (3.6)

To this end, for fixed t0 > 0 let

γ(t) =

∫ (t0−tr0)+

0

e(t0−tr0−s)AσdW (s), t ∈ [0, 1].

Then, (3.6) implies
‖Zt0‖2∞ = sup

t∈[0,1]
|γ(t)|2. (3.7)

Letting {ei}i≥1 be the eigenbasis of A, we have

γi(t) := 〈γ(t), ei〉 =

∫ (t0−tr0)+

0

e−λi(t0−tr0−s)〈σ∗ei,dW (s)〉, t ∈ [0, 1]. (3.8)

Obviously,

Γi := sup
t∈[0,1]

(
Eγi(t)

2
) 1

2 ≤ |σ∗ei|
(∫ ∞

0

e−2λisds

) 1
2

=
|σ∗ei|√

2λi
, i ≥ 1. (3.9)

Moreover, note that, for any r ∈ (0, 1), there exists a constant c(r) > 0 such that
|e−s−e−t| ≤ c(r)|s−t|r holds for all s, t ≥ 0. Then, (3.8), implies that for any 0 ≤ t′ ≤ t ≤ 1,

E|γi(t)− γi(t′)|2

= |σ∗ei|2
(∫ (t0−tr0)+

0

e−2λi(t0−tr0−s)
(
1− e−λi(t−t

′)r0
)2

ds+

∫ (t0−t′r0)+

(t0−tr0)+
e−2λi(t0−t

′r0−s)ds

)
≤ |σ∗ei|2

(
c( δ4 )2[r0(t− t′)] δ2

2λ
1− δ2
i

+
c( δ2 )[2r0(t− t′)] δ2

2λ
1− δ2
i

)

=:
c1(t− t′) δ2 |σ∗ei|2

λ
1− δ2
i

, i ≥ 1,
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where the constant c1 > 0 is independent of t, t′, t0 and i. So, by the definition of φi,

φi(r) ≤
c
1/2
1 r

δ
4 |σ∗ei|

λ
1
2−

δ
4

i

, r ∈ [0, 1].

Combining this with (3.9), we deduce from the definition of δi that

δi ≤
c2|σ∗ei|

λ
1
2−

δ
4

i

, i ≥ 1

holds for some constant c2 > 0 independent of t0. This and (1.6) lead to (2.1). Therefore,
according to Theorem 2.2 and (3.7), we prove (3.5) for some constant ε ∈ (0, 1).

(b) Next, we prove (3.4) for small r > 0. By (3.3), it suffices to prove for ξ ≡ 0. We
simply denote X(t) = X0(t). It follows from (A1), (A2), and (1.4) that

eλ1t|X(t)| ≤
∫ t

0

eλ1s{c0 + L‖Xs‖∞}ds+ eλ1t
∣∣∣ ∫ t

0

e(t−s)AσdW (s)
∣∣∣, t ≥ 0

holds for some constant c0 > 0. This implies

eλ1t‖Xt‖∞ ≤ eλ1r0 sup
−r0≤θ≤0

(eλ1(t+θ)|X(t+ θ)|)

≤ c1eλ1t(1 + ‖Zt‖∞) + Leλ1r0

∫ t

0

eλ1s‖Xs‖∞ds

for some constant c1 > 0, where Zt is defined in (3.6). So, by Gronwall’s formula,

‖Xt‖∞ ≤ c1(1 + ‖Zt‖∞) + c1Leλ1r0e−λ1t

∫ t

0

{
eλ1s + eλ1s‖Zs‖∞

}
eLeλ1r0 (t−s)ds

≤ c2(1 + ‖Zt‖∞) + c2

∫ t

0

‖Zs‖∞e−λ(t−s)ds

holds for some constant c2 > 0, where λ = λ1 − Leλ1r0 > 0 as assumed above. Thus,
using Hölder’s inequality and applying Jensen’s inequality for the probability measure

ν(ds) := λe−λ(t−s)

1−e−λt ds on [0, t], we obtain

Eer‖Xt‖
2
∞ ≤ ec3

(
Eec3r‖Zt‖

2
∞
) 1

2

(
E exp

[
c3r

(
(1− e−λt)

λ

∫ t

0

‖Zs‖∞ν(ds)

)2]) 1
2

≤ ec3
(
Eec3r‖Zt‖

2
∞
) 1

2

(∫ t

0

E exp

[
c3r

λ2
‖Zs‖2∞

]
ν(ds)

) 1
2

≤ ec3 sup
s≥0

E exp
[ c3r

1 ∧ λ2
‖Zs‖2∞

]
, t ≥ 0, r > 0

(3.10)

for some constant c3 > 0. Thus, when r > 0 is small enough, (3.4) follows from (3.5).

Now, we are in position check condition (iii) in theorem 1.1.

Lemma 3.2. Assume (A1) and (A2). If λ > 0, then Pt admits a unique invariant measure
µ. Moreover, µ(eε‖·‖

2
∞) <∞ for some ε > 0.

Proof. The proof is similar to that of [3, Lemma 2.4]. Let µξt be the law of Xξ
t . Note that

if µξt converges weakly to a probability measure µξ as t → ∞, then µξ is an invariant
probability measure of Pt (see, e.g., [6, Theorem 3.1.1]. Let P(C ) be the set of all
probability measures on C . Consider the L1-Wasserstein distanceW induced by ρ(ξ, η) :=

1 ∧ ‖ξ − η‖∞, i.e.,
W (µ1, µ2) := inf

π∈C (µ1,µ2)
π(ρ), µ1, µ2 ∈P(C ),
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where C (µ1, µ2) is the set of all couplings for µ1 and µ2. It is well known that P(C ) is
a complete metric space with respect to the distance W (see, e.g., [5, Lemma 5.3 and
Lemma 5.4]), and the topology induced by W coincides with the weak topology (see, e.g.,
[5, Theorem 5.6]). So, to show existence of an invariant measure, it is sufficient to prove
that µξt is a W -Cauchy sequence as t→∞, i.e.,

lim
t1,t2→∞

W (µξt1 , µ
ξ
t2) = 0. (3.11)

For any t2 > t1 > 0, consider the following SPDEs

dX(t) = {AX(t) + b(Xt)}dt+ σdW (t), t ∈ [0, t2], X0 = ξ,

and
dY (t) = {AY (t) + b(Yt)}dt+ σdW (t), t ∈ [t2 − t1, t2], Yt2−t1 = ξ.

Then, the laws of Xt2(ξ) and Yt2(ξ) are µξt2 and µξt1 , respectively. Also, following an
argument leading to derive (3.2), we obtain

eλ1tE‖Xt − Yt‖2∞ ≤ c1E‖Xt2−t1 − ξ‖2∞ +Leλ1r0

∫ t

t2−t1
eλ1sE‖Xs − Ys‖2∞ds, t ∈ [t2 − t1, t2]

for some constant c1 > 0. By Gronwall’s inequality and λ = λ1 − Leλ1r0 > 0 as assumed
above, this implies

E‖Xt − Yt‖2∞ ≤ c1e−λ(t−t2+t1)E‖Xt2−t1 − ξ‖2∞, t ∈ [t2 − t1, t2].

Combining this with (3.4) yields

E‖Xt2 − Yt2‖2∞ ≤ c2e−λt1

so that
W (µξt1 , µ

ξ
t2) ≤ E‖Xt2 − Yt2‖∞ ≤

√
c2e−

λt1
2 .

Therefore, (3.11) holds, and, by the completeness of W , there exists µξ ∈ P(C ) such
that

lim
t→∞

W (µξt , µ
ξ) = 0. (3.12)

To prove the uniqueness, it suffices to show that µξ is independent of ξ ∈ C . This
follows since, by the triangle inequality, (3.3) and (3.12),

W (µξ, µη) ≤ lim
t→∞

{
W (µξt , µ

ξ) +W (µηt , µ
η) +W (µξt , µ

η
t )
}

= 0, ξ, η ∈ C .

Finally, since µ0
t → µ weakly as t→∞, by (3.4) we have

µ(er‖·‖
2
∞) = lim

N→∞
µ(N ∧ er‖·‖

2
∞) = lim

N→∞
lim
t→∞

E(N ∧ er‖X
0
t ‖

2
∞) <∞.

Thus, the proof is finished.

With the above preparations, we present below a proof of Theorem 1.2.

Proof of Theorem 1.2. According to Theorem 1.1, the first two assertions follow from
(3.1), (3.2) and Lemma 3.2. It remains to prove the last assertion. According to [13,
Proposition 2.2], the Harnack inequality (3.1) implies the log-Harnack inequality

Pt0 log f(ξ) ≤ logPt0f(η) +
c0
2
‖ξ − η‖2∞, 0 < f ∈ Bb(C ), ξ, η ∈ C .
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By [2, Proposition 2.3], this implies

|Pt0f(ξ)− Pt0f(η)|2 ≤ c0‖ξ − η‖2∞‖f‖2∞, f ∈ Bb(C ), ξ, η ∈ C .

Combining this with the Markov property, we obtain

‖µξt0+t − µ
η
t0+t‖var ≤ 2 sup

‖f‖∞≤1
E|Pt0f(Xξ

t )− Pt0f(Xη
t )| ≤ 2

√
c0E‖Xξ

t −X
η
t ‖∞, t ≥ 0.

Therefore, the last assertion follows from (3.3).

4 Proof of Theorem 1.3

According to what we have done in the last section for the proof of Theorem 1.2, it
suffices to verify the existence and uniqueness of the invariant probability measure, as
well as conditions (i)-(iii) in Theorem 1.1. In the present setting we have to pay more
attention on the degenerate part. In particular, the known Harnack inequality (see [14,
Corollary 4.4.4]) does not meet our requirement as the exponential term in the upper
bound is not integrable with respect to the invariant probability measure. So, we first
establish the following Harnack inequality which extends the corresponding one in [15]
for the case without delay. The proof is modified from [15] using the coupling by change
measures. This method was introduced in [1] on manifolds and further developed in [12]
for SPDEs and in [7] for SDDEs, see [14] for a self-contained account on coupling by
change of measures and applications.

Lemma 4.1. Assume (B1)-(B4). Then, for any t0 > r0, there exists a constant c > 0

such that

(Pt0f(ξ, η))2 ≤ ec(‖ξ−ξ‖
2
∞+‖η−η‖2∞)Pt0f

2(ξ, η), (ξ, η), (ξ, η) ∈ C , f ∈ Bb(C ). (4.1)

Proof. Let (X(t), Y (t)) = (Xξ,η(t), Y ξ,η(t)) for t ≥ 0, and let (X(t), Y (t)) solve the follow-
ing equation for (X0, Y 0) = (ξ, η):{

dX(t) = {A1X(t) +BY (t)}dt,
dY (t) =

{
A2Y (t) + b(Xt, Yt) +

1[0,t0−r0](t)

t0−r0 etA2(η(0)− η(0)) + etA2h′(t)
}

dt+ σdW (t),

where

h(t) := t(t0 − r0 − t)+B∗e−tA
∗
0e, t ∈ [0, t0] (4.2)

for A0 in (B4) and some e ∈ H1 to be determined. Obviously,

Y (t)− Y (t) = etA2

{ (η(0)− η(0))(t0 − r0 − t)+

t0 − r0
+ h(t)

}
, t ∈ [0, t0]. (4.3)

In particular, we have Y t0 = Yt0 . Next, the equations of X(t) and X(t) yield

X(t)−X(t) = etA1(ξ(0)− ξ(0)) +

∫ t

0

e(t−s)A1B(Y (s)− Y (s))ds. (4.4)

Substituting (4.3) into (4.4), we find that

X(t)−X(t) = etA1(ξ(0)−ξ(0))+

∫ t

0

e(t−s)A1BesA2

{ (η(0)− η(0))(t0 − r0 − s)+

t0 − r0
+h(s)

}
ds.
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By virtue of (B4) and the definition of h, this implies

X(t)−X(t)

= etA1(ξ(0)− ξ(0)) +

∫ t

0

e(t−s)A1esA1esA0B
{ (η(0)− η(0))(t0 − r0 − s)+

t0 − r0
+ h(s)

}
ds

= etA1

(
ξ(0)− ξ(0) +

∫ t

0

esA0B
{ (η(0)− η(0))(t0 − r0 − s)+

t0 − r0
+ h(s)

}
ds

)
= etA1

(
ξ(0)− ξ(0) +

∫ t0−r0

0

esA0B
{ (η(0)− η(0))(t0 − r0 − s)

t0 − r0
+ h(s)

}
ds

)
(4.5)

for any t ∈ [t0 − r0, t0]. Moreover, (B4) implies that

Q̃t0−r0 :=

∫ t0−r0

0

s(t0 − r0 − s)esA0BB∗esA
∗
0ds

is invertible on H1. In (4.2), in particular, take

e = −Q̃−1t0−r0
{
ξ(0)− ξ(0) +

∫ t0−r0

0

t0 − r0 − s
t0 − r0

esA0B(η(0)− η(0))ds
}
.

Then, inserting h(·) back into (4.5) leads to X(t) = X(t) for arbitrary t ∈ [t0 − r0, t0], i.e.,
Xt0 = Xt0 . Therefore, we arrive at (Xt0 , Yt0) = (Xt0 , Y t0).

Let

W̃ (t) = W (t) +

∫ t

0

φ(s)ds, t ∈ [0, t0],

where

φ(t) := σ−1
(
b(Xt, Yt)− b(Xt, Y t) +

1[0,t0−r0](t)

t0 − r0
etA2(η(0)− η(0)) + etA2h′(t)

)
.

By (4.3) and (4.5), for some constant C > 0 we have

‖Xt −Xt‖2∞ + ‖Yt − Y t‖2∞ ≤ C(‖ξ − ξ‖2∞ + ‖η − η‖2∞), t ∈ [0, t0]. (4.6)

Thus, by the Girsanov theorem (see, e.g., [6, Theorem 10.14]), {W̃ (s)}t∈[0,T ] is a cylindri-
cal Wiener process under the weighted probability measure dQ := RdP with

R := exp
(
−
∫ t0

0

〈φ(s),dW (s)〉 − 1

2

∫ t0

0

|φ(s)|2ds
)
.

Now, we reformulate the equation for (X(t), Y (t)) as{
dX(t) = {A1X(t) +BY (t)}dt,
dY (t) = {A2Y (t) + b(Xt, Yt)}dt+ σdW̃ (t), t ∈ [0, t0].

Then, invoking the weak uniqueness of the equation and using (Xt0 , Y t0) = (Xt0 , Yt0),
we derive that

(Pt0f(ξ, η))2 =
{
EQf(Xt0 , Y t0)

}2
=
{
E(Rf(Xt0 , Yt0)

}2
≤ (ER2)Ef2(Xt0 , Yt0) = (ER2)Pt0f

2(ξ, η).

Combining this with (4.6) and the definitions of R and φ, we prove (4.1) for some constant
c > 0.
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Next, the following lemma verifies condition (ii) in Theorem 1.1. As explained in
Section 3 that we may and do assume λ = λ1 − λ′eλ1r0 > 0; otherwise in the sequel it
suffices to replace λ1 by λ′1 ∈ (0, λ1] which attains the maximum in the definition of λ.

Lemma 4.2. Assume (B1)-(B3) and let (1.9) hold. Then there exists c > 0 such that for
λ := sups∈(0,λ1](s− λ

′esr0) > 0,

‖Xξ,η
t −Xξ,η

t ‖∞ + ‖Y ξ,ηt − Y ξ,ηt ‖∞ ≤ c(‖ξ − ξ‖∞ + ‖η − η‖∞)e−λt (4.7)

for any t ≥ 0, (ξ, η), (ξ, η) ∈ C .

Proof. By (B1)-(B3), we have

eλ1t|Xξ,η(t)−Xξ,η(t)| − |ξ(0)− ξ(0)|

≤
∫ t

0

eλ1s{δ|Xξ,η(s)−Xξ,η(s)|+ ‖B‖ · |Y ξ,η(s)− Y ξ,η(s)|}ds,

eλ1t|Y ξ,η(t)− Y ξ,η(t)| − |η(0)− η(0)|

≤
∫ t

0

eλ1s{K1‖Xξ,η
s −Xξ,η

s ‖∞ +K2‖Y ξ,ηs − Y ξ,ηs ‖∞}ds.

(4.8)

Next, let

α =
δ −K2 +

√
(K2 − δ)2 + 4K1‖B‖

2‖B‖
. (4.9)

It is easy to see that α > 0 and, for λ′ > 0 defined in (1.9), we have

αδ +K1 = λ′α, α‖B‖+K2 = λ′. (4.10)

Combining (4.8), (4.9) with (4.10), we derive

eλ1t(α‖Xξ,η
t −Xξ,η

t ‖∞ + ‖Y ξ,ηt − Y ξ,ηt ‖∞)

≤ eλ1r0
{
α‖ξ − ξ‖∞ + ‖η − η‖∞

+

∫ t

0

eλ1s((δα+K1)‖Xξ,η
s −Xξ,η

s ‖∞ + (α‖B‖+K2)‖Y ξ,ηs − Y ξ,ηs ‖∞)ds
}

≤ eλ1r0
{
α‖ξ − ξ‖∞ + ‖η − η‖∞

+ λ′
∫ t

0

eλ1s(α‖Xξ,η
s −Xξ,η

s ‖∞ + ‖Y ξ,ηs − Y ξ,ηs ‖∞)ds
}
.

Therefore, we complete the proof by using Gronwall’s inequality and λ = λ1−λ′eλ1r0 > 0

as assumed above.

Moreover, corresponding to Lemma 3.1 for the non-degenerate case, we have the
following result on the exponential integrability of the segment solution.

Lemma 4.3. Assume (B1)-(B3) and let (1.9) hold. Then there exists a constant ε > 0

such that
sup
t≥0

Eeε(‖X
ξ,η
t ‖

2
∞+‖Y ξ,ηt ‖2∞) <∞, (ξ, η) ∈ C .

Proof. By Lemma 4.2, it suffices to prove for (ξ, η) ≡ (0, 0). Simply denote (Xt, Yt) =

(X0,0
t , Y 0,0

t ). We have

X(t) =

∫ t

0

e(A1−δ)(t−s)
(
δX(s) +BY (s)

)
ds, t ≥ 0.
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Then, (B3) yields

eλ1t|X(t)| ≤
∫ t

0

eλ1s{‖B‖ · |Y (s)|+ δ|X(s)|}ds. (4.11)

Next, according to (B1) and (B2), it follows that

eλ1t|Y (t)| ≤
∫ t

0

eλ1s{c0 +K1‖Xs‖∞ +K2‖Ys‖∞}ds+ eλ1t
∣∣∣ ∫ t

0

eA2(t−s)σdW (s)
∣∣∣ (4.12)

holds for c0 := |b(0, 0)|. Obviously, using (H2, A2) to replace (H, A), we see that (3.5)
holds for

Zt(θ) :=

∫ (t+θ)+

0

eA2(t−s)σdW (s), θ ∈ [−r0, 0].

Combining (4.10), (4.11) with (4.12), for the present Zt we have

eλ1t(α‖X(t)‖∞ + ‖Y (t)‖∞)

≤ eλ1r0
(
α sup
−r0≤θ≤0

(eλ1(t+θ)|X(t+ θ)|) + sup
−r0≤θ≤0

(eλ1(t+θ)|Y (t+ θ)|)
)

≤ eλ1r0
(∫ t

0

eλ1s{c0 + (αδ +K1)‖Xs‖∞ + (α‖B‖+K2)‖Ys‖∞}ds+ eλ1t‖Zt‖∞
)

≤ c1eλ1t
(
1 + ‖Zt‖∞

)
+ λ′eλ1r0

∫ t

0

eλ1s(α‖Xs‖∞ + ‖Ys‖∞)ds

for some constant c1 > 0. By Gronwall’s inequality and λ = λ1 − λ′eλ1r0 > 0 as assumed
above, this yields

α‖Xt‖∞ + ‖Yt‖∞ ≤ c1
(
1 + ‖Zt‖∞

)
+ c1λ

′eλ1r0

∫ t

0

(
1 + ‖Zs‖∞

)
e−λ

′′(t−s)ds

≤ c2
(

1 + ‖Zt‖∞ +

∫ t

0

‖Zs‖∞e−λ
′′(t−s)ds

)
for some constant c2 > 0. Hence, by using Hölder’s and Jensen’s inequalities as in (3.10)
and applying (3.5) for the present Zt, we finish the proof.

Finally, the following lemma ensures the existence and uniqueness of invariant
probability measure and verifies condition (iii) in Theorem 1.1, so that the proof of
Theorem 1.3 is finished.

Lemma 4.4. Assume (B1)- (B3) and (1.9). Then Pt has a unique invariant measure µ.
Moreover, µ(eε‖·‖

2
∞) <∞ holds for some constant ε > 0.

Proof. Let µξ,ηt be the distribution of (Xξ,η
t , Y ξ,ηt ) and let

ρ((ξ, η), (ξ, η)) = 1 ∧ (‖ξ − ξ‖∞ + ‖η − η‖∞).

Making using of Lemmas 4.2 and 4.3 and carrying out an argument of Lemma 3.2, we
only need to prove that {µξ,ηt }t≥0 is W -Cauchy as t→∞.

For any t2 > t1 > 0, let (X̃(t), Ỹ (t)) solve equation (1.8) for t ∈ [t2 − t1, t2] with
(X̃t2−t1 , Ỹt2−t1) = (ξ, η). Then, the laws of (X̃t2 , Ỹt2) is µξ,ηt1 . So,

W (µξ,ηt1 , µ
ξ,η
t2 ) ≤ E

(
‖Xξ,η

t2 − X̃t2‖∞ + ‖Y ξ,ηt2 − Ỹt2‖∞
)
. (4.13)

Next, repeating the proof of Lemma 4.2 for t ∈ [t2 − t1, t2] and (X̃t, Ỹt) in place of

(Xξ,η
t , Y ξ,ηt ), we obtain

‖Xξ,η
t2 − X̃t2‖∞ + ‖Y ξ,ηt2 − Ỹt2‖∞ ≤ c(‖ξ −X

ξ,η
t2−t1‖∞ + ‖η − Y ξ,ηt2−t1‖∞)e−λt1
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for some constant c > 0 independent of t1 and t2. Combining this with (4.13) and using
Lemma 4.3, we prove limt1,t2→∞W (µξ,ηt1 , µ

ξ,η
t2 ) = 0.
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