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Abstract

In this work we connect the theory of symmetric Dirichlet forms and direct stochastic
calculus to obtain strong existence and pathwise uniqueness for Brownian motion that
is perturbed by a series of constant multiples of local times at a sequence of points
that has exactly one accumulation point in R. The considered process is identified
as special distorted Brownian motion X in dimension one and is studied thoroughly.
Besides strong uniqueness, we present necessary and sufficient conditions for non-
explosion, recurrence and positive recurrence as well as for X to be semimartingale
and possible applications to advection-diffusion in layered media.
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1 Introduction

In this paper we are concerned with a special distorted Brownian motion in dimension
one. Distorted BM in dimension d was first introduced in [1]. It is roughly speaking the
Hunt process associated to the regular Dirichlet form

E(f, g) :=
1

2

∫
Rd
∇f · ∇g dµ, f, g ∈ D(E),

on L2(Rd;µ), where µ is a Radon measure on Rd with full support. If µ = ρ dx is
absolutely continuous with respect to the Lebesgue measure dx, then the conditions on
ρ for an extension of (E , C∞0 (Rd)) ⊂ D(E)) to be associated to a Hunt process are quite
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On countably skewed Brownian motion

weak (cf. [7, Theorem 3.1.6]). In particular, if the partial derivatives of ρ are absolutely
continuous and sufficiently regular, we obtain using integration by parts

E(f, g) = −
∫
Rd

(
1

2
∆f +

∇ρ
2ρ
· ∇f

)
g dµ,

and we can see that the process associated to (E , D(E)) is a d-dimensional BM with drift
∇ρ
2ρ (cf. [8]).
In this work, we will take a particularly probabilistic viewpoint on distorted BM. For a
given a.e. strictly positive nice function ρ, distorted BM in dimension one with initial
condition x ∈ R may be regarded (whenever it makes sense) as a solution to

Xt = x+Wt +

∫
R

`at (X)
dρ(a)

2ρ(a)
, (1.1)

where W is a standard BM and `a(X) the symmetric semimartingale local time of X at
a ∈ R. (1.1) makes in particular sense, when ρ is weakly differentiable with derivative
ρ′ ∈ L1

loc(R; dx), and 1
ρ is not too singular. In this case, we obtain by the occupation times

formula ∫
R

`at (X)
dρ(a)

2ρ(a)
=

∫ t

0

ρ′

2ρ
(Xs)ds,

so that (1.1) is a BM with logarithmic derivative as a drift. The Bessel processes of
dimension δ ∈ (1, 2) fall into this category with ρ(x) = |x|δ−1. In this paper, however, we
will consider a very special ρ whose logarithmic derivative has no absolutely continuous
component. More precisely, we consider a concrete simple function ρ whose logarithmic
derivative is an infinite sum of Dirac measures such that (1.1) can be rewritten as

Xt = x+Wt +
∑
k∈Z

(2αk − 1)`zkt (X), (1.2)

where (zk)k∈Z is an unbounded sequence of real numbers that may have an accumulation
point and αk ∈ (0, 1), k ∈ Z are real numbers (see (2.17) for the concrete ρ).
To our knowledge, an equation of the form (1.2) first occurs explicitly in [32], [31] as
special one dimensional case. There, weak existence and pathwise uniqueness of some
multidimensional analogue of (1.2) with additional diffusion coefficient and absolutely
continuous drift was studied. However, [32], [31] do not allow for accumulation points
and the one dimensional case is already covered by earlier work of Le Gall [15]. There
Le Gall obtained weak existence and pathwise uniqueness of (1.1) in a general global
setting, where dρ(a)

2ρ(a) is replaced by an arbitrary signed measure ν(da) with globally
bounded total variation and whose absolute value on atoms is strictly less than one (in
Le Gall’s setting there is also some diffusion coefficient, see (3.6) below). Although
Le Gall’s global condition applied to (1.2) is equivalent to

∑
k∈Z |2αk − 1| < ∞ and is

quite strong, it does not exclude the possibility of accumulation points. In case (zk)k∈Z
has no accumulation points and

∑
k∈Z |2αk − 1| < ∞, Ramirez considers in [22] the

pathwise unique solution to (1.2) of [15] as regular diffusion (cf. [12]) and presents
interesting applications to advection-diffusions in layered media. Our work includes all
the mentioned cases. For a more detailed discussion, we refer to the end of Section 3.1.
We discover at least two interesting phenomena that seem to be generic for equations
with a drift as in (1.2) and we fully characterize these. First, a solution to (1.2), which
by definition is a semimartingale and continuous up to infinity (hence non-explosive)
may exist, even if

∑
{k | zk∈U0} |2αk − 1| =∞, where U0 is any neighborhood of the accu-

mulation point (see Remark 2.7 and Example 2.9). In fact the semimartingale property
is equivalent to ρ(a) being locally of bounded variation (see (S0) below). In particular,

EJP 20 (2015), paper 82.
Page 2/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3640
http://ejp.ejpecp.org/


On countably skewed Brownian motion

we are able to consider (1.1), even if dρ(a)
ρ(a) is not locally of bounded total variation.

Furthermore, (1.2) is not automatically non-explosive, i.e. a solution to (1.2) might not
exist. We present an example with explosion in finite time where the sequence (zk)k∈Z
has an accumulation point at infinity, but none in R (see Example 3.6). In this case,
we may nonetheless consider a solution up to lifetime with local times defined in the
Dirichlet form sense via the Revuz correspondence (cf. Remark 2.4).
A pathwise unique solution to (1.2) shall be called countably skewed Brownian motion in
order to contrast with the terminology of multi-skewed Brownian motion in [22] when
(zk)k∈Z has no accumulation point. For the proof of strong existence and pathwise
uniqueness of (1.2), we need two types of conditions. The first one is the local condition∑
{k | zk∈U0} |2αk−1| <∞ and the second is a global condition that ensures non-explosion

(see Theorem 3.9 and discussions in Remarks 3.10 and 3.5 where we relate our work
to [15]). Both conditions are explicit. The local condition is optimal in the sense that it
is equivalent to the existence of a nice scale function (see Remark 3.1) and the global
condition on non-explosion is sharp (see Proposition 3.3, Corollary 3.4 and Remark 3.5).
We emphasize that the global conditions (C0) and (C1) are directly readable from the
density ρ in (2.1) of the underlying Dirichlet form (E , D(E)) determined by (2.2). In
fact, the construction of a solution to (1.2) is performed via Dirichlet form theory. The
key point is to identify (1.2) as distorted BM. This is done in Proposition 2.10 where
starting from (1.2), the density ρ for which (1.2) is a distorted BM with respect to the
Dirichlet form given by (2.2) is determined. The identification of the distorted BM (2.5)
in Theorem 2.3 with a solution to equation (1.2) (see (2.13) in Corollary 2.5) is done
with the help of (2.12). Note that the approach through distorted BM, i.e. through the
process associated to the Dirichlet form (2.2), is more general than the approach through
(1.2), since distorted BM does not need to be semimartingale. Necessary and sufficient
conditions for the latter are presented in Theorem 2.3.
In addition to the above mentioned results, we present necessary and sufficient condi-
tions for transience, recurrence and positive recurrence, as well as a sufficient condition
for the existence of a unique invariant distribution (see Theorem 3.11, Theorem 3.14 and
Corollary 3.16). These results are quite standard from the existence of a scale function h
as in Remark 3.1 and similar results were also presented in [22]. However, we insist on
explicitly pointing out that in each of these statements, additionally to the statements
corresponding to the scale function, an equivalent condition for the Dirichlet form (2.2)
is presented. This underlines our bidirectional approach.
In section 3.3, we use the theory of generalized Dirichlet forms as applied in [29], as
well as the results of this work to propose a generalization for the longitudinal and
transverse directions of advection-diffusion in layered media considered in [22] and [23]
(see Remark 3.18).
Finally, we want to say a few words on skew reflected diffusions and corresponding
uniqueness results. If all αk except α := α1 are 1

2 in (1.2) and z1 = 0, then X is called the
α-skew Brownian motion (see Remark 2.8). It was first considered by Itô and McKean
(see e.g. [11, Section 4.2, Problem 1]) and strong uniqueness was derived in [10]. Skew
reflected diffusions and strong uniqueness results have been considered by many authors
then. Additionally to [32, 31, 15] the existence and uniqueness results of [4], [27], [28]
and [2] are particularly close to ours. A survey on skew reflected diffusions is given in
[16].
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2 Construction and basic properties of a countably skew reflected
Brownian motion

In this section, we first construct a countably skew reflected Brownian motion by
Dirichlet form methods. As a byproduct of the construction method, its basic properties
like diffusion and semimartingale property as well as the explicit form of SDE that it
solves are directly readable from the density ρ of the Dirichlet form. Besides in remarks
and examples, we point out some remarkable features of the constructed process.
We consider two sequences of real numbers (lk)k∈Z and (rk)k∈Z such that

lk < lk+1 < 0 < rk < rk+1, ∀k ∈ Z,

and lim
k→∞

lk = 0 = lim
k→−∞

rk.

We suppose further, that zero is the sole accumulation point of the sequences (lk)k∈Z,
(rk)k∈Z. In particular

lim
k→−∞

lk = −∞ and lim
k→∞

rk =∞.

Let (γk)k∈Z and (γk)k∈Z be another two sequences of arbitrary, but strictly positive real
numbers. Let

ρ(x) :=
∑
k∈Z

{
γk+11(lk,lk+1) + γk+11(rk,rk+1)

}
(x), (2.1)

where 1A is the indicator function of the set A and (a, b) the open interval from a to b.
Since ρ appears as density to the Lebesgue measure we do not have to care about the
values of ρ at the boundary points lk, rk, 0 at the moment. However, whenever we have
to choose a pointwise version, we will choose its “symmetric” version ρ̃ (cf. (2.17) below).
With the sole exception of Proposition 2.10, we always assume that

ρ ∈ L1
loc(R; dx).

Then ρdx is a positive Radon measure and the bilinear form

E(f, g) :=
1

2

∫
R

f ′(x)g′(x)ρ(x)dx, f, g ∈ C∞0 (R), (2.2)

is well defined. Here C∞0 (R) denotes the space of infinitely often continuously differen-
tiable functions with compact support and f ′ denotes the derivative of f . By definition
of the sequences (γk)k∈Z and (γk)k∈Z, ρ is bounded above and below away from zero
on each compact subset of R \ {0}. Thus each point of R \ {0} is a regular point for ρ,
and so by the results of [7, Theorem 3.1.6] (E , C∞0 (R)) is closable in L2(R; ρdx). The
closure (E , D(E)) is a regular symmetric Dirichlet form (see [7, pages 3-6]). Indeed, the
regularity, i.e. that C0(R) ∩D(E) is dense both in the continuous functions with compact
support C0(R) and in D(E), just follows from the fact that we constructed (E , D(E)) as
the closure of (E , C∞0 (R)). The submarkovian property of (E , D(E)) (called Markovian
property in [7]) follows easily by showing [7, (1.1.6)] with the help of a mollifier as in [7,
Problem 1.2.1].
Let (Tt)t≥0 be the strongly continuous submarkovian (called Markovian in [7]) contrac-
tion semigroup on L2(R; ρdx) that is associated to (E , D(E)) (see [7, Section 1.3]). By
general Dirichlet form theory (see [7, Chapter 7]) there exists a Hunt process with life
time ζ and cemetery ∆

((Xt)t≥0,F , (Ft)t≥0, ζ, (Px)x∈R∪{∆})
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such that x 7→ Ex[f(Xt)] is a quasi-continuous dx-version of Ttf for any (Borel measur-
able) f ∈ L2(R; ρdx), and Ex denotes the expectation with respect to Px.

The semigroup (Tt)t≥0 can be regarded as a semigroup on L∞(R; ρdx) (see [7, p. 49]).
Then (E , D(E)) is called conservative, if Tt1R(x) = 1 for dx-a.e. x ∈ R and any t ≥ 0.
Throughout this section (but see Remark 2.4), we assume

(H0) (E , D(E)) is conservative.

For instance, if ∫ ∞
1

r

log v(r)
dr = +∞,

where v(r) :=
∫
Br(0)

ρ(x)dx, or if there exists some T > 0 such that for any R > 0

lim inf
r→∞

e−
r2

2T

r

∫
{|x|<
√
eR+r−1}

ρ(x)dx = 0,

then (E , D(E)) is conservative (see [30, Theorem 4] and [33, Theorem 2.2]). Necessary
and sufficient conditions are presented a posteriori in Proposition 3.3, Corollary 3.4 and
Remark 3.5, in case (S0) and (S1) below hold.

Let cap be the capacity related to (E , D(E)) as defined in [7, p.64]. Since C∞0 (R) is a spe-
cial standard core for (E , D(E)), and (E , D(E)) is except in zero locally comparable with
the Dirichlet form 1

2

∫
R
f ′(x)g′(x)dx, f, g ∈ H1,2(R) := {f ∈ L2(R; dx) | f ′ ∈ L2(R; dx)} of

Brownian motion, it follows from [7, Lemma 2.2.7 (ii), and Theorem 4.4.3] that

cap({x}) > 0 for any x ∈ R \ {0}.

We will consider the following assumption on (E , D(E)):

(H1) cap({0}) > 0.

Remark 2.1. (H1) holds if for instance ∃ limk→∞ γk, limk→−∞ γk > 0. In this case ρ is
locally bounded away from zero and above. Therefore, the Dirichlet norm of (E , D(E)) is
(everywhere) locally comparable with the Dirichlet norm of 1

2

∫
R
f ′(x)g′(x)dx on H1,2(R),

which is as we remarked before the Dirichlet form of Brownian motion. (E , D(E)) has
hence the same exceptional sets as Brownian motion, i.e. (H1) holds (see [7, Lemma
2.2.7(ii) and Theorem 4.4.3]).

Proposition 2.2. Under (H1), the Hunt process ((Xt)t≥0,F , (Ft)t≥0, ζ, (Px)x∈R∪{∆}) as-
sociated to (E , D(E)) is a conservative diffusion, i.e. we have:

(i) The process has infinite life time, namely

Px[ζ =∞] = Px[Xt ∈ R,∀t ≥ 0] = 1 for all x ∈ R.

(ii) The process is a diffusion, namely

Px[t 7→ Xt is continuous on [0,∞)] = 1 for all x ∈ R.

If (H1) does not hold, then in general (i), (ii) are only valid for all x ∈ R \ {0}.

Proof. We have P·[Xt ∈ R] = Tt1R dx-a.e. Thus by (H0) R11R(x) :=
∫∞

0
e−tPx[Xt ∈

R]dt = 1 for dx-a.e. x ∈ R. Since R11R is 1-excessive, it follows that R11R(x) = 1 for all
x ∈ R \N1, where N1 ⊂ R satisfies cap(N1) = 0. It follows Px[ζ =∞] = Px[Xt ∈ R,∀t ≥
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0] = 1 for all x ∈ R \N1.
Since (E , D(E)) is (strongly) local we obtain by [7, Theorem 4.5.1 (ii)] that

Px[t 7→ Xt is continuous on [0, ζ)] = 1 for all x ∈ R \N2

where N2 ⊂ R satisfies cap(N2) = 0. By considering N := N1 ∪N2 if necessary, we may
assume that N := N1 = N2. Since {0} is the only non-trivial subset of R which might
have zero capacity we obtain that ((Xt)t≥0, (Px)x∈R) is a conservative diffusion for any
x ∈ R \ {0}, and under (H1) for any x ∈ R.

Next, we want to identify the stochastic differential equation verified by (Xt)t≥0. In
Dirichlet form theory this is done via the Fukushima decomposition for (Xt)t≥0 in the
following way:
Let (L,D(L)) denote the self-adjoint generator of (E , D(E)) (cf. [7, Section 1.3]). Then

−E(f, g) =

∫
R

Lf · g ρ dx, f ∈ D(L), g ∈ D(E). (2.3)

Now, in order to identify the drift of (Xt)t≥0, we have to evaluate L at the identity map
which is (typically) even not locally in D(L). However, the identity map is (typically)
locally in D(E) and so the left hand side of (2.3) can be evaluated. The drift is then
identified with a signed Radon measure (cf. (2.8)). If this measure is smooth in the sense
of [7] then it corresponds uniquely to a continuous additive functional via the Revuz
correspondence (cf. [7, Theorem 5.1.4]). This additive functional it then the drift part of
(Xt)t≥0. The identification of the local martingale part in Fukushima’s decomposition is
particularly easy in our situation. Since its quadratic variation is related to the energy E
one obtains

(〈M [id]〉t)t≥0 ↔ (id′)2ρdx = ρdx

and the Revuz measure of At ≡ t is ρdx (by a straightforward calculation). So by
uniqueness of the Revuz correspondence 〈M [id]〉t ≡ t.
Theorem 2.3. (i) Under (H1), the family M := ((Xt)t≥0, (Px)x∈R) associated to (E , D(E))

satisfies: for x ∈ R, ((Xt)t≥0, Px) is a semimartingale, if and only if∑
k≤0

|γk+1 − γk|+
∑
k≥0

|γk+1 − γk| <∞. (S0)

In particular (S0) implies

∃ lim
k→∞

γk =: γ ∈ [0,∞) and ∃ lim
k→−∞

γk =: γ ∈ [0,∞). (2.4)

(ii) If (H1) does not hold, then M is (always) a semimartingale for all x ∈ R \ {0}.
(iii) Suppose (H1) and (S0) hold. Then we have for all x ∈ R

Xt = x+Wt +
∑
k∈Z

{
γk+1 − γk

2
`lkt +

γk+1 − γk
2

`rkt

}
+
γ − γ

2
`0t , t ≥ 0, Px-a.s. (2.5)

where (`at )t≥0 is the unique positive continuous additive functional (PCAF) of M (cf. [7,
Chapter 5.1]) that is associated via the Revuz correspondence (cf. [7, Theorem 5.1.3]) to
the smooth measure δa, a ∈ R, and ((Wt)t≥0, (Ft)t≥0, Px) is a Brownian motion starting
from zero for all x ∈ R.
(iv) If (H1) does not hold, then

Xt = x+Wt +
∑
k∈Z

{
γk+1 − γk

2
`lkt +

γk+1 − γk
2

`rkt

}
, t ≥ 0, Px-a.s. (2.6)

for all x ∈ R \ {0}.
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Proof. (i) Let id(x) := x for x ∈ R. Then id ∈ D(E)loc (cf [7, p. 117] for the definition),
and for any v ∈ C∞0 (R) we calculate

−E(id, v) = lim
k→∞

{−1

2

∫ lk+1

−∞
v′(x)ρ(x)dx− 1

2

∫ ∞
r−k

v′(x)ρ(x)dx}

= lim
n→∞

{∑
k≤n

γk+1 − γk
2

∫
R

v(x)δlk(dx)− γn+1

2

∫
R

v(x)δln+1
(dx)

+
∑
k≥−n

γk+2 − γk+1

2

∫
R

v(x)δrk+1
(dx) +

γ−n+1

2

∫
R

v(x)δr−n(dx)
}

(2.7)

where δx denotes the Dirac measure in x ∈ R. Thus in an informal way, we can write

−E(id, v) =

∫
R

v(x)ν(dx), (2.8)

with

ν =
∑
k∈Z

{
γk+1 − γk

2
δlk +

γk+1 − γk
2

δrk

}
+

limk→−∞ γk − limk→∞ γk
2

δ0, (2.9)

Under (H1) the notion of smooth measure is equivalent to the notion of Radon measure,
i.e. a positive measure on R is smooth, if and only if it is locally finite in R. Thus ν in
(2.9) is a signed smooth measure, if and only if its positive and negative parts are locally
finite in R. The last is the case, if and only if (S0) holds, because (S0) clearly implies
(2.4). Now the statement follows easily by [7, Theorem 5.5.4].
(ii) If (H1) does not hold, then ν is a signed smooth measure, if and only if it is locally
finite in R \ {0}. But ν is always locally finite in R \ {0} and so the assertion follows from
[7, Theorem 5.5.4].
(iii) By [7, Theorem 5.5.1] we only have to calculate the local martingale part M [id]

t , and

the local zero energy part N [id]
t appearing in the local Fukushima decomposition for

A
[id]
t = Xt −X0 = M

[id]
t +N

[id]
t . By (2.7), (S0), and (2.4) it immediately follows with [7,

Corollary 5.5.1] that

N
[id]
t =

∑
k∈Z

{
γk+1 − γk

2
`lkt +

γk+1 − γk
2

`rkt

}
+
γ − γ

2
`0t , t ≥ 0. (2.10)

Under (H1) the equality in (2.10) is strict, i.e. it holds Px-a.s. for all x ∈ R. Since M [id]
t is

a continuous local martingale it suffices to show that for its quadratic variation, we have
〈M [id]〉t = t. The Revuz measure µ〈M [id]〉 of 〈M [id]〉 satisfies

µ〈M [id]〉 = ρdx

which is the same than the Revuz measure of the additive functional At = t. Thus the
equality 〈M [id]〉t = t is strict by (H1).
(iv) If (H1) does not hold, then using (ii) and the same line of arguments as in (iii), with
u := id and test functions v ∈ D(E)b,Fn , n ≥ 1 in [7, Theorem 5.5.4], where (Fn)n≥1 is a
generalized nest, we obtain that

N
[id]
t =

∑
k∈Z

{
γk+1 − γk

2
`lkt +

γk+1 − γk
2

`rkt

}
, t ≥ 0. (2.11)

Px-a.s. for all x ∈ R \ {0}. As in (iii) we obtain 〈M [id]〉t = t in the sense of equivalence of
PCAFs. Thus 〈M [id]〉t = t Px-a.s. for all x ∈ R \ {0}. This completes our proof.
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Remark 2.4. If we do not assume (H0), then we obtain Theorem 2.3 exactly as before,
except that the semimartingale property and the identification of the associated pro-
cess only hold up to the lifetime ζ, i.e. for t < ζ. Indeed, the corresponding process
is then a diffusion up to lifetime, i.e. Proposition 2.2(ii) holds with ∞ replaced by ζ
(see proof of Proposition 2.2) and the semimartingale property, as well as the identifica-
tion of the process can be worked out up to lifetime exactly as in the proof of Theorem 2.3.

The PCAFs (`at )t≥0 in Theorem 2.3 can be uniquely determined up to a constant. If
((Xt)t≥0, Px) is a semimartingale, then

`lk =
2

γk+1 + γk
`lk(X), `rk =

2

γk+1 + γk
`rk(X), `0 =

2

γ + γ
`0(X) (2.12)

Px-a.s. for any k ∈ Z and for γ + γ 6= 0, where `a(X), a ∈ R, denotes the symmetric
semimartingale local time at a of ((Xt)t≥0, Px) as defined in [24, VI. (1.25) Exercise].
Once the process Xt is a semimartingale, this can be carried out by comparing the
symmetric Tanaka formula (see [24, VI. (1.2) Theorem] for the left version of it) for
|Xt − a| with the local Fukushima decomposition (cf. [7, Theorem 5.5.1]) for |Xt − a|,
where we choose a = 0 for γ + γ 6= 0, and a = lk, rk, k ∈ Z. This is done in all details
for the point a = 0 in the introduction of [25], but the procedure is exactly the same
for any other point. So, we omit the proof. Therefore, the following corollary follows
immediately from Theorem 2.3.

Corollary 2.5. (i) Suppose that ((Xt)t≥0, (Px)x∈R) is a semimartingale. If (H1) holds,
then for any x ∈ R

Xt = x+Wt +Nt, t ≥ 0, Px-a.s., (2.13)

with

Nt =
∑
k∈Z

{
(2αk − 1)`lkt (X) + (2αk − 1)`rkt (X)

}
+ (2α− 1)`0t (X), (2.14)

where `a(X) is the symmetric semimartingale local time of ((Xt)t≥0, (Px)x∈R) at a,
and (with γ, γ as defined in (2.4))

α =
γ

γ + γ
if γ 6= γ otherwise α =

1

2
, αk =

γk+1

γk+1 + γk
, αk =

γk+1

γk+1 + γk
, k ∈ Z.

(ii) If (H1) does not hold, then (2.13) holds for any x ∈ R \ {0} with

Nt =
∑
k∈Z

{
(2αk − 1)`lkt (X) + (2αk − 1)`rkt (X)

}
, (2.15)

where `a(X) is the symmetric semimartingale local time of ((Xt)t≥0, (Px)x∈R\{0})

at a.

Consequently, we have Px-a.s. 〈X〉t = 〈W 〉t = t for any t ≥ 0 and for all x ∈ R in case
of (i) (resp. for all x ∈ R \ {0} in case of (ii)). Thus by the occupation times formula [24],
we have

∫ t
0
1{y}(Xs)ds =

∫
R
1{y}(a)`at (X)da = 0 Px-a.s. for any x, y ∈ R in case of (i) (for

any x, y ∈ R \ {0} in case of (ii)), and so also∫ t

0

1{y}(Xs)dWs = 0, (2.16)

Px-a.s. for any t ≥ 0 and x, y ∈ R in case of (i) (for any x, y ∈ R \ {0} in case of (ii)).
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On countably skewed Brownian motion

Let us choose a “symmetric” pointwise version of ρ

ρ̃ :=
∑
k∈Z

{
γk+11(lk,lk+1) + γk+11(rk,rk+1) +

γk+1 + γk
2

1{lk} +
γk+1 + γk

2
1{rk}

}
+
γ + γ

2
1{0}. (2.17)

Condition (S0) implies that ρ̃ is locally of bounded variation and so dρ̃ is a signed Radon
measure that is locally of bounded total variation. In particular, it can be written as

dρ̃(a) =
∑
k∈Z

{
(γk+1 − γk)δlk(da) + (γk+1 − γk)δrk(da)

}
+ (γ − γ)δ0(da).

Then clearly Nt in (2.14) equals

1

2

∫
R

`at (X)
dρ̃(a)

ρ̃(a)
.

and so (2.13) has the form

Xt = x+Wt +
1

2

∫
R

`at (X)
dρ̃(a)

ρ̃(a)
. (2.18)

We will see below in Remark 2.7 and Example 2.9 that the signed measure dρ̃(a)
ρ̃(a) needs

not to be locally of bounded total variation in general.

Remark 2.6. Let ρ̃ be as in (2.17). Instead of (2.18), we could have considered the more
general equation

Xt = x+

∫ t

0

σ(Xs)dWs +

∫ t

0

b(Xs)ds+
1

2

∫
R

`at (X)
dρ̃(a)

ρ̃(a)
. (2.19)

Indeed, this is possible for very general σ and b by considering instead of the bilinear
form (2.2) on L2(R, ρdx), the bilinear form

E(f, g) :=
1

2

∫
R

σ2(x)f ′(x)g′(x)ρ(x)ϕ(x)dx, f, g ∈ C∞0 (R)

on L2(R, ρϕdx), where

ϕ(x) :=
1

σ(x)2
e
∫ x
0

2b
σ2

(y)dy.

If σ and b are not too singular, (2.19) may be derived by similar techniques as presented
here for ϕ ≡ 1. Thus, we do not expect any new phenomena resulting from σ and b,
except if σ and b are very singular as for instance in [5, 6, 26]. Such an analysis however,
mixing the techniques of [5, 6, 26] and the countably skew reflected Brownian motion
framework would lead us too far and is more suitably performed in a subsequent work.

Remark 2.7. Assume that (H1) holds. It may then happen that (S0) holds, i.e.∑
k≤0

|γk+1 − γk|+
∑
k≥0

|γk+1 − γk| <∞,

thus ((Xt)t≥0, (Px)x∈R) is a semimartingale by Theorem 2.3(i), but for the αk and αk
corresponding to the lk, k ≥ 0, and rk, k ≤ 0, we have∑

k≥0

|2αk − 1| =
∑
k≥0

∣∣∣∣γk+1 − γk
γk+1 + γk

∣∣∣∣ =∞ or
∑
k≤0

|2αk − 1| =
∑
k≤0

∣∣∣∣γk+1 − γk
γk+1 + γk

∣∣∣∣ =∞.
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On countably skewed Brownian motion

This happens typically if `0(X) ≡ 0. Indeed, `0(X) ≡ 0 implies the continuity of a 7→ `at (X)

in a = 0 by [24, VI.(1.7) Theorem]. Thus limk→∞ `lkt (X) = 0 and limk→−∞ `rkt (X) = 0.
This is for instance the case in Example 2.9 below with δ ∈ (1, 2).
On the other hand

∑
k≥0 |2αk − 1|+

∑
k≤0 |2αk − 1| <∞ is stronger than (S0) and (H1)

together as it implies (S0) and (S1) below (cf. Remark 3.10(ii)) and then also (H1) holds
(cf. Remark 2.1).

Example 2.8. (α-skew Brownian motion)
Let α ∈ (0, 1), and γk = 1−α

α , γk = 1, for all k ∈ Z, i.e. for x /∈ {lk, rk; k ∈ Z}

ρ(x) =
1− α
α

1(−∞,0)(x) + 1(0,∞)(x).

Then, since the corresponding Dirichlet (form) norm is equivalent to the one of Brownian
motion, we obtain that the corresponding process is conservative (even recurrent), and
(H1) holds. Thus the corresponding process is a conservative diffusion by Proposition
2.2. Moreover, clearly (S0) and (2.4) hold with γ = 1−α

α and γ = 1. Hence by Theorem
2.3 ((Xt)t≥0, Px) is a semimartingale for any x ∈ R. By Corollary 2.5 we have Nt =

(2α − 1)`0t (X), since αk = αk = 1
2 for all k ∈ Z. Hence ((Xt)t≥0, (Px)x∈R) is the α-skew

Brownian motion (cf e.g. [10], [11]).

Example 2.9. (Resemblance to Bessel processes)
In this example, we show that there is a solution to (2.13) (which by definition is a
conservative diffusion that is a semimartingale) with∑

k≥0

|2αk − 1|+
∑
k≤0

|2αk − 1| =∞.

Let −lk = r−k = 1
k for k ≥ 1, −lk = r−k = −k + 2 for k ≤ 0, and γk = (−lk)δ−1,

γk = (rk)δ−1, k ∈ Z, δ ∈ (0, 1) ∪ (1, 2) ∪ [2,∞). (The case δ = 1 corresponds to Brownian
motion.) Then ρ(x) is the upper Riemann step function of ϕ(x) := |x|δ−1 corresponding to
the partition (lk)k∈Z on (−∞, 0), and the lower Riemann step function of ϕ corresponding
to the partition (rk)k∈Z on (0,∞). We can hence easily see from [7, Example 2.2.4] that

cap({0}) > 0⇔ δ ∈ (0, 2).

By comparing the underlying Dirichlet form with the Dirichlet form of the Bessel pro-
cesses (in this case ρ(x) = |x|δ−1), and using [30, Theorem 4], we can see that (H0) holds
and so Proposition 2.2 applies. Moreover∑

k≤−2

|γk+1 − γk| = |1− lim
k→∞

k1−δ| and
∑
k≥1

|γk+1 − γk| = | lim
k→∞

k1−δ − 1|.

Thus by Theorem 2.3 the corresponding process is not a semimartingale if δ ∈ (0, 1),
and a semimartingale with respect to to all starting points that have positive capacity, if
δ ≥ 1.
However (cf. Remark 2.7), if δ ∈ (1, 2), then by the mean value theorem for some
ϑk ∈ [k, k + 1], k ≥ 1,

∑
k≤−2

∣∣∣∣γk+1 − γk
γk+1 + γk

∣∣∣∣ =
∑
k≥1

(k + 1)δ−1 − (k)δ−1

(k + 1)δ−1 + (k)δ−1

=
∑
k≥1

(δ − 1)ϑδ−2
k

(k + 1)δ−1 + (k)δ−1
≥
∑
k≥1

δ − 1

2
(k + 1)−1 = +∞.
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Exactly in the same way we can show∑
k≥0

∣∣∣∣γk+1 − γk
γk+1 + γk

∣∣∣∣ =∞.

Note that in this case `0t (X) ≡ 0, and `at (X), a ∈ {0, lk, rk, k ∈ Z} is uniquely associated
to its Revuz measure aδ−1δa. Moreover, aδ−1

n δan → 0 weakly whenever an → 0.

Our strategy to construct a solution to (2.13) was first to construct a solution to the
basic equation (2.5) via the underlying Dirichlet form determined by (2.2), and then
to rewrite (2.5) as (2.13) using (2.12). Now, we ask under which assumptions on the
underlying parameters a solution to (2.13) exists.

Proposition 2.10. Let (αk)k∈Z, (αk)k∈Z ⊂ (0, 1), be arbitrarily given. Let (lk)k∈Z, (rk)k∈Z,
be a partition of R as described at the beginning of Section 2. For arbitrarily chosen
γ0 > 0 and γ0 > 0 define

γk =

−1∏
j=k

1− αj
αj

γ0, k ≤ −1, γk =

k−1∏
j=0

αj
1− αj

γ0, k ≥ 1, (Gamdef0)

and

γk =

−1∏
j=k

1− αj
αj

γ0, k ≤ −1, γk =

k−1∏
j=0

αj
1− αj

γ0, k ≥ 1. (Gamdef1)

Suppose that (S0) holds for (γk)k≥0, (γk)k≤0 defined by (Gamdef0), (Gamdef1). Then
the bilinear form in (2.2) with ρ defined through (γk)k≥0, (γk)k≤0, (lk)k∈Z, and (rk)k∈Z
as above, is well defined and closable in L2(R; ρdx). Suppose that its closure (E , D(E))

satisfies (H0) and (H1). Then there exists a conservative diffusion ((Xt)t≥0, (Px)x∈R),
which is a semimartingale and which weakly solves (2.13).

Proof. Condition (S0) implies that ρ defined through (γk)k≥0, (γk)k≤0, and (lk)k∈Z, (rk)k∈Z
as in the statement is in L1

loc(R, dx). Therefore, exactly as explained after (2.2) the bi-
linear form (2.2) is well defined and closable in L2(R; ρdx). Since the closure (E , D(E))

is regular by construction and moreover satisfies (H0) and (H1) by assumption, we can
apply Corollary 2.5(i) to obtain the result.

Remark 2.11. Suppose that all the conditions of Proposition 2.10 are satisfied. Let γ, γ
be defined as in (2.4) where (γk)k≥0, (γk)k≤0 is given by (Gamdef0), (Gamdef1). If γ = 0,
γ > 0 or γ > 0, γ = 0, then α ∈ {0, 1} in (2.14). If γ = γ = 0, then α = 1

2 . If γ, γ > 0, then
we can obtain a solution to (2.13) for any α ∈ (0, 1) by varying γ0, γ0 in Proposition 2.10.
Note that the values of αk, αk are not influenced by varying γ0, γ0, only α is influenced.

3 Pathwise uniqueness, ergodic properties and applications to
advection-diffusion

In this section we investigate further properties of the process constructed in Section
2 under more restrictive assumptions on the density ρ. It turns out that (S0) and the
below (S1) are the right framework under which this process is to be considered. Starting
from these two assumptions as a basis, we derive sufficient conditions for pathwise
uniqueness and sharp conditions for non-explosion, recurrence and positive recurrence.
Having developed the necessary tools, we propose an application to advection-diffusions
in layered media via the theory of generalized Dirichlet forms.
In order to fix the final assumptions that will be in force throughout this section (see
right after Remark 3.1 below), we first fix ρ as in (2.1), such that (S0) holds. Note that

EJP 20 (2015), paper 82.
Page 11/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3640
http://ejp.ejpecp.org/
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then ρ ∈ L1
loc(R; dx) by (2.4). Furthermore, we assume that for γ, γ as defined in (2.4) it

holds γ, γ > 0. The latter implies that 1
ρ ∈ L

1
loc(R, dx) and that (H1) holds (see Remark

2.1). In contrast to section 2, we do not assume (H0). In particular, according to
Remark 2.4, we have that ((Xt)t≥0, (Px)x∈R) is a semimartingale and a diffusion up to
lifetime ζ = inf{t > 0 |Xt /∈ R} and for all x ∈ R it holds that

Xt = x+Wt +
∑
k∈Z

{
γk+1 − γk

2
`lkt +

γk+1 − γk
2

`rkt

}
+
γ − γ

2
`0t , t < ζ, Px-a.s. (3.1)

3.1 Conservativeness and pathwise uniqueness

Let α := γ
γ+γ . Suppose h : R → R is the difference of two convex functions and

piecewise linear with slope αγ
γk+1

on the interval (lk, lk+1) and slope (1−α)γ
γk+1

on the interval

(rk, rk+1), k ∈ Z. In particular h is continuous and uniquely determined up to a constant.
In order to fix a version, we let

h(0) = 0.

Let h′(x) = h′(x+)+h′(x−)
2 denote the symmetric derivative of h. In particular

h′(0) =
limk→−∞

(1−α)γ
γk+1

+ limk→∞
αγ
γk+1

2
=

1

2
.

Remark 3.1. h with the properties stated above exists, if and only if h′ is locally of
bounded variation, that is∑

k≥0

∣∣∣∣ 1

γk
− 1

γk+1

∣∣∣∣+
∑
k≤0

∣∣∣∣ 1

γk
− 1

γk+1

∣∣∣∣ <∞. (S1)

Note further that all our assumptions so far (namely (S0), γ, γ > 0 and the existence of h
as above) are satisfied, if and only if (S0) and (S1) hold.

According to Remark 3.1 we will assume (to the sole exception of Theorem 3.9) from
now on up to the end of Section 3 that (S0) and (S1) hold and fix h like above.

Lemma 3.2. (Yt := h(Xt))t≥0 is a continuous local martingale up to ζ with quadratic
variation

〈Y 〉t =

∫ t

0

(h′ ◦ h−1)2(Ys)ds, t < ζ, Px-a.s. (3.2)

for all x ∈ R.

Proof. (Cf. proof of Theorem 2.3) Note that h ∈ D(E)loc, since it can be approximated
locally in the Dirichlet space by its convolution with a standard Dirac sequence. For any
f ∈ C∞0 (R) we then calculate

−E(h, f) = −1

2
lim
n→∞

∑
−n≤k≤n

{∫ lk+1

lk

αγf ′(x)dx+

∫ rk+1

rk

(1− α)γf ′(x)dx

}

= −1

2
lim
n→∞

{αγ(f(ln+1)− f(l−n)) + (1− α)γ(f(rn+1)− f(r−n))}

= −1

2
{αγf(0)− (1− α)γf(0)} = 0. (3.3)

Therefore the drift N [h] in the Fukushima decomposition of h(Xt)− h(X0) vanishes on
account of [7, Theorem 5.5.4]. It then follows from [7, Theorem 5.5.1] that h(Xt) −
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h(X0) = M
[h]
t is a continuous local martingale up to lifetime. Under (H1) the equality

is strict, i.e. it holds Px-a.s. for all x ∈ R. The quadratic variation 〈M [h]〉 of the local
martingale M [h] can be identified by calculating its Revuz measure µ〈M [h]〉. We have

µ〈M [h]〉 = h′(x)2ρdx,

which is the same than the Revuz measure of the additive functional At =
∫ t

0
h′(Xs)

2ds.
We hence obtain by the uniqueness of the Revuz correspondence and (H1) that

〈M [h]〉t =

∫ t

0

h′(Xs)
2ds, t < ζ

Px-a.s. for all x ∈ R. Writing Xt = h−1(Yt) we obtain the final result.

Although, in our case we do not have a classical Itô-equation, we shall call the
function h in Lemma 3.2 scale function of the diffusion ((Xt)t≥0, (Px)x∈R), and then the
corresponding speed measure is

µ(dy) =
2

h′(y)
dy.

We let further for x ∈ R

Φ(x) :=
1

2

∫ x

0

h′(z)

∫ z

0

µ(dy) dz =

∫ x

0

h(x)− h(y)

h′(y)
dy.

Note that Φ is well defined and continuous, since h is strictly increasing and continuous,
and h′ is locally bounded and locally bounded away from zero by the assumption γ, γ > 0.
Indeed the latter implies h′(0) = 1

2 .

For a function f : R→ R we define

f(∞) := lim
x↗∞

f(x) and f(−∞) := lim
x↘−∞

f(x)

whenever the limits exist in R ∪ {±∞}.
Proposition 3.3. The following are equivalent:

(i) ((Xt)t≥0, (Px)x∈R) is conservative, i.e. Px(ζ = ∞) = 1 ∀x ∈ R, where ζ = inf{t >
0 |Xt /∈ (−∞,∞)} = inf{t > 0 |Yt /∈ (h(−∞), h(∞))}

(ii) Φ(−∞) = Φ(∞) =∞, i.e. −∞ and∞ are non-exit (inaccessible) boundaries.

(iii) There exist un ∈ D(E), n ≥ 1, 0 ≤ un ↗ 1 dx-a.e. as n→∞ such that E(un, G1w)→
0 as n → ∞ for some w ∈ L2(R, ρdx) ∩ L1(R, ρdx) such that w > 0 a.e. (Here
(Gα)α>0 is the resolvent of (E , D(E)), see [7]).

Proof. (i)⇔ (ii) is the well-known Feller’s test of non-explosions. Although, in our case
we do not have a classical Itô-equation, it can be carried out exactly as in [3, Section 6.2].
Indeed, for its proof we mainly need the existence of a good scale function and speed
measure, which is here the case. Further, it is well-known in the theory of Dirichlet forms
that (iii) implies Px(ζ = ∞) = 1 ∀x ∈ R \N , where cap(N) = 0 (see [7, Theorem 1.6.6
(iii)]). Under (H1) we must have N = ∅, hence (iii) ⇒ (i). In order to see (ii) ⇒ (iii),
we can define (un)n≥1 as follows. Let an :=

∫ 0

−n
h(y)−h(x)
h′(y) dy, bn :=

∫ n
0
h(x)−h(y)
h′(y) dy and for

n ≥ 1

un(x) :=


1− 1

an

∫ 0

x
h(y)−h(x)
h′(y) dy if x ∈ [−n, 0],

1− 1
bn

∫ x
0
h(x)−h(y)
h′(y) dy if x ∈ [0, n],

0 elsewhere.
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Clearly 0 ≤ un ↗ 1 dx-a.e. as n → ∞. Fix a standard Dirac sequence (ϕε)ε>0

and define ukn := ϕ 1
k
∗ un, k ≥ 1. Then ukn ∈ C∞0 (R) and by standard properties of the

convolution product one can easily see that ukn → un in D(E) as k →∞. Hence un ∈ D(E).
For

lim
n→∞

E(un, G1w) = 0,

see e.g. [19, Lemma 3.1].

Corollary 3.4. Property (ii) of Proposition 3.3 holds, if and only if

lim
n→∞

∑
l≤n

(rl+1 − rl)

1

2
(rl+1 − rl) +

1

γl+1

∑
k≤l−1

γk+1(rk+1 − rk)

 =∞

and

lim
n→∞

∑
m≥−n

(lm+1 − lm)

1

2
(lm+1 − lm) +

1

γm+1

∑
k≥m+1

γk+1(lk+1 − lk)

 =∞,

i.e. in this case we have non-explosion for every starting point.

Proof. We get for any n ∈ Z

Φ(rn+1) =

∫ rn+1

0

h′(z)

∫ z

0

1

h′(y)
dy dz

=
∑
l≤n

∫ rl+1

rl

h′(z)

 ∑
k≤l−1

∫ rk+1

rk

1

h′(y)
dy +

∫ z

rl

1

h′(y)
dy

 dz

=
∑
l≤n

1

2
(rl+1 − rl)2 +

∑
k≤l−1

γk+1

γl+1

(rk+1 − rk)(rl+1 − rl)


and similarly

Φ(ln) =

∫ 0

ln

h′(z)

∫ 0

z

1

h′(y)
dy dz

=
∑
m≥n

1

2
(lm+1 − lm)2 +

∑
k≥m+1

γk+1

γm+1
(lk+1 − lk)(lm+1 − lm)

 .

Hence

Φ(∞) = lim
n→∞

Φ(rn+1) =∞ and Φ(−∞) = lim
n→−∞

Φ(ln) =∞

hold, if and only if the two conditions stated in the lemma are satisfied.

For l,m ∈ Z let

vl :=

1

2
(rl+1 − rl) +

1

γl+1

∑
k≤l−1

γk+1(rk+1 − rk)
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and

vm :=

1

2
(lm+1 − lm) +

1

γm+1

∑
k≥m+1

γk+1(lk+1 − lk)

 .

It follows immediately from Corollary 3.4 that a sufficient condition for conservativeness
is given by: ∃δ > 0 such that

either rl+1 − rl ≥ δ for infinitely many l or ∃l0 ∈ Z with vl ≥ δ for all l ≥ l0
and

either lk+1 − lk ≥ δ for infinitely many k or ∃m0 ∈ Z with vm ≥ δ for all m ≤ m0.

For instance, if there exists k0, l0 ∈ Z with inf l≥l0(rl+1 − rl) ≥ δ and infk≤k0(lk+1 −
lk) ≥ δ, then conservativeness holds. However, under the conditions (S0) and (S1)
conservativeness is suitably described as in the following remark.

Remark 3.5. The conditions (S0) and (S1) are local conditions as they depend only on
the local behavior of ρ around the accumulation point zero. In particular (S1) is crucial
for deriving pathwise uniqueness properties (see Theorem 3.8 below). Note that the
assumption (H0) (resp. (S0)) in Theorem 3.8 below can be seen as a formal condition
that are used to ensure uniqueness up to infinity (resp. the semimartingale property).
Under the local conditions (S0) and (S1) the conditions in Corollary 3.4 are global ones
and depend only on the behavior of ρ outside arbitrarily large compact sets that contain
the accumulation point. In fact, for any n0 ∈ N, (S0) and (S1) imply that (γk)k>−n0

and (γk)k<n0
are bounded below and above by strictly positive constants and moreover∑

l<n0
(rl+1 − rl) = rn0

,
∑
k>−n0

(lk+1 − lk) = l−n0+1. From this it is then not difficult to
see that the conditions of Corollary 3.4 are equivalent to the following ones:

lim
n→∞

n∑
l=n0

rl+1 − rl
γl+1

(
l∑

k=n0

γk+1(rk+1 − rk)

)
=∞ (C0)

and

lim
n→∞

−n0∑
m=−n

lm+1 − lm
γm+1

(−n0∑
k=m

γk+1(lk+1 − lk)

)
=∞, (C1)

for one and hence any n0 ∈ N, where as usually
∑m
k=l := 0 for m < l.

Example 3.6. Let us give an example where we have explosion. Let rl :=
∑l
k=1

1
k , l ≥ 1

and γk+1 = Ck(k + 1), k ≥ 1, where C > 1 is some constant, and let the remaining
rl, γk+1, lk, γk+1 be just chosen such that conditions (S0) and (S1) are satisfied. Then

∞∑
l=1

rl+1 − rl
γl+1

(
l∑

k=1

γk+1(rk+1 − rk)

)
=

∞∑
l=1

1

Cl(l + 1)2

(
Cl+1 − C
C − 1

)
<∞,

and so according to (C0) in Remark 3.5 with n0 = 1 it follows that we cannot have
conservativeness. Note that in this example, (rl)l∈Z has an accumulation point at
“infinity” and the skew reflection is with αk ≈ 1

1+ 1
C

> 1
2 + ε for k ≥ N for some N ∈ N.

Lemma 3.7. Suppose that additionally to (S0) and (S1), (E , D(E)) is conservative. Then
(Yt := h(Xt))t≥0 satisfies Px-a.s

Yt = h(x) +

∫ t

0

∑
k∈Z

(
αγ

γk+1
1[lk,lk+1) +

(1− α)γ

γk+1

1[rk,rk+1)

)
◦ h−1(Ys)dWs (3.4)

for all t ≥ 0 and all x ∈ R.
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On countably skewed Brownian motion

Proof. Let h′′(da) the signed measure that is induced by the second derivative of h. Then
applying the symmetric version of [24, VI. (1.5) Theorem] with h and (2.13) we obtain
Px-a.s.

h(Xt) = h(x) +

∫ t

0

h′(Xs)dXs +
1

2

∫
R

`at (X)h′′(da)

= h(x) +

∫ t

0

h′(Xs)dWs + (2α− 1)

∫ t

0

h′(Xs)d`
0
s(X)

+
∑
k∈Z

{
(2αk − 1)

∫ t

0

h′(Xs)d`
lk
s (X) + (2αk − 1)

∫ t

0

h′(Xs)d`
rk
s (X)

}

+
∑
k∈Z


αγ
γk+1

− αγ
γk

2
`lkt (X) +

(1−α)γ
γk+1

− (1−α)γ
γk

2
`rkt (X)

+
(1− α)− α

2
`0t (X)

= h(x) +

∫ t

0

h′(Xs)dWs +

{
(2α− 1)

1

2
+

1− 2α

2

}
`0t (X)

+
∑
k∈Z

(
(2αk − 1)

αγ
γk+1

+ αγ
γk

2
+

αγ
γk+1

− αγ
γk

2

)
`lks (X)

+
∑
k∈Z

(2αk − 1)

(1−α)γ
γk+1

+ (1−α)γ
γk

2
+

(1−α)γ
γk+1

− (1−α)γ
γk

2

 `rkt (X)

= h(x) +

∫ t

0

h′(Xs)dWs. (3.5)

Now the statement follows from (2.16).

Theorem 3.8 (Starting from the Dirichlet form). Suppose that additionally to (S0)
and (S1), (E , D(E)) is conservative. Then strong uniqueness holds for (2.5) and (2.13), i.e
pathwise uniqueness holds for (2.5) and (2.13) and there exists a unique strong solution
to (2.5) and (2.13).

Proof. Let σ̃ :=
∑
k∈Z

(
αγ
γk+1

1[lk,lk+1) + (1−α)γ
γk+1

1[rk,rk+1)

)
◦ h−1, σ := σ̃ ◦ h, and h like in

Lemma 3.7. By [14, Remarques: b), p. 21] (see also [24, IX.(3.5) Theorem iii) and (3.13)
Exercise], or even [18] that we could use with a localization procedure), we know that
pathwise uniqueness holds for (3.4), if σ̃ is locally bounded away from zero and locally of
finite quadratic variation. Of course, it is enough to check this in a neighborhood of zero
and for σ instead of σ̃, since h−1 is strictly increasing and continuous in a neighborhood
of zero and h−1(0) = 0. Since

lim
k→−∞

(1− α)γ

γk+1

= 1− α, lim
k→∞

αγ

γk+1
= α,

and α ∈ (0, 1), we clearly have that σ is locally bounded away from zero in any neighbor-
hood of zero. If (S1) is satisfied, then σ is locally of finite variation around zero, hence in
particular locally of finite quadratic variation around zero. Thus the result follows by
[14, Remarques: b), p. 21]. Since h is a continuous bijection on its image with h(0) = 0,
and X := h−1(Y ) with Y like in (3.4) solves (2.13), pathwise uniqueness also holds for
(2.13). By the Yamada-Watanabe Theorem there exists a unique strong solution Y to
(3.4), hence strong existence and pathwise uniqueness also holds for X := h−1(Y ). Since
(2.13) is just (2.5) rewritten with the symmetric local times, strong uniqueness also holds
for (2.5).
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In the following theorem, we do not assume from the beginning (S0) and (S1), which
were in force throughout the subsection. We also do not assume that (E , D(E)) is
conservative from the beginning.

Theorem 3.9 (Starting from the SDE). Let (lk)k∈Z, (rk)k∈Z be a partition of R as
described at the beginning of section 2. Let (αk)k∈Z, (αk)k∈Z ⊂ (0, 1). Suppose∑

k≥0

|2αk − 1|+
∑
k≤0

|2αk − 1| <∞ (LGloc)

and that (C0), (C1) are satisfied for (γk)k∈Z, (γk)k∈Z given by (Gamdef0), (Gamdef1).
Then for any α ∈ (0, 1) there exists a unique strong solution to (2.13).

Proof. Assume we can show (S0) and (S1) for (γk)k∈Z, (γk)k∈Z given by (Gamdef0),
(Gamdef1). Then ∃ limk→∞ γk,∃ limk→−∞ γk > 0 and so (H1) holds by Remark 2.1 for
the regular Dirichlet form (E , D(E)) corresponding to ρ in (2.1) with the above data.
Conditions (C0), (C1) are equivalent to (H0) according to Remark 3.5. Hence we obtain
existence of a solution to (2.13) for any α ∈ (0, 1) by Proposition 2.10 and Remark 2.11.
Strong uniqueness then follows from Theorem 3.8.
Now, we show that (S0) and (S1) hold. By symmetry it is enough to show that

∑
k≥0 |2αk−

1| <∞ implies
∑
k≥0

(
|γk+1 − γk|+

∣∣∣ 1
γk+1

− 1
γk

∣∣∣) <∞. We have

γk = γ0

k−1∏
j=0

(1 + βj) , where βj :=
2αj − 1

1− αj
, j ≥ 0.

Since
∑
k≥0 |2αk − 1| < ∞ it follows easily

∑
k≥0 |βk| < ∞. Let N ∈ N be such that

|βk| < 1 for all k ≥ N . For |z| < 1 we have

log(1 + z) = z + z2

(
−1

2
+
z

3
− z2

4
+ ...

)
︸ ︷︷ ︸

:=f(z)

and f is continuous at 0 with limz→0 f(z) = − 1
2 . Thus (f(βk))k≥N converges to − 1

2

and is therefore bounded. It follows that
∑
k≥N β

2
kf(βk) converges absolutely. Since

log(1 +βj) = βj +β2
j f(βj) for j ≥ N , we have that

∑
j≥N log(1 +βj) converges absolutely.

In particular (γk)k≥0 converges. But then∑
k≥0

|γk+1 − γk| =
∑
k≥0

|2αk − 1|(γk+1 + γk) <∞.

Since

1

γk
=

1

γ0

k−1∏
j=0

1− αj
αj

=
1

γ0

k−1∏
j=0

(
1 +

1− 2αj
αj

)
,

we obtain similarly that
(

1
γk

)
k≥0

converges and then

∑
k≥0

∣∣∣∣ 1

γk+1
− 1

γk

∣∣∣∣ =
1

γ0

∑
k≥0

∣∣∣∣∣∣
k−1∏
j=0

(
1− αj
αj

)(
1− αk
αk

− 1

)∣∣∣∣∣∣ =
1

γ0

∑
k≥0

1

γk

∣∣∣∣1− 2αk
αk

∣∣∣∣ <∞.
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On countably skewed Brownian motion

In [15] Le Gall considered equations of type

Xt = x+

∫ t

0

σ(Xt)dWt +

∫
R

`at (X)µ(da) (3.6)

where σ is of bounded variation, bounded away from zero and right continuous, and µ is
a signed measure of bounded total variation such that |µ({a})| < 1 for any a ∈ R. Under
these global assumptions (that imply in particular conservativeness) Le Gall showed
weak existence and pathwise uniqueness for (3.6). Hence by Le Gall’s results we know
that weak existence and pathwise uniqueness holds for (1.2), if (for (αk)k∈Z as in (1.2))∑

k∈Z

|2αk − 1| <∞. (3.7)

Le Gall’s results do not cover in whole generality equation (1.2), since in equation (1.2)
no assumption on the finiteness of

∑
k∈Z |2αk−1| is made. On the other hand, the results

in [15] allow for an accumulation point of the sequence (zk)k∈Z in (1.2), because (3.7) is
sufficient for weak existence and pathwise uniqueness of (3.6) with σ ≡ 1. But (3.7) is
qualitatively stronger than our assumptions in Theorems 3.8 and 3.9 as we explain in
the following remark.

Remark 3.10. (i) If (LGloc) holds globally, i.e. if∑
k∈Z

(|2αk − 1|+ |2αk − 1|) <∞, (LG)

then (C0), (C1) automatically hold, because (γk)k∈Z, (γk)k∈Z are bounded below and
above by strictly positive constants. Indeed, this can be shown exactly as in the proof
of Theorem 3.9. Hence we recover qualitatively Le Gall’s strong uniqueness results
according to (3.7) by Theorem 3.9. Here, we used the word “qualitatively” because of
the following. Condition (3.7) covers also the case of multiple accumulation points, as
long as only the sum in (3.7) remains finite. However, we could have considered this
situation even with no finiteness condition on the sums in a straightforward manner.
But since apart from notational complication no new phenomena will occur locally by
considering even countably many isolated accumulation points, we excluded the case of
multiple accumulation points for the convenience of the reader.
(ii) It can be seen from the proof of Theorem 3.9 that (S0) together with (S1) are equiv-
alent to (LGloc) and then under either one of these equivalent assumptions, (H0) is
equivalent to (C0), (C1) for (γk)k∈Z, (γk)k∈Z given by (Gamdef0), (Gamdef1) (cf. Propo-
sition 3.3, Remark 3.5). Therefore, the assumptions of Theorem 3.8 and Theorem 3.9
are equivalent. But Le Gall’s global condition (LG) is stronger than our assumptions in
Theorem 3.9. One can say that the assumptions in Theorem 3.9 consist of two types of
assumptions. A local assumption (LGloc), to ensure pathwise uniqueness, and a global
assumption (C0) together with (C1) to ensure non-explosion of the solution. Indeed, our
strategy is similar to the one used in [15]. With the help of a nice function, we transform
our equation into a local martingale (see (3.4)) and then obtain uniqueness (cf. proof of
Theorem 3.8). Since our assumptions are only local, we need some global control, i.e.
non-explosion. This is our additional contribution to the work of Le Gall in [15].

3.2 Recurrence and transience

In this subsection, we assume throughout that (S0) and (S1) hold. We define

Dy := inf{t ≥ 0 |Xt = y}, y ∈ R.
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Under the assumptions (S0) and (S1), the scale function h always exists. Therefore,
exactly as in [3, Chapter 6, Lemma (3.1)] we can show that

Px(Da ∧Db <∞) = 1, ∀x ∈ (a, b).

It follows in particular that ((h(Xt∧Da∧Db))t≥0, (Px)x∈R), with h like in Lemma 3.7, is a
uniformly bounded local martingale and by standard calculations it is well-known that
for any x ∈ (a, b)

Px(Da < Db) =
h(b)− h(x)

h(b)− h(a)
(3.8)

and

Px(Db < Da) =
h(x)− h(a)

h(b)− h(a)
. (3.9)

Theorem 3.11. The following are equivalent:

(i) ((Xt)t≥0, (Px)x∈R) is recurrent, i.e. Px(Dy <∞) = 1 ∀x, y ∈ R.

(ii) h(−∞) = −∞ and h(∞) =∞.

(iii)
∑
k∈Z

lk+1−lk
γk+1

=∞ and
∑
k∈Z

rk+1−rk
γk+1

=∞.

(iv)
∫ 0

−∞
1

ρ(x)dx =∞ and
∫∞

0
1

ρ(x)dx =∞.

(v) There exist un ∈ D(E), n ≥ 1, 0 ≤ un ↗ 1 dx-a.e. as n→∞ such that E(un, un)→ 0

as n→∞.

Proof. (H1) implies that Px-a.s. Da → ∞ as a → +∞ or a → −∞. Hence by (3.8)
h(∞) =∞ is equivalent to Px(Da <∞) = 1 for any x ∈ (a, b), and by (3.9) h(−∞) = −∞
is equivalent to Px(Db < ∞) = 1 for any x ∈ (a, b). This is clearly equivalent to
the recurrence of ((Xt)t≥0, (Px)x∈R), hence (i) ⇔ (ii). (ii) ⇔ (iii) ⇔ (iv) is obvious.
(iv) ⇒ (v) is a special case of [9, Theorem 2.2 (i)]. For the reader’s convenience, we
include the proof. Let an :=

∫ 0

−n
1

ρ(x)dx, bn :=
∫ n

0
1

ρ(x)dx and for n ≥ 1

un(x) :=


1− 1

an

∫ 0

x
1

ρ(x)dx if x ∈ [−n, 0],

1− 1
bn

∫ x
0

1
ρ(x)dx if x ∈ [0, n],

0 elsewhere.

Clearly 0 ≤ un ↗ 1 dx-a.e. as n → ∞. Fix a standard Dirac sequence (ϕε)ε>0 and
define ukn := ϕ 1

k
∗ un, k ≥ 1. Then ukn ∈ C∞0 (R) and by standard properties of the

convolution product one can easily see that ukn → un in D(E) as k →∞. Hence un ∈ D(E).
Furthermore

E(un, un) =
1

2

∫ 0

−n

1

a2
n

1

ρ(x)
dx+

1

2

∫ n

0

1

b2n

1

ρ(x)
dx =

1

2

(
1

an
+

1

bn

)
→ 0

as n→∞. (v)⇒ (i) is well known (see e.g. [7]).

Lemma 3.12. Let one of the conditions of Theorem 3.11 be satisfied. Let (θt)t≥0 be the
shift operator of ((Xt)t≥0, (Px)x∈R). Then for any x, y ∈ R

lim
t→∞

sup
A∈F
|Px ◦ θ−1

t (A)− Py ◦ θ−1
t (A)| = 0. (3.10)
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Proof. By Theorem 3.11(i) ((Xt)t≥0,F , (Ft)t≥0, ζ, (Px)x∈R) is a regular, recurrent diffu-
sion in the sense of [12]. Therefore the statement follows from [12, Lemma 23.17].

Remark 3.13. The Dirichlet form (E , D(E)) is irreducible (see [7] for the definition).
Therefore, by [7, Lemma 1.6.4.(iii)], it is either recurrent or transient. Thus Theorem
3.11 provides also sharp conditions about transience in the sense of [7].

Let (pt(x, dy))t≥0 be the transition kernels corresponding to ((Xt)t≥0, (Px)x∈R). Let
A ⊂ R be Borel measurable such that

∫
A
ρ(x)dx < ∞. Since (H1) holds, (we may

assume that) pt1A(x) := pt(x,A) ∈ D(E) is continuous in x for any t > 0. (If not we
could choose continuous versions and construct a process via Kolmogorov’s method.
This process would then be indistinguishable form ((Xt)t≥0, (Px)x∈R)). In particular the
transition kernels have a density with respect to reference measure m(dx) := ρ(x)dx,
since m(A) = 0 implies pt(x,A) = 0 for m-a.e. x, hence every x by continuity and full
support of m.
Let B(R) be the Borel σ-algebra of R. For a positive measure µ on (R,B(R)) and t > 0,
we define

µpt(A) :=

∫
R

pt(x,A)µ(dx), A ∈ B(R).

µ is called an invariant measure, if µpt = µ for any t > 0. It is called an invariant
distribution, if additionally µ(R) = 1. Clearly, the reference measure m = ρdx is
invariant since by symmetry of (pt)t≥0 with respect to m and conservativeness

mpt(A) =

∫
R

pt1A(x)m(dx) =

∫
R

1A(x)Px(Xt ∈ R)m(dx) = m(A), t > 0.

Suppose ((Xt)t≥0, (Px)x∈R) is recurrent. Then ((Xt)t≥0, (Px)x∈R) is called null-recurrent
if

lim
t→∞

pt1K(x) = lim
t→∞

Px(Xt ∈ K) = 0

for any x ∈ R and any compact set K with non-empty interior. Otherwise it is called
positive recurrent.
It follows from the proof of Theorem 3.14 (iv)⇒ (i) below, that if ((Xt)t≥0, (Px)x∈R) is
recurrent, then it is positive recurrent, if and only if Px(Xt ∈ K) does not converge to
zero as t→∞ for any x ∈ R and any compact set K with non-empty interior.

Theorem 3.14. Suppose ((Xt)t≥0, (Px)x∈R) is recurrent. Then the following are equiva-
lent:

(i) ((Xt)t≥0, (Px)x∈R) is positive recurrent.

(ii)
∫∞
−∞

1
h′(x)dx <∞.

(iii) The invariant measure ρdx is finite, i.e.
∑
k∈Z{γk+1(lk+1−lk)+γk+1(rk+1−rk)} <∞.

(iv) pt(x, dy) = Px(Xt ∈ ·) converges weakly to the invariant distribution ρdx∫
R
ρ(x)dx

as

t→∞ for any x ∈ R.

(v) Ex[Dy] <∞ ∀x, y ∈ R.

Proof. (ii) ⇔ (iii) is obvious. (ii) ⇔ (iv) follows from [17, IV.4. Theorem 7]. (In order
to facilitate comparison we note that the m of [17] writes as m(s) =

∫ s
0

2
h′(x)dx, and that

the p of [17] is just our h). (iv)⇒ (i) follows easily from the Portemanteau-Theorem and
we may use [13, Chapter 5.5. D, Exercise 5.40 (i)] or [17, IV.4 (55), IV.3 (46)] to obtain
(ii)⇔ (v).
If (i) is satisfied then we can find tn ↗∞ as n→∞, x ∈ R, and a compact set K0 such
that infn≥1 ptn(x,K0) > 0. By Helly’s Theorem we can find another subsequence, again
denoted by (tn)n≥1 and a subprobability measure µ, such that

ptn(x, ·) −→ µ weakly as n→∞.
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The weak convergence holds indeed for any x ∈ R by Lemma 3.12. Thus for any
open set U and any compact set K, we have by the Portemanteau-Theorem that
lim infn→∞ ptn1U (x) ≥ µ(U), and lim supn→∞ ptn1K(x) ≤ µ(K) for any x ∈ R. In particu-
lar, µ(U0) ≥ µ(K0) > 0 for any relatively compact (open) set U0 containing K0. Then, by
Fatou’s lemma, conservativeness, and symmetry of (pt)t≥0 with respect to ρdx∫

R

1Uρ(x)dx = lim inf
n→∞

∫
R

ptn1U (x)ρ(x)dx

≥
∫
R

lim inf
n→∞

ptn1U (x)ρ(x)dx

≥ µ(U)

∫
R

ρ(x)dx. (3.11)

Applying (3.11) with U = U0 we conclude that
∫
R
ρ(x)dx <∞ and then µ(U) ≤

∫
U
ρ(x)dx∫

R
ρ(x)dx

for any open set U . Similarly to (3.11) we derive

µ(K) ≥
∫
K
ρ(x)dx∫

R
ρ(x)dx

(3.12)

for any compact set K. Hence by inner regularity of the measures it follows µ(B) ≥∫
B
ρ(x)dx∫

R
ρ(x)dx

for any Borel set B, which further implies that µ = ρdx. Since our arguments

hold for any subsequence (tn)n≥1 it follows

pt(x, ·) −→
ρdx∫

R
ρ(x)dx

weakly as t→∞ for any x ∈ R. Hence (i)⇒ (iv) and our proof is complete.

Remark 3.15. Similarly to Remark 3.5 one can see that under (S0) and (S1), properties
(iii), (iv) of Theorem 3.11 and properties (ii), (iii) of Theorem 3.14 are global assumptions
and hence do not depend on the local behavior around the accumulation point.

Corollary 3.16. Assume ((Xt)t≥0, (Px)x∈R) is positive recurrent. Then ρdx∫
R
ρ(x)dx

is the

unique invariant distribution.

Proof. Let ν be an invariant distribution. Then using Theorem 3.14(iv), (3.11), (3.12)
with ρdx replaced by ν, and µ replaced by ρdx∫

R
ρ(x)dx

, we obtain similarly to the proof of

(i)⇒ (iv) in Theorem 3.14 that

ν(B) =

∫
B
ρ(x)dx∫

R
ρ(x)dx

for any Borel set B. The result hence follows.

3.3 Advection-diffusion in layered media

Let (lk)k∈Z, (rk)k∈Z ⊂ R be as at the beginning of section 2. For α ∈ (0, 1) consider
the sequences

γk+1 := cα
√
Dk, γk+1 := cα

√
Dk, k ∈ Z,

where (Dk)k∈Z, (Dk)k∈Z ⊂ (0,∞) and cα, cα > 0 are some constants that will be stated
precisely below. We suppose that (S0), (S1), (C0), and (C1) hold. Then

∃D := lim
k→∞

Dk, ∃D := lim
k→−∞

Dk and D,D > 0.
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Let

αk :=

√
Dk√

Dk +
√
Dk−1

, αk :=

√
Dk√

Dk +
√
Dk−1

, k ∈ Z,

and define

cα :=
α√
D
, cα :=

1− α√
D

.

By Remark 3.10(ii), we know that (S0) together with (S1) are equivalent to (LGloc). Then,
by Theorem 3.9 there exists a unique strong solution Zα to

Zαt = x+Wt +
∑
k∈Z

{
(2αk − 1)`lkt (Zα) + (2αk − 1)`rkt (Zα)

}
+ (2α− 1)`0t (Z

α),

which is constructed with the help of the Dirichlet form that is determined by (2.1) and
(2.2).
We now fix α ∈ (0, 1). By (S0) and (S1), there exists Ψ : R→ Ψ(R) which is the difference
of two convex functions, (continuous), piecewise linear with Ψ(0) = 0 such that

Ψ′(x) =

{
cα
√
Dk on (lk, lk+1)

cα
√
Dk on (rk, rk+1).

Applying the Itô-Tanaka-formula and formulas about local times from [21], we obtain
after a long calculation that X := Ψ(Zα) is a strong solution to

Xt = Ψ(x) +Mt +Nt, (3.13)

where

Nt =
∑
k∈Z

{
Dk −Dk−1

Dk +Dk−1
`
Ψ(lk)
t (X) +

Dk −Dk−1

Dk +Dk−1

`
Ψ(rk)
t (X)

}
+
D −D
D +D

`0t (X)

and

Mt =

∫ t

0

∑
k∈Z

(
cα
√
Dk 1[Ψ(lk),Ψ(lk+1)) + cα

√
Dk 1[Ψ(rk),Ψ(rk+1))

)
(Xs)dWs

Note that we do not have to worry about the endpoints of the intervals (Ψ(lk),Ψ(lk+1))

and (Ψ(rk),Ψ(rk+1)) by (2.16). Define

σ1(x) :=
∑
k∈Z

(
cα
√
Dk 1[Ψ(lk),Ψ(lk+1)) + cα

√
Dk 1[Ψ(rk),Ψ(rk+1))

)
.

Then σ2
1 is locally uniformly strictly elliptic and so by results of [7], we have that

A0(f, g) :=
1

2

∫
Ψ(R)

σ2
1f
′g′ dx, f, g ∈ C∞0 (Ψ(R)) (3.14)

is closable in L2(Ψ(R); dx). Denote the closure by (A0, D(A0)). Following the lines of
arguments in this article (as for the Dirichlet form defined through (2.1), (2.2)) one can
verify that the unique solution X to (3.13) is associated to the regular Dirichlet form
(A0, D(A0)). Let (LA

0

, D(LA
0

)) be its generator.
In item (ii) of the following remark we point out a minor inconsistency in [22]. It can
however easily be spotted.
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Remark 3.17. (i) The state space of X is Ψ(R) and might be different from R if Ψ has
a low growth rate when approaching to ±∞. As an example consider the case where
rk = k and

√
Dk = 1

k2 for k ≥ 1.
(ii) An invariant measure for X, is the Lebesgue measure restricted to Ψ(R). This is
directly visible from the definition of the corresponding Dirichlet form in (3.14). It will
be finite, if and only if Ψ(R) is bounded. It is evident from (3.14) that a scale function h
for X, i.e. a piecewise linear function h : Ψ(R) → R with h(0) = 0 and A0(h, g) = 0 for
all g is given by defining its derivatives as

h
′
(x) =

{
1

c2αDk
on (Ψ(lk),Ψ(lk+1))

1
c2αDk

on (Ψ(rk),Ψ(rk+1)).

Then exactly as in Theorem 3.11, we can see that X is recurrent, if and only if∑
k≤0

Ψ(lk+1)−Ψ(lk)

Dk
=
∑
k≥0

Ψ(rk+1)−Ψ(rk)

Dk

=∞, (3.15)

that is −h(Ψ(−∞)) =∞ = h(Ψ(∞)). Noting that the speed measure of (3.13) is

2dx

σ2
1(x)h

′
(x)

= 2dx

exactly as in Theorem 3.14, we can see that X is positive recurrent, if additionally to
(3.15) ∑

k≤0

(Ψ(lk+1)−Ψ(lk)) +
∑
k≥0

(Ψ(rk+1)−Ψ(rk)) <∞. (3.16)

If (3.15) and (3.16) hold, then the normalized Lebesgue measure, i.e. the uniform distri-
bution on (the bounded set !) Ψ(R), is the unique invariant probability measure for X.
This statement can be shown analogously to Corollary 3.16. In conclusion, in case of an
unbounded domain Ψ(R) there is no invariant probability measure possible as stated
in [22, Remark 3.2]. But if Ψ(R) is bounded the normalized Lebesgue measure is the
unique invariant distribution as opposed to the statement of its non-existence in [22,
Remark 3.2].

Take an independent copy (Bt)t≥0 of (Wt)t≥0 and let σ2, β2 : Ψ(R) → R be locally
bounded Borel-measurable functions. Assume additionally that σ2 is strictly positive and
locally uniformly bounded away from zero. For y ∈ R consider the Itô-process

Y yt := y +

∫ t

0

σ2(Xs)dBs +

∫ t

0

β2(Xs)ds, t ≥ 0.

Clearly, Y := (Y y)y∈R is non-explosive, since the paths of X are continuous.
Below, we will show that (X,Y ) is associated to a generalized Dirichlet form, stationary
and “reversible” (see Remark 3.18 and in particular [35]) with respect to the two
dimensional Lebesgue measure dxdy. For this, we need some preparations.
Let

A =

(
σ2

1 0

0 σ2
2

)
. (3.17)

Let ∂xf(x, y) denote the partial derivative in the x-coordinate and ∂yf(x, y) denote the
partial derivative in the y-coordinate. Since A is locally uniformly strictly elliptic it is
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well-known, that

E0(f, g) :=
1

2

∫
Ψ(R)

∫
R

〈A∇f,∇g〉dxdy

=
1

2

∫
Ψ(R)

∫
R

σ2
1∂xf∂xg dxdy +

1

2

∫
Ψ(R)

∫
R

σ2
2∂yf∂yg dxdy, (3.18)

with f, g ∈ C∞0 (Ψ(R) × R) is closable in L2(Ψ(R) × R; dxdy) and that the closure
(E0, D(E0)) is a regular symmetric Dirichlet form. Let (L0, D(L0)) be the correspond-
ing generator and for D ⊂ L2(Ψ(R) × R; dxdy) set Db := D ∩ L∞(Ψ(R) × R; dxdy) and
D0,b := Db ∩ {f has compact support in Ψ(R)×R}.
Since β2 only depends on the x-coordinate, the vector field β = (β1, β2) : Ψ(R)×R→ R2,
with β1 ≡ 0 is divergence free with respect to dxdy, i.e.∫

Ψ(R)

∫
R

〈β,∇f〉 dxdy =

∫
Ψ(R)

∫
R

β2(x)∂yf dxdy = 0, ∀f ∈ C∞0 (Ψ(R)×R). (3.19)

Clearly, (3.19) extends to all f in D(E0)0,b. Let

Un := (Ψ(l−n),Ψ(rn))× (−n, n), n ≥ 1.

Then the Un are relatively compact open subsets of Ψ(R) × R and we can consider
the part Dirichlet forms (E0,UnD(E0,Un)), n ≥ 1, as given in [7, Theorem 4.4.3]. Let
(L0,Un , D(L0,Un)) be the corresponding generators. Furthermore, since D(E0,Un)b ⊂
D(E0)0,b, (3.19) holds for all f ∈ D(E0,Un)b. Following the line of arguments in [29], there

exists for each n ≥ 1, a closed extension (L
Un
, D(L

Un
)) on L1(Un; dxdy) of

LUnu := L0,Unu+ β2∂yu, u ∈ D(L0,Un)b (3.20)

that generates a submarkovian C0-semigroup of contractions on L1(Un; dxdy). The

part (LUn , D(LUn)) of (L
Un
, D(L

Un
)) on L2(Un; dxdy) is then associated to a generalized

Dirichlet form (cf. [29, Section 1a)]). Then using a localization procedure by following
[29, Section 1b), Theorem 1.5] one can show, that there exists a closed extension
(L,D(L)) on L1(Ψ(R)×R; dxdy) of

Lu := L0u+ β2∂yu, u ∈ D(L0)0,b, (3.21)

that generates a submarkovian C0-semigroup of contractions on L1(Ψ(R)×R; dxdy) and

whose resolvent can be approximated by the resolvents of (L
Un
, D(L

Un
)), n ≥ 1. Note

that for this one has to verify that D(L0)0,b ⊂ L2(Ψ(R)×R; dxdy) densely, which holds
since D(L0,Un)b ⊂ D(L0)0,b for any n, hence D(L0)0,b is dense in L2(Un; dxdy) for any
n. Then again analogously to the line of arguments in [29]), one shows that the part
(L,D(L)) of (L,D(L)) on L2(Ψ(R)×R; dxdy) is associated to a quasi-regular generalized
Dirichlet form that has a nice additional structure which is known as condition D3 (for
this we refer the interested reader to [34, Section 4] and references therein). The
identification of the associated process can then be performed similarly to what is done
in [34] and here.

Remark 3.18. The process (X,Y ) has been constructed in [22] under the stronger addi-
tional assumptions that σ1, σ2, and β2

σ2
are bounded. In particular β2 is then also bounded.

The components X, (resp. Y ), represent the transverse, (resp. longitudinal) directions
of advection-diffusion in layered media and the fundamental solution corresponding to
the underlying Kolmogorov operator serves as a model for the concentration of a solute
undergoing advection-diffusion there (see [23], [22, section 3]). Having constructed
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(X,Y ) in a more general setting, one can study the asymptotic properties of X and Y as
in [22] and [23]. Our generalization for X may be interpreted as increased heterogeneity
of the layered media. The weaker assumptions on β2 allow higher speed of transportation
(advection) of the solute particles in the respective layers. We have seen in Remark
3.17(ii) that X has a unique invariant distribution if (3.15) and (3.16) hold. So in this case
one may hope to obtain a central limit theorem for (X,Y ) as in [23] (cf. also [22, Remark
3.2]), i.e. one may hope to solve the Taylor-Aris problem. Heterogeneous dispersion
in a longitudinal flow was carried out in [23, section 2, 3] with respect to a compact
domain G with finitely many layers and normal reflecting boundary condition at ∂G. In
this regard, it could also be interesting to investigate the effect of replacing G with the
bounded domain Ψ(R), thus allowing increased heterogeneity and inaccessible bound-
aries. Finally, we note that the (non-sectorial) Lyons-Zheng decomposition holds for
(X,Y ) (see [35]). Hence one can use it as an additional tool to derive ergodic properties
like for instance in [33].
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