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Abstract

We establish a general sufficient condition for a sequence of Galton–Watson branching
processes in varying environments to converge weakly. This condition extends previ-
ous results by allowing offspring distributions to have infinite variance.
Our assumptions are stated in terms of pointwise convergence of a triplet of two real-
valued functions and a measure. The limiting process is characterized by a backwards
integro-differential equation satisfied by its Laplace exponent, which generalizes
the branching equation satisfied by continuous state branching processes. Several
examples are discussed, namely branching processes in random environment, Feller
diffusion in varying environments and branching processes with catastrophes.
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1 Introduction

For each n ≥ 1, consider a sequence of offspring distributions (qi,n, i ≥ 0), the
environments, and the corresponding Galton–Watson process Zn = (Zi,n, i ≥ 0) where
individuals of the i-th generation reproduce according to qi,n. We are interested in
the weak convergence of the sequence (Xn, n ≥ 1) of scaled processes of the form
Xn(t) = n−1Zγn(t),n for some sequence of time-changes γn.

In the Galton–Watson case where qi,n = q0,n, this problem has been first considered by
Feller [19] and Kolmogorov [33] and later by Lindvall [39] and Lamperti [37, 38]. It was
exhaustively solved by Grimvall [24] who provided a necessary and sufficient condition
for the convergence of the scaled processes (Xn, n ≥ 1) in terms of the sequence of
offspring distributions (q0,n, n ≥ 1). Our approach is inspired by these works and relies
on the convergence of the Laplace transform.

In the Galton–Watson case, the possible limit processes are called continuous state
branching processes (CSBP) and were first considered by Jiřina [29]. This class of
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Scaling limits of Galton–Watson processes in varying environments

processes is well understood thanks to a random time-change transformation exhib-
ited by Lamperti [36]. This transformation also allows for an elegant and conceptual
proof of Grimvall’s result, see for instance Ethier and Kurtz [18, Chapter 9] or, in the
continuous-time setting, Helland [26], but this approach breaks down in the case of
varying environment.

In this case, no such exhaustive result is available. Kurtz [35] and Borovkov [13]
proved general results in the finite variance case, to which our main result will be
compared in details in Section 2.4. The two main points are that: (1) on the upside, we
extend these results to the case of offspring distributions with (possibly) infinite variance;
(2) on the downside, we assume that a certain function has locally finite variation: as
will be seen, this finite variation assumption is intrinsic to our approach.

When offspring distributions vary but have finite variance, the authors in [13, 35]
express their limit process as a simple transformation of Feller diffusion, the only CSBP
with continuous sample paths. Kurtz [35] for instance uses semigroup techniques
developed in [34]. However, these techniques become significantly more demanding
in the infinite variance case considered here, where one needs to consider diffusion
processes with jumps.

For this reason, we use in this paper a variation of the approach developed in [19,
33, 37, 38, 39]: namely, our main object of investigation is the Laplace exponent un
of Xn, defined by un(s, t, λ) = − logE(exp(−λXn(t)) | Xn(s) = 1) for 0 ≤ s ≤ t and
λ ≥ 0. We identify a triplet (αn, βn, νn) with αn and βn two real-valued càdlàg functions,
respectively of bounded variation and non-decreasing, and νn a σ-finite measure on
(0,∞)2, such that informal calculation suggests the approximation

un(s, t, λ) ≈ λ+

∫
(s,t]

un(y, t, λ)αn(dy)−
∫

(s,t]

(un(y, t, λ))2βn(dy)

+

∫
(0,∞)×(s,t]

h(x, un(y, t, λ))νn(dx dy) (1.1)

with h(x, λ) = 1− e−λx − λx
1+x2 + (λx)2

2(1+x2) (see Section 3.2). Motivated by this observation,

we identify a mild notion of convergence (αn, βn, νn) → (α, β, ν) (see Assumption 2.1
below) under which (Xn) converges weakly. Its weak limit is then characterized by its
Laplace exponent, which is shown to be the unique solution to the integro-differential
equation obtained by letting n → ∞ in (1.1). As alluded to above, in order for this
equation to make sense in the limit, we need to assume that α has finite variation:
otherwise, it is not clear how to make sense of the integral with respect to α in (1.1).
Finally, note that this equation generalizes the branching equation for the Laplace
exponent of CSBP obtained by Silverstein [41], see also Caballero et al. [14] for a recent
and complete treatment.

In this paper, we assume the convergence (αn, βn, νn) → (α, β, ν), where the mea-
sure ν is allowed to be non-zero and satisfies classical 1 ∧ x2 finite moment. In the
Galton–Watson case, our assumption is equivalent to Grimvall’s necessary and sufficient
condition [24]. But when environments are allowed to vary over time, we need to avoid
times where the process goes to zero instantaneously and almost surely, which will be
called bottleneck. Indeed, in the case of varying environments one must in general allow
for non-critical distributions, and in particular subcritical ones which may cause such
bottlenecks. Within our approach, we cannot determine in general the behavior of the
process at the time of a bottleneck for reasons discussed in details in Section 2.3, where
an example of indetermination∞× 0 is exhibited. Consequently, our main result studies
the process (Xn) on some time interval [℘(t), t] where 0 ≤ ℘(t) ≤ t intuitively corresponds
to the last bottleneck before time t. Moreover, we show in Section 2.3 that, within our
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Scaling limits of Galton–Watson processes in varying environments

assumption (αn, βn, νn)→ (α, β, ν), a bottleneck can only occur if there is an offspring
distribution with mean close to 0: otherwise, we have ℘(t) = 0, see Proposition 2.3.
Finally, we study in Proposition 2.4 the behavior of the process at the time of a bottleneck
in the non-explosive case, where an indetermination∞× 0 is proscribed.

Let us now mention some closely related results. Galton–Watson processes in random
environment were first introduced and studied in Smith and Wilkinson [42] in the case
where the sequence (qi,n, i ≥ 0) is i.i.d., and in Athreya and Karlin [4, 3] when this
sequence is stationary. These models have recently attracted considerable interest
in the literature, see for instance [1, 2, 5, 10, 11, 12, 21, 25] for results on the long-
time behavior in the critical and subcritical regimes and on large deviation. Scaling
limits in the finite variance case were conjectured by Keiding [31] who introduced
Feller diffusion in random environment. This conjecture was proved by Kurtz [35] and
Helland [27]. In the same way, our results describe the weak convergence of scaled
processes conditionally on the environments (quenched results), when the offspring
distributions may have infinite variance. We describe the probabilistic structure of this
process in Section 2.5.1 and we shed light on the correct scaling of such processes.

Our results are also related to some results on superprocesses. More precisely,
our limit processes are closely related to the mass of superprocesses considered in El
Karoui and Roelly [17]. These superprocesses are obtained in Dynkin [15, 16] as the
limit of suitable branching particle systems, under some additional assumptions, e.g.
finite first moment (conservative case) and no drift. In these works the emphasis is on
the limiting superprocesses themselves. As such, Dynkin [15, 16] considers branching
particle systems evolving in continuous time, which, in order to establish limit theorems,
are technically more convenient than the discrete time setting, which is our motivation
here.

Organization of the paper

Theorem 2.2 is the main result of the paper, and is presented in Section 2.2. We
compare it with earlier results in Section 2.4 and discuss some applications in Section 2.5,
namely to Galton–Watson processes in random environment, to Feller diffusion in varying
environments and to CSBP with catastrophes. Section 3 introduces notation, as well
as some preliminary results. Theorem 2.2 is proved in Section 4, with some technical
proofs deferred to Appendices B and C. Further results that complement Theorem 2.2
are proved in Section 5, and Appendix A is devoted to checking that the assumptions of
Theorem 2.2 are necessary and sufficient in the Galton–Watson case.

2 Notation and results

2.1 General notation

In the rest of the paper, if a function g defined on [0,∞) is càdlàg, we write
∆g(t) = g(t) − g(t−) for the value of the jump of g at time t. If g is in addition of
locally finite variation, we write ‖g‖(t) for the total variation of g on [0, t] and

∫
fdg for

the Lebesgue-Stieltjes integral of a measurable function f ; note that |
∫
fdg| ≤

∫
|f |d‖g‖.

Moreover, we say that a function f is increasing if f(x) ≥ f(y) for every x ≥ y.

For each n ≥ 1, we consider a Galton–Watson process in varying environments
Zn = (Zi,n, i ≥ 0). We denote by qi,n the offspring distribution in generation i and ξi,n a
random variable distributed according to qi,n, so that we can construct Zn according to
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the following recursion:

Zi+1,n =

Zi,n∑
k=1

ξi,n(k), i ≥ 0,

where the random variables (ξi,n(k), i, k ≥ 0) are independent and ξi,n(k) is equal in
distribution to ξi,n. In order to find an interesting scaling of the sequence of processes
(Zn, n ≥ 1), the space scale is equal to n while the time scale is allowed to vary over
time. More precisely, for n ≥ 1, we consider an increasing, càdlàg and onto function
γn : [0,∞) → N (here and elsewhere, N = {0, 1, . . .} denotes the set of non-negative
integers) and we define the scaled process (Xn(t), t ≥ 0) as follows:

Xn(t) =
1

n
Zγn(t),n, t ≥ 0.

For i ≥ 0 and n ≥ 1, we define tni = inf{t ≥ 0 : γn(t) = i} so that γn(tni ) = i and
tnγn(t) ≤ t < tnγn(t)+1. Since Zn satisfies the branching property, i.e., Zn started from
Z0,n = z is stochastically equivalent to the sum of z i.i.d. processes distributed according
to Zn started from Z0,n = 1, we obtain after scaling

E [exp (−λXn(t)) | Xn(s) = x] = exp(−xun(s, t, λ)) (2.1)

for all λ, x, s, t ≥ 0 with s ≤ t and x ∈ N/n and un(s, t, λ) ≥ 0 called the Laplace
exponent. We will characterize the convergence of Xn through the convergence of un.
Our assumptions are relying on the convergence of the triplet (αn, βn, νn), where αn and
βn are real-valued functions and νn is a measure on R× [0,∞). This triplet is defined in
terms of the normalized random variables

ξi,n =
1

n
(ξi,n − 1) , i ≥ 0, n ≥ 1,

in the following way. We introduce the numbers

αi,n = nE

(
ξi,n

1 + ξ
2

i,n

)
and βi,n =

1

2
nE

(
ξ

2

i,n

1 + ξ
2

i,n

)

and the measures
νi,n([x,∞)) = nP(ξi,n ≥ x),

so that the triplet can now be defined for t ≥ 0 by

αn(t) =

γn(t)−1∑
i=0

αi,n =

∫
x

1 + x2
νi,n(dx), βn(t) =

γn(t)−1∑
i=0

βi,n =
1

2

∫
x2

1 + x2
νi,n(dx)

and

νn([x,∞)× (0, t]) =

γn(t)−1∑
i=0

νi,n([x,∞)) (x ≥ 0).

Each time, we understand a sum of the form
∑−1

0 to be equal to 0, so that αn(0) =

βn(0) = 0.

2.2 Main result

Before stating our main result, we first precisely state the assumption (αn, βn, νn)→
(α, β, ν) alluded to in the introduction. We also give a definition of ℘(t), to be thought of
the last bottleneck before time t (see the introduction).
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Assumption 2.1. There exist a càdlàg function of locally finite variation α, an increasing
càdlàg function β, and a positive measure ν on (0,∞)2, such that the two following
conditions hold:

(A1) For every t ≥ 0 and every x > 0 such that ν({x} × (0, t]) = 0,

αn(t) −→
n→∞

α(t), ‖αn‖(t) −→
n→∞

‖α‖(t), βn(t) −→
n→∞

β(t)

and νn([x,∞)× (0, t]) −→
n→∞

ν([x,∞)× (0, t]).

(A2) For every t such that ∆α(t) 6= 0, ∆β(t) 6= 0 or ν((0,∞) × {t}) 6= 0 and for every
x > 0 such that ν({x} × {t}) = 0,

αγn(t),n −→
n→∞

∆α(t), βγn(t),n −→
n→∞

∆β(t) and νγn(t),n([x,∞)) −→
n→∞

ν([x,∞)× {t}).

The following definition of ℘(t) is the most technically convenient and general at this
point:

℘(t) = sup

{
s ≤ t : lim

ε→0
lim inf
n→∞

inf
s≤y≤t

P
(
Xn(t) > ε

∣∣ Xn(y) = 1
)

= 0

}
(2.2)

with the convention sup ∅ = 0. A more intuitive definition will be given in Lemma 3.4,
while a sufficient condition for ℘(t) = 0 under Assumption 2.1 is given in Proposition 2.3.

Theorem 2.2 (Behavior on [℘(t), t]). Assume that Assumption 2.1 holds, and let α, β and
ν the functions and measure defined there. Then, the following properties hold.

I. For every t ≥ 0, we have ∆α(t) ≥ −1 and
∫

(0,∞)×(0,t]
(1∧ x2)ν(dx dy) <∞. Moreover,

the following function β̃ is continuous and increasing:

β̃(t) = β(t)−
∫

(0,∞)×(0,t]

x2

2(1 + x2)
ν(dx dy), t ≥ 0.

II. For every t, λ > 0 and s ∈ [℘(t), t], there exists u(s, t, λ) ∈ (0,∞) such that for every
s0 ≥ 0,

lim
n→∞

sup
0≤s≤s0

|un(s, t, λ)− u(s, t, λ)| = 0.

Moreover, the function ut,λ : s ∈ [℘(t), t] 7→ u(s, t, λ) is the unique càdlàg function
that satisfies infs≤y≤t ut,λ(y) > 0 for every ℘(t) < s ≤ t and

ut,λ(s) = λ+

∫
(s,t]

ut,λ(y)α(dy)−
∫

(s,t]

ut,λ(y)2β̃(dy)

+

∫
(0,∞)×(s,t]

(
1− e−xut,λ(y) − xut,λ(y)

1 + x2

)
ν(dx dy) (2.3)

for every ℘(t) ≤ s ≤ t.

III. Fix t ≥ 0, s ∈ [℘(t), t] and x ≥ 0. Then for every sequence of initial states (xn) with
xn → x, every I ∈ N− {0}, every s ≤ t1 < · · · < tI ≤ t and every λ1, . . . , λI > 0,

lim
n→∞

E [exp (−λ1Xn(t1)− · · · − λIXn(tI)) | Xn(s) = xn]

= exp

(
− xu

(
s, t1, λ1 + u

(
t1, t2, λ2 + u(· · · , u(tI−1, tI , λI) · · · )

)))
. (2.4)
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Scaling limits of Galton–Watson processes in varying environments

IV. Fix t ≥ 0, s ∈ [℘(t), t] and x ≥ 0. Then for every sequence of initial states (xn) with
xn → x, the sequence of processes (Xn(y), s ≤ y ≤ t) under P( · | Xn(s) = xn) is
tight on the space D([s, t], [0,∞]) of càdlàg functions f : [s, t] → [0,∞] endowed
with the J1 topology, where the space [0,∞] is equipped with the metric d(x, y) =

|e−x − e−y|. In particular, weak convergence holds in view of (2.4).

In claim IV we consider Xn as a process with range [0,∞]. Although Xn for fixed n
cannot explode, for technical reasons we need to specify its behavior started at∞: in
the sequel we assume that∞ is an absorbing state, so that if Xn(s) =∞ for some s, then
Xn(t) =∞ for all t ≥ s. The proof of claim IV will actually show that (Xn(y), s ≤ y ≤ t)

under P( · | Xn(s) = xn) is tight for any 0 ≤ s ≤ t, not only ℘(t) ≤ s ≤ t.

2.3 Around the bottleneck

We now discuss in more details the notion of bottleneck that we have introduced. As
a first guess, we could expect that the process goes to 0 when going through the time
of a bottleneck, which would mean that un(s, t, λ)→ 0 if s < ℘(t). We now consider an
example which illustrates several things that can go wrong and justify our framework, in
particular the definition of the bottleneck ℘(t) and the fact that Theorem 2.1 is stated on
[℘(t), t].

Consider a critical offspring distribution q and Yn = (Yi,n, i ≥ 0) the Galton–Watson
process with offspring distribution q, started from n individuals. Assume that q and
Γn are such that the sequence (Ŷn) with Ŷn(t) = YbΓntc,n/n converges weakly to a non-

conservative CSBP Ŷ . For each n ≥ 1, we define Zn by Z0,n = n and (δk denotes the unit
mass at k ∈ N):

qi,n =


q if 0 < i < Γn,

δ1 if Γn ≤ i < 2Γn,

(1− pn)δ0 + pnδ1 if i = 2Γn,

q if i > 2Γn

for some vanishing sequence pn ∈ [0, 1]. Defining γn(t) = bΓntc and recalling Xn(t) =

Zγn(t),n/n, we see that Xn coincides (in distribution) with Yn on [0, 1), stays constant
on [1, 2), undergoes a highly subcritical offspring distribution with mean pn at time 2,
referred to as catastrophe, and then resumes evolving according to q after time 2. The
catastrophe at time 2 is meant to correspond to a bottleneck, and indeed one can check
that ℘(t) = 0 if t < 2 and ℘(t) = 2 if t ≥ 2. Moreover, since Xn shifted at time 2 is a
rescaled Galton–Watson process, the discussion on Galton–Watson processes in the next
section will show that Assumption 2.1 is satisfied.

Fix some t > 2, and let us now discuss the asymptotic behavior of un(s, t, λ) for
s < ℘(t) = 2. First of all, although pn → 0 suggests that the process gets extinct at
time 2, un(s, t, λ) may actually not converge to 0. Indeed, since Ŷn converges weakly
to Ŷ and Ŷ is not conservative, there exist ρ > 0 and a sequence yn → ∞ such that
P(Ŷn(2−) ≥ yn) ≥ ρ. In particular, just before the catastrophe Xn is, with probability
at least ρ, at least of the order of yn. In this event, the catastrophe brings Xn to level
pnyn by the law of large numbers, which diverges if pn � 1/yn, i.e., if pn vanishes slowly
enough. This argument could be made rigorous to show that un(s, t, λ) does not go to 0

for s < 1. Secondly, even if un(s, t, λ) converges the limit may depend on s: for s < 1 we
have seen that the limit was > 0, while for 1 ≤ s < 2 the limit is = 0. Finally, un(s, t, λ)

may even fail to converge: to see this, one may for instance consider two sequences
p

(1)
n and p(2)

n with ynp
(1)
n →∞ and ynp

(2)
n → 0, X(1)

n and X(2)
n the two processes obtained

by the above construction using p
(1)
n and p

(2)
n instead of pn, respectively, and finally

intertwine them by considering X2n = X
(1)
n and X2n+1 = X

(2)
n .
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This example therefore shows that a wide variety of behavior can happen before the
bottleneck. We now give a sufficient condition that ensures ℘(t) = 0, i.e., that there is no
bottleneck before time t. Intuitively, the following assumption ensures that ξi,n is not too
close to 0, which avoids the almost sure absorption in one generation. For instance, it
prevents the catastrophe of the previous example at time 2.

Proposition 2.3 (No bottleneck). Let t > 0. If for every C > 0

lim inf
n→∞

(
inf

0≤i≤γn(t)
E (ξi,n; ξi,n ≤ Cn)

)
> 0, (2.5)

then ℘(t) = 0.

The proof of this proposition and of the next one are deferred to Section 5. We
conclude this discussion by giving a condition under which un(s, t, λ) → 0 along a
subsequence, for all s < ℘(t) and λ ≥ 0. Then the process started at the bottleneck goes
as expected to zero (along a subsequence) when going through the bottleneck. Note
that the example given at the beginning of this section shows that this is not always the
case. Roughly speaking, this condition means that the limiting process is conservative.

Proposition 2.4 (No explosion). Fix some t > 0. If the two sequences (‖αn‖(t), n ≥ 1)

and (βn(t), n ≥ 1) are bounded and

lim
A→∞

sup
n≥1, 0≤s≤y≤t

P(Xn(y) ≥ A | Xn(s) = 1) = 0, (2.6)

then there exists an increasing sequence of integers n(k) such that for all s < ℘(t) and
λ ≥ 0, un(k)(s, t, λ)→ 0 as k →∞.

Moreover, these assumptions are satisfied, i.e., (‖αn‖(t), n ≥ 1) and (βn(t), n ≥ 1) are
bounded and (2.6) holds, if the following first moment condition is satisfied:

sup
n≥1

n γn(t)−1∑
i=0

E
(
|ξi,n|

) <∞. (2.7)

2.4 Comparison with earlier work

In the Galton–Watson case where γn(t) = bΓntc for some integer-valued sequence
(Γn) and qi,n = q0,n for every i ≥ 0, necessary and sufficient conditions for the finite-
dimensional and weak convergence of (Xn, n ≥ 1) are known since Grimvall [24], where
weak convergence in the space D([0,∞), [0,∞)) is considered. The main condition there
is the weak convergence of the sequence (Sn, n ≥ 1) where Sn is distributed as the
sum of nΓn independent copies of ξ0,n. Indeed, Theorem 1.4 in Ethier and Kurtz [18]
shows that the weak convergence of (Sn) implies the weak convergence of (Xn) in
D([0,∞), [0,∞]), and Grimvall [24] proved the converse provided (Xn) converges to a
non-explosive process (and thus in D([0,∞), [0,∞)); Helland [26] proved similar results
for continuous-time branching processes. The following result, proved in the Appendix A,
therefore shows that our Assumption 2.1 is sharp in the Galton–Watson case. Note in
particular that in the Galton–Watson case, q0,n must be near-critical which implies in
view of Proposition 2.3 that ℘(t) = 0.

Lemma 2.5. In the Galton–Watson case, Assumption 2.1 is equivalent to the weak
convergence of (Sn).

In the case of Galton–Watson processes in varying environments, Kurtz [35] used
semigroup techniques to study the case where offspring distributions have uniformly
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bounded third moments, which was later weakened by Borovkov [13] to a 2 + δ moment
condition. There are three main differences between the assumptions made in [13, 35]
and our Assumption 2.1.

First, we do not need to assume uniformly bounded second moments, which make ap-
pear new phenomena such as possible indetermination form at the bottleneck (discussed
in Section 2.3) and issues related to the correct time scale of Galton–Watson processes
in random environment (discussed in Section 2.5.1).

Second, as we already mentioned in the introduction, the function that in [13, 35]
essentially plays the role of our αn is not assumed to have finite variation in [13, 35].
This finite variation assumption is natural in our approach: otherwise it is not clear what
meaning should be given to the term

∫
(s,t]

ut,λ(y)α(dy) in (2.3). An enticing approach
would be to consider α with finite quadratic variations, which would for instance make it
possible to use a pathwise construction of Itô’s integral such as in Föllmer [20], see also
Wong and Zakai [44].

Finally, the functions that in [13, 35] essentially play the role of our αn and βn
are assumed in [13, 35] to converge in the J1 topology, whereas here we only assume
pointwise convergence.

2.5 Applications

We discuss in this section new results that stem from Theorem 2.2. We keep the
discussion at a high level and reserve rigorous results for future work (with the exception
of Proposition 2.7).

2.5.1 Scaling limits of Galton–Watson processes in random (i.i.d.) environ-
ment

Consider for each n ≥ 1 a random probability measure Qn and a sequence (qi,n, i ≥ 0)

of i.i.d. random variables distributed as Qn. Then the sequence ((αi,n, βi,n, νi,n), i ≥ 0)

is an i.i.d. sequence of R × [0,∞) ×M-valued random variables, withM the space of
locally finite measures on R endowed with the vague topology. Because of the law of
large numbers, it is natural to choose γn linear in t, i.e., γn(t) = bΓntc for some sequence
Γn →∞. We now discuss conditions under which Assumption 2.1 holds.

We are interested in the convergence of the process Yn(t) = (αn(t), βn(t),Mn(t)),
where Mn(t) =

∑
0≤i<γn(t) νi,n defines a measure-valued process. Note that the process

Yn has i.i.d. increments, and so we can use classical results on measure-valued processes
and random walks, such as [28, Theorem VII.2.35] and [30, Theorem A2.4], to get an
explicit condition for its convergence. Namely, a function h : R3 → R3 is called truncation
function if it is continuous, bounded and satisfies h(x) = x in a neighborhood of 0 (in the
sequel, vectors are considered to be columns and v′ denotes the transposition). Let C+

K

be the set of non-negative continuous functions with compact support equipped with
the uniform norm, and C ⊂ C+

K be a dense subset closed under addition. For ϕ ∈ C, let
yϕn = (α0,n, β0,n,

∫
ϕdν0,n).

Condition 2.6. There exist a truncation function h, Fϕ a measure on R3 integrating
1 ∧ |x|2 and bϕ ∈ R3, cϕij ≥ 0 such that for every ϕ ∈ C,

ΓnE(h(yϕn )) −→
n→∞

bϕ, Γn
{
E
[
hi(y

ϕ
n )hj(y

ϕ
n )
]
− E(hi(y

ϕ
n ))E(hj(y

ϕ
n ))
}
−→
n→∞

cϕij

and ΓnE(g(yϕn )) −→
n→∞

∫
g(x)Fϕ(dx). (2.8)
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In the above, the second convergence holds for all i, j = 1, 2, 3 and the last conver-
gence holds for all bounded, continuous functions g that are equal to 0 in a neighborhood
of 0.

Assuming that this condition holds, it can be proved that Yn converges to the process
Y (t) = (α(t), β(t),M(t)) such that for every ϕ continuous with compact support, the
process Y ϕ = (α, β,Mϕ) with Mϕ = (

∫
ϕ(x)M(t)(dx), t ≥ 0) is the Lévy process with

Lévy exponent

ψϕ(v) = iv′bϕ − 1

2
v′cϕv +

∫ (
eivx − 1− iv′h(x)

)
Fϕ(dx), v ∈ R3.

Further, using Skorohod’s embedding theorem, we can assume that the convergence
Yn → Y holds almost surely. By definition, there exists a sequence of increasing bijections
(λn, n ≥ 1) from [0,∞) to [0,∞) such that sup0≤s≤t|λn(s) − s| → 0 for every t ≥ 0, and
such that assumptions (A1) (except for the convergence of ‖αn‖) and (A2) are satisfied
for γ′n = γn ◦ λn (see, e.g., Proposition VI.2.1 in Jacod and Shiryaev [28]).

Assuming now that α is of finite variation, α being a Lévy process must be of the form
α(t) = dαt+ S+(t)− S−(t) where dα ∈ R and S+ and S− are two independent pure-jump
subordinators (see, e.g., Bertoin [8]). With this special structure, it is possible to prove
that ‖αn‖(t)→ ‖α‖(t) so that Assumption 2.1 is fully satisfied and all the conclusions of
Theorem 2.2 hold. It would be interesting to delve deeper into the probabilistic structure
of the process (α, β, ν), and to understand how it relates to the properties of the limiting
process X such as the extinction probability or the speed of extinction. In the literature,
only the case of Feller diffusion in random environment where ν = 0 and α is a Brownian
motion has begun to be looked at, see, e.g., Böinghoff and Hutzenthaler [12].

We conclude this section by commenting on a question that actually motivated us in
the first place: given a sequence of Galton–Watson processes in random environment,
how can we find the right scaling in time, i.e., the right sequence (Γn)?
Let us focus on the simplest possible case where in each generation we choose at
random among one of two possible offspring distributions, i.e., we can write Qn =

p
(1)
n δq(1) + p

(2)
n δq(2) where p

(j)
n ∈ (0, 1), p(1)

n + p
(2)
n = 1 and q(1), q(2) are two offspring

distributions. In this discussion, we will call a CSBP with characteristic (b, c, F ) the CSBP
whose branching mechanism is given by

ψ(λ) = λb− 1

2
cλ2 +

∫
(e−λx − 1− λx1{x≤1})F (dx).

For each j = 1, 2 let Z(j)
n = (Z

(j)
n (i), i ≥ 0) be a Galton–Watson process with offspring

distribution q(j) and consider (Γ
(j)
n ) a sequence such that (X

(j)
n , n ≥ 1) converges weakly

to the CSBP with characteristic (b(j), c(j), F (j)), where X(j)
n (t) = n−1Z

(j)
n (bΓ(j)

n tc).
If both q(1) and q(2) have finite variance, then it is well-known that in order to scale the
Galton–Watson process with offspring distribution q(i) when the space scale is n, one
needs to speed up time with n also, i.e., Γ

(1)
n = Γ

(2)
n = n. Thus when “mixing” these two

processes, it is natural to speed up the resulting process by the common time scale
and thus take Γn = n. To our knowledge, only such cases have been considered in
the literature so far. When offspring distributions have infinite variance however, the
situation becomes more delicate. Indeed, if for instance q(1)([x,∞)) ∼ x−a as x → ∞
for some a ∈ (1, 2), then one needs to consider Γ

(1)
n = na−1. Thus there are now two

“natural” time scales, namely Γ
(1)
n = na−1 and Γ

(2)
n = n.

Note that Γ
(j)
n is the number of generations needed so that the variation of Z(j)

n may
be of the order of n. Over Γn generations, the law of large numbers implies that q(j)
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has been used p(j)
n Γn times. Thus, if p(j)

n Γn � Γ
(j)
n , the offspring distribution q(j) has not

been picked sufficiently often in order to have any effect (on the space scale n). This
suggests that the correct time scale is Γn = minj(Γ

(j)
n /p

(j)
n ) and indeed, the following

result can be proved using Theorem 2.2:

• if Γ
(1)
n /p

(1)
n � Γ

(2)
n /p

(2)
n and Γn = Γ

(1)
n /p

(1)
n , then Xn converges toward the CSBP

with branching mechanism (b(1), c(1), F (1));

• if Γ
(2)
n /p

(2)
n � Γ

(1)
n /p

(1)
n and Γn = Γ

(2)
n /p

(2)
n , then Xn converges toward the CSBP

with branching mechanism (b(2), c(2), F (2));

• if Γ
(1)
n p

(2)
n /(Γ

(2)
n p

(1)
n )→ ` ∈ (0,∞) and Γn = Γ

(1)
n /p

(1)
n , then Xn converges toward the

CSBP with characteristic (b(1) + `b(2), c(1) + `c(2), F (1) + `F (2)).

This discussion can be easily extended to the case of a finite number of offspring
distributions that also vary with n, and it would be very interesting to understand the
implications of Theorem 2.2 in more general settings, e.g., when we can choose among
uncountably many offspring distributions.

2.5.2 Feller diffusion

Going back to the case of varying environments, the finite variance case is of particular
interest. This is the only one that has been studied so far, see in particular [13, 35]. In
this case, our approach via the generalized branching equation (2.3) makes it possible
to derive an expression of the extinction probability. This extends results already known
for linear birth and death branching processes in varying environments from [32] and
for particular classes of CSBP in random environment from [6, 12].

Proposition 2.7. Assume that Assumption 2.1 holds with ν = 0. Then β is continuous
and for all t ≥ 0, we have

u(s, t, λ) =
exp(−α(s))

λ−1 exp(−α(t)) +
∫

(s,t]
exp(−α(y))β(dy)

, 0 ≤ s ≤ t, λ ≥ 0, (2.9)

where α(t) = α(t) +
∑

0≤s≤t[log(1 + ∆α(s))−∆α(s)]. In particular, if ℘(t) = 0 for every
t ≥ 0 (for instance, if (2.5) holds), then for any s ≥ 0 and x ≥ 0

lim
t→∞

P(X(t) = 0 | X(s) = x) = exp

(
− x exp(−α(s))∫

(s,∞)
exp(−α(y))β(dy)

)
(2.10)

where X is the weak limit of the sequence of processes (Xn(y), y ≥ s) given by proper-
ties III and IV of Theorem 2.2.

Proof. Since Assumption 2.1 holds, all the conclusions of Theorem 2.2 hold. In particular,
β̃ is continuous and since ν = 0 by assumption, β = β̃ and β itself is continuous.

Let us now prove (2.9). Fix t, λ > 0: according to Theorem 2.2, it is enough to
check that G(s) = H(s), where G(s) is equal to the right-hand side of (2.9) and H(s) =

λ+
∫

(s,t]
Gdα−

∫
(s,t]

G2dβ. Observe that G and H may only jump when α does. We first

compare the jumps: since β is continuous, s 7→
∫

(s,t]
exp(−α(y))dβ(y) is continuous and

so

∆G(s) =
exp(−α(s))− exp(−α(s−))

λ−1 exp(−α(t)) +
∫

(s,t]
exp(−α(y))β(dy)

= G(s)
(

1− e∆α(s)
)
.

Since by definition ∆α(s) = log(1 + ∆α(s)) we obtain ∆G(s) = −G(s)∆α(s) which
coincides with ∆H(s) (since s 7→

∫
(s,t]

G2dβ is continuous). Let us now compare the
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continuous parts of G and H, resp. denoted by Gc and Hc. Starting from the right-hand
side of (2.9), the chain rule for functions of bounded variations gives

dGc(s) =
−α(ds) exp(−α(s))

λ−1 exp(−α(t)) +
∫

(s,t]
exp(−α(y))β(dy)

+
exp(−2α(s))β(ds)(

λ−1 exp(−α(t)) +
∫

(s,t]
exp(−α(y))β(dy)

)2 ,

i.e., dGc(s) = −G(s)α(ds) + G(s)2β(ds) = dHc(s). This proves (2.9) from which (2.10)
follows from the facts that P(X(t) = 0 | X(s) = x) = limλ→∞E(e−λX(t) | X(s) = x) and
that E(e−λX(t) | X(s) = x) = exp(−xu(s, t, λ)).

2.5.3 Remarks on CSBP with catastrophes

Theorem 2.2 makes it possible to study Galton–Watson processes where only few off-
spring distributions are not near-critical. The simplest example is given by taking
γn(t) = bΓntc and qi,n = q0,n, in such a way that the corresponding sequence of scaled
Galton–Watson processes converges to a CSBP. Then, for some t0 ≥ 0, one can change
qγn(t0),n and take its mean equal to 1 + a. Thus (Xn) converges to a process X which is a
CSBP on [0, t0) and on [t0,∞) and such that X(t0) = (1 + a)X(t0−).
Such processes with catastrophes have been studied in [6] with motivations for cell divi-
sion models. More precisely, CSBP’s are multiplied at a constant rate by some random
number which yields the impact of the catastrophe. The successive times of catastrophes
and their impact follow a Poisson point process with intensity rdtP(F ∈ dθ), whose
associated Lévy process has finite variation. Theorem 2.2 thus yields an alternative way
to construct the process and characterize its Laplace exponent, whereas [6] uses results
on stochastic differential equations with jumps.

Another way to create a discontinuity at a fixed time is to take qγn(t0),n = (1 −
1/n)δ0 + (1/n)δn as in the example considered in the beginning of Section 2.3. Again,
(Xn) converges to a process X which is a CSBP on [0, t0) and on [t0,∞) and such
that X(t0) = S(X(t0−)) with (S(x), x ≥ 0) a Poisson process. Theorem 2.2 allows
accumulation of such fixed jumps; note that in both cases these jumps may be negative,
whereas CSBP’s only have positive jumps.

Building on these two simple examples, we expect in general that if X is a time-
inhomogeneous Markov process satisfying the branching property, then for each fixed
time of discontinuity t, there should exist a subordinator St = (St(x), x ≥ 0) such that
X(t) = St(X(t−)).

3 Additional notation and preliminary results

In this section we gather some notation used throughout the rest of the paper. Of
particular importance are the constants and functions defined in Section 3.3, which will
be used repeatedly in the proofs.

3.1 Additional notation

From now on we identify any càdlàg function of locally finite variation f with its
corresponding signed measure, see for instance Chapter 3 in Kallenberg [30]. For
instance, we will write indifferently f((s, t]), f(s, t] or f(t)− f(s) for 0 ≤ s ≤ t, as well as
∆f(t) or f{t}. Let g and h be defined as follows:

g(x, λ) = 1− e−λx − λx

1 + x2
and h(x, λ) = g(x, λ) +

(λx)2

2(1 + x2)
, x ∈ R, λ ≥ 0. (3.1)

EJP 20 (2015), paper 75.
Page 11/36

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3812
http://ejp.ejpecp.org/


Scaling limits of Galton–Watson processes in varying environments

For n ≥ 1 let in the sequel µn = ‖αn‖+ βn, i.e.,

µn(t) = ‖αn‖(t) + βn(t), t ≥ 0, (3.2)

and for i ≥ 0 and n ≥ 1, let

ψi,n(λ) = un(tni , t
n
i+1, λ)− λ = −n log

(
1− 1

n

∫ (
1− e−λx

)
νi,n(dx)

)
, λ ≥ 0, (3.3)

where log stands for the natural logarithm and the second equality is derived from
the definition of un as Laplace exponent of Xn. In order to use the approximation
ψi,n(λ) ≈

∫
(1− e−λx)νi,n(dx), we introduce the function εi,n such that

ψi,n(λ) = (1 + εi,n(λ))

∫ (
1− e−λx

)
νi,n(dx), (3.4)

with εi,n(λ) = 0 when
∫

(1− e−λx)νi,n(dx) = 0.

For every n ≥ 1 and every measurable, positive function f : [0,∞)→ (0,∞), define
the two measures Ψ(f) and Ψn(f) as follows:

Ψ(f)(A) =

∫
A

f(y)α(dy)−
∫
A

f(y)2β(dy) +

∫
(0,∞)×A

h(x, f(y))ν(dx dy), A ∈ B,

with B the Borel subsets of R, and

Ψn(f)(A) =
∑
i≥1

1{tni ∈A}ψi−1,n(f(tni )), A ∈ B.

With a slight abuse of notation, we will also consider Ψ(f) and Ψn(f) for functions f
only defined on a subset of [0,∞), typically [℘(t), t]. Then we will only consider Ψ(f)(A)

or Ψn(f)(A) for Borel sets A which are subset of the domain of definition of f .

3.2 Heuristic derivation of (2.3)

We first note that (2.3) can be rewritten as

u(s, t, λ) = λ+ Ψ(u( · , t, λ))((s, t]). (3.5)

To see that un satisfies a similar dynamics, note that from the definition of un and the
Markov property of Xn, we get the following composition rule:

un(t1, t3, λ) = un(t1, t2, un(t2, t3, λ)), 0 ≤ t1 ≤ t2 ≤ t3, λ ≥ 0. (3.6)

Lemma 3.1. For any n ≥ 1, λ ≥ 0 and 0 ≤ s ≤ t, it holds that

un(s, t, λ) = λ+

γn(t)∑
i=γn(s)+1

ψi−1,n(un(tni , t, λ)) = λ+ Ψn(un( · , t, λ))((s, t]). (3.7)

Proof. The second equality follows readily from the definition of Ψn, while the first one
can be derived as follows:

un(s, t, λ) = un(tnγn(s), t, λ) = λ+

γn(t)−1∑
i=γn(s)

(
un(tni , t, λ)− un(tni+1, t, λ)

)
(i)
= λ+

γn(t)−1∑
i=γn(s)

(
un(tni , t

n
i+1, un(tni+1, t, λ))− un(tni+1, t, λ)

)
(ii)
= λ+

γn(t)−1∑
i=γn(s)

ψi,n(un(tni+1, t, λ)),
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where (i) comes from the composition rule (3.6) and (ii) comes from the first equality
in (3.3).

From (3.7) we can now let (3.5) (i.e., (2.3)) appear. Indeed, in view of the second
equality in (3.3) and of the approximation log(1− x) ≈ −x, it is reasonable to expect

ψi,n(λ) ≈
∫ (

1− e−λx
)
νi,n(dx) = λαi,n − λ2βi,n +

∫
(0,∞)

h(x, λ)νi,n(dx)

(recall the definition (3.1) of h for the last equality) and so summing over i = 0, . . . , γn(t)−
1 yields through (3.7) the approximation

un(s, t, λ) ≈ λ+

∫
(s,t]

un(y, t, λ)αn(dy)−
∫

(s,t]

(un(y, t, λ))2βn(dy)

+

∫
(0,∞)×(s,t]

h(x, un(y, t, λ))νn(dx dy).

Since (αn, βn, νn) is assumed to converge toward (α, β, ν), this last approximation
suggests that any limit u(s, t, λ) of the sequence (un(s, t, λ)) should indeed satisfy (3.5).

3.3 Key constants and functions

For any n ≥ 1, t, λ, C ≥ 0, s ≤ t, N ≥ 1, 0 < η < T , let:

c1(C) = C + c′1(C) with c′1(C) = sup

{
2|g(x, λ)|(1 + x2)

x2
: x ≥ −1, 0 ≤ λ ≤ C

}
, (3.8)

c2(η, T ) = sup
η≤y,y′≤T
0<x, y 6=y′

∣∣∣∣ h(x, y)− h(x, y′)

(y − y′)x2/(1 + x2)

∣∣∣∣ and c3(η, T ) = 1 + T + c2(η, T ), (3.9)

cεn,t(C) = sup {|εi,n(λ)| : 0 ≤ i < γn(t), 0 ≤ λ ≤ C} , (3.10)

cut,λ = sup {un(s, t, λ) : n ≥ 1, 0 ≤ s ≤ t} , (3.11)

∆u
t,λ =

(
1 + sup

n≥1

{
cεn,t
(
cut,λ
)})

c1
(
cut,λ
)
, (3.12)

cus,t,λ(N) = inf {un(y, t, λ) : s ≤ y ≤ t, n ≥ N} , (3.13)

and Ns,t,λ = inf
{
N ≥ 1 : cus,t,λ(N) > 0

}
. When Ns,t,λ is finite, we also define

cus,t,λ = cus,t,λ(Ns,t,λ), (3.14)

in which case cus,t,λ > 0. We defer the proofs that these constants and numbers are finite
to Appendix B, and we now show how to use them to prove key results. Of particular
importance are Lemma 3.3, which controls fluctuations of un(s, t, λ) in s, and Lemma 3.4
which allows to rewrite the time of last bottleneck ℘(t) in a more convenient form.

Lemma 3.2. For any C ≥ 0, n ≥ 1 and i ≥ 0,

sup
0≤λ≤C

∣∣∣∣∫ (1− e−λx) νi,n(dx)

∣∣∣∣ ≤ c1(C)µn(tni , t
n
i+1]. (3.15)

Proof. By definition (3.1) of g, we have∫ (
1− e−λx

)
νi,n(dx) = λαi,n +

∫
g(x, λ)νi,n(dx)

so that |
∫

(1− e−λx)νi,n(dx)| ≤ λ|αi,n|+
∫
|g(x, λ)|νi,n(dx). Since

|g(x, λ)| ≤ c′1(C)
x2

2(1 + x2)

for all x ≥ −1 and 0 ≤ λ ≤ C by definition of c′1(C), we get (3.15).
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Lemma 3.3. For any n ≥ 1, λ, t > 0 and 0 ≤ s ≤ s′ ≤ t,

|un(s, t, λ)− un(s′, t, λ)| ≤ ∆u
t,λµn(s, s′]. (3.16)

Proof. Lemma 3.1 and the definition of εi,n give

|un(s, t, λ)− un(s′, t, λ)|

≤
γn(s′)∑

i=γn(s)+1

(1 + |εi−1,n(un(tni , t, λ))|)
∣∣∣∣∫ (1− e−xun(tni ,t,λ))νi−1,n(dx)

∣∣∣∣ .
Since 0 ≤ tni ≤ t for any 0 ≤ i ≤ γn(t), we have un(tni , t, λ) ≤ cut,λ and in particular

|εi−1,n(un(tni , t, λ))| ≤ cεn,t(c
u
t,λ) for all γn(s) < i ≤ γn(s′). Using in addition (3.15) with

C = cut,λ, we obtain

|un(s, t, λ)− un(s′, t, λ)| ≤
γn(s′)∑

i=γn(s)+1

(
1 + cεn,t(c

u
t,λ)
)
c1(cut,λ)µn(tni−1, t

n
i ] = ∆u

t,λµn(s, s′]

which gives (3.16).

In the next lemma we provide an alternative expression for ℘(t), defined so far as
supS(t) with

S(t) =

{
s ≤ t : lim

ε→0
lim inf
n→∞

inf
s≤y≤t

P
(
Xn(t) > ε

∣∣ Xn(y) = 1
)

= 0

}
.

More precisely, we show that ℘(t) = supS(t, λ) where for each λ ≥ 0,

S(t, λ) =

{
s ≤ t : lim inf

n→∞
inf

s≤y≤t
un(y, t, λ) = 0

}
.

In particular, we deduce that un past ℘(t) is uniformly bounded away from 0 (i.e.,
Ns,t,λ is finite and cus,t,λ > 0 for s > ℘(t)), which is in line with the intuition behind ℘(t)

being the last bottleneck before time t.

Lemma 3.4. Fix t > 0 and assume that the sequences (‖αn‖(t), n ≥ 1) and (βn(t), n ≥ 1)

are bounded. Then ℘(t) = supS(t, λ) for every λ > 0 and Ns,t,λ is finite for every
s ∈ (℘(t), t].

In particular, if (‖αn‖(t), n ≥ 1) and (βn(t), n ≥ 1) are bounded for every t ≥ 0, then
the function t 7→ ℘(t) is increasing.

Proof. Fix in the rest of the proof t, λ > 0 and let s ≤ t: the following statements are
equivalent, which proves that S(t) = S(t, λ) and implies ℘(t) = supS(t, λ):

(i) lim infn→∞ infs≤y≤t un(y, t, λ) = 0;

(ii) there exist sequences (n(k)) and (yk) such that yk ∈ [s, t] for each k ≥ 1 and

lim
k→∞

n(k) =∞ and lim
k→∞

un(k)(yk, t, λ) = 0;

(iii) there exist sequences (n(k)) and (yk) such that yk ∈ [s, t] for each k ≥ 1 and

lim
k→∞

n(k) =∞ and for every v > 0, lim
k→∞

E
(
e−vXn(k)(t) |Xn(k)(yk) = 1

)
= 1;
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(iv) there exist sequences (n(k)) and (yk) such that yk ∈ [s, t] for each k ≥ 1 and for any
ε > 0,

lim
k→∞

n(k) =∞ and lim
k→∞

P
(
Xn(k)(t) > ε |Xn(k)(yk) = 1

)
= 0;

(v) limε→0 lim infn→∞ infs≤y≤tP
(
Xn(t) > ε | Xn(y) = 1

)
= 0.

The equivalence between (iii) and (iv) relies on the fact that both conditions are
equivalent to the following one: the sequence of random variables (Xn(k)(t), k ≥ 1)

under P( · | Xn(k)(yk) = 1) converges in distribution to 0. Let us also explain the last
equivalence. The condition (iv) implies that

lim inf
n→∞

inf
s≤y≤t

P
(
Xn(t) > ε | Xn(y) = 1

)
= 0

for every ε > 0, which is stronger than (v). Now, assuming that (v) holds, one can find
sequences (εk), (n(k)) and (yk) such that yk ∈ [s, t] and

lim
k→∞

εk = 0, lim
k→∞

n(k) =∞ and lim
k→∞

P
(
Xn(k)(t) > εk | Xn(k)(yk) = 1

)
= 0.

Then the sequences (n(k)) and (yk) satisfy (iv) since for any ε > 0,

P
(
Xn(k)(t) > ε | Xn(k)(yk) = 1

)
≤ P

(
Xn(k)(t) > εk | Xn(k)(yk) = 1

)
for k large enough, since εk → 0. This proves ℘(t) = supS(t, λ), which implies that Ns,t,λ
is finite when ℘(t) < s ≤ t since from the definition (3.13) of cus,t,λ(N),

lim
N→∞

cus,t,λ(N) = lim inf
n→∞

inf
s≤y≤t

un(y, t, λ).

We now assume that (‖αn‖(t)) and (βn(t)) are bounded for every t ≥ 0, and prove
that ℘( · ) is an increasing function. Let t′ > t: we will show that S(t, cut′,λ) ⊂ S(t′, λ),
which proves that ℘(t) ≤ ℘(t′). So consider s ∈ S(t, cut′,λ), i.e., s ≤ t with

lim inf
n→∞

inf
s≤y≤t

un(y, t, cut′,λ) = 0.

Then s ≤ t′, and the composition rule (3.6) together with the monotonicity of un in λ
give for any s ≤ y ≤ t

un(y, t′, λ) = un(y, t, un(t, t′, λ)) ≤ un(y, t, cut′,λ)

which entails
lim inf
n→∞

inf
s≤y≤t′

un(y, t′, λ) ≤ lim inf
n→∞

inf
s≤y≤t

un(y, t, cut′,λ).

Since this last quantity is equal to 0 this proves that s ∈ S(t′, λ) and gives the
result.

4 Proof of Theorem 2.2

In this section, we assume that Assumption 2.1 holds and we consider the measures
α, β and ν given there. Recall that µn = ‖αn‖+ βn, and define analogously µ = ‖α‖+ β,
in particular we have

lim
n→∞

µn(t) = µ(t). (4.1)

Define also the measure µ̃ by

µ̃(A) = µ(A) +

∫
(0,∞)×A

x2

1 + x2
ν(dx dy), A ∈ B.

We prove the four claims I–IV in Sections 4.1 to 4.4.
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4.1 Proof of claim I

That ∆α(t) ≥ −1 is a direct consequence of (A2) since αi,n ≥ −1 for every i ≥ 0 and
n ≥ 1. Moreover, note that∫

(0,∞)×Is,t

x2

2(1 + x2)
ν(dx dy) ≤ β(Is,t), 0 ≤ s ≤ t, (4.2)

where Is,t = (s, t] or Is,t = (s, t). Indeed, for Is,t = (s, t]∫
(0,∞)×(s,t]

x2

2(1 + x2)
ν(dx dy)

(i)
=

∫
(0,∞)

x

(1 + x2)2
ν([x,∞)× (s, t])dx

(ii)
=

∫
(0,∞)

x

(1 + x2)2
lim inf
n→∞

νn([x,∞)× (s, t])dx

(iii)
≤ lim inf

n→∞

∫
(0,∞)

x

(1 + x2)2
νn([x,∞)× (s, t])dx

(iv)
= lim inf

n→∞

∫
(0,∞)×(s,t]

x2

2(1 + x2)
νn(dx dy)

(v)
≤ lim inf

n→∞
(βn((s, t]))

using Fubini’s theorem for (i) and (iv), the assumption (A1) for (ii) (using also that the set
{x : ν({x} × (s, t]) > 0} has zero Lebesgue measure), Fatou’s lemma for (iii) and finally
the definition of νn and βn for (v). To get the result for Is,t = (s, t) apply (4.2) to (s, t′] and
let t′ ↑ t. The inequality (4.2) has two direct consequences:

∫
(0,∞)×(0,t]

(1 ∧ x2)ν(dx dy) is

finite and the function β̃ is increasing. Thus to conclude the proof of claim I, it remains
to show that β̃ is continuous, i.e., ∆β̃(t) = 0.

First, by letting s ↑ t in (4.2) with Is,t = (s, t] we see that ∆β̃(t) = 0 when ∆β(t) = 0,
so we only have to consider the case where ∆β(t) > 0. In this case, the assumption (A2)
implies that βγn(t),n → ∆β(t) and that νγn(t),n([x,∞)) → ν([x,∞) × {t}) for every x > 0

such that ν({x} × {t}) = 0. Then for any d > 0 with ν({d} × {t}) = 0, we get by weak
convergence of probability measures (since all the measures restricted to [d,∞) have
finite mass) and the dominated convergence theorem

lim
n→∞

∫
(d,∞)

x2

2(1 + x2)
νγn(t),n(dx) =

∫
(d,∞)×{t}

x2

2(1 + x2)
ν(dx dy). (4.3)

On the other hand, we have∫
[−1/n,d]

x2

1 + x2
νγn(t),n(dx) ≤

(
d+

1

n

)∫
[−1/n,d]

|x|
1 + x2

νγn(t),n(dx)

and from the definition of αγn(t),n we see that∫
[−1/n,d]

|x|
1 + x2

νγn(t),n(dx) =

∫
[−1/n,d]

x

1 + x2
νγn(t),n(dx) +

2/n

1 + (1/n)2
νγn(t),n{−1/n}

≤ αγn(t),n +
2n2

1 + n2

using that νγn(t),n{−1/n} ≤ νγn(t),n(R) = n for the last inequality. Since |αγn(t),n| ≤
‖αn‖(t) and ‖αn‖(t)→ ‖α‖(t), we obtain from the two last displays

lim
d→0

lim sup
n→∞

∫
[−1/n,d]

x2

1 + x2
νγn(t),n(dx) = 0.
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Combined with (4.3), this gives

lim
n→∞

∫
x2

2(1 + x2)
νγn(t),n(dx) = lim

d→0

∫
(d,∞)×{t}

x2

2(1 + x2)
ν(dx dy)

=

∫
(0,∞)×{t}

x2

2(1 + x2)
ν(dx dy).

Since 2βγn(t),n =
∫

x2

1+x2 νγn(t),n(dx) and βγn(t),n → ∆β(t) this concludes the proof of
claim I.

4.2 Proof of claim II

First of all, note that under Assumption 2.1, we have the convergence µn → µ in the
J1 topology, see for instance [28, Section VI.2]. In view of (3.3) and the Arzelá-Ascoli
theorem, for each t, λ ≥ 0 this implies that the sequence of functions (un( · , t, λ), n ≥ 1)

on [0, t] is relatively compact. Thus in order to prove claim 4.2, we only have to prove
the pointwise convergence un(s, t, λ)→ u(s, t, λ).

In order to do so, the (classical) idea is to use a Lipschitz property satisfied by
Ψ, combined with Gronwall’s lemma. The Lipschitz property of Ψ takes the following
form, where we use the space F of measurable and positive functions f such that
0 < inf f ≤ sup f < ∞ and we remember the constant c3 defined in (3.9). For any
functions f1, f2 ∈ F and any A ∈ B, we have

|Ψ(f1)(A)−Ψ(f2)(A)| ≤ c3
(

inf
A
f1 ∧ inf

A
f2, sup

A
f1 + sup

A
f2

)∫
A

|f1 − f2|dµ̃. (4.4)

Indeed, let η = infA f1 ∧ infA f2 and T = supA f1 + supA f2: then by definition of Ψ we
have

|Ψ(f1)(A)−Ψ(f2)(A)| ≤
∫
A

|f1 − f2|d‖α‖+

∫
A

∣∣f2
1 − f2

2

∣∣ dβ
+

∫
(0,∞)×A

|h(x, f1(y))− h(x, f2(y))| ν(dx dy).

Using |f2
1 − f2

2 | = |f1 − f2|(f1 + f2) and plugging in the constant c2, we obtain

|Ψ(f1)(A)−Ψ(f2)(A)| ≤
∫
A

|f1 − f2|d‖α‖+ T

∫
A

|f1 − f2|dβ

+ c2(η, T )

∫
(0,∞)×A

|f1(y)− f2(y)| x2

1 + x2
ν(dx dy) ≤ c3(η, T )

∫
A

|f1 − f2|dµ̃,

which establishes (4.4). We will invoke this property using the following backwards
version of Gronwall’s lemma. The proof is standard and omitted.

Lemma 4.1. Let u and R be non-negative, càdlàg functions and let π be a locally finite
and positive measure. If

u(s) ≤ R(s) +

∫
(s,t]

u(x)π(dx)

holds for all 0 ≤ s ≤ t, then for all 0 ≤ s ≤ t we have

u(s) ≤ R(s) + eπ(s,t]

∫
(s,t]

R(x)π(dx).

The claim II of Theorem 2.2 follows readily from Lemma 4.3 below. The proof of this
lemma uses the following result, whose long proof is postponed to Appendix C.
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Lemma 4.2. Fix t, λ > 0 and consider any sequence (`n) with `n → λ. For n ≥ 1, let Rn
be the function

Rn(s) = |Ψn(un( · , t, `n))((s, t])−Ψ(un( · , t, `n))((s, t])| , 0 ≤ s ≤ t.

Then Rn(s)→ 0 for any ℘(t) < s ≤ t and sup {Rn(s) : 0 ≤ s ≤ t, n ≥ 1} is finite.

Lemma 4.3. Fix t, λ > 0 and a sequence (`n) with `n → λ. Then for any s ∈ [℘(t), t], the
sequence (un(s, t, `n), n ≥ 1) converges and the function

u : s ∈ [℘(t), t] 7→ lim
n→∞

un(s, t, `n)

is the unique function satisfying the following properties:

1. u(s) = λ+ Ψ(u)((s, t]) for all ℘(t) ≤ s ≤ t;

2. u is càdlàg;

3. inf [s,t] u > 0 for any ℘(t) < s ≤ t.

In particular, u(s, t, λ) does not depend on the sequence `n.

Proof. In the rest of the proof fix t, λ > 0 and (`n) a sequence converging to λ. Let
` = infn≥1 `n and L = supn≥1 `n and assume without loss of generality, since `n → λ > 0,
that ` > 0. To ease the notation, we write in the rest of the proof ℘ = ℘(t) and
un(s) = un(s, t, `n) for 0 ≤ s ≤ t. We decompose the proof in four steps: first we prove
that the sequence (un(s), n ≥ 1) is Cauchy for any s ∈ (℘, t], then that it is Cauchy for
s = ℘, then that u satisfies the claimed properties and finally that it is the only such
function.

Before beginning, note that everything is trivial if ℘ = t, because then un(s) = `n and
Ψ(u)((s, t]) = 0 for any s ∈ [℘, t]. Hence in the sequel we assume that ℘ < t.

First step: (un(s)) is Cauchy for s ∈ (℘, t]. In the rest of this step fix s ∈ (℘, t] and for
s ≤ y ≤ t we define as in Lemma 4.2 Rn(y) = |Ψn(un)((y, t]) − Ψ(un)((y, t])|. Then the
second equality in (3.7) gives for any s ≤ y ≤ t and any m,n ≥ 1

|un(y)− um(y)| ≤ Rn(y) +Rm(y) + |Ψ(un)((y, t])−Ψ(um)((y, t])| .

We get from (4.4)

|Ψ(un)((y, t])−Ψ(um)((y, t])| ≤ c3

(
inf
(y,t]

un ∧ inf
(y,t]

um, sup
(y,t]

un + sup
(y,t]

um

)∫
(y,t]

|un − um| dµ̃.

Since the function un(s, t, λ) is increasing in λ, we have for any y ∈ [s, t] and n ≥ Ns,t,`
(recall that Ns,t,` is defined in (3.13) and is finite by Lemma 3.4)

un(y) = un(y, t, `n) ≥ un(y, t, `) ≥ inf
s≤y′≤t

un(y′, t, `) ≥ cus,t,` > 0.

Similar monotonicity arguments lead to un(y) ≤ cut,L for any y ≤ t and n ≥ 1, so that
monotonicity properties of c3(η, T ) in η and T give for n,m ≥ Ns,t,λ

|Ψ(un)((y, t])−Ψ(um)((y, t])| ≤ c3
(
cus,t,`, 2c

u
t,L

) ∫
(y,t]

|un − um| dµ̃.

We finally get the bound

|un(y)− um(y)| ≤ Rn(y) +Rm(y) + C

∫
(y,t]

|un − um| dµ̃
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with C = Cs,t,`,L = c3(cus,t,`, 2c
u
t,L), which holds for all s ≤ y ≤ t and all n,m ≥ Ns,t,`. Thus

Lemma 4.1 implies for those n,m

|un(s)− um(s)| ≤ Rn(s) +Rm(s) + CeCµ̃(s,t]

∫
(s,t]

(Rn +Rm) dµ̃

so that for any n0 ≥ Ns,t,`,

sup
n,m≥n0

|un(s)− um(s)| ≤ 2 sup
n≥n0

(Rn(s)) + 2CeCµ̃(s,t] sup
n≥n0

(∫
(s,t]

Rndµ̃

)
.

Lemma 4.2 combined with the dominated convergence theorem shows that the right
hand side of the above inequality goes to 0 as n0 →∞ which proves that the sequence
(un(s), n ≥ 1) is Cauchy and completes the proof of this first step.

Second step: (un(℘)) is Cauchy. For any ℘ < s′ ≤ t, (3.16) entails

|un(℘)− um(℘)| ≤ |un(℘)− un(s′)|+ |um(℘)− um(s′)|+ |un(s′)− um(s′)|
≤ 2∆u

t,`nµn(℘, s′] + |un(s′)− um(s′)|
≤ 2∆u

t,Lµn(℘, s′] + |un(s′)− um(s′)|

using for the last inequality that `n ≤ L and that ∆u
t,y is increasing in y, as can be seen

directly from its definition (3.12). Hence for any n0 ≥ 1,

sup
m,n≥n0

|un(℘)− um(℘)| ≤ 2∆u
t,L sup

n≥n0

µn(℘, s′] + sup
m,n≥n0

|un(s′)− um(s′)| .

By (4.1) and the fact that (un(s′)) is Cauchy by the first step since ℘ < s′ ≤ t, the
right hand side of the above inequality goes to 2∆u

t,Lµ(℘, s′] as n0 goes to infinity. Since
µ(℘, s′]→ 0 as s′ ↓ ℘, letting then s′ ↓ ℘ shows that (un(℘)) is Cauchy.

Third step: properties of u. Let from now on u denote the function of the statement and
consider s ∈ [℘, t]. First note that the second property follows from the first one, so we
only have to prove the first and third ones. Assume first that s > ℘. We have seen in the
first step that for any s ≤ y ≤ t and n ≥ Ns,t,`

0 < cus,t,` ≤ un(y) ≤ cut,L <∞.

Since un(y)→ u(y) for s ≤ y ≤ t by definition of u, u also satisfies cus,t,λ ≤ u(y) ≤ cut,L
for s ≤ y ≤ t. In particular the third property inf [s,t] u > 0 is satisfied. Let us now show
the first property, still in the case s > ℘. Plugging in (3.7), we get

|u(s)− λ−Ψ(u)((s, t])| ≤ |u(s)− un(s)|+ |Ψn(un)((s, t])−Ψ(un)((s, t])|
+ |Ψ(un)((s, t])−Ψ(u)((s, t])| .

Since both un and u are bounded uniformly on [s, t] by cus,t,` and cut,L, we get with
similar arguments as in the first step

|Ψ(un)((s, t])−Ψ(u)((s, t])| ≤ c3
(
cus,t,`, 2c

u
t,L

) ∫
(s,t]

|un − u|dµ̃

and finally, we have for n ≥ Ns,t,`

|u(s)− λ−Ψ(u)((s, t])| ≤ |u(s)− un(s)|+ |Ψn(un)((s, t])−Ψ(un)((s, t])|

+ c3
(
cus,t,`, 2c

u
t,L

) ∫
(s,t]

|un − u|dµ̃.
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Let now n go to infinity. The first term of the above upper bound goes to 0 by definition
of u(s); the second term goes to 0 by Lemma 4.2. Finally, the last term also goes to 0

using the dominated convergence theorem. Thus u satisfies the first property for s > ℘.
To extend this for s = ℘, we proceed as in the second step and consider any

℘ < s′ ≤ t: then |un(℘) − un(s′)|≤ ∆u
t,Lµn(℘, s′] and taking the limit n → ∞ gives

|u(℘) − u(s′)|≤ ∆u
t,Lµ(℘, s′]. Letting s′ ↓ ℘ shows that u(s′) → u(℘). On the other hand,

it is plain that λ + Ψ(u)((s′, t]) → λ + Ψ(u)((℘, t]) as s′ ↓ ℘ and so u satisfies the first
property for all s ∈ [℘, t]. It remains to show uniqueness in order to complete the proof.

Fourth step: uniqueness. Let ũ be a function with the same properties than u. Then (4.4)
gives

|u(s)− ũ(s)| = |Ψ(u)((s, t])−Ψ(ũ)((s, t])|

≤ c3

(
cs,t,` ∧ inf

[s,t]
ũ, cut,L + sup

[s,t]

ũ

)∫
(s,t]

|u− ũ|dµ̃

and we conclude that u = ũ using Lemma 4.1.

4.3 Proof of claim III

Fix in the rest of the proof t ≥ 0, s ∈ [℘(t), t], xn → x ∈ [0,∞), I ≥ 1, λ1, . . . , λI > 0

and s ≤ t1 < · · · < tI ≤ t. Consider first the case I = 2, so that we must show that

lim
n→∞

E
(
e−λ1Xn(t1)−λ2Xn(t2) | Xn(s) = xn

)
= exp (−xu(s, t1, λ1 + u(t1, t2, λ2))) . (4.5)

Using the Markov property of Xn and the definition (2.1) of un, we get

E
(
e−λ1Xn(t1)−λ2Xn(t2) | Xn(s) = xn

)
= E

[
e−λ1Xn(t1)E

(
e−λ2Xn(t2) | Xn(t1)

)
| Xn(s) = xn

]
= E

[
e−λ1Xn(t1)e−Xn(t1)un(t1,t2,λ2) | Xn(s) = xn

]
and so

E
(
e−λ1Xn(t1)−λ2Xn(t2) | Xn(s) = xn

)
= exp (−xnun(s, t1, λ1 + un(t1, t2, λ2))) . (4.6)

Since ℘ is an increasing function by Lemma 3.4 and ℘(t) ≤ s ≤ t1 ≤ t2 ≤ t, it holds
that ℘(t2) ≤ t1 ≤ t2 and so Lemma 4.3 implies that un(t1, t2, λ2) → u(t1, t2, λ2). Also,
℘(t1) ≤ s ≤ t1 so Lemma 4.3 implies that

lim
n→∞

un(s, t1, λ1 + un(t1, t2, λ2)) = u(s, t1, λ1 + u(t1, t2, λ2))

which proves (4.5) using (4.6). The general case I ≥ 3 follows in a similar way by
induction.

4.4 Proof of claim IV

Fix t ≥ s ≥ 0, x ≥ 0 and xn → x: the goal is to show that the sequence (Xn(y), s ≤ y ≤
t) under P( · | Xn(s) = xn) is tight, and in order to do so we use Theorem 1′ in Bansaye
and Simatos [7]. There are two assumptions, A1 and A2’, to check.

Assumption A1 is a compact containment condition, and since [0,∞] endowed with
the metric d(x, y) = |e−x − e−y| is compact (in addition to being complete and separable),
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it is automatically satisfied. Thus we only have to check A2’, i.e., we have to show that
for each n ≥ 1, each s ≤ y0 ≤ y ≤ t with µn(y0, y] ≤ ∆u

t,2/2 and each x0 ∈ [0,∞],

E
[
d(x0, Xn(y))2 | Xn(y0) = x0

]
≤ 2∆u

t,2µn(y0, y]. (4.7)

Indeed, in this case assumption A2’ is satisfied with η0 = (∆u
t,2)2, Fn = 2∆u

t,2µn and
F = 2∆u

t,2µ. So let us now prove (4.7). Since∞ is, by convention, an absorbing state, we
only need to prove this inequality for finite x0. Starting from the left-hand side of (4.7),
we get

E
[
d(x0, Xn(y))2 | Xn(y0) = x0

]
= e−2x0 + e−x0un(y0,y,2) − 2e−x0−x0un(y0,y,1)

= e−2x0

[
2
(

1− ex0(1−un(y0,y,1))
)
−
(

1− ex0(2−un(y0,y,2))
)]
.

Since |1− ez| ≤ e|z| − 1 ≤ 2(e|z| − 1) for any z ∈ R, we obtain further

E
[
d(x0, Xn(y))2 | Xn(y0) = x0

]
≤ 2e−2x0

[
ex0|1−un(y0,y,1)| + ex0|2−un(y0,y,2)| − 2

]
.

Writing λ as λ = un(y, y, λ), (3.16) gives

E
[
d(x0, Xn(y))2 | Xn(y0) = x0

]
≤ 2e−2x0

(
ex0∆u

y,1µn(y0,y] + ex0∆u
y,2µn(y0,y] − 2

)
≤ 4e−2x0

(
ex0∆u

t,2µn(y0,y] − 1
)

using for the last inequality that y ≤ t and that both maps z 7→ ∆u
z,λ and λ 7→ ∆u

z,λ are
increasing. Further, elementary analysis shows that for any 0 ≤ y′ ≤ 1

sup
x′≥0

(
e−x

′
(ex

′y′ − 1)
)

= y′ (1− y′)1/y′−1 ≤ 1

e
y′ey

′
≤ y′.

Combining the two last displays with x′ = 2x0 and y′ = ∆u
t,2µn(y0, y]/2 ≤ 1, we finally

get (4.7) which achieves the proof of claim IV.

5 Proof of Propositions 2.3 and 2.4

5.1 Proof of Proposition 2.3

Fix some t > 0 and assume that (‖αn‖(t), n ≥ 1) and (βn(t), n ≥ 1) are bounded, and
that (2.5) holds. In view of Lemma 3.4, in order to prove that ℘(t) = 0 it is enough to
prove that

lim inf
n→∞

inf
0≤y≤t

un(y, t, 1) > 0.

The goal is to apply the following lemma to derive a lower bound on inf0≤y≤t un(y, t, 1).

Lemma 5.1. Let ε > 0, M ≥ 0 and for each i ≥ 0, ai, bi ≥ 0 such that a2
i − aibiM ≥ ε. If

(wi, 0 ≤ i ≤ I) satisfies wI > 0, 0 ≤ wi ≤ M for 0 ≤ i ≤ I and wi ≥ wi+1ai − w2
i+1bi for

0 ≤ i ≤ I − 1, then

wi ≥

(
1

wI
πi,I−1 +

I−1∑
k=i

πi,k−1bka
−2
k

)−1

, 0 ≤ i ≤ I,

where πi,i−1 = 1 and πi,j =
∏j
k=i

(
(1 + b2kM

2ε−1)a−1
k

)
for i ≤ j.
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Proof. In the rest of the proof let ρk = b2kM
2/ε and

ri(x) = b2i
x2

a2
i − aibix

, x ≤M.

Note that a2
i−aibiM ≥ ε by assumption, so ai > 0 and ri is well-defined and increasing.

In particular, ri(x) ≤ ri(M) ≤ b2iM2/ε = ρi so that writing

aiwi+1 − biw2
i+1 = ai

(
1 + ri(wi+1)

wi+1
+
bi
ai

)−1

we obtain, using wi ≥ aiwi+1 − biw2
i+1,

wi ≥ ai
(

1 + ρi
wi+1

+
bi
ai

)−1

.

This last inequality can be rewritten as wi ≤ (1 + ρi)a
−1
i wi+1 + bia

−2
i with wi = 1/wi.

It follows by induction that wi ≤ wIπi,I−1 +
∑I−1
k=i πi,k−1bk/a

2
k which is exactly the desired

result.

Let C = 1/(2cut,1) and

δ =
1

2
min

(
lim inf
n→∞

inf
0≤i≤In

E (ξi,n; ξi,n ≤ nC + 1) , 1

)
,

so that δ > 0 by (2.5). We want to apply the previous lemma for n large enough to
ε = δ2/16, M = cut,1, wi,n = un(tni , t, 1), In = γn(t),

ai,n = 1 + (1 + εi,n(wi+1,n))

∫
[−1/n,C]

xνi,n(dx)

and

bi,n = (1 + εi,n(wi+1,n))

∫
[−1/n,C]

x2νi,n(dx).

By Lemma B.3, M is finite and by definition, wIn,n = 1 > 0 and 0 ≤ wi,n ≤ M for
all 0 ≤ i ≤ In. Since 1 − e−x ≥ x − x2 for x ≥ −1 and their exists a finite n0 such that
1 + εi,n(wi+1,n) ≥ 0 for all n ≥ n0 and i < In (by Lemmas B.2 and B.3), we obtain for all
n ≥ max(M,n0) and i < In

(1 + εi,n(wi+1,n))

∫ (
1− e−xwi+1,n

)
νi,n(dx) ≥ wi+1,n(ai,n − 1)− w2

i+1,nbi,n.

Note that the left-hand side is by (3.4) equal to ψi,n(wi+1,n), and that ψi,n(wi+1,n)

is equal to wi,n − wi+1,n according to the first equality in (3.3) and the composition
rule (3.6). Thus we obtain

wi,n ≥ wi+1,nai,n − w2
i+1,nbi,n, n ≥ max(M,n0), i < In. (5.1)

In order to apply Lemma 5.1 it remains to control the sequences (ai,n) and (bi,n). By
definition of δ, there exists a finite n1 such that for all n ≥ n1 and i ≤ In∫

[−1/n,C]

xνi,n(dx) = E(ξi,n; ξi,n ≤ nC + 1)− P(ξi,n ≤ nC + 1) ≥ δ − 1.

Let η > 0 such that 1 + (1− η)(δ− 1) ≥ δ/2, and, according to Lemma B.2, there exists
n2 such that |εi,n(wi+1,n)| ≤ η for all n ≥ n2 and i < In. Then from the definition of ai,n
(and since δ < 1) it follows that

ai,n ≥ 1 + (1− η)(δ − 1) ≥ δ/2, n ≥ max(n1, n2), i ≤ In. (5.2)

EJP 20 (2015), paper 75.
Page 22/36

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3812
http://ejp.ejpecp.org/


Scaling limits of Galton–Watson processes in varying environments

We now proceed to controlling a2
i,n − ai,nbi,nM . First, we note that νi,n({−1/n}) ≤ n

and ∫
[−1/n,C]

x2νi,n(dx) =
νi,n({−1/n})

n2
+

∫
[0,C]

x2νi,n(dx) ≤ 1

n
+ C

∫
[0,C]

xνi,n(dx)

and so we get
∫

[−1/n,C]
x2νi,n(dx) ≤ 1/n+ C + C

∫
[−1/n,C]

xνi,n(dx). Then

bi,n ≤
2

n
+ C(1 + εi,n(wi+1,n)) + C(ai,n − 1) ≤ κn + Cai,n

where κn = 2/n + Ccεn,t(M). In particular, there exists by Lemma B.2 a finite n3 such
that κn ≤ δ/(8M) for n ≥ n3, so that

a2
i,n − ai,nbi,nM ≥ a2

i,n − ai,n(δ/(8M) + Cai,n)M =
1

2
a2
i,n −

δ

8
ai,n ≥

δ2

16

for n ≥ max(n1, n2, n3) and i ≤ In thanks to (5.2). Thus for any n ≥ max(M,n0, n1, n2, n3),
the assumptions of Lemma 5.1 are satisfied and we obtain

wi,n ≥

(
πi,In−1,n +

In−1∑
k=i

πi,k−1,nbk,na
−2
k,n

)−1

, 0 ≤ i ≤ In,

where πi,i−1,n = 1 and πi,j,n =
∏j
k=i

(
(1 + b2k,nM

2ε−1)a−1
k,n

)
for i ≤ j. To end the proof it

remains to show that

lim sup
n≥1

sup
0≤i≤In

(
πi,In−1,n +

In−1∑
k=i

πi,k−1,nbk,na
−2
k,n

)
<∞. (5.3)

Fix some n ≥ max(M,n0, n1, n2, n3) and 0 ≤ i ≤ j < In: we derive an upper bound on
πi,j,n, which we write as

πi,j,n = exp

(
−

j∑
k=i

log ak,n

)
×

j∏
k=i

(
1 + b2k,nM

2ε−1
)
. (5.4)

Let in the sequel C ′ = supβn(t) + supβn(t)3 and the suprema are taken over n ≥ 1

and note that

In−1∑
k=0

β2
k,n ≤

In−1∑
k=0

βk,n1{βi,n≤1} + βn(t)2#{k = 0, . . . , n− 1 : βi,n > 1} ≤ C ′.

Using convexity and 0 ≤ bk,n ≤ 2(1 + C2)βk,n, we get

j∏
k=i

(
1 + b2k,nM

2ε−1
)
≤ exp

(
j∑
k=i

b2k,nM
2ε−1

)
≤ exp

(
4(1 + C2)2M2ε−1C ′

)
(5.5)

We now control the sum of the right-hand side of (5.4). Since n ≥ max(M,n0) we
have by (5.2) that ak,n ≥ δ/2 for k < In. In particular, if ` = inf(log x/(x − 1)) where
the infimum is taken over x ≥ δ/2, ` ∈ (0,∞) and we have log ak,n ≥ `(ak,n − 1)−, with
x− = min(x, 0). Further,∫

[−1/n,C]

xνk,n(dx) ≥ − 1

n
νk,n({−1/n}) +

∫
[0,C]

x

1 + x2
νk,n(dx)

= − 1

n(n2 + 1)
νk,n({−1/n}) + αk,n −

∫
(C,∞)

x

1 + x2
νk,n(dx)

≥ −|αk,n| − (2C−1 + 1)βk,n.
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Thus log ak,n ≥ −2`|αk,n| − 2`(2C−1 + 1)βk,n and summing over k = i, . . . , j, we obtain
that

∑j
k=i log ak,n is bounded. Recalling (5.5) and (5.4), we get that πi,j,n is bounded.

Adding that
In−1∑
k=0

bk,n
a2
k,n

≤ 8(1 + C2)

δ2

In−1∑
k=0

βk,n ≤
8(1 + C2)

δ2
C ′,

the proof of (5.3) and thus of Proposition 2.3 is finally complete.

5.2 Proof of Proposition 2.4

Let in the rest of the proof ν̃n be the following increasing, càdlàg function

ν̃n(t) =

∫
R×(0,t]

|x|νn(dx dy) = n

γn(t)−1∑
i=0

E(|ξi,n|).

Assume that (2.7) holds, i.e., supn≥1 ν̃n(t) <∞: we first show that it implies the two
other assumptions. That the sequences (‖αn‖(t), n ≥ 1) and (βn(t), n ≥ 1) are bounded
comes from (2.7) by summing from i = 0 to γn(t)− 1 the two following inequalities:

|αi,n| ≤ nE

(
|ξi,n|

1 + ξ
2

i,n

)
≤ nE

(
|ξi,n|

)
and βi,n =

1

2
nE

(
ξ

2

i,n

1 + ξ
2

i,n

)
≤ n

2
E
(
|ξi,n|

)
.

We now show that (2.6) also holds. By Lemma B.3 there exists a finite constant Ct
such that un(s, y, λ) ≤ Ct for all y ∈ [s, t] and λ ≤ 1. Further, by Lemma B.2 there exists
nt such that |εi,n(v)| ≤ 1 for any n ≥ nt, v ≤ Ct and i ≤ γn(t). Finally, invoking Lemma 3.1
and using 1− exp(−λx) ≤ λ|x| for x ∈ R and λ ≥ 0, we get

un(s, t, λ) ≤ λ+ 2

γn(t)∑
i=γn(s)+1

un(tni , t, λ)

∫
|x|νi−1,n(dx) = λ+

∫
(s,t]

un(y, t, λ)ν̃n(dy).

Thus Lemma 4.1 implies that un(s, t, λ) ≤ λ+ λν̃n(s, t]eν̃n(s,t], and consequently

sup
n≥1,s≤y≤t

un(s, y, λ) ≤ λ
[
1 + sup

n≥1
ν̃n(t) exp

(
sup
n≥1

ν̃n(t)

)]
. (5.6)

Since supn≥1 ν̃n(t) is finite, letting λ → 0 in (5.6) we see that supun(s, y, λ) → 0

as λ → 0, where the supremum is taken over n ≥ 1 and s ≤ y ≤ t. To see that this
implies (2.6), we only have to write for any A ≥ 1

P (Xn(y) ≥ A | Xn(s) = 1) = P
(

1− e−Xn(y)/A ≥ 1− 1/e | Xn(s) = 1
)

≤ 1− e−un(s,y,1/A)

1− 1/e
.

We now assume that (‖αn‖(t), n ≥ 1) and (βn(t), n ≥ 1) are bounded and that (2.6)
holds: under these assumptions, we show that there exists n(k)→∞ such that for every
s < ℘(t), limn→∞ un(k)(s, t, λ) = 0. First, note that

lim
λ→0

(
sup

n≥1, 0≤s≤y≤t
un(s, y, λ)

)
= 0. (5.7)

Indeed, for any 0 ≤ s ≤ y ≤ t and A > 0, we can write

1− e−un(s,y,λ) = E [1− exp(−λXn(y)) | Xn(s) = 1]

≤ 1− e−λA + P(Xn(y) ≥ A | Xn(s) = 1)
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which gives

sup
n≥1,0≤s≤y≤t

un(s, y, λ) ≤ − log

(
e−λA − sup

n≥1,0≤s≤y≤t
P(Xn(y) ≥ A | Xn(s) = 1)

)
.

Letting first λ→ 0 and then A→∞ and using (2.6) gives (5.7). Further, Lemma 3.4
guarantees the existence of sequences (n(k)) and (yk) such that yk → ℘(t), n(k) → ∞
and un(k)(yk, t, λ)→ 0 as k →∞. Then, the composition rule (3.6) shows that for every
k ≥ 1 and s ≤ yk,

un(k) (s, t, λ) = un(k)

(
s, yk, un(k) (yk, t, λ)

)
≤ sup
n≥1,s≤y≤t

un
(
s, y, un(k) (yk, t, λ)

)
.

Since un(k)(yk, t, λ) → 0 as k → ∞, (5.7) implies that sup{un(k) (s, t, λ) : s ≤ yk} → 0

which achieves to prove that un(k)(s, t, λ)→ 0 for every s < ℘(t).

A Proof of Lemma 2.5

Assume that qi,n = q0,n and that γn(t) = bΓntc for some sequence Γn → ∞. Define
qn = q0,n and ξn = ξ0,n, and for each n ≥ 1 let (ξn(k), k,≥ 1) be i.i.d. random variables
distributed as ξn: then we have

αn(t) = nbΓntcE

(
ξn

1 + ξ
2

n

)
, βn(t) =

1

2
nbΓntcE

(
ξ

2

n

1 + ξ
2

n

)

and νn([x,∞) × (0, t]) = nbΓntcP(ξn ≥ x). In this context Assumption 2.1 is therefore
equivalent to the following assumption.

Assumption A.1. There exist a ∈ R, b ≥ 0 and a positive, σ-finite measure F with
support in (0,∞) such that

nΓnE

(
ξn

1 + ξ
2

n

)
−→
n→∞

a, nΓnE

(
ξ

2

n

1 + ξ
2

n

)
−→
n→∞

b and nΓnP(ξn ≥ x) −→
n→∞

F ([x,∞)) (B1)

where the last convergence holds for every x > 0 such that F ({x}) = 0.

Under this assumption we then have α(t) = at, β(t) = bt and ν(dx dt) = dtF (dx). Thus
to prove Lemma 2.5 we have to prove that (B1) is equivalent to the weak convergence of
the sum

∑nΓn
k=1 ξn(k).

Assume that (B1) holds. Then by III of Theorem 2.2, the sequence (Xn, n ≥ 1) con-
verges in the sense of finite-dimensional distributions. By Grimvall [24, Theorem 3.1],
this implies the weak convergence of

∑nΓn
k=1 ξn(k).

Assume now that
∑nΓn
k=1 ξn(k) converges weakly. Then Theorem 1 of § 25 in Gnedenko

and Kolmogorov [22] immediately gives the existence of F with
∫

(1∧x2)F (dx) <∞ such
that the last convergence in (B1) holds. Let us prove the two first convergences of (B1).
In the rest of the proof let G ⊂ (0,∞) denote the set of continuity points of F , for κ = 1

or 2 let mκ(x) = |x|κ/(1 + x2) and fix some κ ∈ {1, 2}.
Since nΓnP(ξn > x)→ F ((x,∞)) for x ∈ G, it follows that

nΓnE
(
mκ(ξn); |ξn|> ε

)
−→
n→∞

∫
x>ε

mκ(x)F (dx)

for any ε ∈ G. This can for instance be seen by considering the weak convergence of the
random variables ξn conditioned on |ξn|> ε. Moreover, according to Corollary 15.16 in
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Kallenberg [30], there exists a finite number dκ such that nΓnE(ξκn; |ξn|≤ ε)→ dκ +Lκ(ε)

for any ε ≤ 1 in G, and where L1(ε) = −
∫
ε<x≤1

xF (dx) and L2(ε) =
∫
x≤ε x

2F (dx). Note
in particular that

sup
n≥1

nΓnE
(
m2(ξn)

)
<∞,

since

nΓnE
(
m2(ξn)

)
= nΓnE

(
m2(ξn); ξn ≤ ε

)
+ nΓnE

(
m2(ξn); ξn > ε

)
≤ nΓnE

(
ξ

2

n; ξn ≤ ε
)

+ nΓnE
(
m2(ξn); |ξn| > ε

)
(note that ξn > ε⇔ |ξn| > ε for n large enough, since ξn ≥ −1/n). We now write

E

(
ξ
κ

n

1 + ξ
2

n

)
= E

(
ξ
κ

n

1 + ξ
2

n

− ξκn; |ξn| ≤ ε

)
+ E

(
ξ
κ

n

1 + ξ
2

n

; |ξn| > ε

)
+ E

(
ξ
κ

n; |ξn| ≤ ε
)

= −E

(
ξ
κ+2

n

1 + ξ
2

n

; |ξn| ≤ ε

)
+ E

(
mκ(ξn); |ξn| > ε

)
+ E

(
ξ
κ

n; |ξn| ≤ ε
)

to obtain∣∣∣∣∣nΓnE

(
ξ
κ

n

1 + ξ
2

n

)
− nΓnE

(
mκ(ξn); |ξn| > ε

)
− nΓnE

(
ξ
κ

n; |ξn| ≤ ε
)∣∣∣∣∣

≤ εκnΓnE
(
m2(ξn)

)
≤ εκ sup

n≥1
nΓnE

(
m2(ξn)

)
.

Letting first n→∞ with ε ∈ G and then ε→ 0, we thus obtain

lim
ε→0

lim sup
n→∞

∣∣∣∣∣nΓnE

(
ξ
κ

n

1 + ξ
2

n

)
−
∫
x>ε

mκ(x)F (dx)− dκ − Lκ(ε)

∣∣∣∣∣ = 0.

For κ = 2 we have∫
x>ε

m2(x)F (dx)− d2 − L2(ε)−→
ε→0

∫
m2(x)F (dx)

which is finite, while for κ = 1 we have by definition of L1∫
x>ε

m1(x)F (dx)− d1 − L1(ε) =

∫
ε<x≤1

(m1(x)− x)F (dx)− d1 +

∫
x>1

m1(x)F (dx).

Since m1(x)−x ∼ −x2 as x→ 0,
∫
ε<x≤1

(m1(x)−x)F (dx) converges by the dominated

convergence theorem to
∫
x≤1

(m1(x) − x)F (dx) as ε → 0, which is finite since
∫

(1 ∧
x2)F (dx) <∞. This completes the proof.

B Proof that the key constants and functions are finite

For x ∈ R let

Φ(x) =
e−x − 1 + x

x2
(B.1)

with Φ(0) = 1/2. If Φ2(x) = 1/2− Φ(x), note that we can rewrite

g(x, λ) =
x2

1 + x2

(
1− e−λx − λ2Φ(λx)

)
and h(x, λ) =

x2

1 + x2

(
1− e−λx + λ2Φ2(λx)

)
.

(B.2)
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Lemma B.1 (Control of c1, c2 and c3). For any C ≥ 0 and 0 < η < T , the constants c1(C),
c2(η, T ) and c3(η, T ) are finite.

Proof. Since limx→∞Φ(x) = 0, Φ is bounded on [−C,∞) for any C > 0 and so the
constant c′1(C) of (3.8) is finite in view of (B.2). In particular c1(C) is finite for every
C ≥ 0. Let 0 < η < T and η ≤ y, y′ ≤ T , and x ≥ 0: c2(η, T ) is finite because∣∣∣∣ h(x, y)− h(x, y′)

(y − y′)x2/(1 + x2)

∣∣∣∣ ≤ sup
η≤v≤T

|H ′x(v)| ,

with Hx(y) = h(x, y)(1 + x2)/x2. One can compute

H ′x(y) = xe−yx +
e−xy − 1 + xy

x

and prove that this function is bounded for x ≥ 0 and y ∈ [η, T ], since

xe−xy ≤ 1

η
sup
v≥0

(ve−v)

and for x ≤ 1, ∣∣∣∣e−xy − 1 + xy

x

∣∣∣∣ =

∣∣∣∣ xy2
Φ(xy)

∣∣∣∣ ≤ 1

η2
sup
v≥0
|Φ(v)|,

while for x ≥ 1, ∣∣∣∣e−xy − 1 + xy

x

∣∣∣∣ ≤ sup
v≥0
|e−v − 1|+ T.

We get the finiteness of c2(η, T ), and hence of c3(η, T ).

Lemma B.2 (Control of cεn,t(C)). Fix t ≥ 0 and assume that the sequences (‖αn‖(t), n ≥ 1)

and (βn(t), n ≥ 1) are bounded. Then for any C ≥ 0, we have cεn,t(C) → 0 as n goes to
infinity.

Proof. Fix t and C ≥ 0 and define

It,C = sup

{∣∣∣∣∫ (1− e−λx)νi,n(dx)

∣∣∣∣ : 1 ≤ n, 0 ≤ i < γn(t), 0 ≤ λ ≤ C
}
.

Then (3.15) entails

It,C ≤ c1(C) sup
{
µn(tni , t

n
i+1] : n ≥ 1, 0 ≤ i < γn(t)

}
≤ c1(C) sup

n≥1

γn(t)−1∑
i=0

µn(tni , t
n
i+1]

 = c1(C) sup
n≥1

µn(t).

Since µn(t) = ‖αn‖(t)+βn(t) the sequence (µn(t)) is bounded by assumption, showing
that It,C is finite. It follows from the definitions (3.3) and (3.4) of ψi,n and εi,n that for
any i ≥ 0

εi,n(λ) =
− log

(
1− 1

n

∫
(1− e−λx)νi,n(dx)

)
− 1

n

∫
(1− e−λx)νi,n(dx)

1
n

∫
(1− e−λx)νi,n(dx)

and so

cεn,t(C) ≤ sup
|x|≤It,C/n

∣∣∣∣− log(1− x)− x
x

∣∣∣∣ .
Letting n→∞ achieves the proof of the result.
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Lemma B.3 (Control of cut,λ). Fix t ≥ 0 and assume that the two sequences (‖αn‖(t), n ≥ 1)

and (βn(t), n ≥ 1) are bounded. Then for any λ ≥ 0 the constant cut,λ is finite and moreover

sup
{
cus,λ : 0 ≤ s ≤ t, λ ≤ 1

}
<∞.

Proof. In the rest of the proof fix t and λ ≥ 0, define Bt = 2 supn≥1 µn(t), which is finite
by assumption, and Ct,λ = (λ+ 2)(1 +Bt)e

Bt . Following Lemma B.2 choose nt,λ ≥ 1 such
that cεn,t(Ct,λ) ≤ 1 for all n ≥ nt,λ. Since Zi,n is finite for each i ≥ 0 and n ≥ 1, it follows
that sup0≤s≤t un(s, t, λ) is finite for each n ≥ 1. Thus, to conclude, it is enough to get that

sup {un(s, t, λ) : n ≥ nt,λ, 0 ≤ s ≤ t} = sup
{
un(tni , t

n
γn(t), λ) : n ≥ nt,λ, 0 ≤ i ≤ γn(t)

}
is finite. To prove that, In the rest of the proof fix n ≥ nt,λ and define ai = un(tni , t

n
γn(t), λ).

We prove by backwards induction on i that ai ≤ Ct,λ for all 0 ≤ i ≤ γn(t), and since the
bound does not depend on n or i this will show the result. We have aγn(t) = λ ≤ Ct,λ so
the initialization is satisfied. Now consider some 1 ≤ i < γn(t) and assume that ak ≤ Ct,λ
for all i ≤ k ≤ γn(t): we prove that ai−1 ≤ Ct,λ.

Fix some i < k ≤ γn(t). By definition, we have

ψk−1,n(ak) = (1 + εk−1,n(ak))

(
akαk−1,n +

∫
g(x, ak)νk−1,n(dx)

)
.

By induction hypothesis, it holds that ak ≤ Ct,λ. Combined with cεn,t(Ct,λ) ≤ 1, this
gives 0 ≤ 1 + εk−1,n(ak) ≤ 2. Together with the inequality g(x, y) ≤ x2/(1 + x2) (note that
Φ ≥ 0), we finally get

ψk−1,n(ak) ≤ (1 + εk−1,n(ak)) (ak|αk−1,n|+ 2βk−1,n) ≤ 2(ak + 2)µn(tnk−1, t
n
k ].

Hence for any i − 1 ≤ j ≤ γn(t), this gives together with Lemma 3.1 for the first
equality

aj = λ+

γn(t)∑
k=j+1

ψk−1,n(ak) ≤ λ+

γn(t)∑
k=j+1

2(ak + 2)µn(tnk−1, t
n
k ].

This can be rewritten a′j ≤ A+ Sj+1 if a′k = ak + 2, A = λ+ 2, dk = 2µn(tnk−1, t
n
k ] and

Sk = dka
′
k + · · ·+ dγn(t)a

′
γn(t). This gives for j = i− 1

a′i−1 ≤ A+ Si = A+ dia
′
i + Si+1 ≤ A+ di(A+ Si+1) + Si+1 = (1 + di)(A+ Si+1).

Then by induction one gets

a′i−1 ≤ (1 + di) · · · (1 + dγn(t)−1)(A+ Sγn(t)) ≤ exp
(
d1 + · · ·+ dγn(t)

)
(A+ dγn(t)a

′
γn(t)).

Since a′γn(t) = A = λ+ 2 and dγn(t) ≤ d1 + · · ·+ dγn(t) = 2µn(t) ≤ Bt, this shows that
ai−1 ≤ Ct,λ which achieves the proof of the induction and shows that cut,λ ≤ Ct,λ. This
gives the finiteness of cut,λ, and since Ct,λ is increasing in both t and λ, for any s ≤ t and
λ ≤ 1 we obtain cus,λ ≤ Ct,1 which gives the second part of the lemma.

C Proof of Lemma 4.2

This appendix is devoted to the proof of Lemma 4.2. Recall the function µ = ‖α‖+ β

defined at the beginning of Section 4. We will use the following simple result.

Lemma C.1. For any ε > 0 and 0 ≤ s < t, there exists a partition of the interval (s, t] as

(s, t] =

 J⋃
j=1

(aj , bj ]

 ∪( K⋃
k=1

(a′k, b
′
k]

)
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such that {b′k, 1 ≤ k ≤ K} = (s, t] ∩ {v ≥ 0 : ∆µ(v) ≥ ε}, µ(aj , bj ] ≤ ε for each 1 ≤ j ≤ J

and µ(a′k, b
′
k) ≤ ε/K for each 1 ≤ k ≤ K.

In the rest of the proof fix t, λ > 0, ℘(t) < s ≤ t, (`n) a sequence converging to λ and
let un(y) = un(y, t, `n). With this notation, we have

Rn(y) = |Ψn(un)((y, t])−Ψ(un)((y, t])| , 0 ≤ y ≤ t.

Let ` = infn≥1 `n and L = supn≥1 `n and assume without loss of generality, since `n →
λ > 0, that ` > 0. We first show that Rn(s)→ 0, the fact that sup{Rn(y) : s ≤ y ≤ t, n ≥ 1}
is finite is proved in Section C.3. From the definitions of Ψ and Ψn one can write

|Ψn(un)((s, t])−Ψ(un)((s, t])| ≤ Bαn +Bβn +Bνn +Bεn

with

Bαn =

∣∣∣∣∣
∫

(s,t]

undαn −
∫

(s,t]

undα

∣∣∣∣∣ , Bβn =

∣∣∣∣∣
∫

(s,t]

u2
ndβn −

∫
(s,t]

u2
ndβ

∣∣∣∣∣ ,
Bνn =

∣∣∣∣∣
∫

[−1/n,∞)×(s,t]

h(x, un(y))νn(dx dy)−
∫

(0,∞)×(s,t]

h(x, un(y))ν(dx dy)

∣∣∣∣∣
and

Bεn =

γn(t)∑
i=γn(s)+1

|εi−1,n(un(tni ))|
∣∣∣∣∫ (1− e−xun(tni )

)
νi−1,n(dx)

∣∣∣∣ .
We will show that each sequence (Bαn ), (Bβn), (Bνn) and (Bεn) goes to 0 as n goes to

infinity. By (3.15) and by definition of the constants cεn,t, c
u
t,L and c1, one can derive

similarly as in the proof of (3.16)

Bεn ≤ cεn,t(cut,`n)c1(cut,`n)µn(t) ≤ cεn,t(cut,L)c1(cut,L)µn(t)

where the last inequality follows from the fact that `n ≤ L and that the functions
cεn,t(C) and cut,y are increasing in C and y, respectively. From now on, we will use such
monotonicity properties without further comment. This last upper bound is seen to go
0, invoking (4.1) and Lemmas B.2 and B.3. Thus the sequence (Bεn) goes to 0 and we
have to control the three other sequences (Bαn ), (Bβn) and (Bνn). We control the two first
sequences in Section C.1 and the last one in Section C.2

C.1 Control of the sequences (Bαn ) and (Bβn)

We treat in detail the convergence of (Bαn ) to 0. For (Bβn), one essentially needs to
replace α by β and un by u2

n, we mention along the way what modifications need to be
done.

Fix ε > 0 and consider the partition ((aj , bj ], 1 ≤ j ≤ J) and ((a′k, b
′
k], 1 ≤ k ≤ K) of

(s, t] provided by Lemma C.1. Note that the partition depends on s, t and ε but not on n.
We can write Bαn ≤

∑J
j=1B

α,1
n,j +

∑K
k=1(Bα,2n,k +Bα,3n,k) with

Bα,1n,j =

∣∣∣∣∣
∫

(aj ,bj ]

undαn −
∫

(aj ,bj ]

undα

∣∣∣∣∣ , Bα,2n,k =

∫
(a′k,b

′
k)

und‖αn‖+

∫
(a′k,b

′
k)

und‖α‖

and Bα,3n,k = un(b′k)
∣∣αγn(b′k),n −∆α(b′k)

∣∣. For Bα,1n,j we have

Bα,1n,j ≤
∫

(aj ,bj ]

|un(y)− un(bj)| ‖αn‖(dy) +

∫
(aj ,bj ]

|un(y)− un(bj)| ‖α‖(dy)

+ un(bj) |αn(aj , bj ]− α(aj , bj ]| .
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By (3.16), |un(y)− un(bj)| ≤ ∆u
t,Lµn(aj , bj ] for all y ∈ (aj , bj ] and so, using also

un(bj) ≤ cut,L, we get

Bα,1n,j ≤ ∆u
t,Lµn(aj , bj ]

(
‖αn‖(aj , bj ] + ‖α‖(aj , bj ]

)
+ cut,L |αn(aj , bj ]− α(aj , bj ]| .

For Bβ,1n one needs to use∣∣un(y)2 − un(bj)
2
∣∣ = |un(y)− un(bj)| (un(y) + un(bj)) ≤ 2cut,L∆u

t,Lµn(aj , bj ],

which leads to a similar upper bound. Since the partition does not depend on n, we have
αn(aj , bj ]→ α(aj , bj ] and µn(aj , bj ]→ µ(aj , bj ] by (A1), so that summing over j = 1, . . . , J ,
letting n go to infinity and using ‖α‖(A) ≤ µ(A) gives

lim sup
n→∞

J∑
j=1

Bα,1n,j ≤ 2∆u
t,L

J∑
j=1

(
µ(aj , bj ]

)2 ≤ 2ε∆u
t,Lµ(s, t], (C.1)

using also µ(aj , bj ] ≤ ε, which holds by choice of the partition, to derive the second
inequality. To upper bound Bα,2n,k we write Bα,2n,k ≤ cut,L (‖αn‖(a′k, b′k) + ‖α‖(a′k, b′k)) which
leads, using µ(a′k, b

′
k) ≤ ε/K, to

lim sup
n→∞

K∑
k=1

Bα,2n,k ≤ 2cut,L

K∑
k=1

µ(a′k, b
′
k) ≤ 2εcut,L. (C.2)

For Bβ,2n,k one can use Bβ,2n,k ≤ (cut,L)2 (βn(a′k, b
′
k) + β(a′k, b

′
k)) to obtain a similar upper

bound. Finally, for Bα,3n,k one has Bα,3n,k ≤ c
u
t,L|αγn(b′k),n −∆α(b′k)| which goes to 0 by (A2).

One can similarly write Bβ,3n,k ≤ (cut,L)2|βγn(b′k),n − ∆β(b′k)| for Bβ,3n,k. Since K does not

depend on n this gives
∑K
k=1B

α,3
n,k → 0 and so (C.1) and (C.2) give

lim sup
n→∞

Bαn ≤ 2ε
(
∆u
t,Lµ(s, t] + cut,L

)
.

Since ε was arbitrary, letting ε→ 0 gives the result.

C.2 Control of the sequence (Bνn)

For T ≥ 0 we define the constant

c4(T ) = sup

{∣∣∣∣ h(x, y)

x3/(1 + x2)

∣∣∣∣ : x ≥ −1, 0 ≤ y ≤ T
}

(C.3)

which, starting from (B.2), can be seen to be finite. For d > 0 we write

Bνn ≤ B̃νn + B̂νn + B̌νn (C.4)

with

B̃νn =

∣∣∣∣∣
∫

[d,∞)×(s,t]

h(x, un(y))νn(dx dy)−
∫

[d,∞)×(s,t]

h(x, un(y))ν(dx dy)

∣∣∣∣∣ .
B̂νn =

∫
[−1/n,d)×(s,t]

|h(x, un(y))|νn(dx dy), B̌νn =

∫
(0,d)×(s,t]

|h(x, un(y))|ν(dx dy).

Note that B̃νn depends on d but, similarly as t or λ, we do not reflect this in the
notation because d will be fixed once and for all shortly. Bounding the two last terms
thanks to (C.3), we have

Bνn ≤ B̃νn + c4(cut,L)

(∫
(0,d)×(0,t]

x3

1 + x2
ν(dx dy) +

∫
[−1/n,d)×(0,t]

|x|3

1 + x2
νn(dx dy)

)
.
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Since
∫

(0,∞)×(0,t]
(1∧x2)ν(dx dy) is finite, we have

∫
(0,d)×(0,t]

x3

1+x2 ν(dx dy)→ 0 as d→ 0.
Moreover, proceeding similarly as for the proof of (4.3), we can show that

lim
d→0

lim sup
n→∞

∫
[−1/n,d)×(0,t]

|x|3

1 + x2
νn(dx dy) = 0.

Thus letting first n→∞ and then d→ 0, we obtain

lim sup
n→∞

Bνn ≤ lim
d→0

lim sup
n→∞

B̃νn.

Hence to prove Bνn → 0 we only have to show that B̃νn → 0 for every d > 0. So in the
rest of this step we fix an arbitrary d > 0 and show that B̃νn → 0. Fix ε > 0 and consider
the partition ((aj , bj ], 1 ≤ j ≤ J) and ((a′k, b

′
k], 1 ≤ k ≤ K) of (s, t] given by Lemma C.1,

which does not depend on n. Then we can write B̃νn ≤
∑J
j=1 B̃

ν,1
n,j +

∑K
k=1(B̃ν,2n,k + B̃ν,3n,k)

with

B̃ν,1n,j =

∣∣∣∣∣
∫

[d,∞)×(aj ,bj ]

h(x, un(y))νn(dx dy)−
∫

[d,∞)×(aj ,bj ]

h(x, un(y))ν(dx dy)

∣∣∣∣∣ ,
B̃ν,2n,k =

∫
[d,∞)×(ak,b′k)

|h(x, un(y))|νn(dx dy) +

∫
[d,∞)×(ak,b′k)

|h(x, un(y))|ν(dx dy)

and

B̃ν,3n,k =

∣∣∣∣∣
∫

[d,∞)

h(x, un(b′k))νγn(b′k),n(dx)−
∫

[d,∞)×{b′k}
h(x, un(b′k))ν(dx dy)

∣∣∣∣∣ .
Further we write B̃ν,1n,j ≤ B̃

ν,4
n,j + B̃ν,5n,j with

B̃ν,4n,j =

∫
[d,∞)×(aj ,bj ]

|h(x, un(y))− h(x, un(bj))| νn(dx dy)

+

∫
[d,∞)×(aj ,bj ]

|h(x, un(y))− h(x, un(bj))| ν(dx dy)

and

B̃ν,5n,j =

∣∣∣∣∣
∫

[d,∞)×(aj ,bj ]

h(x, un(bj))νn(dx dy)−
∫

[d,∞)×(aj ,bj ]

h(x, un(bj))ν(dx dy)

∣∣∣∣∣ .
We derive, in order, upper bounds on B̃ν,2n,k, B̃ν,4n,j , B̃

ν,3
n,k and finally on B̃ν,5n,j .

To control B̃ν,2n,k we introduce the constant

c5(T ) = sup

{
|h(x, y)|

x2/(1 + x2)
: 0 ≤ y ≤ T, x ≥ 0

}
which can be seen to be finite, starting from instance from (B.2). Thus

B̃ν,2n,k ≤ c5(cut,L)

(∫
[d,∞)×(a′k,b

′
k)

x2

1 + x2
νn(dx dy) +

∫
[d,∞)×(ak,b′k)

x2

1 + x2
ν(dx dy)

)
≤ 2c5(cut,L) (βn(a′k, b

′
k) + β(a′k, b

′
k))

using (4.2) for the last inequality. Using βn(a′k, b
′
k) → β(a′k, b

′
k) ≤ µ(a′k, b

′
k) ≤ ε/K (the

convergence βn(a′k, b
′
k) → β(a′k, b

′
k) comes from Assumptions (A1) and (A2) by writing
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βn(a′k, b
′
k) = βn(a′k, b

′
k]−∆βn(b′k) and observing that b′k is by construction an atom of µ),

this leads to

lim sup
n→∞

K∑
k=1

B̃ν,2n,k ≤ 4εc5(cut,L). (C.5)

To derive an upper bound on B̃ν,4n,j , we use the constant c2(η, T ) defined in (3.9). Since
0 < cus,t,` ≤ un(y) ≤ cut,L for n ≥ Ns,t,` and aj < y ≤ bj , we have for such n∫

[d,∞)×(aj ,bj ]

|h(x, un(y))− h(x, un(bj))| νn(dx dy)

≤ c2
(
cus,t,`, c

u
t,L

) ∫
[d,∞)×(aj ,bj ]

|un(y)− un(bj)|
x2

1 + x2
νn(dx dy).

Since |un(y)− un(bj)| ≤ ∆u
t,L µn(aj , bj ] for aj < y ≤ bj by (3.16), we obtain∫

[d,∞)×(aj ,bj ]

|h(x, un(y))− h(x, un(bj))| νn(dx dy)

≤ c2
(
cus,t,`, c

u
t,L

)
∆u
t,L µn(aj , bj ]

∫
[d,∞)×(aj ,bj ]

x2

1 + x2
νn(dx dy).

Since ∫
[d,∞)×(aj ,bj ]

x2

1 + x2
νn(dx dy) ≤ 2βn(aj , bj ] ≤ 2µn(aj , bj ], (C.6)

we finally get∫
[d,∞)×(aj ,bj ]

|h(x, un(y))− h(x, un(bj))| νn(dx dy) ≤ Cs,t,`,L(µn(aj , bj ])
2

with Cs,t,`,L = 2c2(cus,t,`, c
u
t,L)∆u

t,L. The exact same reasoning with ν instead of νn, using
the inequality (4.2) instead of (C.6), leads to

B̃ν,4n,j ≤ Cs,t,`,L
[
(µn(aj , bj ])

2 + (µ(aj , bj ])
2
]
.

Hence (4.1) gives

lim sup
n→∞

J∑
j=1

B̃ν,4n,j ≤ 2Cs,t,`,L

J∑
j=1

(µ(aj , bj ])
2 ≤ 2εCs,t,`,Lµ(s, t] (C.7)

using µ(aj , bj ] ≤ ε to get the second inequality.

The arguments to control B̃ν,3n,k and B̃ν,5n,j are very similar: we treat the case B̃ν,5n,j in

detail and mention necessary changes needed for B̃ν,3n,k. We need the constant c6

c6(T ) = sup
0≤y≤T
0≤x,x′

∣∣∣∣h(x, y)− h(x′, y)

x− x′

∣∣∣∣ (C.8)

which is finite because
∂h

∂x
(x, y) = ye−xy + y

x2 + xy − 1

(1 + x2)2

and so for x, x′ ≥ 0 and 0 ≤ y ≤ T ,∣∣∣∣∂h∂x (x, y)

∣∣∣∣ ≤ T + T sup
v≥0

(
v2 + Tv + 1

(1 + v2)2

)
.
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Let πn,j be the signed measure defined for A ∈ B by

πn,j(A) = νn(A× (aj , bj ])− ν(A× (aj , bj ]).

For B̃ν,3n,k one needs to consider the measure πn,k defined similarly but with A× {b′k}
instead of A× (aj , bj ]. With this notation we have

B̃ν,5n,j ≤ sup
0≤y≤cut,L

∣∣∣∣∣
∫

[d,∞)

h(x, y)πn,j(dx)

∣∣∣∣∣ .
Fix Y, η > 0 and consider a subdivision d = τ1 < · · · < τN < τN+1 = ∞ with the

following three properties: (1) τ`+1 − τ` ≤ η for all 1 ≤ ` < N ; (2) τN = Y ; and
(3) ν({τ`} × (aj , bj ]) = 0 for all 1 ≤ ` ≤ N . For B̃ν,3n,k the third condition should be
ν({τ`} × {b′`}) = 0 for all 1 ≤ ` ≤ N . Then for any y ≥ 0,∣∣∣∣∣
∫

[d,∞)

h(x, y)πn,j(dx)

∣∣∣∣∣ ≤
N−1∑
`=1

∫
[τ`,τ`+1)

|h(x, y)− h(τ`, y)|‖πn,j‖(dx)

+

∫
[Y,∞)

|h(x, y)− h(Y, y)|‖πn,j‖(dx) +

N∑
`=1

|h(τ`, y)| |πn,j([τ`, τ`+1))| .

By choice of the partition (τ`) and by definition (C.8) of c6, we have for any y ≤ cut,L
N−1∑
`=1

∫
[τ`,τ`+1)

|h(x, y)− h(τ`, y)|‖πn,j‖(dx) ≤ c6(cut,L)

N−1∑
`=1

∫
[τ`,τ`+1)

|x− τ`|‖πn,j‖(dx)

≤ ηc6(cut,L)‖πn,j‖([d,∞)).

Thus introducing the constant

cht,L = sup
{
|h(x, y)| : x ≥ 0, 0 ≤ y ≤ cut,L

}
which in view of (B.2) can be seen to be finite, one gets for any y ≤ cut,L,∣∣∣∣∣
∫

[d,∞)

h(x, y)πn,j(dx)

∣∣∣∣∣ ≤ ηc6(cut,L)‖πn,j‖([d,∞)) + 2cht,L‖πn,j‖([Y,∞))

+ cht,L

N∑
`=1

|πn,j([τ`, τ`+1))| .

Since no (τ`) is an atom of the measure
∫
· ×(aj ,bj ]

ν(dx dy), it follows from (A1) that

πn,j([τ`, τ`+1))→ 0 as n goes to infinity for each `. Moreover, one has

|πn,j(A)| ≤ νn(A× (aj , bj ]) + ν(A× (aj , bj ])

and finally, for any η > 0 we have, using also the fact that lim supn→∞‖πn,j‖([c,∞)) ≤
2ν([c,∞)× (aj , bj ]) for any c ≥ 0,

lim sup
n→∞

sup
0≤y≤cut,L

∣∣∣∣∣
∫

[d,∞)

h(x, y)πn,j(dx)

∣∣∣∣∣ ≤ 2ηc6(cut,L)ν([d,∞)× (aj , bj ])

+ 4cht,Lν([Y,∞)× (aj , bj ]).

Thus letting η → 0 and Y → ∞ finally shows that B̃ν,5n,j → 0 for each 1 ≤ j ≤ J and

also B̃ν,3n,k → 0 for each 1 ≤ k ≤ K. Hence combining (C.5) and (C.7) finally gives

lim sup
n→∞

B̃νn ≤ ε
[
c5(cut,L) + 2Cs,t,λµ(s, t]

]
and since ε is arbitrary, letting ε→ 0 achieves to prove that Rn(s)→ 0.

EJP 20 (2015), paper 75.
Page 33/36

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3812
http://ejp.ejpecp.org/


Scaling limits of Galton–Watson processes in varying environments

C.3 Boundedness of (Rn(y))

We now complete the proof of the lemma by showing that sup{Rn(y) : 0 ≤ y ≤ t, n ≥ 1}
is finite. We have Rn(y) ≤ |Ψn(un)((y, t])|+ |Ψ(un)((y, t])|, so that it is enough to prove
that

sup {|Ψn(un)((y, t])| : 0 ≤ y ≤ t, n ≥ 1} <∞ (C.9)

and similarly with Ψ instead of Ψn. Using (3.7) for the first equality and (3.16) for the
second inequality, we get for any 0 ≤ y ≤ t

|Ψn(un)((y, t])| = |un(y)− un(t)| ≤ ∆u
t,L µn(y, t] ≤ ∆u

t,L sup
n≥1

µn(t)

so that (C.9) holds. On the other hand, starting from the definition of Ψ we get

|Ψ(un)((y, t])| ≤
∫

(s,t]

|un|d‖α‖+

∫
(s,t]

u2
ndβ +

∫
(0,∞)×(s,t]

|h(x, un(y))|ν(dx dy)

≤ cut,L‖α‖(t) + (cut,L)2β(t) + c5(cut,L)

∫
(0,∞)×(0,t]

x2

1 + x2
ν(dx dy)

which ends the proof of the lemma, since this upper bound is finite (invoking (4.2) for
the finiteness of the integral term).
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