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Minimax rate of convergence and the performance of
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Abstract

We study the performance of Empirical Risk Minimization in both noisy and noiseless
phase retrieval problems, indexed by subsets of Rn and relative to subgaussian
sampling; that is, when the given data is yi =

〈
ai, x0

〉2
+wi for a subgaussian random

vector a, independent subgaussian noise w and a fixed but unknown x0 that belongs
to a given T ⊂ Rn.

We show that ERM performed in T produces x̂ whose Euclidean distance to either
x0 or −x0 depends on the gaussian mean-width of T and on the signal-to-noise ratio
of the problem. The bound coincides with the one for linear regression when ‖x0‖2 is
of the order of a constant. In addition, we obtain a sharp minimax lower bound for the
phase retrieval problem. As examples, we study the class of d-sparse vectors in Rn

and the unit ball in `n1 .
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1 Introduction

There are many areas of engineering in which only the intensity of signals can be
observed: the phase is either difficult to measure or it is simply lost in the measurement
process. For example, phase-less data is the type of information one observes in X-ray
diffraction images – like the ones that led to the discovery of the double-helix structure
(cf. [33]). Other examples of natural problems leading to data that does not contain the
phase can be found in [4, 5, 10, 27].

In phase retrieval, one attempts to identify a vector x0 using noisy, quadratic mea-
surements of x0. The given data is a random sample of cardinality N , (ai, yi)

N
i=1, for

measurement vectors ai and
yi = |

〈
ai, x0

〉
|2 + wi, (1.1)
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Minimax rates and ERM in phase recovery

where (wi)
N
i=1 is the noise vector. The hope is that although the phase of the data

〈
ai, x0

〉
is not measured, it is possible to estimate x0 up to a phase. To simplify our exposition, we
only consider the ‘real’ version of the phase retrieval problem: x0, a1, . . . , an are assumed
to be vectors in Rn, and in which case, the goal is to identify a point that is close either
to x0 or to −x0.

The phase retrieval problem is usually considered under structural assumptions on
the set T from which x0 is taken – most notably, x0 is assumed to be a sparse vector. In
that context, greedy algorithms have been introduced in [9, 14], but with no theoretical
guarantee of success, and with tuning parameter issues. Later, efficient algorithms that
reconstruct x0 (up to a phase) from the noiseless data (|

〈
ai, x0

〉
|2)Ni=1 were suggested:

semidefinite programs obtained by convex relaxations such as PhaseLift [3, 6] and
PhaseCut [32, 10] can be shown to perform well both from a theoretical point of view
and from a practical one (see, also, [31]). Techniques from matrix completion have also
been used ([2, 26]), and recently, the “small ball method" (see [15, 18, 21, 22, 23]) has
been applied to the sparse phase retrieval setup in [29].

In the present work, we consider a general set T ⊂ Rn rather than studying sets that
are associated with sparse vectors, and assume that x0 ∈ T . Our aim is to investigate
phase retrieval from a theoretical point of view, relative to a well behaved, random
sampling method. We develop a common analysis for both noisy and noiseless measure-
ments; for example, our general results imply exact recovery (up to the sign) in the
noiseless case and error rates that are minimax optimal (up to logarithmic terms) in the
noisy case under sparsity constraints. There are very few known results in the noisy
setup, and in what follows we will compare ours to the ones from [8].

To formulate the problem, we need the following definitions.

Definition 1.1. Let µ be a measure on Rn and set a to be a random vector distributed
according to µ. The measure µ (or the random vector a) is isotropic if for every x ∈ Rn,
E
〈
x, a
〉2

= ‖x‖22. It is L-subgaussian for some L ≥ 1 if for every u ≥ 1, Pr(|
〈
x, a
〉
| ≥

Lu‖
〈
x, a
〉
‖L2) ≤ 2 exp(−u2/2).

For a real-valued random variable w, the ψ2 norm of w is defined by ‖w‖ψ2 = inf{c >
0 : E exp(w2/c2) ≤ 2}.

Given a set T ⊂ Rn and a fixed, but unknown x0 ∈ T , yi are random noisy measure-
ments of x0: for a sample size N , (ai)

N
i=1 are independent copies of a and (wi)

N
i=1 are

independent copies of a mean-zero random variable w, that are also independent of
(ai)

N
i=1.

Clearly, due to the nature of the given measurements, x0 and −x0 are indistinguish-
able, and the best that one can hope for is a procedure that produces x̂ ∈ T that is close
to one of the two points.

The goal here is to find such a procedure and identify the way in which the Euclidean
distance between x̂ and either x0 or −x0 depends on the structure of T , the measure µ
and the noise.

The procedure we shall use is Empirical Risk Minimization (ERM), which produces
x̂ that minimizes the empirical risk in T : let `x be the squared loss associated with
fx(a) =

〈
x, a
〉2

; thus,

`x(a, y) = (fx(a)− y)2 = (
〈
x, a
〉2 − 〈x0, a〉2 − w)2 = (

〈
x− x0, a

〉〈
x+ x0, a

〉
− w)2.

Set

x̂ ∈ argmin
x∈T

PN`x where PN `x =
1

N

N∑
i=1

(〈
ai, x

〉2 − yi)2
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Minimax rates and ERM in phase recovery

and note that for every x ∈ Rn,

PN (`x − `x0
) =

1

N

N∑
i=1

〈
x− x0, ai

〉2〈
x+ x0, ai

〉2 − 2

N

N∑
i=1

wi
〈
x− x0, ai

〉〈
x+ x0, ai

〉
.

Both components are difficult to handle directly, even when the underlying measure
is subgaussian, because the two involve high powers of

〈
·, ai

〉
: an effective power of 4

in the first component and of 3 in the second one. In contrast, in the standard linear
regression problem, `x = (

〈
a, x
〉

+ w)2, and the corresponding components have powers
of 2 and 1 respectively, resulting in a much simpler analysis.

Rather than trying to employ the concentration of empirical means around the actual
ones, which is not sufficiently strong in this case, one uses a combination of a “small-ball

estimate” for the empirical process
(
N−1

∑N
i=1

〈
x− x0, ai

〉2〈
x+ x0, ai

〉2)
x∈T

, and a more

standard deviation argument for
(
N−1

∑N
i=1 wi

〈
x− x0, ai

〉〈
x+ x0, ai

〉)
x∈T

(see Section

3 and the formulation of Theorem A and Theorem B).

Taking the same path as in [8], we assume that linear forms satisfy the following.

Assumption 1.1. There is a constant κ0 > 0 for which, for every s, t ∈ Rn,

E|
〈
a, s
〉〈
a, t
〉
| ≥ κ0‖s‖2‖t‖2.

Assumption 1.1 is not very restrictive and holds for many natural choices of random
vectors in Rn (see, for example, the discussion in [8]).

It is not surprising that the error rate of ERM in a phase retrieval problem depends on
the structure of T , and because of the subgaussian nature of the random measurement
vector a, the natural parameter that captures the complexity of T is the gaussian mean-
width associated with normalizations of T .

Definition 1.2. Let G = (g1, ..., gn) be the standard gaussian vector in Rn. For T ⊂ Rn,
set

`(T ) = E sup
t∈T

∣∣∣ n∑
i=1

giti

∣∣∣.
We will consider two different types of normalized sets: firstly, following [8], a ‘global

approach’ – and the reason for this name is that the resulting complexity parameter does
not depend on the signal x0. This approach leads to the study of the sets

T−,R =

{
t− s
‖t− s‖2

: t, s ∈ T, R < ‖t− s‖2‖t+ s‖2
}
,

T+,R =

{
t+ s

‖t+ s‖2
: t, s ∈ T, R < ‖t− s‖2‖t+ s‖2

}
.

As will be explained later, there are natural examples of sets for which the global
approach is not optimal. To handle such cases, our main result is based on a ‘local
approach’, in which the normalized sets depend on the signal x0:

T−,R(x0) =

{
t− x0
‖t− x0‖2

: t ∈ T, R < ‖t− x0‖2‖t+ x0‖2
}
,

T+,R(x0) =

{
t+ x0
‖t+ x0‖2

: t ∈ T, R < ‖t− x0‖2‖t+ x0‖2
}
.

These normalized sets play a significant role in the analysis of ERM. Indeed, setting
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Minimax rates and ERM in phase recovery

Lx = `x − `x0
, the excess loss function associated with x ∈ T , it is evident that PNLx̂ ≤ 0

(because Lx0
= 0 is a possible competitor). If one can find an event of large probability

and R > 0 for which PNLx > 0 if ‖x − x0‖2‖x + x0‖2 ≥ R, then on that event, ‖x̂ −
x0‖2‖x̂+ x0‖2 ≤ R.

This normalization allows one to study ‘relative fluctuations’ of PNLx, in particular,
the way the fluctuations scale with ‖x− x0‖2‖x+ x0‖2.

The obvious problem with the ‘local’ sets T+,R(x0) and T−,R(x0) is that x0 is not
known. As a first attempt of bypassing this problem, one may use the ‘global’ sets T+,R
and T−,R instead, as had been done in [8] – but the outcome is far from satisfactory.
Roughly put, there are two types of subsets of Rn one is interested in, and that appear
in applications. The first consists of sets for which the ‘local complexity’ is essentially
the same everywhere, and the sets T+,R, T−,R are not very different from the seemingly
smaller T+,R(x0), T−,R(x0), regardless of x0. When the ‘local’ sets are not much smaller
than T−,R and T+,R, the ‘global’ approach suffices, and the choice of the target x0 does
not really influence the rate in which ‖x̂− x0‖2 ‖x̂+ x0‖2 decays to 0 with N .

A typical example is the set consisting of all the vectors in Rn that are supported
on at most d coordinates. For every x0 ∈ T and R > 0, the sets T+,R(x0), T−,R(x0), and
T+,R, T−,R are contained in the subset of the sphere consisting of 2d-sparse vectors,
which is relatively small in its own right, and the ‘global’ approach suffices.

In contrast, there are simple sets that have diverse local complexities, with the typical
example being a convex, centrally symmetric set (i.e. if x ∈ T then −x ∈ T ).

Consider, for example, the case T = Bn1 , the unit ball in `n1 = (Rn, ‖ · ‖1). It is not
surprising that for small R, the sets T+,R(0) and T−,R(0) are very different from T−,R(e1)

and T+,R(e1): the ones associated with the centre 0 are the entire sphere, while for
e1 = (1, 0, ...., 0), T+,R(e1) and T−,R(e1) consist of vectors that are well approximated by
sparse vectors (whose support depends on R), and thus are rather small subsets of the
sphere.

This situation is generic for convex centrally-symmetric sets. The sets become locally
‘richer’ the closer the centre is to 0, and at 0, for small enough R, T+,R(0) and T−,R(0)

are the entire sphere. Since the sets T+,R and T−,R are ‘blind’ to the location of the
centre, and are, in fact, the union over all possible centres of the local sets, they are
simply too big to be used in the analysis of ERM in convex sets. A correct estimate on the
performance of ERM for such sets requires a more delicate local analysis and additional
information on ‖x0‖2.

In fact, we will show that this is true in general: the error rate of ERM does depend
on ‖x0‖2 via the signal-to-noise ratio ‖x0‖2 /σ.

We begin by formulating our results using the ‘global’ sets T+,R and T−,R. Let
T+ = T+,0 and T− = T−,0, set

ER = max{`(T+,R), `(T−,R)}, E = max{`(T+), `(T−)}

and observe that as nonempty subsets of the sphere `(T−,r), `(T+,r) ≥ E|g| =
√

2/π.

The first result presented here is an upper estimate on the error rate of ERM using
the global approach. Just as linear regression, the rates are determined by solutions of a
fixed point equations

r1(γ) = inf
{
r > 0 : Er ≤ γ

√
Nr
}

and
r0(Q) = inf

{
r > 0 : Er ≤ Q

√
N
}

for constants γ and Q that will be specified later.
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Minimax rates and ERM in phase recovery

Theorem A.[Global approach] For every L > 1, κ0 > 0 and β > 1, there exist constants
c0, c1 and c2 that depend only on L, κ0 and β for which the following holds. Let T ⊂ Rn,
set a to be an isotropic, L-subgaussian random vector on Rn, put x0 ∈ T and let w and y
be as in (1.1). Let r∗2 = max{r0(c1), r1(c2/σ

√
logN)}. If x̂ is produced by ERM using the

sample (ai, yi)
N
i=1, then with probability at least

1− 2 exp(−c0 min{`2(T+,r∗2 ), `2(T−,r∗2 )})− 2N−β+1,

‖x̂− x0‖2‖x̂+ x0‖2 ≤ r∗2 .

When the subgaussian assumption on w is replaced by an L∞ one, the term σ
√

logN

may be replaced by ‖w‖∞.

The upper estimate of max{r0, r1} in Theorem A represents two ranges of noise. It
follows from the definition of the fixed points that r0 is dominant if σ . r0/

√
logN , and

if σ is larger, r1 is dominant. As explained in [16] for linear regression, r0 captures the
difficulty of recovery in the noise-free case, when the only reason for errors is that there
are several well-separated functions in the class that coincide with the target on the
noiseless data. When the noise level σ surpasses that threshold, errors occur because
of the interaction class members have with noise w, and the dominating term becomes
r1. Of course, there are cases in which r0 = 0 for N sufficiently large. This is precisely
when exact recovery is possible in a noise-free problem. And, in such cases, the error of
ERM tends to zero with σ.

Note that if T has a well behaved ‘global complexity’, and since ER ≤ E for every
R > 0, it follows that when N & E2, r0 = 0 and that r1(γ) ≤ E/(γ

√
N). Therefore, on the

event from Theorem A,

‖x̂− x0‖2‖x̂+ x0‖2 ≤ c(L)σ
E√
N

√
logN.

This estimate suffices for many applications. For example, when T is the set of d-sparse
vectors, one may show (see, e.g. [8]) that

E ≤ c
√
d log(en/d)

for an absolute constant c.
Hence, by Theorem A, when N ≥ c1(L)d log

(
en/d

)
, with high probability,

‖x̂− x0‖2‖x̂+ x0‖2 ≤ c2(L)σ

√
d log(en/d)

N

√
logN,

and, in particular, in the free-noise case (that is, when σ = 0), ERM results in exact
reconstruction, meaning that either x̂ = x0 or −x0.

The proof of this observation and that it is sharp in the minimax sense (up to the
logarithmic term) may be found in Section 6.

One should note that Theorem A improves the main result from [8] in three ways.

• The estimate on ‖x̂ − x0‖2‖x̂ + x0‖2 established in Theorem A is ∼ E/
√
N (up to

logarithmic factors), whereas in [8], it scaled like c/N1/4 for very large values of N .

• The estimate scales linearly in σ while the rate obtained in [8] does not decay with σ
for σ ≤ 1.
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• The probability estimate has been improved, though it is still likely to be suboptimal.

The main motivation in [8] was dealing with phase retrieval for sparse classes, a
goal for which Theorem A with its global approach is well suited. However, when
considering the question of more general classes, the global approach is simply too
coarse. We therefore turn to the ‘local’ approach, which requires slightly modified
complexity parameters.

Definition 1.3. Let

r∗N (Q) = inf
{
r > 0 : `(T ∩ rBn2 ) ≤ Qr

√
N
}
,

and
s∗N (η) = inf

{
s > 0 : `(T ∩ sBn2 ) ≤ ηs2

√
N
}
.

The parameters r∗N and s∗N have been used in [16] to obtain a sharp estimate on
the performance of ERM for linear regression in an arbitrary convex set, and relative
to L-subgaussian measurements. The added structure in phase retrieval requires an
additional parameter:

v∗N (ζ) = inf
{
v > 0 : `(T ∩ vBn2 ) ≤ ζv3

√
N
}
.

Our main result is the following:

Theorem B.[Local approach] For every L ≥ 1, κ0 > 0 and β there exist constants
c1, c2, c3, c4, c5 and Q that depend only on L and κ0 and β for which the following holds.
Let T ⊂ Rd be a convex, centrally-symmetric set, and let a and w be as in Theorem A.

Assume that (σ/‖x0‖2) ≥ c0r
∗
N (Q)/

√
logN , set η = c1‖x0‖2/(σ

√
logN) and let ζ =

c1/(σ
√

logN).

1. If ‖x0‖2 ≥ v∗N (c2), then with probability at least 1− 2 exp(−c3Nη2(s∗N (η))2)− 2N−β+1,

min{‖x̂− x0‖2, ‖x̂+ x0‖2} ≤ c4s∗N (η).

2. If ‖x0‖2 ≤ v∗N (c2) then with probability at least 1− 2 exp(−c3Nζ2(v∗N (ζ))2)− 2N−β+1,

min{‖x̂− x0‖2, ‖x̂+ x0‖2} ≤ c4v∗N (ζ).

If (σ/‖x0‖2) ≤ c0r∗N (Q)/
√

logN the same assertions as in 1. and 2. hold, with an upper
bound of r∗N (Q) replacing s∗N (η) and v∗N (ζ).

Theorem B follows from a ‘local’ version of Theorem A, a more transparent description
of the localized sets T−,R(x0) and T+,R(x0), together with a result connecting ‖x̂−x0‖2‖x̂+

x0‖2 and min {‖x̂− x0‖2, ‖x̂+ x0‖2} as a function of ‖x0‖2 (see Lemma 4.2 below).

To put Theorem B in some perspective, observe that v∗N tends to zero. Indeed, since
`(T ∩ rBn2 ) ≤ `(T ), it follows that v∗N (ζ) ≤ (`(T )/

√
Nζ)1/3. Hence, for the choice of

ζ ∼ (σ
√

logN)−1 as in Theorem B,

v∗N ≤

(
σ`(T )

√
logN

N

)1/3

,

which tends to zero when σ → 0 or when N →∞.
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Also, and using the same argument,

r∗N (Q) ≤ `(T )

Q
√
N
.

Thus, if x0 6= 0 and for every σ > 0, the condition (σ/‖x0‖2) ≥ c0rN (Q)/
√

logN is
satisfied when N is large enough, and the first part of Theorem B describes the ‘long
term’ behaviour of ERM.

In the typical situation, the error rate depends on η = c1‖x0‖2/σ
√

logN . We believe
that the 1/

√
logN factor is an artifact of the proof, but the other term, ‖x0‖2/σ is the

signal-to-noise ratio, and is rather natural.

Although Theorem A and Theorem B improve the results from [8], it is natural to ask
whether they are optimal in a more general sense. The final result presented here is that
Theorem B is close to being optimal in the minimax sense. The formulation and proof of
the minimax lower bound is presented in Section 5. Then, we end the article with two
examples of classes that are of interest in phase retrieval: the set of d-sparse vectors
and the unit ball in `n1 . The first is a class with a fixed ‘local complexity’, and the second
has a varying ‘local complexity’.

2 Preliminaries

Throughout this article, absolute constants are denoted by C, c, c1, ... etc. Their value
may change from line to line. The fact that there are absolute constants c, C for which
ca ≤ b ≤ Ca is denoted by a ∼ b; a . b means that a ≤ cb, while a ∼L b means that the
constants depend only on the parameter L.

For 1 ≤ p ≤ ∞, let ‖ · ‖p be the `p norm endowed on Rn, and set `np = (Rn, ‖ ‖p). Bnp
denotes the unit ball in `np and Sn−1 is the Euclidean sphere in Rn.

For a function f (or a random variable X) on a probability space, set ‖f‖Lp to be its
Lp norm.

Other norms that play a significant role here are the Orlicz norms. For basic facts on
these norms we refer the reader to [19, 30].

Recall that for α ≥ 1,

‖f‖ψα = inf{c > 0 : E exp(|f |α/cα) ≤ 2},

and it is straightforward to extend the definition for 0 < α < 1.

Orlicz norms measure the rate of decay of a function. One may verify that ‖f‖ψα ∼
supp≥1 ‖f‖Lp/p1/α. Moreover, for t ≥ 1, Pr(|f | ≥ t) ≤ 2 exp(−ctα/‖f‖αψα), and ‖f‖ψα is
equivalent to the smallest constant κ for which Pr(|f | ≥ t) ≤ 2 exp(−tα/κα) for every
t ≥ 1.

Note that a random variable X is L-subgaussian if it has a bounded ψ2 norm and
‖X‖ψ2 ≤ L‖X‖L2 . Moreover, if X is L-subgaussian,

‖X‖Lp .
√
p‖X‖ψ2

. L
√
p‖X‖L2

,

and for every t ≥ 1,

Pr(|X| > t) ≤ 2 exp(−ct2/‖X‖2ψ2
) ≤ 2 exp(−ct2/(L2‖X‖2L2

))

for a suitable absolute constant c.

It is standard to verify that for every f, g, ‖fg‖ψ1
. ‖f‖ψ2

‖g‖ψ2
, and that if X1, ..., XN
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are independent copies of X and 1 ≤ α ≤ 2, then

‖ max
1≤i≤N

Xi‖ψα . ‖X‖ψα log1/αN. (2.1)

An additional feature of ψα random variables is concentration, namely that if (Xi)
N
i=1

are independent copies of a ψα random variable X, then N−1
∑N
i=1Xi concentrates

around EX. One example of such a concentration result is the following Bernstein-type
inequality (see, e.g., [30]).

Theorem 2.1. There exists an absolute constant c0 for which the following holds. If
X1, ..., XN are independent copies of a ψ1 random variable X, then for every t > 0,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Xi − EX

∣∣∣∣∣ > t‖X‖ψ1

)
≤ 2 exp(−c0N min{t2, t}).

An important example of a probability space is the discrete space Ω = {1, ..., N},
endowed with the uniform probability measure. Functions on Ω can be viewed as vectors
in RN and the corresponding Lp and ψα norms are denoted by ‖ · ‖LNp and ‖ · ‖ψNα .

A significant part of the proof of Theorem A has to do with the behaviour of a
monotone non-increasing rearrangement of vectors. Given v ∈ RN , let (v∗i )Ni=1 be a
non-increasing rearrangement of (|vi|)Ni=1. The next straightforward observation shows
that the ψNα norm captures information on the coordinates of (v∗i )Ni=1.

Lemma 2.2. For every 1 ≤ α ≤ 2 there exist constants c1 and c2 that depend only on α
for which the following holds. For every v ∈ RN ,

c1 sup
i≤N

v∗i

log1/α(eN/i)
≤ ‖v‖ψNα ≤ c2 sup

i≤N

v∗i

log1/α(eN/i)
.

Proof. We will prove the claim only for α = 2 as the other cases follow an identical path.
Let v ∈ RN and denote by Pr the uniform probability measure on Ω = {1, . . . , N}. By

the tail characterization of the ψ2 norm,

N−1|{j : |vj | > t}| = Pr(|v| > t) ≤ 2 exp(−ct2/‖v‖2ψN2 ).

Hence, for ti = c−1/2‖v‖ψN2
√

log(eN/i), |{j : |vj | > ti}| ≤ 2i/e ≤ i, and for every
1 ≤ i ≤ N , v∗i ≤ ti. Therefore,

sup
i≤N

v∗i√
log(eN/i)

≤ c−1/2‖v‖ψN2 ,

as claimed.
In the reverse direction, consider

B =
{
β > 0 : ∀ 1 ≤ i ≤ N, ‖v‖ψN2 ≥ βv

∗
i /
√

log(eN/i)
}
.

It is enough to show that B is bounded from above by a constant that is independent
of v. To that end, fix β ∈ B and without loss of generality, assume that β > 2. Set
B = supi≤N βv

∗
i /
√

log(eN/i) and since β ∈ B, ‖v‖ψN2 ≥ B.

Also, since 1/β2 < 1,

N∑
i=1

(
1

i

)1/β2

≤ 1 +

∫ N

1

(
1

x

)1/β2

dx ≤ N1−1/β2

1− 1/β2
.
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Therefore,

N∑
i=1

exp(v2i /B
2) =

N∑
i=1

exp((v∗i )2/B2) ≤
N∑
i=1

exp(β−2 log(eN/i))

≤
N∑
i=1

(
eN

i

)1/β2

≤ (eN)1/β
2

· N
1−1/β2

1− 1/β2
≤ Ne1/β

2

1− 1/β2
< 2N,

provided that β ≥ c1. Hence, by the definition of the ψN2 norm, if β ≥ c1, ‖v‖ψN2 < B

which is impossible.

2.1 Empirical and Subgaussian processes

The sampling method we use is with respect to an isotropic and L-subgaussian
measure and the noise w has a bounded ψ2-norm. Thus, it is natural to study some
properties of subgaussian processes.

Given T ⊂ Rn, let d(T ) = supt∈T ‖t‖2 and put k∗(T ) = (`(T )/d(T ))2. The latter
appears naturally in the context of Dvoretzky type theorems, and in particular, in
Milman’s proof of Dvoretzky’s Theorem (see, e.g., [25]).

Theorem 2.3. [20] For every L ≥ 1 there exist constants c1 and c2 that depend only
on L for which the following holds. For every u ≥ c1, with probability at least 1 −
2 exp(−c2u2k∗(T )), for every t ∈ T and every I ⊂ {1, ..., N},(∑

i∈I

〈
t, ai

〉2)1/2

≤ Lu3
(
`(T ) + d(T )

√
|I| log(eN/|I|)

)
.

For any integer N , let jT be the largest integer j in {1, ..., N} for which

`(T ) ≥ d(T )
√
j log(eN/j).

It follows from Theorem 2.3 that if t ∈ T and |I| ≤ jT ,

(
∑
i∈I

〈
t, ai

〉2
)1/2 .L,u `(T ),

and if |I| ≥ jT ,

(
∑
i∈I

〈
t, ai

〉2
)1/2 .L,u d(T )

√
|I| log(eN/|I|).

Therefore, if v = (
〈
t, ai

〉
)Ni=1 and (v∗i )Ni=1 is a monotone non-increasing rearrangement of

(|vi|)Ni=1, then

v∗i ≤

1

i

i∑
j=1

(v∗j )2

1/2

.L,u


`(T )√
i

if i ≤ jT

d(T )
√

log(eN/i) otherwise.

(2.2)

This observation will be used extensively in what follows.

The next fact deals with product processes.

Theorem 2.4. [24] Let T1, T2 ⊂ Rn and put k∗ = min {k∗(T1), k∗(T2)}. For u ≥ 8, with
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probability at least 1− 2 exp(−c0(L)u2k∗),

sup
t∈T1,s∈T2

∣∣∣∣∣
N∑
i=1

(〈
ai, t

〉〈
ai, s

〉
− E

〈
a, t
〉〈
a, s
〉)∣∣∣∣∣

≤c1(L)
(
u2`(T1)`(T2) + u

√
N (d(T1)`(T2) + d(T2)`(T1))

)
.

Remark 2.5. Let (εi)
N
i=1 be independent, symmetric, {−1, 1}-valued random variables.

It follows from the results in [20] that with the same probability estimate as in Theorem
2.4 and relative to the product measure (ε⊗X)N ,

sup
t∈T1,s∈T2

∣∣∣∣∣
N∑
i=1

εi
〈
ai, t

〉〈
ai, s

〉∣∣∣∣∣
≤c1(L)

(
u2`(T1)`(T2) + u

√
N (d(T1)`(T2) + d(T2)`(T1))

)
.

Assume that (k∗(T1))1/2 = `(T1)/d(T1) ≥ `(T2)/d(T2) = (k∗(T2))1/2. Theorem 2.4 and
Remark 2.5 show that with probability at least 1− 2 exp(−c1u2k∗(T2)),

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

〈
ai, t

〉〈
ai, s

〉
− E

〈
a, t
〉〈
a, s
〉∣∣∣∣∣ .L u2`(T1)`(T2) + u

√
N`(T1)d(T2),

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

|
〈
ai, t

〉〈
ai, s

〉
| − E|

〈
a, t
〉〈
a, s
〉
|

∣∣∣∣∣ .L u2`(T1)`(T2) + u
√
Nd(T2)`(T1)

and

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

εi
〈
ai, t

〉〈
ai, s

〉∣∣∣∣∣ .L u2`(T1)`(T2) + u
√
Nd(T2)`(T1). (2.3)

One case which is of particular interest is when T1 = T2 = T , and then, with
probability at least 1− 2 exp(−c1u2k∗(T )),

sup
t∈T

∣∣∣∣∣
N∑
i=1

〈
ai, t

〉2 − E〈a, t〉2∣∣∣∣∣ .L u2`2(T ) + u
√
Nd(T )`(T ).

2.2 Monotone rearrangement of coordinates

The first goal of this section is to investigate the coordinate structure of v ∈ Rm,
given information on its norm in various Lmp and ψmα spaces. The vectors we will be
interested in are of the form (

〈
ai, t

〉
)Ni=1 for t ∈ T , and for which, thanks to the results

presented in Section 2.1, one has information on ‖(
〈
ai, t

〉
)Ni=1‖LNp and ‖(

〈
ai, t

〉
)Ni=1‖ψNα .

It is standard to verify that if ‖v‖ψmα ≤ A, then ‖v‖p .p,α A ·m1/p. Thus, ‖v‖Lmp .p
‖v‖ψmα . Moreover, if the two norms are equivalent, v is regular in some sense. The next
lemma, which is a version of the Paley-Zygmund Inequality, (see, e.g. [12]), describes
such regularity properties when p = α = 1.

Lemma 2.6. For every β > 1 there exist constants c1 and c2 that depend only on β

and for which the following holds. If ‖v‖ψm1 ≤ β‖v‖Lm1 , there exists I ⊂ {1, ...,m} of
cardinality at least c1m, and for every i ∈ I, |vi| ≥ c2‖v‖Lm1 .

EJP 20 (2015), paper 57.
Page 10/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3525
http://ejp.ejpecp.org/


Minimax rates and ERM in phase recovery

Proof. Recall that ‖v‖ψm1 ∼ sup1≤i≤m v
∗
i / log(em/i). Hence, for every 1 ≤ j ≤ m,

j∑
`=1

v∗` . ‖v‖ψm1
j∑
`=1

log(em/`) . β‖v‖Lm1 j log(em/j).

Therefore,

m‖v‖Lm1 =

m∑
`=1

|v`| =
∑
`≤j

v∗` +

m∑
`=j+1

v∗` ≤ c0β‖v‖Lm1 j log(em/j) +

m∑
`=j+1

v∗` .

Setting c1(β) ∼ 1/(β log(eβ)) and j = c1(β)m,

c0β‖v‖Lm1 j log(em/j) ≤ (m/2)‖v‖Lm1 .

Thus,
∑m
`=j+1 v

∗
` ≥ (m/2)‖v‖Lm1 , while

v∗j+1 ≤
1

j + 1

∑
`≤j+1

v∗` . β log(eβ)‖v‖Lm1 .

Let I be the set of the m− j smallest coordinates of v. Fix η > 0 to be named later,
put Iη ⊂ I to be the set of coordinates in I for which |vi| ≥ η‖v‖Lm1 and denote by Icη its
complement in I. Therefore,

(m/2)‖v‖Lm1 ≤
∑
`≥j+1

v∗` =
∑
`∈Iη

|v`|+
∑
`∈Icη

|v`| ≤ v∗j+1|Iη|+ η‖v‖Lm1 |I
c
η|

.‖v‖Lm1 |I|
(
β log(eβ)

|Iη|
|I|

+ η
|Icη|
|I|

)
.

Hence,

m

2
. |I|

(
β log(eβ)

|Iη|
|I|

+ η

(
1− |Iη|

|I|

))
. m

(
(β log(eβ)− η)

|Iη|
|I|

+ η

)
.

If η = min{1/4, (β/2) log(eβ)}, then |Iη| ≥ (η/2)|I| ≥ c2(β)m, as claimed.

Next, let us turn to decomposition results for the vectors (
〈
ai, t

〉
)Ni=1. Recall that for a

set T ⊂ RN , jT is the largest integer for which `(T ) ≥ d(T )
√
j log(eN/j).

Lemma 2.7. For every L > 1 there exist constants c1 and c2 that depend only on L for
which the following holds. Let T ⊂ Rn and set W = {t/‖t‖2 : t ∈ T} ⊂ Sn−1. With
probability at least 1− 2 exp(−c1`2(W )), for every t ∈ T , (

〈
ai, t

〉
)Ni=1 = v1 + v2 and v1, v2

have the following properties:

1. The supports of v1 and v2 are disjoint.

2. ‖v1‖2 ≤ c2`(W )‖t‖2 and |supp(v1)| ≤ jW .

3. ‖v2‖ψN2 ≤ c2‖t‖2.

Proof. Fix t ∈ T and let Jt ⊂ {1, ..., N} be the set of the largest jW coordinates of
(|
〈
ai, t

〉
|)Ni=1. Set

v̄1 = (
〈
aj , t/‖t‖2

〉
)j∈Jt and v̄2 = (

〈
aj , t/‖t‖2

〉
)j∈Jct .
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By Theorem 2.3 and the characterization of the ψN2 norm of a vector using the monotone
rearrangement of its coordinates (Lemma 2.2),

‖v̄1‖2 . L`(W ), and ‖v̄2‖ψN2 . L.

To complete the proof, set v1 = ‖t‖2v̄1 and v2 = ‖t‖2v̄2.

Recall that for every R > 0,

T+,R =

{
t+ s

‖t+ s‖2
: t, s ∈ T, ‖t+ s‖2‖t− s‖2 ≥ R

}
,

and a similar definition holds for T−,R. Set j+,R = jT+,R
, j−,R = jT+,R

and ER =

max{`(T+,R), `(T−,R)}. Combining the above estimates leads to the following corollary.

Corollary 2.8. For every L > 1 there exist constants c1, c2, c3 and c4 that depend only
on L for which the following holds. Let T ⊂ Rn and R > 0, and consider T+,R and T−,R
as above. With probability at least 1 − 4 exp(−c1L2 min{`2(T+,R), `2(T−,R)}), for every
s, t ∈ T for which ‖t− s‖2‖t+ s‖2 ≥ R,

1. (
〈
s− t, ai

〉
)Ni=1 = v1 + v2, for vectors v1 and v2 of disjoint supports, and

|supp(v1)| ≤ j−,R, ‖v1‖2 ≤ c2`(T−,R)‖s− t‖2 and ‖v2‖ψN2 ≤ c2‖s− t‖2.

2. (
〈
s+ t, ai

〉
)Ni=1 = u1 + u2, for vectors u1 and u2 of disjoint supports, and

|supp(u1)| ≤ j+,R, ‖u1‖2 ≤ c2`(T+,R)‖s+ t‖2 and ‖u2‖ψN2 ≤ c2‖s+ t‖2.

3. If hs,t(a) =
〈

s+t
‖s+t‖2 , a

〉〈
s−t
‖s−t‖2 , a

〉
, then∣∣∣∣∣ 1

N

N∑
i=1

|hs,t(ai)| − E|hs,t|

∣∣∣∣∣ ≤ c3
(
ER√
N

+
E2
R

N

)
.

In particular, recalling that for every s, t ∈ T ,

E|
〈
s+ t, a

〉〈
s− t, a

〉
| ≥ κ0‖s+ t‖2‖s− t‖2,

it follows that if
√
N ≥ c4(L)ER/κ0 then

4.
κ0
2
‖s+ t‖2‖s− t‖2 ≤

1

N

N∑
i=1

|
〈
s+ t, ai

〉〈
s− t, ai

〉
| .L ‖s+ t‖2‖s− t‖2. (2.4)

From here on we denote by Ω1,R the event on which Corollary 2.8 holds for the sets
T+,R and T−,R and for samples of cardinality N &L E2

R/κ
2
0.

Lemma 2.9. There exist constants c0 and c1 that depend only on L and c1, κ0 and κ1 for
which the following holds. If N ≥ c0E2

R/κ
2
0, then for (ai)

N
i=1 ∈ Ω1,R and every s, t ∈ T for

which ‖s− t‖2‖s+ t‖2 ≥ R, there is Is,t ⊂ {1, ..., N} of cardinality at least κ1N , and for
every i ∈ Is,t,

|
〈
s− t, ai

〉〈
s+ t, ai

〉
| ≥ c1‖s− t‖2‖s+ t‖2.

Lemma 2.9 is an empirical small-ball estimate, as it shows that with high probability,
and for every pair s, t as above, a proportional number of the coordinates of (|

〈
ai, s −

t
〉
| · |
〈
ai, s+ t

〉
|)Ni=1 are large.
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Proof. Fix s, t ∈ T as above and set

y = (
〈
s− t, ai

〉
)Ni=1, and x = (

〈
s+ t, ai

〉
)Ni=1.

Let y = v1 + v2 and x = u1 + u2 as in Corollary 2.8, set j0 = max{j−,R, j+,R} and put
J = supp(v1) ∪ supp(u1). Observe that |J | ≤ 2j0 and that∑

j∈J
|y(j)| · |x(j)| ≤

∑
j∈supp(v1)

|v1(j)x(j)|+
∑

j∈supp(u1)

|y(j)u1(j)|

≤‖v1‖2

(
2j0∑
i=1

(x2(j))∗

)1/2

+ ‖u1‖2

(
2j0∑
i=1

(y2(j))∗

)1/2

.L`(T−,R)‖s− t‖2 ·
√
j0 log(eN/j0)‖s+ t‖2

+`(T+,R)‖s+ t‖2 ·
√
j0 log(eN/j0)‖s− t‖2

.LE
2
R‖s− t‖2‖s+ t‖2 ≤

κ0N

4
‖s− t‖2‖s+ t‖2,

because, by the definition of j0,
√
j0 log(eN/j0) . max{`(T−,R), `(T+,R)} and N ≥

c0E
2
R/κ

2
0 for c0 = c0(L) large enough; thus, by (2.4),∑

j∈Jc
|y(j)x(j)| ≥ Nκ0‖s− t‖2‖s+ t‖2/4.

Set m = |Jc| and let z = (y(j)x(j))j∈Jc = (v2(j)u2(j))j∈Jc . Since N &L E2
R/κ

2
0, it is

evident that j0 ≤ N/2; thus N/2 ≤ m ≤ N and

‖z‖Lm1 =
1

m

∑
j∈Jc
|y(j)x(j)| ≥ N

4m
κ0‖s− t‖2‖s+ t‖2 & κ0‖s− t‖2‖s+ t‖2.

On the other hand,

‖z‖ψm1 ≤ ‖(v2u2(j))j∈Jc‖ψm1 . ‖v2‖ψm2 ‖u2‖ψm2 .L ‖s− t‖2‖s+ t‖2,

and z satisfies the assumption of Lemma 2.6 for β = c1(L, κ0). The claim follows
immediately from that lemma.

3 Proof of Theorem A

It is well understood that when analyzing properties of ERM relative to a loss,
studying the excess loss functional x ∈ T 7→ Lx = `x − `x0

is rather natural. Here, the

loss function is `x(a, y) =
(〈
a, x
〉2 − y)2 and the excess loss shares the same empirical

minimizer as the loss, but it has additional qualities: for every x ∈ T , ELx ≥ 0 and
Lx0

= 0. Moreover, since PNLx0
= 0 is a potential minimizer of {PNLx : x ∈ T} (because

x0 ∈ T ), the minimizer x̂ satisfies that PNLx̂ ≤ 0. This gives a way of excluding parts of
T as potential empirical minimizers: it suffices to show that with high probability, those
parts belong to the set {x : PNLx > 0}. The exclusion may be achieved by showing that
PNLx is equivalent to (or at least larger than) ELx, as the latter is positive for points
that are not true minimizers.

The second ingredient is a decomposition of the excess loss to a sum of two pro-
cesses: a quadratic process and a multiplier one [16]: if F is a class of functions,
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f∗ = argminf∈FE(f(a)− y)2 and f ∈ F , then

(f(a)− y)2 − (f∗(a)− y)2 = (f(a)− f∗(a))2 − 2(f(a)− f∗(a)) · (f∗(a)− y).

When y =
〈
x0, a

〉2
+ w as we have here, each fx ∈ F given by fx =

〈
x, ·
〉2

, and thus

Lx(a, y) = `x(a, y)− `x0
(a, y) =

(
fx(a)− y

)2 − (fx0
(a)− y

)2
=
(〈
x− x0, a

〉〈
x+ x0, a

〉)2 − 2w
〈
x− x0, a

〉〈
x+ x0, a

〉
.

If w is a mean-zero random variable that is independent of a, then by Assumption 1.1,

ELx(a, y) = E|
〈
x− x0, a

〉〈
x+ x0, a

〉
|2 ≥ κ20‖x− x0‖22‖x+ x0‖22.

Therefore, E
(
fx(a)− y

)2
has a unique minimizer in F : f∗ = fx0

= f−x0
.

The final ingredient is a localization argument. To show that PNLx > 0 on a large
subset T ′ ⊂ T (which implies that x̂ cannot be in T ′), it suffices to obtain a high
probability lower bound on

inf
x∈T ′

1

N

N∑
i=1

(〈
x− x0, ai

〉〈
x+ x0, ai

〉)2
that dominates a high probability upper bound on

sup
x∈T ′

∣∣∣∣∣ 2

N

N∑
i=1

wi
〈
x− x0, ai

〉〈
x+ x0, ai

〉∣∣∣∣∣ .
The set T ′ that will be used here is a localized set TR = {x ∈ T : ‖x− x0‖2‖x+ x0‖2 ≥ R}
for a well-chosen R.

3.1 Control of the quadratic and multiplier processes

Let us establish a lower bound on the quadratic process and an upper bound on the
multiplier process, both indexed by the set TR.

Theorem 3.1. There exists a constant c0 that depends only on L, and constants c1, κ1
that depend only on κ0 and L for which the following holds. For every R > 0 and
N ≥ c0E2

R/κ
2
0, with probability at least

1− 4 exp(−c1L2 min{`2(T+,R), `2(T−,R)}),

for every x ∈ TR,

1

N

N∑
i=1

〈
x0 − x, ai

〉2〈
x0 + x, ai

〉2 ≥ c1‖x0 − x‖22‖x0 + x‖22.

Theorem 3.1 is an immediate outcome of Lemma 2.9 and its proof is omitted.

As for the multiplier process, one has the following:

Theorem 3.2. There exist absolute constants c1 and c2 for which the following holds.
For every β > 1, with probability at least

1− 2 exp(−c1L2 min{`2(T+,R), `2(T−,R)})− 2N−(β−1),
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for every x ∈ TR,∣∣∣∣∣ 1

N

N∑
i=1

wi
〈
x− x0, ai

〉〈
x+ x0, ai

〉∣∣∣∣∣ ≤ c2√β‖w‖ψ2

√
logN · ER√

N
‖x− x0‖2‖x+ x0‖2.

Proof. By standard properties of empirical processes, and since w is mean-zero and
independent of a, it suffices to estimate

sup
x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi|wi|
〈
x− x0, ai

〉〈
x+ x0, ai

〉∣∣∣∣∣ ,
for independent signs (εi)

N
i=1. By the contraction principle for Bernoulli processes (see,

e.g., [19]), it follows that for every fixed (wi)
N
i=1 and (ai)

N
i=1,

Prε

(
sup
x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi|wi|
〈 x− x0
‖x− x0‖2

, ai
〉〈 x+ x0
‖x+ x0‖2

, ai
〉∣∣∣∣∣ > u

)

≤2Prε

(
max
i≤N
|wi| · sup

x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈 x− x0
‖x− x0‖2

, ai
〉〈 x+ x0
‖x+ x0‖2

, ai
〉∣∣∣∣∣ > u

2

)
.

Applying Remark 2.5, if N &L ER then with (ε ⊗ a)N -probability of at least 1 −
2 exp(−c1L2 min{`2(T+,R), `2(T−,R)}),

sup
x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈 x− x0
‖x− x0‖2

, ai
〉〈 x+ x0
‖x+ x0‖2

, ai
〉∣∣∣∣∣ ≤ c2L2 ER√

N
.

Also, because w is a ψ2 random variable,

Pr(w∗1 ≥ t‖w‖ψ2
) ≤ 2N exp(−t2/2),

and thus, w∗1 ≤
√

2β logN‖w‖ψ2
with probability at least 1− 2N−β+1.

Combining the two estimates and a Fubini argument, it follows that with probability
at least 1− 2 exp(−c1L2 min{`2(T+,R), `2(T−,R)})− 2N−β+1, for every x ∈ TR,∣∣∣∣∣ 1

N

N∑
i=1

wi
〈
x− x0, ai

〉〈
x+ x0, a

〉∣∣∣∣∣ ≤ c3L2
√
β‖w‖ψ2

√
logN

ER√
N
· ‖x− x0‖2‖x+ x0‖2.

Recall that r1(γ) = inf{r > 0 : Er ≤ γ
√
Nr} and let R ≥ r1(c1κ0/(c2L

2
√
β)).

Observe that on the intersection of the two events appearing in Theorem 3.1 and
Theorem 3.2, if N &κ0,L E

2
R and

ρ = ‖x− x0‖2‖x+ x0‖2 ≥ R,

then for every x ∈ TR,

PNLx ≥
(
c1κ

2
0ρ− c2L2

√
β‖w‖ψ2

√
logN

ER√
N

)
ρ

≥
(
c1κ

2
0R− c2L2

√
β‖w‖ψ2

√
logN

ER√
N

)
R.
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Minimax rates and ERM in phase recovery

Therefore, if N &L,κ0
E2
R and

ER ≤ c3(L, κ0)
R

‖w‖ψ2

√
N

β logN
, (3.1)

PNLx > 0 and thus x̂ 6∈ TR. Theorem A now follows from the definition of r1(γ) for a well
chosen γ.

4 Proof of Theorem B

Most of the work required for the proof of Theorem B has been carried out in Section
3. Using an almost identical argument to the one used above, one may replace the
sets T+,R and T−,R by T+,R(x0) and T−,R(x0). To that end, given x0 ∈ T let Er(x0) =

max{`(T+,R(x0)), `(T−,R(x0))} and set

r1(x0, γ) = inf
{
r > 0 : Er(x0) ≤ γ

√
Nr
}
,

and
r0(x0, Q) = inf

{
r > 0 : Er(x0) ≤ Q

√
N
}
.

Theorem 4.1. For every L > 1, κ0 > 0 and β > 1, there exist constants c0, c1 and c2 that
depend only on L, κ0 and β for which the following holds. Set

r∗2 = max{r0(x0, c1), r1(x0, c2/σ
√

logN)},

and under the same assumptions as in Theorem A, with probability at least

1− 2 exp(−c0 min{`2(T+,r∗2 (x0)), `2(T−,r∗2 (x0))})− 2N−β+1,

‖x̂− x0‖2‖x̂+ x0‖2 ≤ r∗2 .

Next, let us analyze the structure of the local sets T+,R(x0) and T−,R(x0). A first step
in that direction is the following:

Lemma 4.2. There exist absolute constants c1 and c2 for which the following holds. For
every R > 0 and ‖x0‖2 ≥

√
R/4,

1. If ‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ≥ R then ‖x− x0‖2‖x+ x0‖2 ≥ c1R.

2. If ‖x− x0‖2‖x+ x0‖2 ≥ R then ‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ≥ c2R.

Moreover, if ‖x0‖2 ≤
√
R/4 then ‖x− x0‖2‖x+ x0‖2 ≥ R if and only if ‖x‖2 &

√
R.

Proof. Without loss of generality assume that ‖x− x0‖2 ≤ ‖x+ x0‖2.
If ‖x− x0‖2 ≤ ‖x0‖2 then

‖x0‖2 ≤ 2‖x0‖2 − ‖x− x0‖2 ≤ ‖x+ x0‖2 ≤ ‖x− x0‖2 + 2‖x0‖2 ≤ 3‖x0‖2.

Hence, ‖x0‖2 ∼ ‖x+ x0‖2, and

‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ∼ ‖x− x0‖2‖x+ x0‖2.

Otherwise, ‖x− x0‖2 > ‖x0‖2.
If, in addition, ‖x0‖2 ≥ (‖x− x0‖2‖x+ x0‖2)1/2/4, then

4‖x0‖2 ≥ (‖x− x0‖2‖x+ x0‖2)1/2 ≥ ‖x0‖1/22 ‖x+ x0‖1/22 ,
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Minimax rates and ERM in phase recovery

and ‖x+x0‖2 ≤ 16‖x0‖2. Since ‖x0‖2 < ‖x−x0‖2 ≤ ‖x+x0‖2, it follows that ‖x+x0‖2 ∼
‖x− x0‖2 ∼ ‖x0‖2, and again,

‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ∼ ‖x− x0‖2‖x+ x0‖2.

Therefore, the final case, and the only one in which there is no pointwise equivalence
between ‖x−x0‖2‖x+x0‖2 and ‖x0‖2 min{‖x−x0‖2, ‖x+x0‖2}, is when min{‖x−x0‖2, ‖x+

x0‖2} ≥ ‖x0‖2 and ‖x0‖2 ≤ (‖x− x0‖2‖x+ x0‖2)1/2/4. In that case, if ‖x0‖2 ≥
√
R/4 then

‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ≥ ‖x0‖22 ≥ R/16,

and
‖x− x0‖2‖x+ x0‖2 ≥ 4‖x0‖22 ≥ R/4,

from which the first part of the claim follows immediately.

For the ‘moreover’ part, observe that

‖x‖22 − 2‖x0‖2‖x‖2 ≤ min{‖x− x0‖22, ‖x+ x0‖22} ≤ ‖x− x0‖2‖x+ x0‖2
≤ (‖x‖2 + ‖x0‖2)

2
,

and if ‖x0‖2 ≤
√
R/4, the result is evident.

It is clear from Lemma 4.2 that the way the product ‖x − x0‖2‖x + x0‖2 relates to
min{‖x− x0‖2, ‖x+ x0‖2} depends on ‖x0‖2. If ‖x0‖2 ≥

√
R/4, then

{x ∈ T : ‖x− x0‖2‖x+ x0‖2 ≤ R} ⊂ {x ∈ T : min{‖x− x0‖2, ‖x+ x0‖2} ≤ c1R/‖x0‖2},

and if ‖x0‖2 ≤
√
R/4,

{x ∈ T : ‖x− x0‖2‖x+ x0‖2 ≤ R} ⊂ {x ∈ T : ‖x‖2 ≤ c1
√
R},

for a suitable absolute constant c1.

Therefore, if T is a convex and centrally-symmetric, then T+,R(x0) = T−,R(x0), and
the corresponding gaussian averages satisfy

ER(x0) .


‖x0‖2
R · `(2T ∩ (c1R/‖x0‖2)Bn2 ) if ‖x0‖2 ≥

√
R,

1√
R
`(2T ∩ c1

√
RBn2 ) if ‖x0‖ <

√
R.

Recall that the fixed point conditions appearing in Theorem 4.1 are

r0 = r0(x0, c2) = inf{R : ER(x0) ≤ c2
√
N} (4.1)

and
r1(γ) = r1(x0, γ) = inf{R : ER(x0) ≤ γ

√
NR}, (4.2)

and consider the slightly suboptimal choice γ = c2/σ
√

logN . The assertion of Theorem
4.1 is that with high probability, ERM produces x̂ for which

‖x̂− x0‖2‖x̂+ x0‖2 ≤ max{r1(γ), r0}.
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If ‖x0‖2 ≥
√
R, then the condition in (4.1) is

`(2T ∩ (c1R/‖x0‖2)Bn2 ) ≤ c3
(

R

‖x0‖2

)√
N, (4.3)

while (4.2) is
‖x0‖2
R

`(2T ∩ (c1R/‖x0‖2)Bn2 ) ≤ (c4/σ
√

logN) ·
√
NR. (4.4)

Set
r∗N (Q) = inf{r > 0 : `(T ∩ rBn2 ) ≤ Qr

√
N},

and
s∗N (η) = inf{s > 0 : `(T ∩ sBn2 ) ≤ ηs2

√
N}.

Therefore,
r0 = 2‖x0‖2r∗N (c3)

and
r1
(
c2/(σ

√
logN)

)
≤ 2‖x0‖2s∗N (c4‖x0‖2/σ

√
logN).

For
R = 2‖x0‖2 max{r∗N (c3), s∗N (c4‖x0‖2/σ

√
logN)},

it remains to verify that ‖x0‖22 ≥ R; that is,

2 max{s∗N (c4‖x0‖2/σ
√

logN), r∗N (c3)} ≤ ‖x0‖2. (4.5)

To that end, observe that if

r∗N (c3) ≤ c3σ

2c4‖x0‖2

√
logN, (4.6)

then r∗N (c3) ≤ s∗N (c4‖x0‖2/σ
√

logN). Indeed, by the convexity of T , r∗N (Q) ≤ ρ if and
only if `(T ∩ ρBn2 ) ≤ Qρ

√
N , and a similar statement holds for s∗N (see the discussion in

[16]). Therefore, if `(T ∩ r∗N (Q)) > η(r∗N (Q))2
√
N then s∗N (η) ≥ r∗N (Q), which is indeed

the case because `(T ∩ r∗N (Q)) ≥ Qr∗N (Q)
√
N/2, Q = c3 and η = c4‖x0‖2/σ

√
logN .

Under (4.6), (4.5) becomes 2s∗N (c4‖x0‖2/σ
√

logN) ≤ ‖x0‖2 which, by the definition of
s∗N , holds if and only if

`

(
T ∩ ‖x0‖2

2
Bn2

)
≤ c4‖x0‖2
σ
√

logN
· ‖x0‖

2
2

4

√
N ;

i.e., when ‖x0‖2 ≥ v∗N (ζ) for ζ = c4/4σ
√

logN .

Hence, by Theorem 4.1 combined with Lemma 4.2, it follows that with high probabil-
ity,

min{‖x̂− x0‖2, ‖x̂+ x0‖2} ≤ 2s∗N (c4‖x0‖2/σ
√

logN).

The other cases, in which either ‖x0‖2 is ‘small’, or when r0 dominates r1 are treated in
a similar fashion, and are omitted.

5 A minimax lower bound

In this section we obtain a general lower bound on the performance of any procedure
in the phase retrieval problem. The estimate we present here is based on the maximal
cardinality of separated subsets of the class with respect to the L2(µ) norm.
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Definition 5.1. Let B be the unit ball in a normed space E. If A ⊂ E, let M(A, rB) be
the maximal cardinality of a subset of A that is r-separated with respect to the norm in
E.

Clearly, if M(A, rB) ≥ L there are x1, ..., xL ∈ A for which the sets xi + (r/3)B are
disjoint.

Let F be a class of functions on (Ω, µ) and let a be distributed according to µ. For
f0 ∈ F and a centred gaussian variable w with variance σ, which is independent of a,
consider the target

y = f0(a) + w. (5.1)

Any procedure that performs well in the minimax sense, must do so for any such target
y, and in particular, for every choice of f0 ∈ F in (5.1).

Following [16], there are two possible sources of ‘statistical complexity’ that influence
the error rate of the problem:

1. There are functions f ∈ F that, despite being far away from f0, still satisfy f0(ai) =

f(ai) for every 1 ≤ i ≤ N , and thus are indistinguishable from f0 on the data.

This property does not depend on the choice of the noise: for every f0 ∈ F and
A = (ai)

N
i=1, the key factor is the L2(µ) diameter of the set

K(f0,A) = {f ∈ F : (f(ai))
N
i=1 = (f0(ai))

N
i=1},

and we shall denote that diameter by d∗N (A).

2. Let D be the unit ball in L2(µ). The set

(F − f0) ∩ rD = {f − f0 : f ∈ F, ‖f − f0‖L2
≤ r} (5.2)

is ‘rich enough’ at a scale that is proportional to its L2(µ) diameter r. If the set is
‘rich’, the procedure is likely to make mistakes because of the interaction between
class members and the noise (see the discussion in [16]).

The ‘size’ of the set (5.2) is measured using the cardinality of a maximal L2(µ)-
separated set it contains. To that end, for H ⊂ F set

C(H, r) = sup
h∈H

r log1/2M(H ∩ (h+ θ0rD), rD),

for some θ0 ≥ 2 and r > 0. The constant θ0 we shall use will be specified later.

For every H ⊂ F , let

qN (H, η) = inf
{
r > 0 : C0(H, r) ≤ ηr2

√
N
}

(5.3)

if the infimum is smaller than diam(H,L2(µ)); otherwise, set qN (H, η) = diam(H,L2(µ)).

Remark 5.2. It follows from Sudakov’s inequality (see, e.g. [19]) that for every H ⊂
L2(µ) and every r > 0,

C0(H, r) . sup
h∈H

E‖G‖H∩(h+θ0rD),

which hints to the connection between qN and s∗N .

The lower bound is an outcome of the following fact:

Theorem 5.3. [16] For every f0 ∈ F , let P⊗Nf0 be the probability measure that generates

samples (ai, yi)
N
i=1 according to (5.1). For every θ0 ≥ 2 there exists a constant θ1 > 0
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that depends only on θ0 for which, for every procedure f̃ ,

sup
f0∈F

P⊗Nf0

(∥∥∥f0 − f̃∥∥∥
L2

≥ max{qN (F, θ1/σ), (d∗N (A)/4)}
)
≥ 1/5. (5.4)

Minimax bounds of a similar flavour may be found in [28], [34] in the context of
density estimation, and also in [1].

To apply this general principle to the phase retrieval problem generated by f0(a) +w,

note that f0(a) =
〈
x0, a

〉2 ≡ fx0(a) for some unknown vector x0 ∈ T ⊂ Rn, while the

estimators generated by the procedure are f̃ =
〈
x̃, ·
〉2

. Also, observe that for every
x1, x2 ∈ T ,

‖fx0
− fx1

‖2L2
= E

(〈
x0, a

〉2 − 〈x1, a〉2)2 = E
〈
x0 − x1, a

〉2〈
x0 + x1, a

〉2
and therefore, to apply Theorem 5.3, one has to identify the L2 structure of the set

F − fx0
=
{〈
x, ·
〉2 − 〈x0, ·〉2 : x ∈ T

}
.

We will do so by assuming the following:

Assumption 5.1. There exist constants C1 and C2 > 2 for which, for every s, t ∈ Rn,

C1‖s− t‖2‖s+ t‖2 ≤
(
E
〈
s− t, a

〉2〈
s+ t, a

〉2)1/2 ≤ C2‖s− t‖2‖s+ t‖2.

It is straightforward to verify that if a is an L-subgaussian vector in Rn that satisfies
Assumption 1.1, then it automatically satisfies Assumption 5.1 for constants C1 and C2

that depend only on L.

As will be made clear later, the lower bound on ‖x̃ − x0‖2‖x̃ + x0‖2 changes with
‖x0‖2. Therefore, one has to consider each shell V0 = T ∩ R0S

n−1 for R0 > 0 and the
corresponding class of functions F ′ = {fu : u ∈ V0} separately. The lower bound is
obtained by selecting the ‘worst’ V0 and x0 ∈ V0, which will be used to generate the
target y =

〈
x0, a

〉2
+ w.

Note that by Assumption 5.1, for every u, v ∈ T ,

C1‖u− v‖2‖u+ v‖2 ≤ ‖fv − fu‖L2 ≤ C2‖u− v‖2‖u+ v‖2.

Hence, for every r > 0,{
v ∈ V0 : ‖v − x0‖2‖v + x0‖2 ≤

θ0r

C2

}
⊂ {v ∈ V0 : fv ∈ fx0 + θ0rD} . (5.5)

Set D(u, v) = ‖u−v‖2‖u+v‖2 and put Bx(ρ) = {u ∈ Rn : D(u, x) ≤ ρ}. Invoking Theorem
5.3 and (5.5), it suffices to construct a well-separated set in V0 ∩ Bx0

(θ0r/C2), in the
sense that for every i 6= j, D(xi, xj) is large enough.

Formally, Let θ0 > 2 to be named later and set θ1 as in Theorem 5.3. If there are
x0 ∈ V0 and {x1, ..., xk} ⊂ V0 that satisfy

1. ‖xi − x0‖2‖xi + x0‖2 ≤ θ0r/C2, and

2. for every 1 ≤ i < j ≤ k, ‖xi − xj‖2‖xi + xj‖2 ≥ r/C1,

then
sup
f0∈F ′

logM(F ′ ∩ (f0 + θ0rD), rD) ≥ log k. (5.6)

EJP 20 (2015), paper 57.
Page 20/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3525
http://ejp.ejpecp.org/


Minimax rates and ERM in phase recovery

As a consequence, if r also satisfies that

log k > N

(
θ1r

σ

)2

,

then r ≤ qN (F ′, θ1/σ) and with probability at least 1/5, the error of any procedure x̃ is
at least r; that is, for any procedure there will be some v0 ∈ V0 for which, given data
generated by

〈
v0, ·

〉
+ w, with probability 1/5

‖x̃− x0‖2‖x̃+ x0‖2 ≥ r.

What now remains is to identify when such a separated set exists and to relate ‖x̃ −
x0‖2‖x̃+ x0‖2 to min{‖x̃− x0‖2, ‖x̃+ x0‖2}.

We begin with the following simple observation:

Lemma 5.4. If ‖u‖2 = R0 and ‖v‖2 ≤ R0 then

R0 min {‖u− v‖2, ‖u+ v‖2} ≤ D(u, v) ≤ 2R0 min {‖u− v‖2, ‖u+ v‖2}

Proof. Assume without loss of generality that ‖u− v‖2 ≤ ‖u+ v‖2. Thus,
〈
u, v
〉
≥ 0 and

‖u+ v‖22 = ‖u‖22 + ‖v‖22 + 2
〈
u, v
〉
≥ R2

0.

Therefore, ‖u+ v‖2 ≥ R0 and by the triangle inequality, ‖u+ v‖2 ≤ 2R0, completing the
proof.

To formulate the next observation, let C1 and C2 be as in Assumption 5.1. Set R0 > 0

and consider V0 = T ∩R0S
n−1 and F ′ = {fv : v ∈ V0}.

Lemma 5.5. If x0 ∈ V0, r < C2R
2
0/θ0 and {x1, ..., xk} ⊂ V0 ∩ (x0 + θ0r/2C2R0)Bn2 is

r/C1R0 separated in `n2 , then

M (F ′ ∩ (fx0
+ θ0rD), rD) ≥ k.

Proof. Set R = r/C2 and observe that R0 ≥
√
θ0R. By Lemma 5.4, if x ∈ V0 satisfies that

‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ≤ θ0R/2,

then ‖x− x0‖2‖x+ x0‖2 ≤ θ0R, and in particular, ‖fx − fx0‖L2 ≤ θ0r. Hence,

V0 ∩ (x0 + (θ0R/2‖x0‖2)Bn2 ) ⊂ {x ∈ V0 : ‖x0 − x‖2‖x0 + x‖2 ≤ θ0R} .

Note that if xi, xj ∈ V0 ∩ (x0 + (θ0R/2‖x0‖2)Bn2 ) then by the triangle inequality

‖xi + xj‖2 ≥ 2‖x0‖2 − θ0R/‖x0‖2 ≥ R0 (5.7)

because R0 = ‖x0‖2 ≥
√
θ0R.

Hence, if {x1, ..., xk} ⊂ V0∩(x0+(θ0R/2R0)Bn2 ) is r/C1R0-separated in `n2 , it is evident
that

‖xi + xj‖2‖xi − xj‖2 ≥ R0 ·
r

C1R0
=

r

C1
.

The corresponding functions satisfy that fxi ∈ fx0
+ θ0rD, and ‖fxi − fxj‖L2

≥ r as
required.

EJP 20 (2015), paper 57.
Page 21/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3525
http://ejp.ejpecp.org/


Minimax rates and ERM in phase recovery

Let c0 = C1/2 and set

C(R0, ρ) = sup
x0∈V0

ρ log1/2 (M (V0 ∩ (x0 + c0ρB
n
2 ) , ρBn2 ))

where for every R0, V0 = T ∩R0S
n−1. Finally, let

q∗N (R0, η) = inf
{
ρ > 0 : C(R0, ρ) ≤ ηρ2

√
N
}

if the infimum is smaller that R0; otherwise, set q∗N (R0, η) = R0.

Theorem C. There exist constants c1, c2 and c3 that depend only on C1 and C2 for which
the following holds. Let R0 > 0 and assume that V0 = T ∩R0S

n−1 is nonempty. For any
procedure x̃, there is some x0 ∈ V0, for which, with probability at least 1/5, given the

data generated by y =
〈
x0, a

〉2
+ w,

‖x̃− x0‖2 ‖x̃+ x0‖2 ≥ c1 ‖x0‖2 q
∗
N

(
‖x0‖2,

c2 ‖x0‖2
σ

)
and

min{‖x̃− x0‖2 , ‖x̃+ x0‖2} ≥ c1q
∗
N

(
‖x0‖2,

c3 ‖x0‖2
σ

)
.

In particular, the error rates in T cannot be better than supR0
R0q

∗
N (R0, c2R0/σ) and of

supR0
q∗N (R0, c3R0/σ), respectively (up to some numerical constant).

Proof. First, let us specify the choice of constants that have been used above: given
C1 ≤ C2 < 2 as in Assumption 5.1, set θ0 = C2 and let θ1 be as in Theorem 5.3.

Fix R0 for which T ∩ R0S
n−1 is nonempty and let η = θ1C1R0/σ. It is evident from

the definition of q∗N that there is some x0 ∈ V0 = T ∩R0S
n−1 for which

log1/2 (M (V0 ∩ (x0 + c0(q∗N/2)Bn2 ) , (q∗N/2)Bn2 )) ≥ ηq∗N
√
N/2,

(and recall that c0 = C1/2).
Set r = c0R0q

∗
N and clearly r < C2R

2
0/θ0 as required in Lemma 5.5. Also, c0(q∗N/2) =

r/2R0 = (θ0/C2) · r/2R0, q∗N/2 = r/2c0R0 = r/C1R0 and ηq∗N/2 = (θ1/σ)r. Applying
Lemma 5.5

logM (F ′ ∩ (fx0
+ θ0rD), rD) ≥ N

(
θ1
σ

)2

r2,

where F ′ = {fu : u ∈ T ∩R0S
n−1}.

Therefore, by Theorem 5.3, given any procedure x̃ there is some v0 ∈ V0 for which
with probability at least 1/5,

‖fx̃ − fv0‖L2 = ‖x̃− v0‖2‖x̃+ v0‖2 ≥ r =
C1

2
‖v0‖2q∗N

(
‖v0‖2, C1‖v0‖2

θ1
σ

)
. (5.8)

Finally, one has to show that

min {‖x̃− v0‖2, ‖x̃+ v0‖2} & q∗N

(
‖v0‖2, C1‖v0‖2

θ1
σ

)
. (5.9)

And indeed, since ‖x̃− v0‖2‖x̃+ v0‖2 ≥ r and r . R2
0 = ‖v0‖22, the proof of (5.9) follows

that path of Lemma 4.2 and is omitted.
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The claim now follows by taking the worst possible choices of R0 – that is, the choices
that lead to the largest values in (5.8) and (5.9).

6 Examples

Here, we will present two simple applications of the upper and lower bounds on
the performance of ERM in phase retrieval. Naturally, there are many other examples
that follow in a similar way and that can be derived using very similar arguments. The
choice of examples has been made to illustrate the question of optimality of ERM, as well
as an indication of the similarities and differences between phase retrieval and linear
regression. Since the estimate used in these examples are rather well known, some of
the details will not be presented in full.

6.1 Sparse vectors

The first example is of a class with a ‘constant’ local complexity.

Let T = Wd be the set of d-sparse vectors in Rn; that is, a set consisting of vectors
supported on at most d nonzero coordinates.

Corollary 6.1. Under the assumptions of Theorem A and for x0 ∈Wd the following holds.
If N ≥ c0(L)d log

(
en/d

)
, then with probability at least 1 − 2 exp(−c(L)d log(en/d)) −

N−β+1, ERM produces x̂ that satisfies

‖x̂− x0‖2‖x̂+ x0‖2 .κ0,L,β σ

√
d log(en/d)

N

√
logN = (∗). (6.1)

Moreover, with the same probability estimate, if ‖x0‖22 & (∗) then

min{‖x̂− x0‖2, ‖x̂+ x0‖2} .κ0,L,β
σ

‖x0‖2

√
d log(en/d)

N

√
logN (6.2)

and if ‖x0‖22 . (∗) then

min{‖x̂− x0‖22, ‖x̂+ x0‖22} .κ0,L σ

√
d log(en/d)

N

√
logN. (6.3)

Proof. It is straightforward to verify (see, for instance, Lemma 3.3.1 in [7]) that

`(Wd ∩ Sn−1) ∼
√
d log

(en
d

)
. (6.4)

Clearly, for every R > 0, T+,R, T−,R ⊂ W2d ∩ Sn−1. Also, for any x0 ∈ T and any
I ⊂ {1, ..., n} of cardinality d that is disjoint of supp(x0), the sets{

(x− x0)i∈I
‖x− x0‖2

: x ∈Wd

}
, and

{
(x+ x0)i∈I
‖x+ x0‖2

: x ∈Wd

}
contain (1

√
2)SI – the Euclidean sphere of radius 1/

√
2. Thus, for every R > 0,

`(T+,R), `(T−,R) ∼
√
d log(en/d). (6.5)

To apply Theorem A one has to identify the fixed points r1(γ) and r0(Q) for the right
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choice of γ and Q. Since ER ∼
√
d log(en/d), it follows that for N &L (d/Q2) log(en/d),

r0(Q) = 0 and r1(γ) ∼ 1

γ

√
d

N
log
(en
d

)
.

Therefore, with probability at least 1− 2 exp(−c(L)d log(en/d))−N−β+1, x̂ satisfies

‖x̂− x0‖2‖x̂+ x0‖2 .κ0,L,β σ

√
d log(en/d)

N

√
logN = (∗).

Finally, the estimate on min{‖x̂−x0‖2, ‖x̂+x0‖2} is an immediate outcome of Lemma 4.2
and is omitted.

When ‖x0‖2 is of the order of a constant, the error rate in (6.1) and (6.2) is identical
to the one obtained in [16] for linear regression (up to a

√
logN term). In the latter, ERM

achieves the minimax rate (with the same probability estimate) of

‖x̂− x0‖2 .L σ

√
d log(en/d)

N
.

Otherwise, when ‖x0‖2 is large, the error rate in (6.2) is actually better than in linear
regression, but, when ‖x0‖2 is small, it is worse - deteriorating to the square root of the
rate in linear regression (again, up to logarithmic terms).

When the noise level σ tends to zero, the error rates in linear regression and in phase
retrieval both tend to zero. In particular, exact reconstruction occurs – that is x̂ = x0 in
linear regression and x̂ = x0 or x̂ = −x0 in phase retrieval – in the noise-free case when
N &L d log

(
en/d

)
.

The following result shows that the upper bounds obtained in Corollary 6.1 are the
minimax rate, up to the

√
logN term.

Corollary 6.2. Consider the phase retrieval model (1.1), for w that is gaussian, has
variance σ and is independent of a. If the number of observations is N & d log(en/d) and
R0 > 0, then for any procedure x̃ there exists a d-sparse vector x0 for which ‖x0‖2 = R0

and with probability at least 1/5,

‖x̃− x0‖2 ‖x̃+ x0‖2 & min

(
σ

√
d log(en/d)

N
, ‖x0‖22

)

and

min{‖x̃− x0‖2 , ‖x̃+ x0‖2} & min

(
σ

‖x0‖2

√
d log(en/d)

N
, ‖x0‖2

)
.

The proof of Corollary 6.2 follows from Theorem C and a standard entropy estimate,
namely, that for every r > 0 and c0 ≥ 2,

log1/2M(Wd ∩ c0rBn2 , rBn2 ) ∼
√
d log(en/d) (6.6)

(see, e.g. Lemma 1.4.2 and Lemma 2.2.17 in [7]).

As a consequence, ERM is a minimax procedure for phase retrieval of d-sparse
vectors, up to the log1/2N factor in the upper estimate.

One specific choice of d which is of natural interest is when d = n and T = Rn. Thus,
there is no a-priori information on the signal x0 that one would like to recover.

This problem has been studied in [6], and it turns out that in the noiseless case, exact
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reconstruction is possible using the PhaseLift procedure when N & n.

Our results lead to exact recovery as well: by Corollary 6.1, if N ≥L n, ERM produces
x̂ for which, with high probability, either x̂ = x0 or −x0.

In the noisy case, the problem has been studied in [6] when a is the standard gaussian
vector (see Theorem 1.3 there). It follows that if N & n, PhaseLift (together with a
computation of the leading eigenvector) yields an estimator x̄ for which, with high
probability,

min{‖x̄− x0‖ , ‖x̄+ x0‖} .

{
‖x0‖2 when ‖x0‖22 ≤ σ
σ
‖x0‖2

otherwise.
(6.7)

Corollary 6.2 shows that this estimator is minimax when N ∼ n, though the estimate is
clearly suboptimal when N is much larger than n, as it does not tend to 0 with N .

Comparing (6.7) with Corollary 6.1, it follows from the latter that when a is L-
subgaussian and N &L n, with probability at least 1 − 2 exp(−c(L)n) − N−β+1, ERM
produces x̂ that satisfies

min{‖x̂− x0‖2, ‖x̂+ x0‖2} .L


[
σ
√

n logN
N

]1/2
when ‖x0‖22 . σ

√
n logN
N

σ
‖x0‖2

√
n logN
N otherwise.

(6.8)

which is minimax up to the
√

logN term for any N &L n.

6.2 The unit ball of `n1

Consider the set T = Bn1 , the unit ball of `n1 . Being convex and centrally symmetric, it
is a natural example of a set whose local complexity changes with x0 – it increases the
closer x0 is to 0. As an added value, one may obtain sharp estimates on `(Bn1 ∩ rBn2 ) at
every scale r > 0. Indeed, one may show (see, for example, [13]) that

`
(
Bn1 ∩ rBn2

)
∼


√

log(enr2) if r2n ≥ 1

r
√
n otherwise.

It follows that for Bn1 , one has

r∗N (Q)



∼
(

1
Q2N log

(
n

Q2N

))1/2
if n ≥ C0Q

2N

. 1
N if C1Q

2N ≤ n ≤ C0Q
2N

= 0 if n ≤ C1Q
2N.

where C0 and C1 are absolute constants. The only range in which this estimate is not
sharp is when n ∼ Q2N , because in that range r∗N (Q) decays to zero very quickly. A
more accurate estimate on `(Bn1 ∩ rBn2 ) can be performed when n ∼ Q2N (see [17]), but
since it is not our main interest, we will not pursue it further, and only consider the cases
n ≤ C1Q

2N and n ≥ C0Q
2N .

A straightforward computation shows that the two other fixed points from Defini-
tion 1.3 satisfy:

s∗N (η) ∼


(

1
η2N log

(
n2

η2N

))1/4
if n ≥ η

√
N

√
n
η2N if n ≤ η

√
N
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and

v∗N (ζ) ∼


(

1
ζ2N log

(
n3

ζ2N

))1/6
if n ≥ ζ2/3N1/3

(
n
ζ2N

)1/4
if n ≤ ζ2/3N1/3.

Theorem B, leading to an upper estimate on

(∗) = min{‖x̂− x0‖2 , ‖x̂+ x0‖2},

involves the study of several different regimes, depending on ‖x0‖2, the noise level σ
and the way the number of observations N compares with the dimension n.

The noise-free case: σ = 0. In this case, (∗) is upper bounded by r∗N (Q), for Q that is
an absolute constant. In particular, when n ≥ C0Q

2N , then with high probability

min{‖x̂− x0‖2 , ‖x̂+ x0‖2} .L
(

1

N
log (n/N)

)1/2

.

Let us show that this estimate is optimal, and that ERM is a minimax procedure. To that
end, the minimax lower bound d∗N (A) in Theorem 5.3 may be used, as no procedure can
do better than d∗N (A)/4, with probability greater than 1/5.

Using the notation of section 5, in the phase retrieval problem one has

d∗N (A) = sup {‖fx − fx0
‖2 : x ∈ Bn1 , fx(ai) = fx0

(ai) , i = 1, . . . , N}
∼ sup

{
‖x− x0‖2 ‖x+ x0‖2 : x ∈ Bn1 , |

〈
ai, x

〉
| = |

〈
ai, x0

〉
|, i = 1, . . . , N

}
& inf
L:Rn→RN

sup {‖x− x0‖2 ‖x+ x0‖2 : x ∈ Bn1 , L(x) = L(x0)}

with an infimum taken over all linear operators L : Rn → RN .

By Lemma 4.2, for x0 = (1/2, 0, . . . , 0) ∈ Bn1 (in fact, any vector x0 in Bn1 for which
0 < ‖x0‖2 ≤ 1/2 would do),

d∗N (A) & inf
L:Rn→RN

sup
x∈Bn1 ∩(kerL+x0)

min{‖x− x0‖2 , ‖x+ x0‖2}

& inf
L:Rn→RN

sup
x∈Bn1 ∩kerL

‖x‖2 = cN (Bn1 )

which is the Gelfand N -width of Bn1 . By the well-known result of Garnaev and Gluskin
[11],

cN (Bn1 ) ∼


min

{
1,

√
1
N log

(
en
N

)}
if N ≤ n

0 otherwise.

which is of the same order as r∗N , (except when n ∼ N , which is not treated here),
implying that ERM is a minimax procedure.

Note that when n ≤ c1Q2N , exact reconstruction of x0 or −x0 is possible, and it can
happen only in that case (i.e. σ = 0 and n ≤ c1Q2N ) because of the minimax lower bound
d∗N (A).

The noisy case: σ > 0. According to Theorem B, the error rate (∗) depends on
r∗N = r∗N (Q) for some absolute constant Q, on s∗N = s∗N (η) for η = c1 ‖x0‖2 /(σ

√
logN)

and on v∗N = v∗N (ζ) for ζ = c1/(σ
√

logN).

All the resulting estimates, summarized in Figure 1, follow from a straightforward
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yet tedious computation. We will only sketch the case ζ2/3N1/3 ≤ η
√
N ≤ C1Q

2N , which
is equivalent to (σ2 logN

c1N

)1/6
≤ ‖x0‖2 ≤

c1Q
2σ
√
N logN

c1
.

(∗) . σ/ ‖x0‖2 ≤ c0r∗N/
√

logN σ/ ‖x0‖2 ≥ c0r∗N/
√

logN
‖x0‖2 ≤ v∗N r∗N s∗N
‖x0‖2 ≥ v∗N r∗N v∗N

Figure 1: High probability bounds on min{‖x̂− x0‖2 , ‖x̂+ x0‖2}.

The upper bound on (∗) changes according to the way N scales with n:

1. n ≥ C0Q
2N . In this situation, r∗N ∼

(
log(n/N)/N

)1/2
. Therefore, if σ/ ‖x0‖2 .√

log(n/N)/(N logN) then (∗) ≤
(

log(n/N)/N
)1/2

, and if σ/ ‖x0‖2 &
√

log(n/N)/(N logN),

(∗) ≤


(
σ2 logN
‖x0‖22N

log
(

σ2n2

‖x0‖22N

))1/4
if ‖x0‖2 ≥

(
σ2 logN

N log
(
σ2n3

N

))1/6
(
σ2 logN

N log
(
σ2n3

N

))1/6
otherwise.

(6.9)

2. c1 ‖x0‖2 /(σ
√

logN)
√
N ≤ n ≤ C1Q

2N . In that case r∗N = 0. In particular
σ/ ‖x0‖2 > c0r

∗
N/
√

logN and therefore, (∗) is upper bounded as in (6.9).

3.
(
c1/(σ

√
logN)

)2/3
N1/3 ≤ n ≤ c1 ‖x0‖2 /(σ

√
logN)

√
N . Again, in this case, r∗N = 0

and

(∗) ≤


σ
‖x0‖2

√
n logN
N if ‖x0‖2 ≥

(
σ2 logN

N log
(
σ2n3

N

))1/6
(
σ2 logN

N log
(
σ2n3

N

))1/6
otherwise.

4. n ≤
(
c1/(σ

√
logN)

)2/3
N1/3. Once again, r∗N = 0, and

(∗) ≤


σ
‖x0‖2

√
n logN
N if ‖x0‖2 ≥

(
σ
√

n logN
N

)1/2
(
σ
√

n logN
N

)1/2
otherwise.

Observe that up to the extra
√

logN factor, these estimates are optimal in the minimax
sense. Indeed, it is enough to apply Theorem C and verify, as in Example 2 in [20], that
when ‖x0‖1 ≤ 1/2, for every ε < 1/4

ε log1/2M(Bn1 ∩ (x0 + c0εB
n
2 ), εBn2 ) ∼ `

(
Bn1 ∩ εBn2

)
.
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