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Abstract

We consider standard Λ-coalescents (or coalescents with multiple collisions) with
a non-trivial “Kingman part”. Equivalently, the driving measure Λ has an atom at
0; Λ({0}) = c > 0. It is known that all such coalescents come down from infinity.
Moreover, the number of blocks Nt is asymptotic to v(t) = 2/(ct) as t → 0. In the
present paper we investigate the second-order asymptotics of Nt in the functional
sense at small times. This complements our earlier results on the fluctuations of the
number of blocks for a class of regular Λ-coalescents without the Kingman part. In the
present setting it turns out that the Kingman part dominates, and the limit process is
a Gaussian diffusion, as opposed to the stable limit in our previous work.
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1 Introduction and main results

1.1 Background

The Kingman coalescent, introduced in [14, 15], is one of the pillar processes of
mathematical population genetics. The research reported here is linked to some of
the classical results on the Kingman coalescent. In particular, Griffiths in [11] derives
the Gaussian behavior of the number of blocks (one dimensional distributions only).
Similar limits are discussed by Aldous in [1] in the absence of mutations, with general
acknowledgement (as folk theorem), but no specific reference provided. More precisely,
let Kt be the number of blocks in the standard Kingman coalescent at time t. Then [1]
outlines the argument for√

3t

2

(
Kt −

2

t

)
⇒ N(0, 1), as t→ 0.
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Diffusion limits at small times for Λ-coalescents with a Kingman component

The Λ-coalescents form the simplest class of processes with exchangeable dynamics
that generalize the Kingman coalescent. They were introduced and first studied indepen-
dently by Pitman [18] and Sagitov [19], and were also considered in a contemporaneous
work of Donnelly and Kurtz [9]. For recent overviews of the literature we refer the
reader to [5, 4].

Let Λ be an arbitrary finite measure on [0, 1]. We denote by (Πt, t ≥ 0) the associated
Λ-coalescent. This Markov jump process (Πt, t ≥ 0) takes values in the set of partitions
of {1, 2, . . .}. Its law is specified by the requirement that, for any n ∈ N, the restriction
Πn of Π to {1, . . . , n} is a continuous-time Markov chain with the following transitions:
whenever Πn has b ∈ {2, . . . , n} blocks, any given k-tuple of blocks coalesces at rate
λb,k :=

∫
[0,1]

rk−2(1 − r)b−kΛ(dr). The case Λ(dx) = δ0(dx) corresponds to the classical
Kingman coalescent, where each pairwise collision occurs at rate 1, and no multiple
collision is possible. The total mass of Λ can be scaled to 1. This is convenient for the
analysis, and corresponds to a constant time rescaling of the process. Henceforth we
assume that Λ is a probability measure. One of our main current assumptions is that
Λ({0}) = c > 0. We distinguish two cases: if c = 1 we call the corresponding coalescent
the pure Kingman coalescent, while if c ∈ (0, 1) we call it the mixed (with) Kingman
coalescent.

The standard Λ-coalescent starts from the trivial configuration {{i} : i ∈ N}. We shall
denote by Nt the number of blocks of Π(t) at time t. Note that the law of N depends on
Λ, but it will be clear from the context which Λ (and therefore which N ) we currently
consider. If P(Nt < ∞,∀t > 0) = 1 the coalescent is said to come down from infinity
(CDI). It is well known that the Kingman coalescent has this property. Necessary and
sufficient conditions for CDI for general Λ-coalescents were derived in [20] and [6]. In
[3] and [2] the small time behavior of Λ coalescents was studied. In [2], for a general
Λ-coalescent that comes down from infinity, the authors found a non-random function
t 7→ vt, dependent on Λ, such that as t→ 0

Nt
vt
→ 1 a.s. and in Lp, (1.1)

for any p ≥ 1. Any function v satisfying (1.1) is referred to as the speed of coming down
from infinity. There are many functions with this property, but clearly they have the
same asymptotic behavior near 0. In our previous work [16] we investigated the second
order asymptotics near 0 for the number of blocks in a Λ-coalescent that comes down
from infinity, assuming that Λ has no atom at 0 (no Kingman part) and that Λ({1}) = 0.
We studied the asymptotic behavior in a functional sense. More precisely, we were
interested in the processes

r(ε)

(
Nεt
vεt
− 1

)
, t ≥ 0 (1.2)

where ε > 0, and r(ε) is an appropriate norming, such that these processes converge in
law in the Skorokhod space D([0,∞)) as ε→ 0. We have shown that if Λ is sufficiently
regular near 0, that is, if Λ has a density in a neighborhood of 0 that behaves as Ay−β

with 0 < β < 1 for some A ∈ (0,∞), then (for an appropriate speed v) the correct
norming is r(ε) = ε−1/(1+β). Furthermore, the limit process is a (1 + β)-stable process of
the form

K
1

t

∫
[0,t]

udLu, (1.3)

where L is a (1 + β)-stable Lévy process, totally skewed to the left (it has no positive
jumps), and K is a positive constant.

The object of the present paper is to present a complementary result, concerning the
second order asymptotics of the number of blocks at small times for Λ-coalescents that
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Diffusion limits at small times for Λ-coalescents with a Kingman component

have non-zero Kingman part: Λ({0}) = c > 0. The presence of an atom at 0 introduces
some essential differences and the results of [16] cannot be applied to this case. However,
as we will see, the main idea can be adapted to cover this case as well.

For other second-order fluctuation limits in the setting of exchangeable coalescents,
we refer the reader to the works of Schweinsberg [21], Kersting [12], Dahmer, Kersting
and Wakolbinger [8], Kersting, Schweinsberg and Wakolbinger [13].

1.2 Main results

Let N = (Nt, t ≥ 0) be the block counting process in a Λ-coalescent. In the mixed
with Kingman case, where Λ({0}) = c > 0, it is easy to see (by comparing with the
Kingman coalescent slowed down by a factor c, which corresponds to the driving measure
Λ(dx) = cδ0(dx)) that P(Nt < ∞) = 1 for all t > 0, without any additional assumptions
on Λ. Furthermore, from the results of Berestycki et al. [2] it follows that in this case
(1.1) is satisfied with the function t 7→ 2

ct , which therefore is a speed of CDI for the
corresponding Λ-coalescent. Note that this expression for the speed depends only on
the atom at 0. In particular, the pure Kingman coalescent slowed down by a factor c will
have exactly the same speed of CDI.

The object of interest is the process (1.2) as ε→ 0. We now set r(ε) = ε−
1
2 .

We first consider the pure Kingman case. As already mentioned, a similar study had
already been undertaken in [11, 1] in the setting of pure Kingman coalescent, but only
for the marginal distributions (i.e. for fixed t = 1, an analogue of the classical CLT). In
the present paper we study these fluctuations in a functional sense. We then proceed to
the general result for the mixed Kingman coalescent, which is novel even for the one
dimensional distributions.

Let D([0,∞)) denote the Skorokhod space of càdlàg functions equipped with the
usual J1 topology.

Our main result in the pure Kingman setting is as follows:

Theorem 1.1. Let (Nt)t≥0 be the block counting process in a standard Kingman coales-
cent. Then the process Xε defined by

Xε(t) = ε−
1
2

(
εt

2
Nεt − 1

)
, t ≥ 0, Xε(0) = 0 (1.4)

converges in law in D([0,∞)) as ε→ 0 to a Gaussian process

Zt =
1√
2 t

∫ t

0

udWu, t > 0, Z0 = 0, (1.5)

where W is a standard Brownian motion.

Remark 1.2. (a) The limit process Z has the same form, as the one in [16] (in the case
where c = 0, and where Λ has a density near zero, which behaves as Cy−β; cf. (1.3)), if
one formally sets β = 1.
(b) It is easy to see that the process Z satisfies the equation

Zt = −
∫ t

0

Zs
1

s
ds+

1√
2
Wt, Z0 = 0. (1.6)

(c) It is worth pointing out that the limit process (1.5) also appeared in the context of
scaling limits related to hierarchical random walks (see [7], Proposition 2.11).

To state our result in the general setting of mixed Kingman coalescents we first
need to recall the speeds of CDI used in [2] and [16], while introducing some additional
notation.
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Diffusion limits at small times for Λ-coalescents with a Kingman component

Assume that Λ({0}) = c > 0 (clearly c ≤ 1), hence Λ has the form Λ = cδ0 + (1− c)Λ1,
where for 0 < c < 1, Λ1 is the uniquely determined probability measure on [0, 1] such
that Λ1({0}) = 0. For c = 1 set Λ1 ≡ 0. Denote

Ψ(q) =

∫
[0,1]

(qy − 1 + (1− y)q)
Λ(dy)

y2
, q ≥ 1, (1.7)

where the function y 7→ qy−1+(1−y)q

y2 is continuously extended on [0, 1], so that its value

at y = 0 is q(q−1)
2 . Let Ψ1 denote the function given by (1.7), with Λ replaced by Λ1. In

particular we have

Ψ(q) = c
q(q − 1)

2
+ (1− c)Ψ1(q), ∀q ≥ 1. (1.8)

Similarly let

Ψ∗(q) =

∫
[0,1]

(qy − 1 + e−qy)
Λ(dy)

y2
, q ≥ 0. (1.9)

These functions have already appeared in earlier papers (see e.g. [2] and [16] for some
of their properties and a discussion on relation between Ψ and Ψ∗). In particular, we
know that the functions Ψ and q 7→ Ψ(q)

q are increasing, and the same holds for Ψ∗ in
place of Ψ.

From the assumption c > 0 it follows that, for any a > 1, the integral
∫∞
a

1
Ψ(q)dq is

finite and the same is true for Ψ∗ (which is also a condition for CDI, see [6]). As in [16],
we define the function v : (0,∞) 7→ (0,∞) by

t =

∫ ∞
vt

1

Ψ(q)
dq. (1.10)

By (1.8) and Lemma 2.1 in [16] it follows that
∫∞

1
1

Ψ(q)dq =∞, hence vt > 1 for all t > 0.

(Note that the assumption Λ({1}) = 0 in the formulation of Lemma 2.1 in [16] was not
used in the proof.)

Analogously to v, one can define v∗, by substituting Ψ∗ for Ψ in (1.10). From the
results of [2] it follows that Nt/v∗t → 1 as t → 0, almost surely and in Lp for any p ≥ 1,
hence v∗t is a speed of CDI. The same is true for v in place of v∗. Moreover, both v and v∗

are asymptotic to w near zero, where

wt =
2

ct
, t ≥ 0.

Let us denote

Xv
ε (t) = ε−

1
2

(
Nεt
vεt
− 1

)
, Xv

ε (0) = 0. (1.11)

Similarly, let Xv∗

ε and Xw
ε be the processes defined as in (1.11) with v replaced by v∗ and

w, respectively.
The convergence result for the number of blocks of the mixed Kingman coalescent,

when normalized by the speed v or v∗, is analogous to Theorem 1.1. The only assumption
made on the measure Λ is that Λ({0}) > 0. However, if one wishes to replace the speed
v by the simpler function w, given above, then additional assumptions on the measure Λ

are necessary:

Theorem 1.3. Assume that Λ({0}) = c > 0 and write Λ = cδ0 + (1 − c)Λ1, as above,
0 < c ≤ 1, Λ1 ≡ 0 if c = 1.
(i) The processes Xv

ε and Xv∗

ε converge in law in D([0,∞)) as ε→ 0 to the process
√
cZ,

where Z is defined in (1.5).
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Diffusion limits at small times for Λ-coalescents with a Kingman component

(ii) Suppose additionally that the function Ψ1 defined by (1.7) with Λ replaced by Λ1

satisfies

lim
q→∞

Ψ1(q)

q3/2
= 0. (1.12)

Then Xw
ε converges in law in D([0,∞)) as ε→ 0 to the process

√
cZ.

Remark 1.4. (a) If c = 1, then part (ii) clearly restates Theorem 1.1.
(b) In part (i) the measure Λ1 can be completely arbitrary, the limit only depends on
Λ({0}), which shows that the Kingman part dominates.
(c) Here we see the same phenomenon as in [16], that the speed of CDI has to be
carefully chosen, and that we cannot always replace v by w. In fact, condition (1.12) is
sharp. This is discussed in more detail in Remark 3.9 at the end of Section 3.4 after the
proof of part (ii) of the theorem.

It is known (and easy to see) that the asymptotic behavior of Ψ1(q) as q →∞ depends
quite strongly on the behavior of Λ1 near 0 (see for example [16], Lemma 2.5). However,
to ensure (1.12) one does not need to assume much about the regularity of Λ1 near 0.

A simple sufficient condition for is now given.

Proposition 1.5. If
∫

[0,1]
1√
yΛ1(dy) <∞, then (1.12) holds.

Due to Remark 3.9, it is easy to give examples of Λ1 where the hypothesis of the
proposition is not satisfied and neither (1.12) nor the conclusion of Theorem 1.3 (ii) hold
(e.g. Λ1 is Beta(2− α, α) distribution for any α ≥ 3/2). The intuition is that for such Λ1

the mass near 0 is not sufficiently strong (when compared to the atom at 0) to change
the class of speeds, but it is sufficiently strong to perturb the second-order asymptotics
of Nt.

The proofs of Theorems 1.1 and 1.3 use some of the main ideas of our recent paper
[16], where we studied the case Λ({0}) = 0, and where Λ was sufficiently regular
at 0. These techniques relied heavily on a representation of Λ-coalescents satisfying
Λ({0}) = 0 via Poisson random measures. This representation has been already observed
by Pitman (see [18]), but we reformulated it in [16] to better suit our needs.

At first sight the case of the (mixed) Kingman coalescent is different, since the same
representation cannot be used. However, it turns out that if, somewhat artificially,
one writes the effect of the Kingman part with the help of a different Poisson random
measure, then many of the arguments used in [16] may be adapted to this case as well.

In particular, we begin by explicitly writing out an integral equation for the number
of blocks Nt. This equation involves an integral with respect to a certain Poisson random
measure. In the setting where Λ({0}) ∈ (0, 1), this measure consists of two essentially
different pieces: the first corresponding to the Kingman part (the atom at 0), and the
second to multiple collisions (the measure Λ1). The latter piece, which accounts for the
individual block coloring, was introduced and thoroughly studied in [16]. We shall rely
on the results of that analysis.

However, some of the technical estimates need to be done differently. In a certain
sense, the case Λ({0}) > 0 is simpler, since the Kingman part dominates, and the limits
are Gaussian. As in [16], one has to consider terms resulting from the non-Kingman
part, but now one can use less precise estimates of these terms. We also make use of
a standard result (found e.g. in [10]), a version of a martingale central limit theorem,
which ensures convergence in law of martingales whose jumps are well controlled and
whose skew brackets converge to a deterministic function.

The remainder of the paper is organized as follows. Section 2 contains the proof of
Theorem 1.1. Section 3 is dedicated to the proof of Theorem 1.3, and it also contains a
proof of Proposition 1.5 and Remark 3.9.
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Diffusion limits at small times for Λ-coalescents with a Kingman component

Throughout the paper C,C1, C2, . . . denote positive constants, which may differ from
line to line.
The symbol⇒ denotes convergence in law in the Skorokhod space D([0,∞)) equipped
with J1 topology.

2 The pure Kingman case

In this section we prove Theorem 1.1.

Let us recall first the following deterministic easy lemma, that will be used frequently
in the proofs.

Lemma 2.1. ([2], Lemma 10) Suppose f, g : [a, b] 7→ R are càdlàg functions such that
supx∈[a,b]

∣∣f(x) +
∫ x
a
g(u) du

∣∣ ≤ K, for some K <∞. If in addition f(x)g(x) > 0, x ∈ [a, b]

whenever f(x) 6= 0, then

sup
x∈[a,b]

∣∣∣∣∫ x

a

g(u) du

∣∣∣∣ ≤ K and sup
x∈[a,b]

|f(x)| ≤ 2K.

Recall that now Λ = δ0, so that Nt denotes the number of blocks of the Kingman
coalescent at time t.

The process (Nt)t≥0 is a pure death continuous time Markov chain, and as such has
a simple description. If it is at state n, n ≥ 2, then it jumps to n− 1 with intensity

(
n
2

)
.

For our purpose, it will be convenient to express this process with the help of a Poisson
random measure. This will facilitate the study of fine asymptotic behavior of N near zero
and it will allow us to use some of the standard techniques of the theory of integration
with respect to Poisson random measures. We refer to Chapter 8 of [17] for a summary
of the main properties of such integrals. We always take càdlàg versions of martingales
expressed as integrals with respect to a compensated Poisson random measure.

Denote ∆ = {(i, j) ∈ Z2
+ : 1 ≤ i < j}. We will often denote a typical element of

∆ by k. Let π0 be a Poisson random measure on R+ × ∆ with the intensity measure
ν0 = `⊗

∑
(i,j)∈∆ δ(i,j), where ` is the Lebesgue measure onR+ and δ(i,j) is the Dirac delta

measure. In other words, ((π0([0, t]× {k}))t≥0)k∈∆ are independent Poisson processes
with intensity 1.

The standard Kingman coalescent may be constructed from π0 as follows: Arrivals
in the process indexed by k = (i, j) correspond to potential times of coalescence of
blocks currently labeled by i and by j, but coalescence occurs only if there are at
least j blocks in the current configuration. More precisely, initially we have trivial
configuration {{1}, {2}, ...} consisting of singleton blocks. After each coalescence event,
the blocks are reordered according to their smallest element. The ith and jth block in
the current ordering coalesce into one block at the next arrival time of π0(· × {(i, j)}).
This construction is very much related to the Donnelly-Kurtz modified lookdown process,
see [9].

By π̂0 we denote the compensated Poisson random measure

π̂0 = π0 − ν0.

Let us also denote ∆k = {(i, j) ∈ ∆ : 1 ≤ i < j ≤ k} for k ∈ Z+. Note that #∆k =
(
k
2

)
.

The following lemma is important for our analysis.

Lemma 2.2. Under the assumptions of Theorem 1.1 we have

t

2
Nt = 1−

∫ t

0

(s
2
Ns − 1

) 1

s
ds−Mt +Rt, t ≥ 0, (2.1)
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where

Mt =
1

2

∫
[0,t]

∫
∆

s11∆Ns−
(k)π̂0(dsdk), t ≥ 0. (2.2)

and R is a continuous process such that for any T > 0 there exists C > 0 such that

E sup
s≤t
|Rs| ≤ Ct t ≤ T . (2.3)

Proof. As already mentioned, the Kingman coalescent comes down from infinity, hence
for any 0 < r ≤ t we have Nt ≤ Nr <∞, almost surely. We may and will assume that the
coalescent is constructed using the procedure described before Lemma 2.2.

Due to this construction, we have Nt = Nr −
∫

(r,t]×∆
11∆Ns−

(k)π0(ds, dk). Therefore,

introducing the compensated π0,

Nt =Nr −
∫

(r,t]

∫
∆

11∆Ns−
(k)ν0(dsdk)−

∫
(r,t]

∫
∆

11∆Ns−
(k)π̂0(dsdk)

=Nr −
∫ t

r

Ns(Ns − 1)

2
ds−

∫
(r,t]

∫
∆

11∆Ns−
(k)π̂0(dsdk). (2.4)

This is permissible, since the jumps of N on [r, t] are discrete (isolated). Clearly we have

tNt = rNr +

∫ t

r

Ns ds+

∫ t

r

s dNs.

Hence, using (2.4) we obtain,

t

2
Nt =

r

2
Nr +

∫ t

r

(
Ns
2
− sNs(Ns − 1)

4

)
ds −

∫
(r,t]

∫
∆

s

2
11∆Ns−

(k)π̂0(dsdk), (2.5)

for any t ≥ r. If one formally plugs in r = 0 in this final expression, one readily sees that
the final term equals Mt from (2.2), and that the drift term can be written as

−
∫ t

0

sNs
2

1

s

(
sNs

2
− 1

)
ds+

∫ t

0

sNs
4

ds.

The point is that for s ≈ 0 we have sNs

2 ≈ 1, and this explains the form of the drift in (2.1),
provided we can argue that the errors are small. We will in fact show that both M and
the integral in (2.1) are well defined, and that for any fixed t > 0, as r → 0, the left and
the right hand side of (2.5) converge in probability to the corresponding left and right
hand side of (2.1). Due to the càdlàg property of all the processes under consideration,
(2.1) holds for all t ≥ 0 simultaneously.

First we show that M is well defined. Due to [2], Theorem 2 we have

lim
t→0

E sup
s≤t

(s
2
Ns − 1

)2

= 0. (2.6)

Hence r
2Nr → 1 in L2 (this convergence also holds a.s. and in any Lp, p ≥ 1). Now (2.6)

and the fact that N is non-increasing immediately imply that for any T > 0

E sup
s≤T

(s
2
Ns

)2

<∞. (2.7)

Using the definition of ν0 and (2.7) we hence obtain

E

∫
[0,t]

∫
∆

s211∆Ns−
(k)ν0(dsdk) = E

∫ t

0

s2Ns(Ns − 1)

2
ds ≤Ct if t ≤ T. (2.8)
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Diffusion limits at small times for Λ-coalescents with a Kingman component

Due to Theorem 8.23 in [17] and (2.8) we obtain that M given by (2.2) is a well defined
square integrable martingale. Moreover, it satisfies EM2

t ≤ Ct for t ≤ T Hence, by
Doob’s L2 maximal inequality

E sup
s≤t

M2
s ≤ 4Ct for t ≤ T. (2.9)

We observe that the last term on the right hand side of (2.5) is equal to Mt −Mr, and
from (2.9) it follows that Mr → 0 in L2 as r → 0.

Let us now examine the drift term in (2.5). It can be written as

Ar(t) :=
1

2

∫ t

r

Nsds−
1

2

∫ t

r

s
Ns(Ns − 1)

2
ds

=−
∫ t

r

Ns
2

(s
2
Ns − 1

)
ds+

∫ t

r

s

4
Nsds. (2.10)

This allows us to improve (2.6) in a similar way as it was done in [16], Lemma 3.7 for
Λ-coalescents without the Kingman part. More precisely, using (2.5), (2.10) and Lemma
2.1 (with g(s) = Ns

2 ( sNs

2 − 1)), for r ≤ t ≤ T we have

sup
r≤s≤t

∣∣∣s
2
Ns − 1

∣∣∣ ≤ 2

(∣∣∣r
2
Nr − 1

∣∣∣+ |Mr|+ sup
r≤s≤t

|Ms|+
∫ t

r

s

4
Nsds

)
.

Squaring both sides of the last expression, applying expectation and using (2.6), (2.7)
and (2.9), we obtain that for any T > 0 there exists C > 0 such that

E sup
s≤t

(s
2
Ns − 1

)2

≤ Ct t ≤ T. (2.11)

Estimate (2.11), together with Jensen’s inequality readily implies that the integral with
respect to ds in (2.1) is well defined for all t simultaneously, almost surely.

Moreover, we can express the drift term Ar of (2.10) as

Ar(t) = −
∫ t

r

(s
2
Ns − 1

)2 1

s
ds−

∫ t

r

(s
2
Ns − 1

) 1

s
ds+

1

2

∫ t

r

s

2
Nsds.

By (2.11) and (2.7)

E

∣∣∣∣Ar(t) +

∫ t

r

(s
2
Ns − 1

) 1

s
ds

∣∣∣∣ ≤ C1t for all t ≤ T,

where C1 does not depend on r.
This shows that, as r → 0, Ar(t) converges in L1 to −

∫ t
0

(
s
2Ns − 1

)
1
sds+Rt, where

Rt = −
∫ t

0

(s
2
Ns − 1

)2 1

s
ds+

1

2

∫ t

0

s

2
Nsds.

Again (2.11) and (2.7) yield (2.3).

Recall (1.4), let M be the martingale defined by (2.2), and define

Yt = −1

t

∫
[0,t]

udMu, t > 0, Y0 = 0. (2.12)

and
Yε(t) = ε−

1
2Y (εt). (2.13)
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Diffusion limits at small times for Λ-coalescents with a Kingman component

Lemma 2.3. The process (Yt)t∈R+
satisfies the equation

Yt = −
∫ t

0

Ys
1

s
ds−Mt. (2.14)

Moreover, for any T > 0 there exists C > 0 such that for all t ≤ T

E sup
s≤t

Y 2
s ≤ Ct (2.15)

and
lim
ε→0

E sup
t≤T
|Xε(t)− Yε(t)| = 0. (2.16)

Proof. It is clear that Y is well defined. Moreover, if we denote Ht = tYt, then by the
definition of Y and M we have

Ht = −
∫

[0,t]

udMu = −1

2

∫
[0,t]

∫
∆

s211∆Ns−
(k)π̂0(dsdk), t ≥ 0.

Thus H is a martingale with quadratic variation

[H]t =
1

4

∫ t

0

∫
∆

s411∆Ns−
(k)π0(dsdk), t ≥ 0,

(cf. Theorem 8.23 in [17]). Consequently, using (2.7) we obtain

E [H]t =
1

4
E

∫ t

0

∫
∆

s411∆Ns−
(k)ν0(dsdk)

=
1

4
E

∫ t

0

s4Ns(Ns − 1)

2
ds

≤C
∫ t

0

s2ds =
C

3
t3.

In particular,

EY 2
t =

1

t2
EH2

t =
1

t2
E[H]t ≤

C

3
t. (2.17)

The identity (2.14) follows by simple integration by parts (note that t 7→ 1
t is continuous

and of finite variation on any interval [a, b], 0 < a < b). The only subtle point is the lack
of regularity of t 7→ 1

t at 0. This difficulty is easily overcome, by writing first the formula
for Yt − Yr, for any 0 < r < t,

Yt − Yr =

∫ t

r

1

s2

∫ s

0

udMuds−
∫

(r,t]

dMs = −
∫ t

r

1

s
Ysds−Mt +Mr, (2.18)

and then letting r → 0. Here we use (2.17) to bound
∫ t
r

1
s |Ys| ds uniformly in r > 0,

implying that
∫ t

0
1
sYs ds exists in the absolute sense, almost surely.

Estimate (2.15) follows from (2.18), Lemma 2.1 and (2.9).

To prove (2.16) we set Xt = t
2Nt − 1 and observe that by (2.1) and (2.14) we have

Xt − Yt = −
∫ t

0

(Xs − Ys)
1

s
ds+Rt.

Another application of Lemma 2.1 yields

sup
s≤t
|Xs − Ys| ≤ 2 sup

s≤t
|Rs| ,

so (2.3) implies E supt≤T |Xε(t)− Yε(t)| ≤ 2C
√
εT , and hence (2.16).
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Diffusion limits at small times for Λ-coalescents with a Kingman component

We are now ready to proceed to the proof of the second order asymptotics of the
number of blocks of the pure Kingman coalescent.

Proof of Theorem 1.1. Due to (2.16) and the symmetry of the law of W it suffices to
show that the process −Yε, given by (2.12)–(2.13), converges in law in D([0,∞)) to the
process Z given by (1.5).

We start by showing that for Hε, where Hε(t) := −tYε(t) = 1√
ε ε

∫ tε
0
udMu, t ≥ 0 we

have

(Hε(t))t≥0 ⇒
(

1√
2

∫ t

0

udWu

)
t≥0

. (2.19)

For this we use Theorem 1.4 in Chapter 7.1 of [10], as noted in the introduction. Observe
that Hε(t) = −ε− 3

2H(εt), where H is taken from the proof of Lemma 2.3. Therefore Hε(t)

is again an L2-martingale and it has the form

Hε(t) = ε−
3
2

1

2

∫ εt

0

∫
∆

s211∆Ns−
(k)π̂0(dsdk). (2.20)

By the properties of the compensated Poisson integral we have

〈Hε〉 (t) =
1

4ε3

∫ εt

0

∫
∆

s411∆Ns−
(k)ν0(dsdk) (2.21)

=
1

4ε3

∫ εt

0

s4Ns(Ns − 1)

2
ds

=
1

2

∫ t

0

s2(εs)2Nεs(Nεs − 1)

4
ds. (2.22)

We next verify the assumptions (b) of [10], Theorem 1.4 in Chapter 7.1, with c(t) =

c11(t) = 1
2

∫ t
0
u2du, and 〈Hε〉 corresponding to A(n). Since 〈Hε〉 is continuous, we only

need to prove that 〈Hε〉 (t) converges to 1
2

∫ t
0
u2du in probability, for each fixed t > 0, and

that for any T > 0

lim
ε→0

E sup
t≤T
|Hε(t)−Hε(t−)|2 = 0. (2.23)

The first claim follows readily from (2.22) and (2.11). Equality (2.23) is true due to
(2.20), since from this representation of Hε it follows that the jumps of Hε on [0, T ] are
uniformly bounded by 1

2ε
− 3

2 (εT )2.

This finishes the proof of (2.19). To see that convergence of Hε implies the required
convergence of −Yε, one can apply the argument from [16]: use the continuity of t 7→ 1/t

away from 0, and near 0 use the estimate (2.15) together with an analogous bound
E sups≤t |Zs|

2 ≤ Ct for t ≤ T , where Z is the limit process . Due to Lemma 2.1 the latter
bound follows from (1.6) in the same way that (2.15) followed from (2.9) . See Steps 2-4
in the proof of Lemma 4.8 in [16] for more details. Note that here Step 3 simplifies due
to (2.15).

3 The mixed with Kingman case

In this section we prove Theorem 1.3. In Section 3.1 we present an outline of the
proof of Theorem 1.3 for Xv

ε , in Section 3.2 we prove the key technical lemmas needed
to fill in this outline, and in Section 3.3 we discuss the convergence of the processes Xv∗

ε

and Xw
ε . The final subsection contains the proof of Proposition 1.5.

EJP 20 (2015), paper 45.
Page 10/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3818
http://ejp.ejpecp.org/


Diffusion limits at small times for Λ-coalescents with a Kingman component

3.1 Outline of the proof of Theorem 1.3 for Xv
ε .

The proof combines the ideas from [16] and the proof of Theorem 1.1, therefore we
only briefly sketch it, omitting the details and concentrating on the differences. Proofs
of the technical lemmas that require some new calculations (Lemmas 3.3, 3.5 and 3.6)
will be given in Section 3.2.

We will use the Poissonian construction of Λ-coalescents (cf. [18]). More precisely, we
make use of the notation introduced in the pure Kingman case, as well as the “enriched”
Poisson random measure taken directly from [16]. Recall (1.7)–(1.8) and (1.11). Suppose
that we are given Λ as in the introduction, and recall how c and Λ1 were defined there.
Let π0

c be a Poisson random measure on R+ ×∆ with intensity measure cν0. It is defined
analogously to π0, introduced before Lemma 2.2. Let π1,E

1−c be a Poisson random measure

on R+ × [0, 1]× [0, 1]N with intensity measure (1− c)dsΛ(dy)
y2 µ(dx), where x = (x1, x2, . . .)

and where µ is a countable product of Lebesgue measures on [0, 1] (or equivalently,
the law of an i.i.d. sequence of random variables, distributed uniformly on [0, 1]) . It
corresponds to the non-Kingman part of the coalescent, and it is directly related to πE

from [16]. Since µ is a product of Lebesgue measures, we will usually abbreviate µ(dx)

as dx. See [16] for more details and an interpretation.
It is important to assume that π0

c and π1,E
1−c are independent. Then one can construct

a version of the Λ-coalescent by the following procedure (blocks are again ordered
according to their smallest element): (a) upon arrival of an atom (t,k) of π0

c , perform the
collapsing of blocks as described above Lemma 2.2; (b) upon arrival of an atom (t, y,x)

of π1,E
1−c, the j-th block present in the configuration at time t− is colored if and only if

xj ≤ y. Once the colors are assigned, in order to form the configuration at time t, merge
all the colored blocks into a single block, and leave the other (uncolored) blocks intact.

Following [16], we define a function

f(k, y,x) =

 k∑
j=1

11{xj≤y} − 1

+

=

k∑
j=1

11{xj≤y} − 1 + 11⋂k
j=1{xj>y}, (3.1)

which quantifies the decrease in the number of blocks during one coalescent event
induced by π1,E

1−c, given that k blocks are present just before this event.
Observe that

Ψ(k) =c
k(k − 1)

2
+ (1− c)Ψ1(k) (3.2)

=cν0(∆k) + (1− c)
∫

[0,1]

∫
[0,1]N

f(k, y,x)dx
Λ1(dy)

y2
, (3.3)

since
∫

[0,1]N
f(k, y,x)dx = E(ξ − 1)+, where ξ has the Binomial(k, y) distribution.

From Corollary 15 in [2] the following lemma can be derived:

Lemma 3.1.

lim
q→∞

Ψ1(q)

q2
=0, (3.4)

lim
q→∞

Ψ(q)

q2
=
c

2
, (3.5)

lim
t→0+

ct

2
vt = 1. (3.6)

More precisely, in [2] this was formulated for Ψ∗ and v∗, but their behavior at∞ and
0+ is the same as that of Ψ and v, respectively. For completeness we include a short
argument in Section 3.2.
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Diffusion limits at small times for Λ-coalescents with a Kingman component

We keep the convention that π̂ denotes the compensated Poisson random measure π.
Using the Poissonian construction of the Λ-coalescent described above, then compensat-
ing, and applying (3.3) we have

Nt =Nr −
∫ t

r

Ψ(Ns) ds− c
∫

(r,t]×∆

11∆Ns−
(k)π̂0

c (ds, dk)

− (1− c)
∫

(r,t]×[0,1]×[0,1]N
f(Ns−, y,x)π̂1,E

1−c(ds, dy, dx), t ≥ r.

Next, realizing that (1.10) implies v′t = −Ψ(vt), for all t > 0, one can obtain the following
lemma in the same way as (2.5) or [16], Lemma 3.3.

Lemma 3.2. For any r > 0 and all t ≥ r we have

Nt
vt

=
Nr
vr
−
∫ t

r

Ns
vs

(
Ψ(Ns)

Ns
− Ψ(vs)

vs

)
ds

−
∫

(r,t]

∫
∆

11∆Ns−
(k)

vs
π̂0
c (dsdk)−

∫
(r,t]

∫
[0,1]

∫
[0,1]N

f(Ns−, y,x)

vs
π̂1,E

1−c(dsdydx).

As in the pure Kingman case, we wish to write the above equation starting from r = 0.
In particular, we need to show that

M0
t :=

∫
(0,t]

∫
∆

11∆Ns−
(k)

vs
π̂0
c (dsdk), (3.7)

M1
t :=

∫
(0,t]

∫
[0,1]

∫
[0,1]N

f(Ns−, y,x)

vs
π̂1,E

1−c(dsdydx), (3.8)

and

A(t) :=

∫ t

0

Ns
vs

(
Ψ(Ns)

Ns
− Ψ(vs)

vs

)
ds (3.9)

are all well defined. The integrals in (3.7) and (3.8) are to be understood in the sense of
the usual (compensated) Poisson integration.

As before, from Theorem 2 in [2] it follows that

lim
t→0

E sup
s≤t

(
Ns
vs
− 1

)2

= 0. (3.10)

We have already observed that vt ≥ 1 and Nt is non-increasing, hence similarly to (2.7)
we find that there exists C > 0 such that

E sup
s≥0

(
Ns
vs

)2

≤ C. (3.11)

In Section 3.2 we will prove the following lemma.

Lemma 3.3. The processes M0 and M1 given by (3.7) and (3.8) are well defined square
integrable martingales. Moreover, for any T > 0 there exists C > 0 such that

E sup
s≤t

(M i
s)

2 ≤ Ct, t ≤ T, i = 0, 1. (3.12)

The function q 7→ Ψ(q)
q is increasing (see e.g. Lemma 2.1(iv) in [16]), therefore, Lemma

3.2, (3.11), (3.12) and Lemma 2.1 imply
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Diffusion limits at small times for Λ-coalescents with a Kingman component

Lemma 3.4. For any T > 0 there exists C > 0 such that

E sup
s≤t

(
Ns
vs
− 1

)2

≤ Ct, t ∈ [0, T ]. (3.13)

The proof is very similar to that of (2.11).

Regarding the drift, we will prove the following in Section 3.2:

Lemma 3.5. For each t > 0, the integral in (3.9) is a well defined Lebesgue integral,
almost surely.

Moreover,

A(t) =

∫ t

0

(
Ns
vs
− 1

)
1

s
ds+ Ut, t ≥ 0, (3.14)

where the process U satisfies

lim
ε→0

1√
ε
E sup

s≤t
|Uεs| = 0. (3.15)

Note that this is simpler than the corresponding Lemma 4.4 in [16], where at this
point in the analogue of (3.14) we had to use a more complicated function instead of 1

s .

We will also show in Section 3.2 that the effect of M1 is negligeable in the limit:

Lemma 3.6. For any 1 ≤ r < 2 and T > 0 we have

lim
ε→0

E sup
s≤T

∣∣∣∣ 1√
ε
M1
εt

∣∣∣∣r = 0.

Using the above lemmas and Lemma 2.1 again, it is easy to deduce the following
analogue of Lemma 2.2:

Lemma 3.7.
Nt
vt
− 1 = −

∫ t

0

(
Ns
vs
− 1

)
1

s
ds−M0

t +Rt,

where, for any T > 0, R satisfies

lim
ε→0

E sup
s≤T

∣∣∣∣ 1√
ε
Rεt

∣∣∣∣ = 0. (3.16)

The rest of the proof is the same as in the pure Kingman case. Setting R = 0 we
study the process (Yt) satisfying

Yt = −
∫ t

0

Ys
1

s
ds−M0

t , Y0 = 0,

which can be written explicitly as

Yt = −1

t

∫ t

0

sdM0
s ds, t > 0, Y0 = 0.

From (3.16) and Lemma 2.1 it follows that the convergence in law in D([0,∞)) of Xv
ε is

equivalent to the same convergence of

Yε(t) =
1√
ε
Yεt.

This convergence is shown in exactly the same way as in the proof of Theorem 1.1, using
(3.10) and the fact that vt ∼ 2

ct as t → 0. The constant c appearing in the limit comes
from the intensity of the Poisson random measure in the definition of M0, which is cν0 in
this case, compared to ν0 in the definition of M in Section 2. In particular, the effect of
this change is visible in (2.21).
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Diffusion limits at small times for Λ-coalescents with a Kingman component

3.2 Proofs of the auxiliary lemmas stated in Section 3.1

Proof of Lemma 3.1. For q ≥ 1 we can rewrite Ψ1(q) as

Ψ1(q) = q(q − 1)

∫ 1

0

∫ 1

0

∫ u

0

(1− ry)q−2drduΛ1(dy). (3.17)

Hence (3.4) follows since (1 − ry)q−2 → 0 as q → ∞, and it is bounded by 1 if q ≥ 2.
Convergence (3.5) is a direct consequence of (3.2) and (3.4).

From the definition of vt we have that tvt = vt
∫∞
vt

1
Ψ(q)dq , so that the l’Hospital rule

and (3.5) imply

lim
t→0+

ct

2
vt =

c

2
lim
y→∞

y

∫ ∞
y

1

Ψ(q)
dq =

c

2
lim
y→∞

− 1
Ψ(y)

− 1
y2

= 1.

Proof of Lemma 3.3. The argument for M0 is the same as in Lemma 2.2. Using (3.11)
we obtain the following analogue of (2.8):

E

∫
(0,t]

∫
∆

(
11∆Ns−

(k)

vs

)2

cν0(dk)ds = c

∫ t

0

E

(
Ns(Ns − 1)

2v2
s

)
ds ≤ C1t. (3.18)

From the standard theory of Poisson integration (see e.g. [17]) it follows that M0 is well
defined. Moreover, it is a square integrable martingale with the following skew bracket

〈
M0
〉
t

=c

∫ t

0

∫
∆

(
11∆Ns−

(k)

vs

)2

ν0(dk)ds = c

∫ t

0

Ns(Ns − 1)

2v2
s

ds.

The bound (3.12) for M0 now follows from Doob’s L2 maximal inequality and (3.18).

The argument for M1 is similar. We need to get a bound on

I(t) := E

∫ t

0

∫
[0,1]

∫
[0,1]N

f2(Ns−, y,x)

v2
s

dx
Λ1(dy)

y2
dyds.

As E
∫

[0,1]N
f2(k, y,x)dx = E ((ξ − 1)+)

2
, where ξ is a Binomial(k, y) r.v., it is elementary

to check (see e.g Lemma 17 in [2] or (3.11) in [16]) that∫
[0,1]N

f2(k, y,x)dx = k(k − 1)y2 − k(k − 1)

∫ y

0

∫ r

0

(1− u)k−2dudr. (3.19)

By (3.19) and (3.11), for each t > 0 we have

I(t) ≤ E
∫ t

0

∫
[0,1]

Ns−(Ns− − 1)

v2
s

Λ1(dy)ds ≤ Ct.

This implies that M1 is well defined. Moreover, it is a square integrable martingale
satisfying E(M1

t )2 ≤ Ct. As before, an application of Doob’s L2 maximal inequality
finishes the proof.

Proof of Lemma 3.5. Fix any T > 0, and suppose that t ∈ [0, T ]. Observe that from (3.13)
and Jensen’s inequality for s ≤ t we have

E

∣∣∣∣Nsvs − 1

∣∣∣∣ ≤ C1

√
s. (3.20)
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Diffusion limits at small times for Λ-coalescents with a Kingman component

Hence

E

∫ t

0

∣∣∣∣Ns − vsvs

∣∣∣∣ 1

s
ds ≤ C

√
t <∞, (3.21)

so the integral in (3.14) is well defined.
Recalling (3.2), and formally rewriting A(t) defined by (3.9), we have

A(t) =c

∫ t

0

Ns
vs

Ns − vs
2

ds+ (1− c)
∫ t

0

Ns
vs

(
Ψ1(Ns)

Ns
− Ψ1(vs)

vs

)
ds

=

∫ t

0

Ns − vs
vs

1

s
ds+

∫ t

0

Ns − vs
vs

(cs
2
vs − 1

) 1

s
ds

+
c

2

∫ t

0

(
Ns − vs
vs

)2

vsds+ (1− c)
∫ t

0

Ns
vs

(
Ψ1(Ns)

Ns
− Ψ1(vs)

vs

)
ds. (3.22)

It suffices to show that each of the terms in (3.22) is a well defined Lebesgue integral for
all t simultaneously, almost surely. For this it is enough to show finiteness of E

∫ t
0
|· · · | ds

in each of the cases. The first term has already been estimated.
Considering the remaining terms in (3.22), we denote

I1(t) =

∫ t

0

∣∣∣∣Ns − vsvs
(
cs

2
vs − 1)

∣∣∣∣ 1

s
ds (3.23)

I2(t) =

∫ t

0

(
Ns − vs
vs

)2

vsds (3.24)

I3(t) =

∫ t

0

∣∣∣∣Nsvs
(

Ψ1(Ns)

Ns
− Ψ1(vs)

vs

)∣∣∣∣ ds (3.25)

By (3.22) and (3.21), the proof of the lemma will be completed once we show that

EIi(t) <∞, i = 1, 2, 3 (3.26)

and
lim
ε→0

ε−
1
2EIi(εT ) = 0, i = 1, 2, 3. (3.27)

As already observed, vt is decreasing and vt ≥ 1, so from (3.6) it follows that there exists
C > 0 such that

vs ≤ C
(

1

s
∨ 1

)
. (3.28)

In particular, this implies that svs is bounded on [0, T ].
Estimates (3.28), (3.13) and (3.20) easily imply (3.26) for i = 1, 2 and (3.27) for i = 2.

To show (3.27) for i = 1 we additionally make an appropriate substitution and use the
dominated convergence theorem.

It remains to consider I3. Let us denote h1(q) = Ψ1(q)
q . We can rewrite h1 as

h1(q) =

∫
[0,1]

∫ y

0

(1− (1− r)q−1)dr
Λ1(dy)

y2
.

Using this representation, it is easy to see (cf. [16]) that

sup
q>1

h′1(q) ≡ sup
q>1
|h′1(q)| <∞ and lim

q→∞
(h1)′(q) = 0. (3.29)

By (3.25) and the mean value theorem we have

EI3(t) ≤ E
∫ t

0

Ns
vs
|Ns − vs| sup

q≥Ns∧vs
h′1(q)ds.
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Diffusion limits at small times for Λ-coalescents with a Kingman component

Writing Ns

vs
= (Ns

vs
− 1) + 1, and estimating further, we arrive at

EI3(t) ≤ CE
∫ t

0

(
Ns
vs
− 1

)2

vsds+

∫ t

0

vsE

(
|Ns − vs|

vs
sup

q≥Ns∧vs
h′1(q)

)
ds.

Note that the first term on the right hand side is just CI2(t), which has already been
estimated. The second term is finite by (3.20) and (3.29). To obtain (3.27) for i = 3,
we apply the Cauchy-Schwarz inequality for the expectation inside the second integral,
and then the dominated convergence theorem. Here we use (3.13), and the fact that
E(supq≥Nεs∧vεs h

′
1(q))2 is bounded and tends to 0 as ε→ 0, due to (3.29), together with

Nεs ∧ vεs →ε→0 ∞, a.s. This finishes the proof of (3.24) and (3.25) for i = 3.

Proof of Lemma 3.6. Fix T > 0, and let 0 ≤ t ≤ T . We write

M1
t = Lt + Ut, (3.30)

where

Lt =

∫ t

0

∫
[0,1]

∫
[0,1]N

yπ̂1,E
1−c(dsdydx)

Ut =

∫ t

0

∫
[0,1]

∫
[0,1]N

(
f(Ns−, y,x)

vs
− y
)
π̂1,E

1−c(dsdydx).

Note that the process (Lt)t≥0 is simply a Lévy process with Lévy measure (1− c)Λ1(dy)
y2 .

Both U and L are square integrable martingales.
By the standard properties of Poisson integrals (see e.g. [17], Theorem 8.23) we have

EU2
t = E

∫ t

0

∫
[0,1]

∫
[0,1]N

(
f(Ns−, y,x)

vs
− y
)2

dx
Λ1(dy)

y2
ds ≤ 2 (J1(t) + J2(t)) , (3.31)

where (using Ns = Ns− for almost all s)

J1(t) =E

∫ t

0

∫
[0,1]

∫
[0,1]N

(
Ns
vs

)2(
f(Ns, y,x)

Ns
− y
)2

dx
Λ1(dy)

y2
ds, and

J2(t) =E

∫ t

0

∫
[0,1]

(
Ns
vs
− 1

)2

y2 Λ1(dy)

y2
ds.

By (3.13) we have
J2(t) ≤ Ct2, for t ≤ T. (3.32)

To estimate J1(t), we recall that for k ≥ 1, k ∈ N∫
[0,1]N

f(k, y,x)dx = k

∫ y

0

(1− (1− r)k−1)dr.

This, together with (3.19) gives∫
[0,1]N

(f(k, y,x)− ky)2dx ≤ 2k2y

∫ y

0

(1− r)k−1dr.

Hence

J1(t) ≤ 2E

∫ t

0

∫
[0,1]

(
Ns
vs

)2 ∫ y

0

(1− r)Ns−1dr
Λ1(dy)

y
ds.
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Due to (3.11) and (1− r)Ns−1 ≤ 1, we get J1(t) ≤ Ct.
Moreover,

1

ε
J1(εT ) ≤ 2

∫ T

0

∫
[0,1]

∫ 1

0

E

(
Nεs
vεs

)2

(1− ry)Nεs−1drΛ1(dy)ds. (3.33)

Estimating
(
Nεs

vεs

)2

≤ 2
(
Nεs

vεs
− 1
)2

+ 2, using Nεs →∞ a.s. and 0 ≤ (1− ry) < 1 a.e. on

the domain of integration, we have

E

(
Nεs
vεs

)2

(1− ry)Nεs−1 ≤ 2E

(
Nεs
vεs
− 1

)2

+ 2E(1− ry)Nεs−1 → 0 as ε→ 0.

Moreover, by (3.11), the integrand in (3.33) is bounded for s ≤ T , ε ≤ 1, hence the
dominated convergence theorem applies. We obtain that

lim
ε→0

1

ε
J1(εT ) = 0. (3.34)

By (3.31), (3.32) and (3.34) we have

lim
ε→0

E

(
1√
ε
UεT

)2

= 0. (3.35)

Since U is a càdlàg martingale, (3.35) and Doob’s L2 maximal inequality imply that also

lim
ε→0

E sup
t≤T

(
1√
ε
Uεt

)2

= 0. (3.36)

Let us now consider the process L. Define

Lε(t) =
1√
ε
L(εt).

We will show that for any 0 < r < 2 we have

lim
ε→0

E sup
t≤T
|Lε(t)|r = 0. (3.37)

By Jensen’s inequality it is clearly enough to consider 1 < r < 2. Moreover, if r ∈ (1, 2)

then the Doob Lr maximal inequality applied to the càdlàg martingale Lε implies that to
obtain (3.37) it suffices to show that

lim
ε→0

E |Lε(T )|r = 0. (3.38)

Fix any r ∈ (1, 2). In order to prove (3.38), we will show that (|Lε(T )|r)ε>0 is uniformly
integrable, and that Lε(T ) converges in law to 0, and hence in probability.

The first assertion above follows from the simple estimate

sup
ε>0

E(Lε(T ))2 ≤ sup
ε>0

1

ε
(1− c)

∫ εT

0

∫
[0,1]

y2 Λ1(dy)

y2
ds = (1− c)T.

To show convergence in law of Lε(T ), we write out its characteristic function:

EeiuLε(T ) = exp

{
εT

∫
[0,1]

(
e
iu 1√

ε
y − 1− iu 1√

ε
y

)
Λ1(dy)

y2

}

= exp

Tu2

∫
[0,1]

e
iu 1√

ε
y − 1− iu 1√

ε
y

( y√
ε
)2u2

Λ1(dy)

 .
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Since supx∈R,x 6=0 | e
ix−1−ix
x2 | is finite, and since lim|x|→∞

eix−1−ix
x2 = 0, the Lebesgue domi-

nated convergence theorem implies that the right hand side above converges to 1, as
ε→ 0, yielding the needed claim.

Due to the previous discussion, (3.38) and therefore (3.37) holds .
The assertion of the Lemma now follows by (3.30), (3.36), (3.37) and Jensen’s inequal-

ity.

3.3 Convergence of Xv∗

ε .

The proof is almost exactly the same as in the case of Λ-coalescents without an atom
at 0, studied in [16] (see Theorem 1.4 and Lemma 2.2 therein). Recalling the definitions
of Xv∗

ε and Xv
ε we can write

Xv∗

ε (t) = Xv
ε (t) +

1√
ε

Nεt
vεt

(
vεt
v∗εt
− 1

)
. (3.39)

Therefore, to prove the desired convergence of Xv∗

ε , it suffices to show that for any T > 0

we have

lim
ε→0

E sup
t≤T

1√
ε

Nεt
vεt

∣∣∣∣vεtv∗εt − 1

∣∣∣∣ = 0. (3.40)

From (3.11) it follows that (3.40) will hold provided that

lim
ε→0

1√
ε

(
vε
v∗ε
− 1

)
= 0. (3.41)

As in the proof of Theorem 1.4 in [16] (see Section 5.1 therein), the proof is thus reduced
to a purely deterministic problem of showing (3.41).

Observe that

0 ≤ Ψ∗(q)−Ψ(q) =
cq

2
+ (1− c)(Ψ∗1(q)−Ψ1(q)).

Lemma 2.1 in [16] implies that

Ψ∗(q)−Ψ(q) ≤ q

2
. (3.42)

This allows one to repeat the proof of Lemma 2.2 in [16]. (3.42) is used to obtain an
estimate for the right hand side of (2.15) in [16].

From the analogue of (2.16) in [16] we obtain that there exists t0 > 0 and C > 0 such
that for all ε ∈ [0, t0] ∣∣∣∣ vεv∗ε − 1

∣∣∣∣ ≤ Cε.
Hence (3.41) follows.

3.4 Convergence of Xw
ε

Similarly to (3.39), we have

Xw
ε (t) = Xv

ε (t) +
1√
ε

Nεt
vεt

(
vεt
wεt
− 1

)
. (3.43)

As before, the proof of convergence of Xw
ε reduces to showing that

lim
ε→0

1√
ε

(
vε
wε
− 1

)
= 0. (3.44)
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This can be solved using techniques from [16], which rely on writing an equation for
log vε

wε
and applying Lemma 2.1 (cf. (2.15)-(2.16) in [16]).

Below we will use a different approach, which is more direct and at the same time
shows that condition (1.12) is sharp.

We have the following lemma:

Lemma 3.8. Assume that

lim
q→∞

Ψ1(q)

q3/2
= A, (3.45)

where A ∈ [0,∞]. Then

lim
t→0+

1√
t

(
ct

2
vt − 1

)
= −2

√
2

3
√
c

(1− c)A. (3.46)

Proof. Using (1.10) and an elementary integration we can write

1√
t

(
vt
ct

2
− 1

)
=

c

2
√
t
vt

(
t− 2

cvt

)
= (

c

2
)

3
2

1√
c
2 tvt

v
3
2
t

∫ ∞
vt

(
1

Ψ(q)
− 1

c
2q

2

)
dq. (3.47)

Applying l’Hospital’s rule, recalling (1.8) and then using (3.5) and (3.45), we obtain

lim
y→∞

∫∞
y

(
1

Ψ(q) −
1

c
2 q

2

)
dq

y−3/2
= lim
y→∞

c
2y−(1−c)Ψ1(y)

c
2y

2Ψ(y)

3
2y
−5/2

= − 8

3c2
A(1− c). (3.48)

Combining (3.6), (3.47) and (3.48) gives (3.46).

An application of Lemma 3.8 with A = 0 finishes the proof of convergence of Xw
ε .

Remark 3.9. Observe that if the limit in (3.45) exists and A is finite, then from (3.43),
Theorem 1.3 (i), (3.10) and Lemma 3.8 it follows that Xw

ε converges in law in D([0,∞)),
as ε→ 0, to the process

Z̃t =
√
cZt −

2
√

2

3
√
c

(1− c)A
√
t, t ≥ 0,

where Z is given by (1.5). If (3.45) holds with A = ∞ then Xw
ε does not converge as

ε→ 0.
It follows that the assumption (1.12) of Theorem 1.3 (ii) may not be relaxed. In

particular, in the Beta(2− α, α) coalescent world, the parameter α = 3/2 is critical for
the convergence in Theorem 1.3 (ii).

3.5 Proof of Proposition 1.5

Recall that Ψ1 can be expressed as in (3.17). Using the estimate 1 − x ≤ e−x and
replacing the integral

∫ u
0
. . . dr by

∫ 1

0
. . . dr one obtains

Ψ1(q) ≤ q(q − 1)

∫ 1

0

∫ 1

0

e−(q−2)rydrΛ1(dy).

Moreover, observe that for any δ > 0 we have

√
q

∫ 1

0

∫ 1

0

e−qrydrΛ1(dy) ≤
∫

[0,δ]

1
√
y

∫ 1

0

1√
r

(
√
qrye−qry)drΛ1(dy) +

∫
(δ,1]

1

y
√
q

Λ1(dy)

≤C
∫

[0,δ]

1
√
y

Λ1(dy) +
1

δ
√
q
,

hence the proposition follows.
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