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Quenched invariance principle for random walks
on Delaunay triangulations
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Abstract

We consider simple random walks on Delaunay triangulations generated by point
processes in Rd. Under suitable assumptions on the point processes, we show that
the random walk satisfies an almost sure (or quenched) invariance principle. This
invariance principle holds for point processes which have clustering or repulsiveness
properties including Poisson point processes, Matérn cluster and Matérn hardcore
processes. The method relies on the decomposition of the process into a martingale
part and a corrector which is proved to be negligible at the diffusive scale.
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1 Introduction

Let us first describe the model. Given an infinite locally finite subset ξ of Rd, the
Voronoi tessellation associated with ξ is the collection of the Voronoi cells:

Vorξ(x) := {x ∈ Rd : ‖x− x‖ ≤ ‖x− y‖,∀y ∈ ξ}, x ∈ ξ.

The point x is called the nucleus or the seed of the cell. The Delaunay triangulation
DT(ξ) of ξ is the dual graph of its Voronoi tiling. It has ξ as vertex set and there is an
edge between x and y in DT(ξ) if Vorξ(x) and Vorξ(y) share a (d− 1)-dimensional face.
Another useful characterization of DT(ξ) is the following: a simplex ∆ is a cell of DT(ξ)

iff its circumscribed sphere has no point of ξ in its interior. Recall that this is a well
defined triangulation when ξ is in general position. In the sequel, we denote by N (resp.
N0) the set of infinite locally finite subsets of Rd (resp. containing 0).
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Quenched invariance principle for random walks on Delaunay triangulations

Given a realization ξ of a suitable point process with law P, we consider the variable
speed nearest-neighbor random walk (Xt)t≥0 on the Delaunay triangulation of ξ, that is
the Markov process with generator:

Lξf(x) :=
∑
y∈ξ

cξx,y (f(y)− f(x)) , x ∈ ξ, (1.1)

where cξx,y is the indicator function of ‘y ∼ x in DT(ξ)’. We denote by P ξx the law of the
walk starting from x ∈ ξ and by Eξx the corresponding expectation. We study for almost
every realization of the point process the behavior of the random walk at the diffusive
scale and we prove the following theorem.

Theorem 1.1. Assume that ξ is distributed according to a simple, stationary, isotropic
point process with law P a.s. in general position, satisfying assumptions (V), (SD), (Er)
and (PM) (see Subsection 1.1).

For P−a.e. ξ, for all x ∈ ξ, under P ξx , the rescaled process (Xε
t )t≥0 = (εXε−2t)t≥0

converges in law as ε tends to 0 to a Brownian motion with covariance matrix σ2I where
σ2 = σ2

VSRW is positive and does not depend on ξ.

Note that the assumptions of Theorem 1.1 are satisfied by Poisson point processes,
Matérn hardcore processes and Matérn cluster processes. The same result holds for the
discrete-time nearest-neighbor random walk (Xn)n∈N with diffusion coefficient σ2

DTRW

related with σ2
VSRW by the formula:

σ2
VSRW = E0

[
degDT(ξ0)(0)

]
σ2

DTRW,

where E0 denotes the expectation w.r.t. the Palm measure P0 associated with the (sta-
tionary) point process with law P.

The main idea for proving such results is to show that the random walk behaves
like a martingale up to a correction which is negligible at the diffusive scale. Actually,
well-known arguments (see e.g. [12, §3.3.1], [10, p. 1340-1341] or [5, §6.1 and §6.2])
show that the last claim follows from Theorem 1.2.

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists a so-called corrector
χ : N0 ×Rd 7−→ Rd such that for:

1. ϕ(ξ0, x) := x− χ(ξ0, x) is harmonic at 0 for P0 − a.e. ξ0, i.e.:∑
x∈ξ0

cξ
0

0,x‖ϕ(ξ0, x)‖ <∞ and Lξ
0

ϕ(ξ0, 0) = 0 for P0 − a.e. ξ0;

2. χ is a.s. sublinear:
max

x∈ξ0∩[−n,n]d

∥∥χ (ξ0, x
)∥∥

n

P0−a.s.−−−−−→
n→∞

0.

The arguments to deduce Theorem 1.1 from Theorem 1.2 are rather standard. We
have chosen not to develop the arguments which can be found in the references cited
above and we only indicate the main lines of the proof in Section 10.2. Various methods
to prove quenched invariance principle for random walks among random conductances
on Zd or related models were developed during the last ten years (see [5, 7, 8, 9, 10,
15, 18, 19, 24, 26]). Theorem 1.2 is proved by adapting the approach developed in [10].
Actually, we first prove the sublinearity of the corrector restricted to a suitable subgraph
of the Delaunay triangulation and extend it by harmonicity. Let us note that this method
was also successfully used in the context of random walks on complete graphs generated
by point processes with jump probability which is a decreasing function of the distance
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Quenched invariance principle for random walks on Delaunay triangulations

between points in [12]. In the present paper, the construction of the underlying graph
is based on the geometry of the random set of points. So, we need to incorporate
precise arguments from stochastic geometry which allow us to prove the existence of
the corrector and its sublinearity. Such arguments are in particular used in the proofs
of isoperimetric inequalities for suitable subgraphs of the Delaunay triangulation (see
Subsection 7.2).

Recurrence and transience results for random walks on Delaunay triangulations
generated by point processes were obtained in [21] and an annealed invariance prin-
ciple was proved in [22]. In [14], the existence of an harmonic corrector was recently
established by a different (constructive) method. Nevertheless, the authors of this
paper obtained the sublinearity of the corrector only in dimension 2. In order to extend
the quenched invariance principle in higher dimensions, they suggested to prove full
heat-kernel bounds similar to the one obtained by Barlow in [2] in the setting of random
walks on supercritical percolations clusters. This approach would require much more
sophisticated arguments and a better control of the regularity of the full graph than
the one used in the present paper. It is worth noting that, as in [21, 22], the arguments
given in the sequel should also give quenched invariance principles for random walks on
other graphs constructed according to the geometry of a realization of a point process
such that Gabriel graphs or ‘creek-crossing graphs’.

1.1 Conditions on the point process

In this section, we list the assumptions on the point process needed to obtain the
quenched invariance principle.

We assume that ξ is distributed according to a simple and stationary point process
with law P. In the sequel, we will denote by E the expectation with respect to P. We
suppose that P is isotropic and almost surely in general position (see [25]): there are
no d+ 1 points (resp. d+ 2 points) in a (d− 1)-dimensional affine subspace (resp. in a
sphere). We also assume that the point process satisfies:

(V) there exists a positive constant c1 such that for L large enough:

P
[
#
(
[0, L]d ∩ ξ

)
= 0
]
≤ e−c1L

d

.

In order to prove the sublinearity of the corrector, we need to restrict the study to a
subgraph of the Delaunay triangulation of ξ which has good regularity properties. To
this end, we will define a notion of ‘good boxes’ that in particular allows us to bound the
maximal degree of vertices in an infinite subgraph of the Delaunay triangulation of ξ.
Precise definitions and assumptions are given below.

1.1.1 Good boxes, good points and the stochastic domination assumption

For s ∈ N∗, let us divide Rd into boxes of side K := d3
√
des:

Bz = BKz := Kz +
[
− K

2
,
K

2

]d
, z ∈ Zd.

Each box Bz is then subdivided into smaller sub-boxes bzi , i = 1, . . . , d3
√
ded of side s.

A box Bz, z ∈ Zd, is called (α-)nice if each sub-box bzi of side s in Bz satisfies
1 ≤ #(ξ ∩ bzi ) ≤ αsd. A box Bz is then said to be (α-)good if Bz′ is α-nice for each
z′ ∈ Zd with ‖z′ − z‖∞ ≤ 1. Let us fix p < 1 large enough to ensure that all the results
from percolation theory needed in the sequel are satisfied. The stochastic domination
hypothesis is the following.
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(SD) There exist α and s0 so that, for any s ≥ s0 the process of good boxes X :=

{Xz = 1Bz is good, z ∈ Zd} dominates an independent site percolation process

Y := {Yz, z ∈ Zd} on Zd with parameter p.

If (SD) is satisfied, we can find a coupling PK,p of the processes X and Y such that
Bz is good when Yz = 1. With a slight abuse of notation, we will omit the superscript
and denote by P the probability measure PK,p on N̂ := N × {0, 1}Zd whose marginal
distributions are respectively the law of the point process ξ and the law of the indepen-
dent site percolation process Y with parameter p. A generic element of N̂ is denoted by
ξ̂ = (ξ, (yz)z∈Zd).

Let us denote by G(L) (resp. G∞) the largest (‖ · ‖1-)connected component of Y
contained in [−L,L]d ∩Zd (resp. the a.s. unique infinite component of Y). We then define
G(L) = G(L)(ξ̂) (resp. G∞ = G∞(ξ̂)) as the set of points of ξ whose Voronoi cell intersects
a K−box with index in G(L) (resp. G∞). The points of G∞ are called good points. Let us
note that G(L) and G∞ are both connected subgraphs of the Delaunay triangulation of ξ.

We claim that good points have their degrees uniformly bounded. More precisely:

Lemma 1.3. There exists D = D(d,K, α) such that for every x ∈ ξ with Voronoi cell
intersecting an α-good box:

degDT(ξ)(x) ≤ D.

Remark 1.4. As it appears in the following proof, D is also an upper bound for the
maximal number of Voronoi cells which intersect a good box. It will be used to bound
these two quantities throughout the paper.

Proof. Let x ∈ ξ be such that its Voronoi cell intersects an α-good box Bz. By definition,
each box B′z with ‖z′ − z‖∞ ≤ 1 is α-nice. Since any sub-box of side s that belongs
to a nice box contains at least one point of ξ, the points in nice boxes are whithin a
distance at most

√
ds from the nucleus of their Voronoi cell. In particular, x is whithin a

distance at most
√
ds from Bz. Similarly, the nuclei of the Voronoi cells which share a

face with Vorξ(x) are in Bz +B2(0, 3
√
ds) ⊂ Bz :=

⋃
z′:‖z′−z‖∞≤1Bz′ . Hence, degDT(ξ)(x)

is generously bounded by #
(
ξ ∩Bz

)
≤ D := α(3K)d.

1.1.2 The ergodicity assumption

As in [12], we have an ergodicity assumption but we make more explicit the use of
the coupling. We will use it to adapt the method developed in [5, §4] for proving the
sublinearity of the corrector along coordinate directions.

(Er) For each (K, p) such that (SD) holds and each of the 2d neighbors e of 0, P = PK,e
is ergodic with respect to the transformation:

τ = τK,e : (ξ, (yz)z∈Zd) −→ (τKeξ, (yz+e)z∈Zd).

Note that τ is invertible and P is invariant with respect to τ due to the stationarity of
the point process.

1.1.3 Polynomial moments

We also make the following assumption:

(PM) the number of points in a unit cube admits a polynomial moment of order 2 under
P and degDT(ξ0)(0) and maxx∼0 in DT(ξ0) ‖x‖ admit respectively a moment of order
2 and 4 under the Palm distribution P0 associated with the point process.
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1.1.4 The case of point processes with a finite range of dependence

We verify that, when the point process has a finite range of dependence, assumption
(Er) is always satisfied, and assumptions (PM) and (SD) are implied by assumptions
(D), (EM), (V) and (V’) which are described below.

Let us check that (Er) is satisfied if the point process has a finite range of dependence.
Let A be a measurable set such that τA = A. Fix ε > 0 and B with P(A∆B) ≤ ε which
depends only on ξ restricted to a compact subset of Rd and on finitely many yzs. It is
thus possible to find n such that B and τnB are independent. Then, P[B ∩ τnB] = P[B]2

by invariance of P w.r.t. τ . Hence,∣∣P[A]− P[A]2
∣∣ ≤ ∣∣P[A]− P[B ∩ τnB]

∣∣+
∣∣P[B ∩ τnB]− P[A]2

∣∣
≤ P[A∆(B ∩ τnB)] +

∣∣P[B]2 − P[A]2
∣∣

≤ P[(A∆B) ∪ (A∆τnB)] +
(
P[B] + P[A]

)∣∣P[B]− P[A]
∣∣

≤ P[A∆B] + P[A∆τnB] + 2ε

≤ P[τnA∆τnB] + 3ε

= P[A∆B] + 3ε ≤ 4ε

Since ε is arbitrary, this implies that P[A] is 0 or 1.

Since deciding if a box is good depends only on the behavior of the point process
ξ in a neighborhood of the box, the process of good boxes X is a Bernoulli process on
Zd with a finite range of dependence when the point process has itself a finite range
of dependence. In this case, if P[Xz = 1] is as close to 1 as we wish for s and α large
enough, [16, Theorem 0.0] ensures that (SD) holds. One can easily bound P[Xz = 1]

from below when the point process satisfies (V) and

(D) there exist positive constants c2, c3 such that for L large enough:

P
[
#
(
[0, L]d ∩ ξ

)
≥ c2Ld

]
≤ e−c3L

d

.

In Lemma 11.1, we prove that degDT(ξ0)(0) and maxx∼0 in DT(ξ0) ‖x‖ admit exponential
moments when the point process has a finite range of dependence and satisfies:

(V’) there exists a positive constant c4 such that for L large enough:

P0

[
#
(
ξ0 ∩ CL

)
= 0
]
≤ e−c4L

d

, ∀CL cube of side L,

and

(EM) there exist a positive constant c5 and a positive function f(ρ) which goes to 0 with
ρ such that for L large enough:

E0
[
eρ#(ξ0∩[−L,L]d)

]
≤ c5ef(ρ)Ld .

Let us finally note that these assumptions are in particular satisfied by homogeneous
Poisson point processes, Matérn cluster processes and type I or II Matérn hardcore
processes. Indeed, these point processes have finite range of dependence and it is quite
classical to check assumptions (D), (EM), (V) and (V’) for these processes (see [22,
Appendix]).

EJP 20 (2015), paper 33.
Page 5/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4006
http://ejp.ejpecp.org/


Quenched invariance principle for random walks on Delaunay triangulations

1.2 Outline of the paper

As announced at the beginning of the introduction, the crux is to prove Theorem 1.2
and we follow the approach of [10]. The main steps of the proof are stated explicitly in
Theorem 2.4 of that paper. We prove the existence of the corrector in Section 2. Next, we
verify that the corrector grows at most polynomially in Section 3 and at most linearly in
each coordinate direction in Section 4. The sublinearity on average is treated in Section
5 while diffusive bounds for a related random walk are proved in Sections 7 and 8. In
Section 9, we prove the a.s. sublinearity of the corrector in the set of ‘good points’. The
proofs of Theorems 1.1 and 1.2 are finally completed in Section 10.

2 Construction of the corrector and harmonic deformation

Let us define the measure µ on N0 ×Rd by:∫
udµ := E0

[ ∑
x∈ξ0

cξ
0

0,xu(ξ0, x)
]
,

where cξ
0

0,x = 10∼x in DT(ξ0). This measure has total mass E0[degDT(ξ0)(0)] which is finite
thanks to assumption (PM). We denote by (·, ·)µ the scalar product in L2(µ).

2.1 Weyl decomposition of L2(µ)

As in [19], [5] or [12], we work with the orthogonal decomposition of L2(µ) in the
subspaces of square integrable potential and solenoidal fields. This decomposition is
quite standard (see e.g. [17, Chap. 9]) and generally called Weyl decomposition. Let us
denote by (τx)x∈Rd the group of translations in Rd which acts naturally on N0 as follows:
τxξ

0 =
∑
y∈ξ0 δy−x.

Definition 2.1. For ψ : N0 → R, the gradient field ∇ψ : N0 × Rd −→ R is defined for
x ∈ ξ0 by:

∇ψ(ξ0, x) := ψ(τxξ
0)− ψ(ξ0)

and by 0 if x 6∈ ξ0.

Note that gradients of measurable bounded functions on N0 are elements of L2(µ)

thanks to assumption (PM).

Definition 2.2. The space L2
pot(µ) of potential fields is defined as the closure of the sub-

space of gradients of measurable bounded functions on N0. Its orthogonal complement
is the set of solenoidal (or divergence-free) fields and is denoted by L2

sol(µ).

Let us recall some additional definitions:

Definition 2.3. A function u : N0 ×Rd −→ R is called:

1. antisymmetric if

u(ξ0, x) = −u(τxξ
0,−x), ∀ξ0 ∈ N0, ∀x ∈ ξ0;

2. shift-covariant if

u(ξ0, x) = u(ξ0, y) + u(τyξ
0, x− y), ∀ξ0 ∈ N0, ∀x, y ∈ ξ0;

3. curl-free if it satisfies the following co-cycle relation: for any ξ0 ∈ N0, any n ∈ N∗,
and any collection of points x0, . . . , xn ∈ ξ0 with x0 = xn, one has

n−1∑
i=1

u(τxiξ
0, xi+1 − xi) = 0. (2.1)

EJP 20 (2015), paper 33.
Page 6/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4006
http://ejp.ejpecp.org/


Quenched invariance principle for random walks on Delaunay triangulations

A function of L2(µ) is called antisymmetric (resp. shift-covariant, curl-free) if it is
antisymmetric (resp. shift-covariant, curl-free) for P0-a.a. ξ0. In each case, it admits
a representative which satisfies the corresponding property everywhere. By taking
x = y = 0 in the definition, one can see that any shift-covariant function u must satisfy
u(ξ0, 0) = 0 for any ξ0 ∈ N0. Next proposition lists simple but useful links between
definitions above:

Proposition 2.4. Let u ∈ L2(µ).

1. If u ∈ L2
pot(µ), then it is curl-free.

2. If u is curl-free, then it is also antisymmetric and shift-covariant.

Proof.

1. Gradients fields are clearly curl-free. The general case is obtained by a standard
approximation argument.

2. The case n = 2, x0 = x2 = 0 and x1 = x in (2.1) gives the antisymmetry of u. By
(2.1) with n = 3, x0 = x3 = 0, x1 = y and x2 = x, one has:

u(ξ0, y) + u(τyξ
0, x− y) + u(τxξ

0,−x) = 0.

The shift-covariance of u then follows from its antisymmetry.

We can now define the divergence of an integrable field and derive an integration by
parts formula.

Definition 2.5. The divergence of u ∈ L1(µ) is defined by:

div u(ξ0) :=
∑
x∈ξ0

cξ
0

0,xu(ξ0, x), ξ0 ∈ N0.

Triangle inequality clearly implies that divergences of L1(µ) functions are in L1(P0).
Moreover, if u ∈ L1(µ) is a positive function, we have the equality:

‖u‖L1(µ) = ‖div u‖L1(P0). (2.2)

We derive the following integration by parts formula:

Lemma 2.6. Let ψ be a bounded measurable function on N0 and let u ∈ L2(µ) be an
antisymmetric field. It holds that:

(u,∇ψ)µ = −2E0[ψ div u]. (2.3)

Proof. Observe that:

cξ
0

0,x = cτxξ
0

0,−x.

Due to the antisymmetry of u, one has:

(u,∇ψ)µ = E0

[ ∑
x∈ξ0

cξ
0

0,xu(ξ0, x)ψ(τxξ
0)

]
− E0

[ ∑
x∈ξ0

cξ
0

0,xu(ξ0, x)ψ(ξ0)

]

= −E0

[ ∑
x∈ξ0

cτxξ
0

0,−xu(τxξ
0,−x)ψ(τxξ

0)

]
− E0[ψ div u].
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By Neveu exchange formula (see [23, Theorem 3.4.5] in the special case where X = Y ),
one has for any integrable function f on N0 ×Rd:∫

N0

∑
x∈ξ0

f(τxξ
0, x)P0(dξ0) =

∫
N0

∑
x∈ξ0

f(ξ0,−x)P0(dξ0).

The conclusion is then obtained by applying the identity above with:

f(ξ0, x) := cξ
0

0,−xu(ξ0,−x)ψ(ξ0).

This lemma implies the immediate following corollary.

Corollary 2.7. An antisymmetric field u ∈ L2(µ) is solenoidal if and only if div u(ξ0) = 0

for P0-a.e. ξ0.

2.2 Construction of the corrector

In [14], the authors relied on an Harness-type process to obtain the existence har-
monic deformations of Delaunay triangulations which corresponds to the existence of
the corrector. Here, we recall how the decomposition of L2(µ) allows us to derive the
existence of the corrector by following the construction of [19, 12].

For i = 1, . . . , d, ξ0 ∈ N0 and x ∈ Rd, set ui(ξ0, x) := xi the ith coordinate of x. Note
that ui is clearly antisymmetric in the sense of Definition 2.3 and that ui ∈ L2(µ). Actually,
by the Cauchy-Schwarz inequality and assumption (PM), one obtains:∫

|ui|2dµ = E0

[ ∑
x∈ξ0

cξ
0

0,x|xi|2
]
≤ E0

[(
max

x∼0 in DT(ξ0)
‖x‖
)2

degDT(ξ0)(0)
]

≤ E0
[(

max
x∼0 in DT(ξ0)

‖x‖
)4] 1

2 E0
[(

degDT(ξ0)(0)
)2] 1

2

<∞.

Consider now the orthogonal decomposition of the form ui = χi + ϕi with χi ∈ L2
pot(µ)

and ϕi ∈ L2
sol(µ). Since χi ∈ L2

pot(µ), it is antisymmetric and ϕi also (as a difference of
antisymmetric functions). Hence, it follows from Corollary 2.7 that ϕi is harmonic at 0.

The corrector field is then the vector-valued function on N0 × Rd defined by χ =

(χ1, . . . , χd). It admits a shift-covariant representative and its norm ‖χ‖ is in L2(µ). We
denote by ϕ = (ϕ1, . . . , ϕd) the harmonic function (ξ0, x) −→ x − χ(ξ0, x). From the
harmonicity of ϕ(ξ0, ·) at 0 for P0-a.a. ξ0 and [12, Lemma B.2], one deduces that, for
P-a.a. ξ, for any x ∈ ξ:∑

y∈ξ

cξx,y‖ϕ(τxξ, y − x)‖ <∞ and
∑
y∈ξ

cξx,yϕ(τxξ, y − x) = 0. (2.4)

Let us define

Mξ
n := ϕ(τX0

ξ,Xn −X0) =

n−1∑
i=0

ϕ(τXiξ,Xi+1 −Xi).

It follows from (2.4) that (Mξ
n)n∈N is a martingale under P ξx .

3 Polynomial growth

Let us define:

Rn = Rn(ξ) := max
x, y ∈ ξ

Vorξ(x) ∩ [−n, n]d 6= ∅
Vorξ(y) ∩ [−n, n]d 6= ∅

∥∥χ(τxξ, y − x)
∥∥. (3.1)
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Proposition 3.1. For every β > d+ 1, one has:

Rn
nβ

P−a.s.−−−−−→
n→∞

0.

Proof. For n fixed, let us cover [−2n, 2n]d with disjoint boxes of side log n and denote by
An the event ‘each of these boxes contains at least one point of ξ’. Note that, thanks to
assumption (V), P[Acn] = O(n−2). Let d+ 1 < β′ < β. Since

P[Rn ≥ nβ
′
] ≤ P[Rn1An ≥ nβ

′
] + P[Acn],

we only need to show that
∑
n P[Rn1An ≥ nβ

′
] <∞. The result then follows using the

Borel-Cantelli lemma.
Let x,y ∈ ξ with Vorξ(x) ∩ [−n, n]d 6= ∅ and Vorξ(y) ∩ [−n, n]d 6= ∅ be such that

Rn = ‖χ(τxξ,y − x)‖. Consider the simple Delaunay-path (x0, . . . , xm) from x0 = x to
xm = y obtained by connecting the nuclei of successive Voronoi cells which intersect the
line segment [x,y]. Observe that, on An, any point of [−2n, 2n]d is within a distance at
most

√
d log n from the nucleus of its Voronoi cell. In particular, (x0, . . . , xm) is contained

in [−2n, 2n]d.
Recall that the corrector χ is shift-covariant. Hence, for i = 0, . . . ,m− 1, one has:

χ(τxiξ, xi+1 − xi) = χ(τxξ, xi+1 − x)− χ(τxξ, xi − x),

and using that χ(τxξ, 0) = 0:

χ(τxξ,y − x) =

m−1∑
i=1

χ(τxiξ, xi+1 − xi).

We deduce that on An:

Rn ≤
m−1∑
i=1

‖χ(τxiξ, xi+1 − xi)‖

≤
∑

x∈ξ∩[−2n,2n]d

∑
y∈ξ

cξx,y‖χ(τxξ, y − x)‖

=
∑

x∈ξ∩[−2n,2n]d

div ‖χ‖(τxξ).

Together with Markov inequality and Campbell formula, the inequality above leads to:

P[Rn1An ≥ nβ
′
] ≤ E [Rn1An ]

nβ′

≤ n−β
′
∫
N

∑
x∈ξ∩[−2n,2n]d

div ‖χ‖(τxξ)P(dξ)

≤ cnd−β
′∥∥div ‖χ‖

∥∥
L1(P0)

Since β′ > d+ 1 and div ‖χ‖ ∈ L2(P0), this completes the proof.

4 Sublinearity along coordinate directions in G∞(ξ̂)
In this section, we adapt the arguments of [12, §7.2] which consist in an adaptation

of the ‘lattice method’ developed in [5, 10].
Given a unit vector e in the direction of one of the coordinate axes of Rd and ξ̂ ∈ N̂ ,

let us define:

n0(ξ̂) = ne0(ξ̂) := 0 and ni+1(ξ̂) = nei+1(ξ̂) := min{j > ni(ξ̂) : je ∈ G∞}.
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Recall the definition of τ from assumption (Er) and consider the shift τ∗ induced on
N ∗ := {ξ̂ ∈ N̂ : 0 ∈ G∞} from τ , that is τ∗ : ξ̂ −→ τn1(ξ̂)ξ̂. Thanks to assumption (Er)
and the fact that P [0 ∈ G∞] > 0, standard arguments (see e.g. [12, Lemma 7.3] or [5,
Theorem 3.2]) lead to:

Lemma 4.1. The probability measure P [·|0 ∈ G∞] is stationary and ergodic w.r.t. τ∗.

Next, for ξ̂ ∈ N ∗, we write wi for the point of ξ whose Voronoi cell contains the center
of the box Bni(ξ̂)Ke.

Lemma 4.2. It holds that:

E
[
‖χ(τw0

ξ, w1 − w0)‖
∣∣0 ∈ G∞] <∞ and E

[
χ(τw0ξ, w1 − w0)

∣∣0 ∈ G∞] = 0.

Proof. For ξ̂ ∈ N ∗, let d(ξ̂) ≥ n1(ξ̂) denote the chemical distance between 0 and n1(ξ̂)e in
the infinite cluster G∞. On the event {d(ξ̂) = j}, there exists a path z0 = 0, z1, . . . , zj =

n1(ξ̂)e in G∞. For i = 0, . . . , j − 1, thanks to the definition of the good boxes and assump-
tion (SD), the nuclei of the Voronoi cells intersecting the line segment [Kzi,Kzi+1] are
within a distance at most

√
ds from this line segment. By connecting the successive

nuclei of the Voronoi cells intersecting the broken line [Kz0,Kz1, . . . ,Kzj ], we obtain a

simple path w0 = x0, x1, . . . , xm = w1 between w0 and w1 in G∞(ξ̂) which is contained in
[−K(j + 1

2 ),K(j + 1
2 )]d and has length m ≤ (j + 1)D. Thanks to the shift-covariance of χ,

as in the proof of Proposition 3.1, one obtains:

‖χ(τw0
ξ, w1 − w0)‖ ≤

m−1∑
i=1

‖χ(τxiξ, xi+1 − xi)‖

≤
∑

x ∈ G∞(ξ̂) :

‖x‖∞ ≤ K(j + 1
2

)

∑
y ∼

DT(ξ)
x

‖χ(τxξ, y − x)‖.

Together with the Cauchy-Schwarz inequality, this leads to:

E [‖χ(τw0
ξ, w1 − w0)‖

∣∣0 ∈ G∞]

=

∞∑
j=1

E
[
‖χ(τw0ξ, w1 − w0)‖1d(ξ̂)=j

∣∣0 ∈ G∞]

≤
∞∑
j=1

E

[ ∑
x ∈ G∞(ξ̂) :

‖x‖∞ ≤ K(j + 1
2

)

∑
y ∼

DT(ξ)
x

‖χ(τxξ, y − x)‖1d(ξ̂)=j

∣∣∣0 ∈ G∞]

≤
∞∑
j=1

{
E

[ ∑
x ∈ G∞(ξ̂) :

‖x‖∞ ≤ K(j + 1
2

)

∑
y ∼

DT(ξ)
x

‖χ(τxξ, y − x)‖2
∣∣∣0 ∈ G∞]

1
2

× E

[( ∑
x ∈ G∞(ξ̂) :

‖x‖∞ ≤ K(j + 1
2

)

degDT(ξ)(x)

)
1d(ξ̂)=j

∣∣∣0 ∈ G∞]
1
2
}

≤ 1

P
[
0 ∈ G∞

] 3
4

∞∑
j=1

{
E

[ ∑
x ∈ ξ :

‖x‖∞ ≤ K(j + 1
2

)

div ‖χ‖2(τxξ)

] 1
2

× E

[( ∑
x ∈ G∞(ξ̂) :

‖x‖∞ ≤ K(j + 1
2

)

degDT(ξ)(x)

)2] 1
4

P
[
d(ξ̂) = j

∣∣0 ∈ G∞] 1
4

}
. (4.1)
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It follows from Campbell formula and formula (2.2) that

E

 ∑
x∈ξ:‖x‖∞≤K(j+ 1

2 )

div ‖χ‖2(τxξ)

 ≤ cjd∥∥div ‖χ‖2
∥∥
L1(P0)

= cjd
∥∥‖χ‖∥∥2

L2(µ)
.

Since points of G∞(ξ̂) have degrees bounded by D (see Lemma 1.3) and #(ξ ∩ [0, 1]d)

admits a moment of order 2, one has:

E

[( ∑
x ∈ G∞(ξ̂) :

‖x‖∞ ≤ K(j + 1
2

)

degDT(ξ)(x)

)2]
≤ D2E

[
#
(
ξ ∩

[
−K

(
j +

1

2

)
,K
(
j +

1

2

)]d)2]
≤ cjd.

Thanks to [5, Lemma 4.4], we know that P
[
d(ξ̂) = j

∣∣0 ∈ G∞] has an exponential
decay. Hence, collecting bounds, we obtain that the sum in the r.h.s. of (4.1) is finite.

Since χ ∈ L2
pot(µ), it is the L2-limit of gradients of bounded measurable functions

(gn)n∈N defined on N0. Let us define χn := ∇gn. By the same arguments as above, one
obtains that:

E
[
‖χ(τw0ξ, w1 − w0)− χn(τw0ξ, w1 − w0)‖

∣∣0 ∈ G∞] ≤ c‖χ− χn‖2L2(µ) −−−−→n→∞
0.

Note that, for all i, wi is a deterministic function of ξ̂ and that w1(ξ̂) = w0(τ∗ξ̂) +

n1(ξ̂)Ke. The conclusion follows since, due to the stationarity of P[·|0 ∈ G∞] with respect
to τ∗ applied to the function

(
gn ◦ τw0(·)

)
(·), E

[
χn(τw0

ξ, w1 − w0)
∣∣0 ∈ G∞] = 0.

Combining Lemmas 4.1 and 4.2, one obtains the sublinearity along the direction e in
G∞(ξ̂).

Proposition 4.3. For P[·|0 ∈ G∞]− a.a. ξ̂:

lim
k→∞

χ(τw0ξ, wk − w0)

k
= 0,

and

lim
k→∞

max
x0 ∈ ξ :

Vorξ(x0) ∩ BK0 6= ∅

χ(τx0
ξ, wk − x0)

k
= 0.

Proof. Thanks to the shift-covariance of the corrector, one has:

χ(τw0ξ, wk − w0)

k
=

1

k

k−1∑
j=0

(
χ(τw0

ξ, wj+1 − w0)− χ(τw0
ξ, wj − w0)

)
=

1

k

k−1∑
j=0

χ(τwjξ, wj+1 − wj). (4.2)

Observe that wj(ξ̂) = w0(τ j∗ ξ̂) + nj(ξ̂)Ke, wj+1(ξ̂) = w1(τ j∗ ξ̂) + n1(τ j∗ ξ̂)Ke and recall that,
by Lemma 4.1, P[·|0 ∈ G∞] is ergodic with respect to τ∗. Thanks to Birkhoff’s theorem,
the last expression in (4.2) converges to E [χ(τw0

ξ, w1−w0)|0 ∈ G∞] which is 0 by Lemma
4.2.

The second part of the lemma then follows from equality :

χ(τx0ξ, wk − x0) = χ(τw0ξ, wk − w0) + χ(τx0ξ, w0 − x0)

which is due to the shift-covariance of the corrector.
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5 Sublinearity on average in G∞(ξ̂)
We derive the sublinearity on average of the corrector in G∞(ξ̂) from Lemma 4.3. Our

approach is close in spirit to [12, §7.3].

Proposition 5.1. For every ε0 > 0, for P[·|0 ∈ G∞]− a.a. ξ̂ ∈ N̂ :

lim
L→∞

max
x0 ∈ ξ :

Vorξ(x0) ∩ BK0 6= ∅

1

#ΛL

∑
x ∈ ξ :

∃z ∈ G∞ ∩ ΛL
Vorξ(x) ∩ BKz 6= ∅

1‖χ(τx0ξ,x0−x)‖≥ε0L = 0, (5.1)

where ΛL := Zd ∩ [−L,L]d.

Let us describe roughly the method which is an alternative to the one of [5, §5.2] and
relies on multiscale arguments. The first idea is to extend the directional sublinearity
result of Proposition 4.3 dimension by dimension. For ν ∈ {1, . . . , d}, we denote by ΛνL
the set:

ΛνL :=
{
z = (z1, . . . , zd) ∈ Zd : for 1 ≤ i ≤ ν, |zi| ≤ L, and for ν + 1 ≤ i ≤ d, zi = 0

}
.

Assume that we have a ‘good’ (sublinear) control of χ(τx0
ξ, x− x0) for x0 whose Voronoi

cell intersects BK0 and x whose Voronoi cell intersects BKz for some z ∈ ΛνL ∩G∞. Then,
using Proposition 4.3, one obtains a sublinear control on χ(τxξ, x

′−x) for x whose Voronoi
cell intersects BKz and x′ whose Voronoi cell intersects BKz′ for any z′ ∈ Λν+1

L ∩G∞ which
differs from z only on the (ν + 1)-th coordinate. By the shift-covariance, this gives a
control on χ(τx0

ξ, x′ − x0). As noticed in [5], we can not deduce directly Proposition 5.1
from this argument because G∞ covers only a fraction of order p = P [0 ∈ G∞] of the
ν-dimensional section ΛνL. The idea is then to work at a larger scale, say mK, m ≥ 1.
The interest of using the mK scale is that the process of good mK-boxes stochastically
dominates a percolation process with parameter as close to one as we wish for m large
enough (recall assumption (SD)). We follow this strategy at the mK scale and we show
in Lemmas 5.3 and 5.4 that it is possible to obtain a good control of the corrector for
points in a large fraction of the mK-boxes. Finally, we go back to the K scale by finding
a K-box contained in a suitable mK-box from which we can extend the control on the
corrector.

In the rest of the section we add the superscriptsK andmK to indicate the considered
scale.

Let us denote by e1, . . . , ed the vectors of the standard basis of Rd. In order to
control the behavior of the corrector at the scale mK, for fixed C,m, ε, let us define the
mesurable sets:

AC,m,ε :=
{
ξ̂ ∈ N̂ : ∀i ∈ {1, . . . , d}, for e = ±ei,∀N ∈ N∗,

if j ∈ {1, . . . , N} is s.t. je ∈ GmK∞ (ξ̂) then:

∃x ∈ ξ with Vorξ(x) ∩BmKje 6= ∅ s.t. ∀x0 ∈ ξ s.t. Vorξ(x0) ∩BmK0 6= ∅∥∥χ(τx0
ξ, x− x0)

∥∥ ≤ C + εN
}
,

and

AC,m :=
{
ξ̂ ∈ N̂ : ∀x, x′ ∈ ξ with Vorξ(x) ∩BmK0 6= ∅, Vorξ(x

′) ∩BmK0 6= ∅ one has:∥∥χ(τxξ, x
′ − x)

∥∥ ≤ C}.
For ν ∈ {1, . . . , d}, n ∈ N∗ and ξ̂ ∈ N̂ , let us also define:

ΓC,m,εn,ν :=
{
z ∈ Λνn ∩GmK∞ : τmKzξ̂ ∈ AC,m ∩ AC,m,ε

}
,

EJP 20 (2015), paper 33.
Page 12/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4006
http://ejp.ejpecp.org/


Quenched invariance principle for random walks on Delaunay triangulations

and

ΓC,m,εn :=

d⋂
ν=1

{
z ∈ Λdn : z(ν) ∈ ΓC,m,εn,ν

}
,

where z(ν) = (z1, . . . , zν , 0, . . . , 0).
We now prove three intermediary lemmas.

Lemma 5.2. For each δ, ε > 0, there are C and m such that for P − a.a. ξ̂, there exists
n0 = n0(ξ̂, C,m, ε, δ) <∞ such that:

#ΓC,m,εn

#Λdn
≥ 1− δ, ∀n ≥ n0. (5.2)

Proof. Note that, thanks to the union bound, it suffices to show that for any ν ∈ {1, . . . , d}:

#ΓC,m,εn,ν

#Λνn
≥ 1− δ

d

for n ≥ n0. Let δ′ := δ/d.
Thanks to assumption (SD), one has for m large enough:

P
[
0 ∈ GmK∞

]
≥ 1− δ′

2
. (5.3)

Given δ′, ε and m such that the inequality above holds, using Proposition 4.3 at the scale
mK, we can find C large enough such that:

P
[
AC,m ∩ AC,m,ε

∣∣0 ∈ GmK∞ ]
≥ 1− δ′

2
. (5.4)

Due to the ergodicity assumption (Er), (5.3) and (5.4), one has:

lim
n→∞

#ΓC,m,εn,ν

#Λνn
= lim
n→∞

1

#Λνn

∑
z∈Λνn

1τmKzξ̂∈(AC,m∩AC,m,ε∩{0∈GmK∞ })

= P
[
AC,m ∩ AC,m,ε ∩ {0 ∈ GmK∞ }

]
= P

[
AC,m ∩ AC,m,ε

∣∣0 ∈ GmK∞ ]
P
[
0 ∈ GmK∞

]
≥
(

1− δ′

2

)(
1− δ′

2

)
> 1− δ′.

This implies the result.

Lemma 5.3. Given C,m, ε > 0 and ξ̂ ∈ N̂ , if x ∈ ξ is such that Vorξ(x) ∩ BmKa 6= ∅ for
some a ∈ ΓC,m,εn , then there exists x1 ∈ ξ with Vorξ(x

1) ∩BmK
a(1) 6= ∅ satisfying:∥∥χ(τxξ, x

1 − x)
∥∥ ≤ (d− 1)

(
C + εn

)
. (5.5)

Proof. Since a ∈ ΓC,m,εn , a = a(d) ∈ ΓC,m,εn,d and a(d−1) ∈ ΓC,m,εn,d−1 ⊂ GmK∞ . In particular,

τmKaξ̂ ∈ AC,m,ε and we can write a(d−1) = a(d) + jed, |j| ≤ n. This implies that there
exists xd−1 ∈ ξ with Vorξ(x

d−1) ∩BmK
a(d−1) 6= ∅ satisfying:∥∥χ(τxξ, x

d−1 − x)
∥∥ ≤ C + εn.

Let us write xd := x. One can construct in the same way and by induction xd, xd−1, . . . , x1

such that Vorξ(x
i−1) ∩BmK

a(i−1) 6= ∅ and satisfying:∥∥χ(τxiξ, x
i−1 − xi)

∥∥ ≤ C + εn, i = 2, . . . , d.
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The shift-covariance of the corrector leads to:

χ(τxξ, x
1 − x) =

d∑
i=2

{
χ(τxξ, x

i−1 − x)− χ(τxξ, x
i − x)

}
=

d∑
i=2

χ(τxiξ, x
i−1 − xi).

Hence,

∥∥χ(τxξ, x
1 − x)

∥∥ ≤ d∑
i=2

∥∥χ(τxiξ, x
i−1 − xi)

∥∥ ≤ (d− 1)
(
C + εn

)
.

Lemma 5.4. Let C,m, ε > 0, ξ̂ ∈ N̂ , x, y ∈ ξ with Vorξ(x)∩BmKa 6= ∅ and Vorξ(y)∩BmKb 6=
∅ for some a,b ∈ ΓC,m,εn . Then,∥∥χ(τxξ, y − x)

∥∥ ≤ 2d
(
C + εn

)
.

Proof. Let x1, y1 ∈ ξ with Vorξ(x
1) ∩BmK

a(1) 6= ∅ and Vorξ(y
1) ∩BmK

b(1) 6= ∅ given by Lemma
5.3. Thanks to the shift-covariance and the antisymmetry of the corrector, one has:

χ(τxξ, y − x) = χ(τxξ, x
1 − x) + χ(τx1ξ, y1 − x1) + χ(τy1ξ, y − y1)

= χ(τxξ, x
1 − x) + χ(τx1ξ, y1 − x1)− χ(τyξ, y

1 − y).

Together with Lemma 5.3, this leads to:∥∥χ(τxξ, y − x)
∥∥ ≤ 2(d− 1)(C + εn) +

∥∥χ(τx1ξ, y1 − x1)
∥∥. (5.6)

Since a(1) ∈ ΓC,m,εn,1 and b(1) ∈ GmK∞ , there exists a point ȳ ∈ ξ with Vorξ(ȳ)∩BmK
b(1) 6= ∅

satisfying: ∥∥χ(τx1ξ, ȳ − x1)
∥∥ ≤ C + 2εn. (5.7)

Moreover, τmKb(1) ξ̂ ∈ AC,m which implies that:∥∥χ(τȳξ, y
1 − ȳ)

∥∥ ≤ C. (5.8)

Bounds (5.6)-(5.8) and the shift-covariance of the corrector finally give that:∥∥χ(τxξ, y − x)
∥∥ ≤ 2(d− 1)(C + εn) +

∥∥χ(τx1ξ, ȳ − x1)
∥∥+

∥∥χ(τȳξ, y
1 − ȳ)

∥∥ ≤ 2d(C + εn).

Proof of Proposition 5.1. We must show that for each δ0, ε0 > 0, for P[·|0 ∈ G∞] − a.a.
ξ̂ ∈ N̂ , for any x0 ∈ ξ with Vorξ(x0) ∩BK0 6= ∅:

1

#ΛL

∑
x ∈ ξ :

∃z ∈ GK∞ ∩ ΛL
Vorξ(x) ∩ BKz 6= ∅

1‖χ(τx0
ξ,x−x0)‖≥ε0L ≤ δ0

for every L large enough. Let us define p := P
[
0 ∈ GK∞

]
and fix δ < min

(
p/2, δ0/(2D)

)
and ε < ε0/(4d). We then choose C and m large enough such that the conclusion of
Lemma 5.2 holds. Without loss of generality we restrict our attention to the case L = mn,
n ∈ N. We will work at both scales K and mK.

By ergodicity
#
{
j ∈ Λ1

L : je1 ∈ GK∞
}

2L+ 1
−−−−−−−−→

L−→∞
p,
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in particular, for L large enough

#
{
j ∈ Λ1

L : je1 ∈ GK∞
}
≥ (2L+ 1)p

2
. (5.9)

On the other hand, denoting by π(1) the projection along the first coordinate axis, one
has π(1)

(
ΓC,m,εn

)
⊂ ΓC,m,εn and

#
(
π(1)

(
ΓC,m,εn

))
≥ #ΓC,m,εn

(2n+ 1)d−1
≥ (1− δ)(2n+ 1)

by Lemma 5.2. It follows that

#

{
j ∈ Λ1

L :

⌊
j

m

⌋
e1 ∈ ΓC,m,εn

}
≥ (1− δ)(2n+ 1)m ≥ (1− δ)(2L+ 1). (5.10)

Due to the choice of δ, (1− δ)(2L+ 1) + (2L+ 1)p/2 > (2L+ 1) = #Λ1
L which implies

that {
j ∈ Λ1

L : je1 ∈ GK∞
}
∩
{
j ∈ Λ1

L :

⌊
j

m

⌋
e1 ∈ ΓC,m,εn

}
6= ∅.

Fix j in the intersection above, thanks to the sublinearity in the direction e1 at scale
K (see Proposition 4.3), there exists x ∈ ξ with Vorξ(x) ∩BKje1 6= ∅ satisfying:∥∥χ(τx0

ξ, x− x0)
∥∥ ≤ C + εL, ∀x0 ∈ ξ with Vorξ(x0) ∩BK0 6= ∅.

Together with Lemma 5.4 applied with a = b jmce1 and the shift-covariance of the
corrector, this allows us to conclude that for any y ∈ ξ whose Voronoi cell intersects an
mK-box with index b in ΓC,m,εn , for any x0 ∈ ξ with Vorξ(x0) ∩BK0 6= ∅:∥∥χ(τx0ξ, y − x0)

∥∥ ≤ ∥∥χ(τx0ξ, x− x0)
∥∥+

∥∥χ(τxξ, y − x)
∥∥

≤ C + εL+ 2d
(
C + εn

)
≤ (2d+ 1)

(
C + εL

)
.

Thanks to the choice of ε, the last quantity is smaller than ε0L when L is large enough.
For any x0 ∈ ξ with Vorξ(x0) ∩BK0 6= ∅, one has for L large enough:

1

#ΛL

∑
x ∈ ξ :

∃z ∈ GK∞ ∩ ΛL
Vorξ(x) ∩ BKz 6= ∅

1‖χ(τx0
ξ,x−x0)‖≥ε0L ≤

1

#ΛL

∑
a∈Λn\ΓC,m,εn

∑
z ∈ GK∞ :

BKz ⊂ B
mK
a

D

≤
mdD#

(
Λn \ ΓC,m,εn

)
#ΛL

≤ 2D

(
1−

#
(
ΓC,m,εn

)
#Λn

)
≤ 2Dδ ≤ δ0

where we used that:

md#Λn
#ΛL

−−−−−−−→
n→∞

1

and Lemma 5.2.
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6 Random walks on G∞(ξ̂)

In order to derive the strong sublinearity of the corrector in G∞(ξ̂) from its sublinearity
on average, we need to obtain heat-kernel estimates and bounds on the expected
distance between positions of the walker at time t and 0 (see equations (7.1) and (8.1)).
Such estimates cannot be obtained directly for the random walk on the (full) Delaunay
triangulation generated by ξ in which the degree is not bounded. Nevertheless, since
G∞(ξ̂) has good regularity properties, these bounds will be established in Sections 7 and
8 for restricted random walks described below.

For ξ̂ ∈ N̂ , let us consider the Markov chain (Ŷn)n∈N = (Ŷ ξ̂n )n∈N on G∞(ξ̂) induced
from the original (discrete time) random walk (Xn)n∈N on DT(ξ). In other words, (Ŷn)n∈N
is the time-homogeneous Markov chain on G∞(ξ̂) with jump probabilities given by:

ĉξ̂x,y := P ξ̂
[
Ŷk+1 = y

∣∣Ŷk = x
]

= P ξx
[
XT1 = y

]
, x, y ∈ G∞(ξ̂), (6.1)

where T1 := inf{j ≥ 1 : Xj ∈ G∞(ξ̂)}. Note that the holes (i.e. the (DT(ξ)-)connected

components of ξ \ G∞(ξ̂)) are a.s. finite (assuming that p > 1 − psite
c (Zd)). Hence, T1

is a.s. finite and (Ŷn)n∈N is well defined. Moreover, for any z ∈ G∞(ξ̂), applying the
optional stopping theorem to the martingale (Xn − z − χ(τzξ,Xn − z))n∈N starting from
z, it appears that, (Ŷn − z − χ(τzξ, Ŷn − z))n∈N is a martingale.

We also consider a continuous-time version of the random walk defined above (Ŷt)t≥0

:= (ŶN(t))t≥0 where N(t) is the intensity 1 Poisson process on the half-line R+. It has
infinitesimal generator:

L̂ξ̂f(x) :=
∑

y∈G∞(ξ̂)

ĉξ̂x,y
(
f(y)− f(x)

)
, x, y ∈ G∞(ξ̂). (6.2)

It is not difficult to see that (Ŷt − z − χ(τzξ, Ŷt − z))t≥0 is also a martingale.

We denote by P ξ̂x the (quenched) law of this walk starting from x. Note that this walk
has speed ‘at most 1’. Observe also that the measure degDT(ξ) is reversible w.r.t. both

(Ŷn)n∈N and (Ŷt)t≥0. Actually, standard computations show that the detailed balance
condition:

degDT(ξ)(x)ĉξ̂x,y = degDT(ξ)(y)ĉξ̂y,x, x, y ∈ G∞(ξ̂),

is satisfied.

7 Heat-kernel estimates for (Ŷ ξ̂
t )t>0

The aim of this section is to prove the following heat-kernel bound.

Proposition 7.1. For a.a. ξ̂ ∈ N̂ :

sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

t
d
2P ξ̂x

[
Ŷt = x

]
<∞ (7.1)

where (Ŷt)t≥0 is the continuous-time random walk on G∞(ξ̂) with generator (6.2).

The proof of this bound relies on isoperimetric inequalities and the technics developed
in [20]; it is completed in Subsection 7.4. Precise definitions are given in Subsection 7.1.
Isoperimetric inequalities for random walks confined in large boxes are established in
Subsection 7.2. Additional technical results are isolated from the proof of Proposition
7.1 and given in Subsection 7.3.
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7.1 Precise definitions

We will state isoperimetric inequalities for random walks confined in large boxes. We
need to introduce additional notations and random walks confined in boxes of side L.

Recall the definitions of G(L) and G(L)(ξ̂) from the introduction and denote by G(L) the
complementary in Zd of the unique unbounded (l1−)connected component of Zd \G(L)

and by G(L)(ξ̂) the set of points of ξ whose Voronoi cell intersects a K-box with index
in G(L). In other words, G(L) is the union of G(L) with the (discrete) holes contained

in [−L,L]d and G(L)(ξ̂) is the union of G(L)(ξ̂) with the holes (for the DT(ξ) structure)

contained in
[
−(L+ 1

2 )K, (L+ 1
2 )K

]d
. Then, we write

(
X

(L)

n

)
n∈N

for the random walk in

the restriction of DT(ξ) to G(L)(ξ̂). Denoting by T ∗n the time of nth visit to G(L)(ξ̂) for this

walk, we consider the induced discrete-time random walk
(
Ŷ

(L)
n

)
n∈N

:=
(
X

(L)

T∗n

)
n∈N

on

G(L)(ξ̂). We also consider its continuous-time counterpart
(
Ŷ

(L)
t

)
t≥0

:=
(
Ŷ

(L)
N(t)

)
t≥0

where

N(·) is an intensity 1 Poisson process on the half-lineR+. The random walk
(
Ŷ

(L)
t

)
t≥0

can

be thought of as the continuous-time random walk on G(L)(ξ̂) with speed at most 1 and

which ‘jumps holes’ of G(L)(ξ̂). Let us denote by d̂egL,ξ̂(·) the degree in the restriction

of DT(ξ) to G(L)(ξ̂) and write d̂egL,ξ̂(A) :=
∑
x∈A d̂egL,ξ̂(x), A ⊂ G(L)(ξ̂). Classical

computations show that d̂egL,ξ̂(·) is reversible for both
(
X

(L)

n

)
n∈N

and
(
Ŷ

(L)
t

)
t≥0

. The

conductance of the set A ⊂ G(L)(ξ̂) w.r.t.
(
Ŷ

(L)
t

)
t≥0

is given by:

Î
(L)
A = Î

ξ̂,(L)
A :=

∑
x∈A

∑
y∈G(L)(ξ̂)\A

d̂egL,ξ̂(x)P
ξ̂,(L)

x

[
X

(L)

T∗1
= y
]

d̂egL,ξ̂(A)
, (7.2)

where P
ξ̂,(L)

x stands for the law of
(
X

(L)

n

)
n∈N

. The associated isoperimetric profile is:

ϕ̂(L)(u) := inf
{
Î

(L)
A : d̂egL,ξ̂(A) ≤ ud̂egL,ξ̂

(
G(L)(ξ̂)

)}
, u ∈

]
0,

1

2

]
. (7.3)

The advantage of
(
Ŷ

(L)
t

)
t≥0

is that this walk coincides with
(
Ŷt

)
t≥0

as long as they

do not leave (the interior of) G(L)(ξ̂). Nevertheless, we are not able to obtain directly a
bound on the isoperimetric profile ϕ̂(L). In a similar way as in [6], we compare it with

the isoperimetric profile of the constant speed random walk on G(L)(ξ̂), that is the walk(
Ỹ

(L)
t

)
t≥0

with generator:

L̃(L)

ξ̂
(x, y) :=


1x∼y in DT(ξ)

d̃egL,ξ̂(x)
if x 6= y

−1 if x = y

, (7.4)

where d̃egL,ξ̂(·) denotes the degree in the restriction of DT(ξ) to G(L)(ξ̂). The measure

d̃egL,ξ̂(·) is clearly reversible w.r.t.
(
Ỹ

(L)
t

)
t≥0

. The associated conductance of the set

A ⊂ G(L)(ξ̂) is given by:

Ĩ
(L)
A = Ĩ

ξ̂,(L)
A :=

∑
x∈A

∑
y∈G(L)(ξ̂)\A

1x∼y in DT(ξ)

d̃egL,ξ̂(A)
, (7.5)
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and the corresponding isoperimetric profile is:

ϕ̃(L)(u) := inf
{
Ĩ

(L)
A : d̃egL,ξ̂(A) ≤ ud̃egL,ξ̂

(
G(L)(ξ̂)

)}
, u ∈

]
0,

1

2

]
. (7.6)

7.2 Isoperimetric inequality

The goal of this section is to obtain a lower bound on the isoperimetric profile ϕ̂(L); it
is stated in Corollary 7.5.

7.2.1 Comparison between ϕ̃(L) and ϕ̂(L)

First, note that for x ∈ G(L)(ξ̂):

D ≥ degDT(ξ)(x) ≥ d̂egL,ξ̂(x) ≥ d̃egL,ξ̂(x) ≥ 1 ≥
d̂egL,ξ̂(x)

D
≥

d̃egL,ξ̂(x)

D
, (7.7)

and that for x, y ∈ G(L)(ξ̂)

P
ξ̂,(L)

x

[
X

(L)

T∗1
= y
]
≥ P ξ̂,(L)

x

[
X

(L)

1 = y
]

1x∼y in DT(ξ) =
1x∼y in DT(ξ)

d̂egL,ξ̂(x)
. (7.8)

Hence, for A ⊂ G(L)(ξ̂), we have:∑
x∈A

∑
y∈G(L)(ξ̂)\A

d̂egL,ξ̂(x)P
ξ̂,(L)

x

[
X

(L)

T∗1
= y
]
≥
∑
x∈A

∑
y∈G(L)(ξ̂)\A

1x∼y in DT(ξ).

With d̂egL,ξ̂(A) ≤ Dd̃egL,ξ̂(A), this implies that:

Î
(L)
A ≥

Ĩ
(L)
A

D
. (7.9)

Using (7.7) and (7.9), one deduces:

Lemma 7.2. For u ∈
]
0, 1

2D

]
:

ϕ̂(L)(u) ≥
ϕ̃(L)(Du)

D
. (7.10)

7.2.2 Lower bounds for ϕ̃(L)

Our aim is to show the following bound on the isoperimetric profile ϕ̃(L) associated with(
Ỹ

(L)
t

)
t≥0

.

Proposition 7.3. There exists c = c(d,K, α) > 0 such that P − a.s. for L large enough:

ϕ̃(L)(u) ≥ cmin

{
1

u1/dL
,

1

log(L)
d
d−1

}
, u ∈

]
0,

1

2

]
.

As in [11], we use as much as possible an isoperimetric inequality for the percolation
cluster G(L).

Proposition 7.4 (see [11], eq. (2.5)). There exists κ > 0 such that almost surely for L
large enough, for A ⊂ G(L) with 0 < #(A) ≤ 1

2#(G(L)):

#(∂A)

#(A)
≥ κmin

{
1

#(A)
1
d

,
1

log(L)
d
d−1

}
,

where ∂A = {x ∈ G(L) \A : x ∼ y for some y ∈ A} is the (vertex external) boundary of
the set A in G(L).
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This result can be proved by adapting the arguments given in [6, Appendix] to
the context of supercritical site percolation (see also the proof of [4, Lemma 2.6] for
p� psite

c (Zd)).
We adapt the proof of [11, Theorem 1.1] to the present setting. It is worth noting

that the arguments of [11] can be used to derive isoperimetric bounds for the Delaunay
triangulation confined in cubic boxes at least when the underlying point process is a PPP.
This does not lead to sharp enough heat-kernel bounds for the random walk on the full
Delaunay triangulation due to the unboundedness of the degree.

Proof of Proposition 7.3. For A ⊂ G(L)(ξ̂), we define:

L(A) :=
{
z ∈ G(L) : ∃x ∈ A s.t. Vorξ(x) ∩Bz 6= ∅

}
.

Let us observe that, thanks to the definition of the good boxes, for any A ⊂ G(L)(ξ̂):

#L(A)

2d
≤ d̃egL,ξ̂(A) ≤ #Amax

x∈A
degDT(ξ)(x) ≤ D2#L(A). (7.11)

In the first inequality, we used that, for x ∈ G(L)(ξ̂), Vorξ(x) does not intersect more than
2d good boxes since the diameter of the cell is less than K.

From now on we assume that d̃egL,ξ̂(A) ≤ 1
2 d̃egL,ξ̂(G(L)(ξ̂)). We are going to discuss

separately the cases when #(L(A)) is large or small with respect to #(G(L)). Roughly,

if #(L(A)) is large then #(L(G(L)(ξ̂) \ A)) is not too small and Ĩ
(L)
A is easily bounded

from below by some constant. When #(L(A)) is small, a bound is obtained using the
isoperimetric inequality for G(L) given in Proposition 7.4.

The case #(L(A)) >
(
1− 1

2d+2D2

)
#(G(L)). Using the general bound (7.11) and inequal-

ity d̃egL,ξ̂(A) ≤ 1
2 d̃egL,ξ̂(G(L)(ξ̂)), one obtains:

#L(G(L)(ξ̂) \A) ≥
d̃egL,ξ̂(G(L)(ξ̂) \A)

D2
≥

d̃egL,ξ̂(G(L)(ξ̂))

2D2
≥

#G(L)

2d+1D2
.

It follows that L(A) and L(G(L)(ξ̂) \A) have a large intersection in this case:

#
(
L(A) ∩ L(G(L)(ξ̂) \A)

)
≥ #L(A)−#

(
G(L) \ L(G(L)(ξ̂) \A)

)
= #L(A)−#(G(L)) + #

(
L(G(L)(ξ̂) \A)

)
≥
(

1− 1

2d+2D2

)
#(G(L))−#(G(L)) +

1

2d+1D2
#(G(L))

=
1

2d+2D2
#(G(L)). (7.12)

This allows us to bound from below the numerator in Ĩ
(L)
A as follows. If z ∈ L(A) ∩

L(G(L)(ξ̂) \A), one can choose x ∈ A and y ∈ G(L)(ξ̂) \A whose respective Voronoi cells
intersect Bz. Hence, connecting the nuclei of the Voronoi cells which intersect the line
segment [x, y], it is easy to find an edge between a point of A and a point of G(L)(ξ̂) \A
which is included in Bz =

⋃
z′:‖z′−z‖∞≤1Bz′ thanks to the definition of good boxes. Since

a specific edge is associated to at most 3d boxes by this procedure, it follows using (7.12)
that: ∑

x∈A

∑
y∈G(L)(ξ̂)\A

1x∼y in DT(ξ) ≥
#
(
L(A) ∩ L(G(L)(ξ̂) \A)

)
3d

≥
#(G(L))

4 · 6dD2
.

Since d̃egL,ξ̂(A) ≤ D2#
(
L(A)

)
≤ D2#(G(L)), we obtain that:

Ĩ
(L)
A ≥ 1

4 · 6dD4
.
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The case #(L(A)) ≤
(
1− 1

2d+2D2

)
#(G(L)). Let us show that, in this case, the numerator

in Ĩ(L)
A can be bounded from below in terms of #∂L(A) or #∂(G(L) \L(A)). If Bz and Bz′

are two neighboring good boxes such that z ∈ L(A) and z′ ∈ G(L) \ L(A), there exists

an edge between a point of A and a point of G(L)(ξ̂) \ A contained in Bz ∪ Bz′ . To see

this, let us fix a point x ∈ A whose Voronoi cell intersects Bz and a point y ∈ G(L)(ξ̂) \A
whose Voronoi cell intersects Bz′ . It then suffices to connect the consecutive nuclei of
the Voronoi cells which intersect the line segment [x, y] to find an edge between a point
of A and a point of G(L)(ξ̂) \A. This edge is contained in Bz ∪Bz′ thanks to the definition
of good boxes. It follows that there exists δ = δ(d) such that:∑

x∈A

∑
y∈G(L)(ξ̂)\A

1x∼y in DT(ξ) ≥ δmax
{

#∂L(A),#∂(G(L) \ L(A))
}
.

Since d̃egL,ξ̂(A) ≤ D2#L(A) ≤ D2(2d+2D2 − 1)#
(
G(L) \ L(A)

)
, we deduce that:

Ĩ
(L)
A ≥ δ

(2d+2D2 − 1)D2

#∂A

#A
,

for A = L(A) and A = G(L) \ L(A).
Choosing

A :=

{
L(A) if #L(A) ≤ 1

2#G(L)

G(L) \ L(A) otherwise
,

Proposition 7.4 then implies that almost surely for L large:

Ĩ
(L)
A ≥ κδ

(2d+2D2 − 1)D2
min

{
1

#(A)
1
d

,
1

log(L)
d
d−1

}

≥ κδ

(2d+2D2 − 1)D2
min

{
1

#(L(A))
1
d

,
1

log(L)
d
d−1

}
.

Using that #L(A) ≤ 2dd̃egL,ξ̂(A), we obtain that:

Ĩ
(L)
A ≥ κδ

2(2d+2D2 − 1)D2
min

{
1

d̃egL,ξ̂(A)
1
d

,
1

log(L)
d
d−1

}
.

Since d̃egL,ξ̂(G(L)(ξ̂)) ≤ D2#G(L) ≤ D2(2L + 1)d, the conclusion of Proposition 7.3
follows.

Combining Lemma 7.2 and Proposition 7.3, we obtain:

Corollary 7.5. There exists c = c(d,K, α) > 0 such that P − a.s. for L large enough:

ϕ̂(L)(u) ≥ cmin

{
1

u1/dL
,

1

log(L)
d
d−1

}
, u ∈

]
0,

1

2D

]
.

7.3 Other technical results

7.3.1 Volume growth for d̂egL,ξ̂

(
G(L)(ξ̂)

)
We briefly check that there exist constants c and C such that a.s. for L large enough:

cLd ≤ d̂egL,ξ̂

(
G(L)(ξ̂)

)
≤ CLd. (7.13)
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The upper bound is very simple since it suffices to write:

d̂egL,ξ̂

(
G(L)(ξ̂)

)
≤ D#

(
G(L)(ξ̂)

)
≤ D max

z∈G(L)

# {x ∈ ξ : Vorξ(x) ∩Bz 6= ∅}#
(
G(L)

)
≤ D2#

(
[−L,L]d ∩Zd

)
≤ CLd.

Since any box with index in G(L) contains at least a point of G(L)(ξ̂) which has degree
at least 1:

d̂egL,ξ̂

(
G(L)(ξ̂)

)
≥ #

(
G(L)(ξ̂)

)
≥ #

(
G(L)

)
.

The lower bound follows by using that a.s. for L large enough:

#
(
G(L)

)
≥ cLd,

which is a consequence of the ergodic theorem.

7.3.2 Size of the holes and connectivity of G∞(ξ̂) in large boxes

In order to compare (Ŷt)t≥0 with (Ŷ
(L)
t )t≥0, we need to control the size of the holes (i.e.

DT(ξ)-connected components of ξ \ G∞(ξ̂)) and to establish connectivity properties of
G∞(ξ̂) in large boxes. More precisely, for C, γ > 1 and t > 0, let us define the events:

At = At,γ,C :=

{
any hole contained in

[
−K

(
btγc+

1

2

)
,K

(
btγc+

1

2

)]d
has diameter smaller than C log t

}
,

and

Bt = Bt,γ,C :=
{
G∞(ξ̂) ∩Qt = G(btγc)(ξ̂) ∩Qt

}
where:

Qt :=

[
− t
(

3C

2
log t+ 1

)
, t

(
3C

2
log t+ 1

)]d
.

We prove that:

Lemma 7.6. Assuming that K is large enough, for each γ > 1, there exists C <∞ such
that almost surely for t large enough At and Bt are realized.

Proof. First, observe that any DT(ξ)-connected component A of ξ \ G∞(ξ̂) is contained in
the union of K-boxes with indices in some discrete hole A (i.e. a connected component
of Zd \G∞). Hence, in order to show that At holds almost surely, it suffices to verify that
a.s. any discrete hole contained in [−btγc, btγc]d ∩Zd has diameter at most C log t, for C
suitably chosen. Denote by Az the (possibly empty) hole at z ∈ Zd for an independent
percolation process of parameter p. Recall that assumption (SD) ensures that the process
of ‘good boxes’ dominates such a process with p as close to 1 as we wish whenever K is
fixed large enough. Assuming that p is large enough, a standard Peierls argument shows
that there exists c6 > 0 such that:

P [diamA0 ≥ n] ≤ e−c6n.

Thus,
P
[
∃z ∈ [−n, n]d ∩Zd s.t. diamAz ≥ C log n

]
≤ (2n+ 1)de−c6C logn.
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Our first claim then follows by the Borel-Cantelli lemma if C is well chosen.
As above, in order to show that Bt is a.s. realized for t large enough, we only need to

check the corresponding claim for the percolation process, that is: almost surely for t
large enough, G∞ ∩Qt = G(btγc) ∩Qt.

Let us justify that, almost surely for t large enough, G(btγc) coincides with the largest

connected component of G∞ ∩ [−btγc, btγc]d. Thanks to [11, Lemma B.1] and the Borel-
Cantelli lemma, we know that there exists L0 a.s. finite such that, for L ≥ L0, the
maximal open cluster G(L) in [−L,L]d ∩ Zd is the only open cluster in this box with
diameter larger than L/10 and crosses this box in every coordinate direction (see also
[11, Remark 7]). In particular, G(L) has diameter 2L ≥ (L+ 1)/10 and is thus included in
G(L+1). So, for L′ ≥ L ≥ L0, G(L) is contained in G(L′). Hence, it is included in an open
cluster with infinite diameter which is G∞.

It remains to verify that any two vertices z and z′ of G∞ ∩Qt are connected by an
open path whithin [−btγc, btγc]d. Call B′t this event and write dG∞(·, ·) for the graph
distance in G∞. Assume that B′t fails for some large t and fix z, z′ ∈ G∞ ∩Qt which are
not connected in [−btγc, btγc]d. Considering a shortest path from z to z′ one can find z′′

in G∞ ∩Q3t \Q2t such that dG∞(z′, z′′) ≥ btγc − t(3C log(t)/2 + 1). Hence, for any κ, for
t large enough:

P [(B′t)c] ≤
∑

z′∈Qt

∑
z′′∈Q3t\Q2t

P [z′, z′′ ∈ G∞, dG∞(z′, z′′) ≥ κ‖z′′ − z′‖] .

From [1], we know that P [z′, z′′ ∈ G∞, dG∞(z′, z′′) ≥ κ‖z′′ − z′‖] decreases exponen-
tially with ‖z′′ − z′‖ which implies that P [(B′t)c] decreases exponentially with t. One
finally concludes thanks to the Borel-Cantelli lemma.

7.4 Proof of Proposition 7.1

For t ≥ 0, let us denote by N̂(t) the number of jumps of (Ŷs)s≥0 up to time t and by
Ct the event: ‘N̂(t) ≤ 3t/2’. Since (Ŷs)s≥0 has speed at most 1, N̂(·) is dominated by a

Poisson process of intensity 1 on R+ and P ξ̂x [Cct ] ≤ c7 exp(−c8t) for some c7, c8 > 0. This
implies that, almost surely for t large enough, Ct is realized and we only need to obtain
the heat-kernel bound on this event.

Recall the definitions of At and Bt from the previous subsection. On At ∩ Bt ∩ Ct,
starting from a point of G∞(ξ̂)∩ [−t, t]d, (Ŷs)s≥0 does at most 3t/2 jumps of length at most

C log t up to time t. In particular, it has visited only points of G(btγc)(ξ̂) ∩ Qt and does

not depend on ξ \ G(btγc)(ξ̂) up to time t. Hence, we can find a coupling of (Ŷs)s≥0 and

(Ŷ
(btγc)
s )s≥0 such that these two coincide up to time t. Thus, for t large enough, we can

write:

P ξ̂x

[
Ŷt = y

]
= P ξ̂x

[{
Ŷt = y

}
∩ At ∩ Bt ∩ Ct

]
= P ξ̂,(bt

γc)
x

[{
Ŷ

(btγc)
t = y

}
∩ At ∩ Bt ∩ Ct

]
= P ξ̂,(bt

γc)
x

[
Ŷ

(btγc)
t = y

]
.

It then remains to bound P ξ̂,(bt
γc)

x

[
Ŷ

(btγc)
t = y

]
. To this end, we will rely on the isoperi-

metric inequality stated in Corollary 7.5 and apply the strategy developed by Morris and
Peres in [20].

Theorem 7.7 (see [20, Theorem 13]). Let (Xt)t≥0 be an irreducible continuous-time
Markov chain on a finite state space X with reversible probability measure π and
isoperimetric profile ϕ.
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For all ε > 0 and all x, y ∈ X , if

t ≥
∫ 4/ε

4 min(π(x),π(y))

8du

uϕ(u)2
(7.14)

then
Px [Xt = y] ≤ π(y) (1 + ε) .

Here the reversible probability measure is given by:

π̂btγc(·) := d̂egbtγc,ξ̂(·)/d̂egbtγc,ξ̂(G(btγc)(ξ̂)).

Choosing ε of the form ε = c9t
d(γ− 1

2 ) (c9 will be chosen large enough), the conclusion of
Theorem 7.7 reads:

P ξ̂,(bt
γc)

x

[
Ŷ

(btγc)
t = y

]
≤

d̂egbtγc,ξ̂(y)

d̂egbtγc,ξ̂(G(btγc)(ξ̂))

(
1 + c9t

d(γ− 1
2 )
)
.

Using Lemma 1.3 and (7.13), one deduces that P ξ̂,(bt
γc)

x

[
Ŷ

(btγc)
t = y

]
≤ c10t

− d2 for t large

enough. It remains to check the validity of (7.14) with ε = c9t
d(γ− 1

2 ) for t large enough
when c9 is well chosen.

Assuming that t satisfies 4td( 1
2−γ) ≤ c9/(2D), one obtains with Corollary 7.5 and

inequality (7.11) that:∫ 4c−1
9 td( 1

2
−γ)

4 min(π̂btγc(x),π̂btγc(y))

8du

uϕ̂(btγc)(u)2

≤ 8

∫ 4c−1
9 td( 1

2
−γ)

c11/tγd

du

uϕ̂(btγc)(u)2

≤ c12

(log t)
2d
d−1

∫ (logbtγc)
d2

d−1 /btγcd

c11/tγd

du

u
+ t2γ

∫ 4c−1
9 td( 1

2
−γ)

(logbtγc)
d2
d−1 /btγcd

u
2
d−1du


≤ c12

(
d

2

(
4

c9

) 2
d

t+ c13(log t)
2d
d−1 (log log t+ c14)

)
.

If c9 has been fixed large enough, the last expression is smaller than t for every t
large enough.

To summarize, we have just proved that for a.a. ξ̂, there exist c15 = c15(ξ̂) and T = T (ξ̂)

such that for any t ≥ T , for any x ∈ G∞(ξ̂) ∩ [−t, t]d and any y ∈ G∞(ξ̂):

P ξ̂x

[
Ŷt = y

]
≤ c15

t
d
2

.

This implies the required result.

�

8 Expected distance bound for (Ŷ ξ̂
t )t>0

It is known that bounds on the expected distance between the position of the walk at
time t and its starting point can be derived from the heat-kernel estimate (7.1) as soon
as the volume grows regularly (see for example [2, 3, 10]). In this section, we use this
strategy to prove the following proposition.
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Proposition 8.1. For a.a. ξ̂ ∈ N̂ :

sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

E ξ̂x

[∥∥∥Ŷt − x∥∥∥]
√
t

<∞. (8.1)

Proof. Proposition 7.1 shows that the assumption of [10, Proposition 6.2] is satisfied
in the present setting. Hence, there exist constants c16 and c17 such that for a.a. ξ̂, for
every x ∈ G∞(ξ̂), for t large enough:

E ξ̂x

[
d̂
(
Ŷt, x

)]
√
t

≤ c16 + c17 sup
0<s≤t−

1
2

sd ∑
y∈G∞(ξ̂)

e−sd̂(x,y)

 , (8.2)

where d̂ (x, y) = d̂G∞(ξ̂) (x, y) denotes the ‘natural’ distance between x and y for (Ŷt)t>0

(i.e. the minimal number of jumps that the random walk needs to do in order to go from
x to y).

At this point, we need to compare d̂ with the Euclidean distance and to check that
the r.h.s. of (8.2) is uniformly bounded. Let us denote by d̂′ = d̂′G∞ the chemical distance
in G∞ in which we add an edge between every two points on the boundary of a (shared)
discrete hole. For x ∈ G∞(ξ̂), we choose z(x) ∈ G∞ such that Vorξ(x) intersects Bz(x) to
be the minimal one in the lexicographic order. It is not difficult to see that the definitions
of G∞ and G∞(ξ̂) imply that there are constants c18 and c19 such that:

c18d̂′(z(x), z(y)) ≤ d̂(x, y) ≤ c19(d̂′(z(x), z(y)) + 1), ∀x, y ∈ G∞(ξ̂). (8.3)

By the same arguments as in the proof of [10, Lemma 3.1], one obtains that:

P
[
z, z′ ∈ G∞, d̂′(z, z′) ≤ c20‖z− z′‖

]
≤ e−c21‖z−z′‖,

for suitable constants c20 and c21.
Using the estimate above and the Borel-Cantelli lemma, one deduces that there exists

a constant C such that, for n ≥ N = N(ξ̂), for all z ∈ G∞ ∩ [−n/K, n/K]d, for all z′ ∈ G∞
with ‖z′ − z‖ ≥ C log n:

d̂′(z, z′) ≥ c20‖z′ − z‖. (8.4)

Then, (8.2), (8.3) and (8.4) imply that for every x ∈ G∞(ξ̂) ∩ [−n, n]d, for t ≥ n ≥ N :

E ξ̂x

[∥∥∥Ŷt − x∥∥∥]
√
t

≤ c22 + c23 sup
0<s≤t−

1
2

sd ∑
y∈G∞(ξ̂)

e−sd̂(x,y)

 . (8.5)

Finally, observe that once 1/s ≥ t 1
2 ≥ n 1

2 � C log n for any x ∈ G∞(ξ̂) ∩ [−n, n]d:∑
y∈G∞(ξ̂)

e−sd̂(x,y) ≤
∑

z′∈G∞

∑
y ∈ ξ

Vorξ(y) ∩ B
z′ 6= ∅

e−sd̂(x,y)

≤ D
∑

z′∈G∞

e−c18sd̂
′(z(x),z′)

≤ c24

s−d +
∑

z′ ∈ G∞ :

‖z′ − z(x)‖ ≥ 1/s

e−c25s‖z′−z(x)‖


≤ c26s

−d.

The conclusion then follows thanks to (8.5).
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9 Almost sure sublinearity in G∞(ξ̂)
The aim of this section is to prove the ‘strong’ sublinearity of the corrector in G∞(ξ̂).

Proposition 9.1. For P[·|0 ∈ G∞]−a.a. ξ̂:

lim
n→∞

Rn

n
= 0, (9.1)

where
Rn = Rn(ξ̂) := max

x0 ∈ ξ :

Vorξ(x0) ∩ BK0 6= ∅

max
x∈G∞(ξ̂)∩[−n,n]d

‖χ(τx0
ξ, x− x0)‖ .

Following an idea attributed to Yuval Peres in [10] and [12], it suffices to show the
recursive bound:

Lemma 9.2. For P[·|0 ∈ G∞]−a.e. ξ̂, for each ε, δ > 0, there exists n0 = n0(ξ̂, ε, δ) <∞
such that:

Rn ≤ εn+ δR3n, ∀n ≥ n0. (9.2)

For the reader’s convenience, we recall how Proposition 9.1 can be deduced from
the previous lemma and Proposition 3.1 (see also [10, Proof of Theorem 2.4, p. 1337]).
Assume that the conclusion of Proposition 9.1 is false and choose 0 < c27 < lim supnRn/n,
ε := c27/2 and δ := 1/3β+1 with β such that:

lim
n→∞

Rn

nβ
= 0. (9.3)

For infinitely many n’s, Rn ≥ c27n which implies by Lemma 9.2 that:

R3n ≥
Rn − εn

δ
≥ (c27 − ε)n

δ
≥ 3βc27n

when n ≥ n0. One then obtains by induction that R3kn ≥ c273βkn which contradicts (9.3).
We now turn our attention to the proof of Lemma 9.2.

Proof of Lemma 9.2. We adapt the arguments given in [10, §5]. Let us define:

C1 = C1(ξ̂) := sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

t
d
2P ξ̂x

[
Ŷt = x

]
and

C2 = C2(ξ̂) := sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

E ξ̂x

[∥∥∥Ŷt − x∥∥∥]
√
t

.

Recall that these two quantities are a.s. finite thanks to Propositions 7.1 and 8.1.
For large n, we choose y0 = y0(n) with Vorξ(y0)∩B0 6= ∅ and y = y(n) ∈ [−n, n]d such

that Rn = ‖χ(τy0ξ, y − y0)‖ and we define the stopping time:

Sn := inf
{
t ≥ 0 :

∥∥∥Ŷt − y∥∥∥ ≥ 2n
}
.

For n is large enough, holes have sizes of logarithmic order (see Lemma 7.6) and thus
‖Ŷt∧Sn − y‖ ≤ 3n for all t. Due to the harmonicity of ϕ, the optional stopping theorem
gives:

E ξ̂y

[
Ŷt∧Sn − y − χ

(
τyξ, Ŷt∧Sn − y

)]
= E ξ̂y

[
ϕ
(
τyξ, Ŷt∧Sn − y

)]
= 0.

By the shift-covariance of the corrector, one has:

χ (τy0
ξ, y − y0) = χ

(
τy0
ξ, Ŷt∧Sn − y0

)
− χ

(
τyξ, Ŷt∧Sn − y

)
,
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thus
χ (τy0

ξ, y − y0) = E ξ̂y

[
χ
(
τy0
ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

]
.

It follows that:

Rn = ‖χ (τy0ξ, y − y0)‖ ≤ E ξ̂y
[∥∥∥χ(τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥] . (9.4)

Let us fix ε > 0 and define:

On :=
{
x ∈ G∞(ξ̂) ∩ [−3n, 3n]d : ∃x0 s.t. Vorξ(x0) ∩B0 6= ∅ and ‖χ (τx0

ξ, x− x0)‖ ≥ ε

2
n
}
.

Note that, by Proposition 5.1, #On = o(nd). Restricting our attention to t = t(n) ≥ 4n

(whose value will be specified at the end), we will decompose the expectation above as:

E ξ̂y

[∥∥∥χ(τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥] = E1 + E2,

with
E1 = E ξ̂y

[∥∥∥χ(τy0
ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn<t

]
,

and
E2 = E ξ̂y

[∥∥∥χ(τy0
ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn≥t

]
.

We first deal with the term E1. Since t ≥ 4n, Markov inequality shows that:

P ξ̂y

[∥∥∥Ŷ2t − y
∥∥∥ ≥ 3

2
n

]
≤

2E ξ̂y

[∥∥∥Ŷ2t − y
∥∥∥]

3n
≤ 2
√

2tC2

3n
.

Observe that
{∥∥∥Ŷ2t − y

∥∥∥ ≤ 3n/2, Sn < t
}
⊂
{∥∥∥Ŷ2t − ŶSn

∥∥∥ ≥ n/2, Sn < t
}

. On {Sn < t},
since s := 2t− Sn ∈ [t, 2t], one has:

P ξ̂z

[∥∥∥Ŷs − z∥∥∥ ≥ 1

2
n

]
≤ 2
√

2tC2

n
,

with z = ŶSn , this implies by the strong Markov property that:

P ξ̂y

[∥∥∥Ŷ2t − y
∥∥∥ ≤ 3

2
n, Sn < t

]
≤ 2
√

2tC2

n
.

Recall that
∥∥∥Ŷt∧Sn − z∥∥∥ ≤ 3n for n large enough. It follows that:

E ξ̂y

[∥∥∥χ(τy0
ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn<t

]
≤ (R3n + 3n)P ξ̂y [Sn < t]

≤ (R3n + 3n)

(
P ξ̂y

[∥∥∥Ŷ2t − y
∥∥∥ ≥ 3

2
n

]
+ P ξ̂y

[∥∥∥Ŷ2t − y
∥∥∥ ≤ 3

2
n, Sn < t

])
≤ 8
√

2tC2

3n
(R3n + 3n) . (9.5)

Thanks to the definitions of C2 and On and to the fact that t ≥ n, one has:

E ξ̂y

[∥∥∥χ(τy0
ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn≥t

]
≤ E ξ̂y

[∥∥∥Ŷt − y∥∥∥1Sn≥t

]
+ E ξ̂y

[∥∥∥χ(τy0
ξ, Ŷt − y0

)∥∥∥1Sn≥t

]
≤ C2

√
t+ E ξ̂y

[∥∥∥χ(τy0
ξ, Ŷt − y0

)∥∥∥1Sn≥t,Ŷt 6∈On

]
+ E ξ̂y

[∥∥∥χ(τy0
ξ, Ŷt − y0

)∥∥∥1Sn≥t,Ŷt∈On

]
≤ C2

√
t+

ε

2
n+ R3nP

ξ̂
y

[
Ŷt ∈ On

]
= C2

√
t+

ε

2
n+ R3n

∑
z∈On

P ξ̂y

[
Ŷt = z

]
. (9.6)
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But, using that degDT(ξ) is reversible w.r.t.
(
Ŷs

)
s≥0

and bounded by D on G∞(ξ̂), we

obtain by the Markov property and the Cauchy-Schwarz inequality that:

P ξ̂y

[
Ŷt = z

]2
=

 ∑
x∈G∞(ξ̂)

P ξ̂y

[
Ŷ t

2
= x

]
P ξ̂x

[
Ŷ t

2
= z
]2

≤

 ∑
x∈G∞(ξ̂)

P ξ̂y

[
Ŷ t

2
= x

]2 ∑
x∈G∞(ξ̂)

P ξ̂x

[
Ŷ t

2
= z
]2

≤

 ∑
x∈G∞(ξ̂)

P ξ̂y

[
Ŷ t

2
= x

] degDT(ξ)(x)

degDT(ξ)(y)
P ξ̂x

[
Ŷ t

2
= y
]

×

 ∑
x∈G∞(ξ̂)

degDT(ξ)(z)

degDT(ξ)(x)
P ξ̂z

[
Ŷ t

2
= x

]
P ξ̂x

[
Ŷ t

2
= z
]

≤ D2P ξ̂y

[
Ŷt = y

]
P ξ̂z

[
Ŷt = z

]
≤ D2C2

1

td
. (9.7)

Combining bounds (9.4)-(9.7), we get:

Rn ≤
8
√

2tC2

3n
(R3n + 3n) + C2

√
t+

ε

2
n+

DC1#On
t
d
2

R3n

=

(
8
√

2tC2

3n
+
DC1#On

t
d
2

)
R3n +

(
8
√

2tC2

n
+
ε

2

)
n+ C2

√
t.

The conclusion then follows by choosing t = c28n
2 for some c28 = c28(ξ̂, ε, δ) small

enough and using that #On = o(nd).

10 Proof of main results

10.1 Proof of Theorem 1.2

We first show that Proposition 9.1 and the control of the diameter of the holes imply
that for P [·|0 ∈ G∞]-a.a. ξ̂:

lim
n→∞

1

n
max
x0 ∈ ξ :

Vorξ(x0) ∩ BK0 6= ∅

max
x∈ξ∩[−n,n]d

‖χ(τx0
ξ, x− x0)‖ = 0. (10.1)

Recall that, almost surely for n large enough, holes intersecting [−n, n]d have diam-
eters smaller than C log n (see Lemma 7.6). Let H ⊂ ξ be a hole intersecting [−n, n]d

and denote by ∂extH ⊂ G∞(ξ̂) its external boundary, that is the set of the points of ξ \ H
which are neighbors of a point of H in DT(ξ). We can assume that ∂extH is contained in
[−2n, 2n]d. Let us define S := inf{k ≥ 0 : Xk 6∈ H}. Thanks to the harmonicity of ϕ and
the optional stopping theorem, for x ∈ H, one has:

Eξx [XS − x− χ(τxξ,XS − x)] = 0.

But the shift-covariance of the corrector implies that for any x0 ∈ ξ:

χ(τxξ,XS − x) = χ(τx0ξ,XS − x0)− χ(τx0ξ, x− x0),

and thus
χ(τx0

ξ, x− x0) = Eξx [XS − x− χ(τx0
ξ,XS − x0)] .

EJP 20 (2015), paper 33.
Page 27/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4006
http://ejp.ejpecp.org/


Quenched invariance principle for random walks on Delaunay triangulations

It follows that:

max
x0 ∈ ξ :

Vorξ(x0) ∩ BK0 6= ∅

max
x∈ξ∩[−n,n]d

‖χ(τx0
ξ, x− x0)‖

≤ max
x0 ∈ ξ :

Vorξ(x0) ∩ BK0 6= ∅

max
x∈G∞(ξ̂)∩[−2n,2n]d

‖χ(τx0ξ, x− x0)‖+ C log n.

Together with Proposition 9.1, this implies that (10.1) holds for P [·|0 ∈ G∞]-a.a. ξ̂.
We now prove that (10.1) actually holds for P-a.a. ξ. Note that this is the step where

we eliminate the coupling. Observe that:

max
x0 ∈ τKe1ξ :

VorτKe1
ξ(x0) ∩ BK0 6= ∅

max
x∈τKe1ξ∩[−n,n]d

‖χ(τx0
τKe1ξ, x− x0)‖

= max
x0 ∈ ξ :

Vorξ(x0) ∩ BK−e1
6= ∅

max
x∈ξ∩[−n−K,n−K]×[−n,n]d−1

‖χ(τx0
ξ, x− x0)‖

≤ max
x1 ∈ ξ :

Vorξ(x1) ∩ BK0 6= ∅

max
x∈ξ∩[−2n,2n]d

‖χ(τx1
ξ, x− x1)‖

+ max
x0 ∈ ξ :

Vorξ(x0) ∩ BK−e1
6= ∅

max
x1 ∈ ξ :

Vorξ(x1) ∩ BK0 6= ∅

‖χ(τx1ξ, x0 − x1)‖ .

Hence, the event:

A :=

 lim
n→∞

1

n
max
x0 ∈ ξ :

Vorξ(x0) ∩ BK0 6= ∅

max
x∈ξ∩[−n,n]d

‖χ(τx0ξ, x− x0)‖ = 0


is shift invariant w.r.t. τ = τK,e1 . Thanks to the ergodicity assumption (Er), it is a 0-1
event and we already know that P[A] ≥ P[0 ∈ G∞] > 0. Thus, (10.1) holds P-a.s..

In particular, (10.1) holds P[·|ξ ∩B0 6= ∅]-a.s.. The conclusion then follows by using
e.g.[12, Lemma 7.14] which state that a P[·|ξ∩B0 6= ∅]-almost sure event is also P0-almost
sure.

10.2 From Theorem 1.2 to Theorem 1.1

Thanks to [12, Lemma B.2], Theorem 1.1 is a direct consequence of the following one
which is a rewritting of Theorem 1.1 under P0.

Theorem 10.1. Under the assumptions of Theorem 1.1, for P0−a.e. ξ0, under P ξ
0

0 , the
rescaled process (Xε

t )t≥0 = (εXε−2t)t≥0 converges in law as ε tends to 0 to a Brownian
motion with covariance matrix σ2I where σ2 is positive and does not depend on ξ.

As mentioned in the introduction, the arguments to deduce this result from Theorem
1.2 are now quite standard and we only sketch the main lines of the proof. The reader is
refered to [12, §3.3], [10, p. 1340-1341] or [5, §6.1 and §6.2] for more details.

Recall that, for P0-a.e. ξ0, ϕ(ξ0, ·) is harmonic. Hence, (Mn)n∈N := (ϕ(ξ0, Xn))n∈N is a

martingale under P ξ
0

0 . By the same arguments as in [5, pp. 108-109], one can show that
(Mn · ei)n∈N satisfies the assumptions of the Lindeberg-Feller theorem for martingales
(see [13, Theorem (7.3), p. 414]). It follows with the Cramér-Wold device (see [13,
Theorem (9.5), p. 170]) that t→ εMbε−2tc converges weakly to a Brownian motion with
explicit covariance matrix proportional to the identity due to the isotropy of the point
process. The diffusion coefficient does not depend on the particular realization ξ0 of the
point process and is positive. If it were zero, it would hold that x = χ(ξ0, x) for P0-a.e.
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ξ0, for all x ∈ ξ0, which contradicts the sublinearity of the corrector. The sublinearity
of the corrector also implies that maxk≤n ‖Xk −Mk‖ = maxk≤n ‖χ(ξ0, Xk)‖ = o(

√
n) in

P ξ
0

0 -probability. The ‘discrete time version’ of Theorem 10.1 then follows. One concludes
in the continuous-time case by arguing as in [12, p. 666] and by showing that:

lim
t→∞

N(t)

t
= E0

[
degDT(ξ0)(0)

]
,

where N(t) denotes the number of jumps of (Xs)s≥0 up to time t. This also proves the
relation between σ2

VSRW and σ2
DTRW. One finally deduces Theorem 1.1 using [12, Lemma

B.2].

11 Bounds for moments of degDT(ξ0)(0) and maxx∼0 ‖x‖
The method developed in [27, §2] can be used to derive exponential moments for

degDT(ξ0)(0) and maxx∼0 in DT(ξ0) ‖x‖ when the point process has a finite range of depen-
dence. More precisely, we show the following lemma.

Lemma 11.1. Assume that P0 is isotropic and satisfies (V’), then there exists ρ1 > 0

such that:
E0
[
e
ρmaxx ∼

DT
0 ‖x‖

]
<∞, ∀ρ < ρ1, (11.1)

Assume moreover that P0 has a finite range of dependence m and satisfies (EM),
then there exists ρ2 > 0 such that:

E0
[
eρ degDT(ξ0)(0)

]
<∞, ∀ρ < ρ2. (11.2)

Proof. We use the method of [27, §2]. Let us recall some definitions, notations, and
facts from this article. The fundamental region of a point x ∈ ξ0 is the union of the
balls centered at the vertices of its Voronoi polygon and having the nucleus x on their
boundaries. Let Γ0 be the union of 2d open balls of radii 1 centered in points ±ei. Let
Φ0

1, . . . ,Φ
0
2d be the intersection of exactly d such balls.

Figure 1: Γ0 and the lens Φ0
i .

Let us fix β > 1 and consider the sequence of sets Γn,Φn1 , . . . ,Φ
n
2d obtained by the

homothetic transformation of center 0 and coefficient βn from Γ0,Φ0
1, . . . ,Φ

0
2d . The

important point is that simple geometric arguments show that:
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Fact 11.2. If each d-faced lens Φni , i = 1, . . . , 2d, contains a point of ξ0, then the funda-
mental region of the particle at 0 is fully included in Γn. In particular, any neighbor of 0
in DT(ξ0) is in Γn.

Let A0 be the event
⋂2d

i=1{#(ξ0 ∩ Φ0
i ) 6= 0} and

An :=

2d⋂
i=1

{#(ξ0 ∩ Φni ) 6= 0} \
2d⋂
i=1

{#(ξ0 ∩ Φn−1
i ) 6= 0}.

Note that the An are disjoint and P0

[⋃∞
n=0An

]
= 1. Thanks to Fact 11.2, one has:

E0
[
e
ρmaxx ∼

DT
0 ‖x‖

]
=

∞∑
n=0

E0
[
e
ρmaxx ∼

DT
0 ‖x‖

1An

]
≤
∞∑
n=0

e2ρβnP0

[
An
]

≤ e2ρ +

∞∑
n=1

e2ρβnP0

[ 2d⋃
i=1

{#(ξ0 ∩ Φn−1
i ) = 0}

]
≤ e2ρ + 2d

∞∑
n=1

e2ρβnP0

[
#(ξ0 ∩ Φn−1

1 ) = 0
]
, (11.3)

where we used the isotropy of the point process in the last inequality.
Now, there exists a constant c29 > 0 such that Φn−1

1 contains a cube Cn−1 of side
c29β

n−1. Hence, with (V’) and (11.3), we obtain:

E0
[
e
ρmaxx ∼

DT
0 ‖x‖

]
≤ c30 + 2d

∞∑
n=n0

e2ρβnP0

[
#(ξ0 ∩ Cn−1) = 0

]
≤ c30 + 2d

∞∑
n=n0

e(2ρβ−c31)β(n−1)d

.

The last series converges if ρ is small enough and (11.1) is proved.
In the same way, thanks to Fact 11.2, one can write:

E0
[
eρ degDT(ξ0)(0)

]
=

∞∑
n=0

E0
[
eρ degDT(ξ0)(0)1An

]
≤ E0

[
eρ#(ξ0∩Γ0)

]
+

∞∑
n=1

E0
[
eρ#(ξ0∩Γn)1An

]
≤ E0

[
eρ#(ξ0∩Γ0)

]
+

∞∑
n=1

∞∑
k=0

eρkP0

[
{#(ξ0 ∩ Γn) = k} ∩ An

]
≤ E0

[
eρ#(ξ0∩Γ0)

]
+ 2d

∞∑
n=1

∞∑
k=0

eρkP0

[
{#(ξ0 ∩ Γn) = k} ∩ {#(ξ0 ∩ Φn−1

1 ) = 0}
]

≤ E0
[
eρ#(ξ0∩Γ0)

]
+ 2d

∞∑
n=1

∞∑
k=0

eρkP0

[
{#(ξ0 ∩ Γn \ Φn−1

1 ) = k} ∩ {#(ξ0 ∩ Φn−1
1 ) = 0}

]
.
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Now, there exists a constant c32 > 0 such that, if n is large enough Φn−1
1 contains

a cube Cn−1 of side c32β
n−1 satisfying d(Cn−1,Γ

n \ Φn−1
1 ) > m. Thanks to the m-

dependence assumption on the point process and to (EM), it follows that:

E0
[
eρ degDT(ξ0)(0)

]
≤ c33 + 2d

∞∑
n=n0

∞∑
k=0

eρkP0

[
#(ξ0 ∩ Γn \ Φn−1

1 ) = k
]
P0

[
#(ξ0 ∩ Cn−1) = 0

]
≤ c33 + 2d

∞∑
n=n0

E0
[
eρ#(ξ0∩[−2βn,2βn]d)

]
P0

[
#(ξ0 ∩ Cn−1) = 0

]
.

Finally, with (V’) and (EM), we obtain:

E0
[
eρ degDT(ξ0)(0)

]
≤ c34 + 2dc5

∞∑
n=n1

e(2df(ρ)βd−c35)β(n−1)d

.

This concludes the proof since f(ρ) goes to 0 with ρ by assumption.
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