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Triple and simultaneous collisions
of competing Brownian particles
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Abstract

Consider a finite system of competing Brownian particles on the real line. Each
particle moves as a Brownian motion, with drift and diffusion coefficients depending
only on its current rank relative to the other particles. A triple collision occurs if three
particles are at the same position at the same moment. A simultaneous collision occurs
if at a certain moment, there are two distinct pairs of particles such that in each pair,
both particles occupy the same position. These two pairs of particles can overlap, so a
triple collision is a particular case of a simultaneous collision. We find a necessary and
sufficient condition for a.s. absense of triple and simultaneous collisions, continuing
the work of Ichiba, Karatzas, Shkolnikov (2013). Our results are also valid for the case
of asymmetric collisions, when the local time of collision between the particles is split
unevenly between them; these systems were introduced in Karatzas, Pal, Shkolnikov
(2012).
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1 Introduction

This paper is devoted to finite systems of competing Brownian particles. First, let
us informally describe these systems. Fix N ≥ 2, the number of particles. Take real-
valued parameters g1, . . . , gN and positive real-valued parameters σ1, . . . , σN . Consider
N particles which move on the real line. At each time, rank them from the left to the
right: the particle which is currently the leftmost one has rank 1, the second leftmost
particle has rank 2, etc., up to the rightmost particle, which has rank N . As particles
move, they can exchange ranks. We shall explain below how to resolve ties between
particles. The particles move according to the following law: for each k = 1, . . . , N , the
particle with (current) rank k moves as a Brownian motion with drift coefficient gk and
diffusion coefficient σ2

k. Thus, the movemet of each particle depends on its current rank
among other particles.
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Triple and simultaneous collisions of competing Brownian particles

Let us now formally define these systems. Consider the standard setting: a filtered
probability space (Ω,F , (Ft)t≥0,P) with the filtration satisfying the usual conditions.

Any one-dimensional Brownian motion with zero drift and unit diffusion coefficients
starting from the origin is called a standard Brownian motion. The symbol a′ denotes
the transpose of (a vector or a matrix) a. We write 1(C) for the indicator of the event C.

For every vector x = (x1, . . . , xN )′ ∈ RN , let p = px be the (unique) permutation on
{1, . . . , N} with the following propositionerties:

(i) it orders the components of x: xp(i) ≤ xp(j) for 1 ≤ i < j ≤ N ;
(ii) ties are resolved in the lexicographic order: if 1 ≤ i < j ≤ N and xp(i) = xp(j),

then p(i) < p(j).
We shall call it the ranking permutation for the vector x. For example,

if x = (1,−1, 0, 0)′, then px(1) = 2, px(2) = 3, px(3) = 4, px(4) = 1.

We write x(i) = xpx(i) for i = 1, . . . , N , so that x(1) ≤ x(2) ≤ . . . ≤ x(N) are the ranked
components of the vector x.

Definition 1.1. Take i.i.d. standard (Ft)t≥0-Brownian motions W1, . . . ,WN . For a con-
tinuous RN -valued process

X = (X(t), t ≥ 0), X(t) = (X1(t), . . . , XN (t))′,

denote by pt ≡ pX(t) the ranking permutation for the vector X(t), for every t ≥ 0.
Suppose this process satisfies the following SDE:

dXi(t) =

N∑
k=1

1(pt(k) = i) [gk dt+ σk dWi(t)] , i = 1, . . . , N. (1.1)

Then this process X is called a classical system of N competing Brownian particles with
drift coefficients g1, . . . , gN and diffusion coefficients σ2

1 , . . . , σ
2
N . For each k = 1, . . . , N ,

the process
Yk = (Yk(t), t ≥ 0), Yk(t) := Xpt(k)(t) ≡ X(k)(t),

is called the kth ranked particle. If pt(k) = i, then we say that the particle Xi(t) = Yk(t)

at time t has name i and rank k.

These systems were introduced in the paper [2] with the purpose of financial modeling.
In the current paper, we discuss this in subsection 1.5. The coefficients of the SDE (1.1)
are piecewise constant functions of X1(t), . . . , XN (t), so weak existence and uniqueness
in law for such systems follow from the results of [4]. By definition, the ranked particles
satisfy

Y1(t) ≤ Y2(t) ≤ . . . ≤ YN (t).

Now, let us define the two main concepts of the current paper: a triple collision and a
simultaneous collision.

Definition 1.2. A triple collision at time t occurs if there exists a rank k = 2, . . . , N − 1

such that Yk−1(t) = Yk(t) = Yk+1(t).

A triple collision is sometimes an undesirable phenomenon. For example, existence
and uniqueness of a strong solutions of the SDE (1.1) has been proved only up to the
first moment of a triple collision, see [33, Theorem 2]. In this paper, we give a necessary
and sufficient condition for absence of triple collisions with probability one.

Definition 1.3. A simultaneous collision at time t occurs if there are ranks k 6= l such
that such that Yk(t) = Yk+1(t), Yl(t) = Yl+1(t).

Note that a triple collision is a particular case of a simultaneous collision. Let us
state the main result of this article.
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Theorem 1.4. Consider a system from Definition 1.1.
(i) Suppose the sequence (σ2

n)1≤n≤N is concave, that is,

σ2
k+1 − σ2

k ≤ σ2
k − σ2

k−1, k = 2, . . . , N − 1. (1.2)

Then, with probability one, there are no triple and no simultaneous collisions at any time
t > 0.

(ii) If the condition (1.2) fails for a certain k = 2, . . . , N − 1, then with positive
probability there exists a moment t > 0 such that there is a triple collision between
particles with ranks k − 1, k, and k + 1 at time t.

The proof of this result is given in Section 4. We can state a remarkable corollary of
this theorem.

Corollary 1.5. Take a system from Definition 1.1. Suppose a.s. there are no triple
collisions at any moment t > 0. Then a.s. there are no simultaneous collisions at any
moment t > 0.

It is interesting that a system of N = 4 particles can have a.s. no simultaneous
collisions of the form

Y1(t) = Y2(t), Y3(t) = Y4(t), (1.3)

and at the same time it can have triple collisions with positive probability. For example,
if you take

σ1 = σ4 = 1, and σ2 = σ3 = 1− ε for sufficiently small ε > 0,

then there are a.s. no simultaneous collisions of the form (1.3), but with positive
probability there is a triple collision of ranked particles Y1, Y2, and Y3, and with positive
probability there is a triple collision of ranked particles Y2, Y3, and Y4. Another example:
if

σ1 = σ3 = 1, and σ2 = σ4 = 1 + ε for sufficiently small ε > 0,

then there are a.s. no simultaneous collisions of the form (1.3), and a.s. no triple
collisions of ranked particles Y1, Y2, and Y3, but with positive probability there is a triple
collision of ranked particles Y2, Y3, and Y4. This is shown in the companion paper [54,
Subsection 1.2].

1.1 Local times of collision

Consider a system of competing Brownian particles from Definition 1.1. Define the
processes B1 = (B1(t), t ≥ 0), . . . , BN = (BN (t), t ≥ 0) as follows:

Bk(t) =

N∑
i=1

∫ t

0

1(ps(k) = i)dWi(s).

One can calculate that 〈Bi, Bj〉t = δijt; therefore, these are i.i.d. standard Brown-
ian motions. For k = 2, . . . , N , let the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) be the
semimartingale local time at zero of the nonnegative semimartingale Yk − Yk−1. For no-
tational convenience, we let L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0. Then the ranked particles
Y1, . . . , YN satisfy the following equation:

Yk(t) = Yk(0) + gkt+ σkBk(t) +
1

2
L(k−1,k)(t)−

1

2
L(k,k+1)(t), k = 1, . . . , N. (1.4)

The equation (1.4) was deduced in [1, Lemma 1] and [3, Theorem 2.5]; see also [2,
Section 3] and [31, Chapter 3].
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The process L(k−1,k) is called the local time of collision between the particles Yk−1
and Yk. One can regard the local time L(k−1,k)(t) to be the total amount of push between
the (k − 1)st and the kth ranked particles Yk−1 and Yk accumulated by time t. This
amount of push is necessary and sufficient to keep the particle Yk to the right of the
particle Yk−1, so that Yk−1(t) ≤ Yk(t). Indeed, “left to themselves”, the particles Yk−1
and Yk “want” to move as Brownian motions, which will eventually clearly violate the
condition Yk−1(t) ≤ Yk(t).

When these two particles collide, the amount of push is split evenly between them:
the amount (1/2)L(k−1,k)(t) goes to the right-sided particle Yk and pushes it to the right;
the equal amount (1/2)L(k−1,k)(t) (with the minus sign) goes to the left-sided particle
Yk−1 and pushes it to the left. One possible physical interpretation of this phenomenon:
the ranked particles have the same mass; so, when they collide, they get the same
amount of push.

The local time process L(k−1,k) has the following propositionerties: L(k−1,k)(0) = 0,
L(k−1,k) is nondecreasing, and it can increase only when Yk−1(t) = Yk(t), that is, when
particles with ranks k− 1 and k collide. We can formally write the last propositionerty as∫ ∞

0

1(Yk(t) 6= Yk−1(t))dL(k−1,k)(t) = 0. (1.5)

1.2 Systems with asymmetric collisions

If we change coefficients 1/2 in (1.4) to some other values, we get the model from
the paper [37]. The local times in this new model are split unevenly between the two
colliding particles, as if they had different mass. Let us now formally define this model.
First, let us describe its parameters. Let N ≥ 2 be the quantity of particles. Fix real
numbers g1, . . . , gN and positive real numbers σ1, . . . , σN , as before. In addition, fix real
numbers q+1 , q−1 , . . . , q

+
N , q−N , satisfying the following conditions:

q+k+1 + q−k = 1, k = 1, . . . , N − 1; 0 < q±k < 1, k = 1, . . . , N.

Definition 1.6. Take i.i.d. standard (Ft)t≥0-Brownian motions B1, . . . , BN . Consider a
continuous adapted RN -valued process

Y = (Y (t), t ≥ 0), Y (t) = (Y1(t), . . . , YN (t))′,

and N − 1 continuous adapted real-valued processes

L(k−1,k) = (L(k−1,k)(t), t ≥ 0), k = 2, . . . , N,

with the following propositionerties:
(i) Y1(t) ≤ . . . ≤ YN (t), t ≥ 0,
(ii) the process Y satisfies the following system of equations:

Yk(t) = Yk(0) + gkt+ σkBk(t) + q+k L(k−1,k)(t)− q−k L(k,k+1)(t), k = 1, . . . , N. (1.6)

We let L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0 for notational convenience.
(iii) for each k = 2, . . . , N , the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) has the proposi-

tionerties mentioned above: L(k−1,k)(0) = 0, L(k−1,k) is nondecreasing and satisfies (1.5).
Then the process Y is called a system of N competing Brownian particles with

asymmetric collisions, with drift coefficients g1, . . . , gN , diffusion coefficients σ2
1 , . . . , σ

2
N ,

and parameters of collision q±1 , . . . , q
±
N . For each k = 1, . . . , N , the process Yk = (Yk(t), t ≥

0) is called the kth ranked particle. For k = 2, . . . , N , the process L(k−1,k) is called the
local time of collision between the particles Yk−1 and Yk.
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The state space of the process Y isWN := {y = (y1, . . . , yN )′ ∈ RN | y1 ≤ y2 ≤ . . . ≤
yN}. Strong existence and pathwise uniqueness for Y and L are proved in [37, Section
2.1].

Remark 1.7. Triple and simultaneous collisions for these systems are defined similarly
to Definitions 1.2 and 1.3.

In the case of asymmetric collisions, we can also define a corresponding named
system of competing Brownian particles.

Definition 1.8. Consider a continuous adapted process

X = (X(t), t ≥ 0), X(t) = (X1(t), . . . , XN (t))′.

Suppose pt is the ranking permutation of X(t) for t ≥ 0, as before, and

Yk(t) ≡ Xpk(t)(t), k = 1, . . . , N, t ≥ 0,

Let L(k−1,k) = (L(k−1,k)(t), t ≥ 0) be the semimartingale local time at zero of Yk − Yk−1,
for k = 2, . . . , N ; and L(0,1)(t) ≡ L(N,N+1)(t) ≡ 0 for notational convenience, as before.

Then this systemX = (X1, . . . , XN )′ is governed by the following SDE: for i = 1, . . . , N

and t ≥ 0,

dXi(t) =

N∑
k=1

1(pt(k) = i) (gkdt+ σkdWi(t))

+

N∑
k=1

1(pt(k) = i)
(
q−k − (1/2)

)
dL(k,k+1)(t)

+

N∑
k=1

1(pt(k) = i)
(
q+k − (1/2)

)
dL(k−1,k)(t).

It is called a system of named competing Brownian particles with drift coefficients
(gn)1≤n≤N , diffusion coefficients (σ2

n)1≤n≤N , and parameters of collision (q±n )1≤n≤N .

The ranked particles (Y1, . . . , YN ) from Definition 1.8 form a system of ranked com-
peting Brownian particles in the sense of Definition 1.6. However, unlike the system
Y from Definition 1.6, which exists and is unique in a strong sense up to the infinite
time horizon, the system X from Definition 1.8 is known to have strong solutions only up
to the first moment of a triple collision, see [37]. This provides a motivation to find a
condition which guarantees absense of triple collisions. Here, we prove a necessary and
sufficient condition for a.s. lack of triple collisions.

Theorem 1.9. Consider a system of competing Brownian particles with asymmetric
collisions from Definition 1.6.

(i) Suppose the following condition is true:

(q−k−1 + q+k+1)σ2
k ≥ q−k σ

2
k+1 + q+k σ

2
k−1, k = 2, . . . , N − 1. (1.7)

Then, with probability one, there are no triple and no simultaneous collisions at any time
t > 0.

(ii) If the condition (1.7) is violated for some k = 2, . . . , N − 1, then with positive
probability there exists a moment t > 0 such that there is a triple collision between
particles with ranks k − 1, k, and k + 1 at time t.

Note that Theorem 1.4 is a particular case of this theorem for q±k = 1/2, k = 1, . . . , N .
Corollary 1.5 is also true for systems with asymmetric collisions.

EJP 20 (2015), paper 29.
Page 5/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3279
http://ejp.ejpecp.org/


Triple and simultaneous collisions of competing Brownian particles

1.3 Method of proof: reduction to an SRBM in the orthant

Let us informally describe a stochastic process called a semimartingale reflected
Brownian motion (SRBM) in the positive multidimensional orthant S := Rd

+, where
R+ := [0,∞) and d ≥ 1 is the dimension. We formally define an SRBM in subsection 2.1.

Fix the parameters of an SRBM: a drift vector µ ∈ Rd, a covariance matrix: a
d × d-positive definite symmetric matrix A = (aij)1≤i,j≤d, and a reflection matrix: a
d × d-matrix R = (rij)1≤i,j≤d with rii = 1, i = 1, . . . , d. Then an SRBM in the orthant
S with parameters R,µ,A, denoted by SRBMd(R,µ,A), is a Markov process with state
space S which:

(i) behaves as a d-dimensional Brownian motion with drift vector µ and covariance
matrix A in the interior of the orthant S;

(ii) on each face Si = {x ∈ S | xi = 0} of the boundary ∂S, the process is reflected in
the direction of ri, the ith column of R.

If ri = ei, where ei is the ith standard basis vector in Rd, then the reflection is called
normal. Otherwise, it is called oblique.

For a system of N competing Brownian particles (the classical system or the one
with asymmetric collisions), the gaps Zk(t) = Yk+1(t)− Yk(t), k = 1, . . . , N − 1, between
adjacent ranked particles form an SRBM in the orthantRN−1

+ : see subsection 2.2. If there
is a simultaneous collision Yk(t) = Yk+1(t) and Yl(t) = Yl+1(t), then Zk(t) = Zl(t) = 0. In
other words, a simultaneous collision is equivalent to the gap process hitting non-smooth
parts of the boundary of the orthant RN−1

+ . In Theorem 2.12, subsection 2.3, we state
a necessary and sufficient condition for an SRBM to a.s. avoid non-smooth parts of
the boundary. This theorem is proved in Section 3. In Section 4, we translate these
results into the language of competing Brownian particles, and prove Theorem 1.4 and
Theorem 1.9.

We find whether this SRBM hits non-smooth parts Si ∩ Sj , i 6= j of the boundary ∂S.
This corresponds to triple or simultaneous collisions of competing Brownian particles.
This connection is established in subsection 2.2.

1.4 Relation to previous results

For classical systems of competing Brownian particles from Definition 1.1, some
significant partial results on the triple collision problem were known before. In particular,
a necessary and sufficient condition for absence of triple collisions for systems with only
three particles is obtained in [32]. In the article [33], it is proved that the condition (1.2)
from Theorem 1.4 is necessary. For systems with asymmetric collisions from [37],
some sufficient conditions for absence of triple collisions were found, but these are not
necessary conditions.

In the companion paper [54], we find a sufficient condition for avoiding collisions of
four or more particles (multiple collisions), as well as multicollisions: when a few particles
collide and at the same time other few particles collide. An example of a multicollision
is Y1(t) = Y2(t) = Y3(t), Y5(t) = Y6(t) and Y7(t) = Y8(t). A simultaneous collision
(for example, Y1(t) = Y2(t) and Y3(t) = Y4(t)) is a particular case of a multicollision.
In particular, as mentioned above, we can find examples of a system of four particles
avoiding simultaneous collisions of the type (1.3) but having triple collisions with positive
probability.

We can also define a reflected Brownian motion in domains which are more general
than the orthant. In particular, a two-dimensional wedge is a subset of R2 of the form

{(r cos θ, r sin θ) | 0 ≤ r <∞, 0 ≤ θ ≤ ξ}

(where ξ ∈ (0, π) is the angle of this wedge). A reflected Brownian motion with unit drift
vector and identity covariance matrix was studied in [57]. The latter paper provides a
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necessary and sufficient condition for this process to a.s. avoid hitting the origin (the
corner of the wedge). In [60], the Hausdorff dimension of the set of times when this
process hits the corner was found. More generally, we can define a reflected Brownian
motion in a convex polyhedron in Rd: see [13] and [14]. In [61], a reflected Brownian
motion in a polyhedral domain was constructed under the so-called skew-symmetry
condition, see (2.6) and (3.11). It was shown that under this condition, it does not hit
non-smooth parts of the boundary. These results are important and are applied in this
article.

Let us also mention some related sources on nonattainability of lower-dimensional
manifolds by a diffusion process: the papers [21], [47], [48], [8], and the book [22].

1.5 Motivation and historical review

The original motivation to study classical systems of competing Brownian particles
came from Stochastic Finance. An observed phenomenon of real-world stock markets is
that stocks with smaller capitalizations have larger growth rates and larger volatilities.
This can be captured by the classical model of competing Brownian particles: just let
g1 > . . . > gN and σ1 > . . . > σN , and suppose that for i = 1, . . . , N , the quantity eXi(t) is
the capitalization of the ith stock at time t. For financial applications and market models
similar to this rank-based model, see the articles [1], [17], [38], the book [16, Chapter 5]
and a somewhat more recent survey [19, Chapter 3].

Classical systems from Definition 1.1 were studied in [31], [1], [45], [9], [46], [34],
[19]. There are several generalizations of these systems: [55] (systems of competing
Levy particles), [45], [33] (infinite systems of competing Brownian particles); [18], [17],
[1] (second-order stock market models, when drift and diffusion coefficients depend on
both ranks and names).

Systems of competing Brownian particles with asymmetric collisions are related to
the theory of exclusion processes: it was proved in [37, Section 3] that these systems are
scaling limits of asymmetrically colliding random walks, which constitute a certain type
of exclusion processes. In addition, thse systems are also related to random matrices
and random surfaces evolving according to the KPZ equation, see [20].

Studying an SRBM in the orthant is motivated by queueing theory. An SRBM in the
orthant is the heavy traffic limit for series of queues, when the traffic intensity at each
queue tends to one, see [50], [51], [24]. We can also define an SRBM in general convex
polyhedral domains in Rd, see [14]. An SRBM in the orthant and in convex polyhedra
has been extensively studied, see the survey [62], and articles [27], [26], [29], [28], [61],
[56], [15], [13], [10], [24], [6], [7], [14], [12], [11], [25], [58], [59], [63], [39], [40], [43],
[49], [36], [41], [42], [57], [60].

1.6 Notation

We denote by Ik the k × k-identity matrix. For a vector x = (x1, . . . , xd)′ ∈ Rd, let

‖x‖ :=
(
x21 + . . .+ x2d

)1/2
be its Euclidean norm. For any two vectors x, y ∈ Rd, their dot

product is denoted by x·y = x1y1+. . .+xdyd. We compare vectors x and y componentwise:
x ≤ y if xi ≤ yi for all i = 1, . . . , d; x < y if xi < yi for all i = 1, . . . , d; similarly for x ≥ y

and x > y. We compare matrices of the same size componentwise, too. For example, we
write x ≥ 0 for x ∈ Rd if xi ≥ 0 for i = 1, . . . , d; C = (cij)1≤i,j≤d ≥ 0 if cij ≥ 0 for all i, j.

Fix d ≥ 1, and let I ⊆ {1, . . . , d} be a nonempty subset. Write its elements in the
order of increase: I = {i1, . . . , im}, 1 ≤ i1 < i2 < . . . < im ≤ d. For any x ∈ Rd, let
[x]I := (xi1 , . . . , xim)′. For any d× d-matrix C = (cij)1≤i,j≤d, let [C]I := (cikil)1≤k,l≤m.
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2 Semimartingale Reflected Brownian Motion (SRBM) in the Or-
thant

2.1 Definition of an SRBM

Fix d ≥ 1, the dimension. Recall that R+ := [0,∞), and let S := Rd
+ be the d-

dimensional positive orthant. Its boundary consists of d faces Si = {x ∈ S | xi = 0}, i =

1, . . . , d. Take the parameters R,µ,A described in Subsection 1.2: a d× d-matrix R with
diagonal elements equal to one, a d×d positive definite symmetric matrix A, and a vector
µ ∈ Rd. Assume the usual setting: a filtered probability space (Ω,F , (Ft)t≥0,P) with the
filtration satisfying the usual conditions.

Definition 2.1. Take a continuous function X : R+ → Rd with X (0) ∈ S. A solution to
the Skorohod problem in the positive orthant S with reflection matrix R and driving
function X is a continuous function Z : R+ → S such that there exists another continuous
function Y : R+ → Rd with the following propositionerties:

(i) for every t ≥ 0, we have: Z(t) = X (t) +RY(t);
(ii) for every i = 1, . . . , d, the function Yi is nondecreasing, satisfies Yi(0) = 0 and

can increase only when Zi(t) = 0, that is, when Z(t) ∈ Si. We can write the last
propositionerty formally as ∫ ∞

0

Zi(t)dYi(t) = 0.

Remark 2.2. This definition can also be stated for a finite time horizon, that is, for
functions X ,Y,Z defined on [0, T ] instead of R+.

Definition 2.3. Suppose B = (B(t), t ≥ 0) is an ((Ft)t≥0,P)-Brownian motion in Rd with
drift vector µ and covariance matrix A. A solution Z = (Z(t), t ≥ 0) to the Skorohod
problem in S with reflection matrix R and driving function B is called a semimartingale
reflected Brownian motion, or SRBM, in the positive orthant S with reflection matrix R,
drift vector µ and covariance matrix A. It is denoted by SRBMd(R,µ,A). The function
Y is called the vector of regulating processes, and its ith component Yi is called the
regulating process corresponding to the face Si. The process B is called the driving
Brownian motion. We say that Z starts from x ∈ S if Z(0) = x a.s.

Definition 2.4. Take a d × d-matrix R = (rij)1≤i,j≤d. It is called a reflection matrix
if rii = 1 for i = 1, . . . , d. It is called nonnegative if all its elements are nonnegative,
that is, if R ≥ 0; it is called strictly nonnegative if it is nonnegative and rii > 0 for
i = 1, . . . , d. It is called an S-matrix if there exists a vector u ∈ Rd, u > 0 such that
Ru > 0. Any submatrix of R of the form [R]I , where I ⊆ {1, . . . , d} is a nonempty subset,
is called a principal submatrix (this includes the matrix R itself). The matrix R is called
completely-S if each of its principal submatrices is an S-matrix. It is called a Z-matrix if
rij ≤ 0 for i 6= j. It is called strictly inverse-nonnegative if it is invertible and its inverse
R−1 is a strictly nonnegative matrix. It is called a nonsingular M-matrix if it is both
completely-S and a Z-matrix.

The following lemma is a useful characterization of reflection nonsingularM-matrices;
its proof is given in the Appendix.

Lemma 2.5. Suppose R is a d× d reflection matrix. Then the following statements are
equivalent:

(i) R is a nonsingularM-matrix;
(ii) R is a strictly inverse-nonnegative Z-matrix;
(iii) R = Id −Q, where Q is a nonnegative matrix with spectral radius less than 1.

We are ready to state an existence and uniqueness result, proved in [27, Theorem
1], see also [62, Theorem 2.1]. This is not the most general result (for which the reader
might want to see [52], [56] and [62, Theorem 2.3]), but it is sufficient for our purposes.
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Proposition 2.6. Suppose R is a d× d reflection nonsingularM-matrix.
(i) For every continuous driving function X : R+ → Rd with X (0) ∈ S, the Skorohod

problem in the orthant S with reflection matrix R has a unique solution.
(ii) Take a vector µ ∈ Rd and a d × d positive definite symmetric matrix A. For

every x ∈ S, there exists in the strong sense an SRBMd(R,µ,A) starting from x, and
it is pathwise unique. These processes, starting from different x ∈ S, form a Feller
continuous strong Markov family.

Now we define a key concept: hitting non-smooth parts of the boundary ∂S of the
orthant S. (We already mentioned this in the Introduction.) This concept is a counterpart
of triple and simultaneous collisions for systems of competing Brownian particles.

Definition 2.7. The set
S0 := ∪1≤i<j≤d(Si ∩ Sj) ⊆ ∂S

is called non-smooth parts of the boundary ∂S. An S-valued process Z = (Z(t), t ≥ 0)

hits non-smooth parts of the boundary at time t if there exist i, j = 1, . . . , d, i 6= j such
that Zi(t) = Zj(t) = 0. We say that the process Z hits non-smooth parts of the boundary
if there exists t > 0 such that it hits non-smooth parts of the boundary at time t. If such
t > 0 does not exist, then we say that Z avoids non-smooth parts of the boundary.

2.2 Connection between an SRBM in the orthant and systems of competing
Brownian particles

In this subsection, we show that the gaps between adjacent particles in a system of
competing Brownian particles form an SRBM in the orthant.

Definition 2.8. Consider a system ofN competing Brownian particles (a classical system
from Definition 1.1 or a system with asymmetric collisions from Definition 1.6). Let
Y1, . . . , YN be the ranked particles. Then the RN−1

+ -valued process

Z = (Z(t), t ≥ 0), Z(t) = (Z1(t), . . . , ZN−1(t))′,

defined by
Zk(t) = Yk+1(t)− Yk(t), t ≥ 0, k = 1, . . . , N − 1,

is called the gap process for this system of competing Brownian particles.

Lemma 2.9. For a system of competing Brownian particles from Definition 1.6, the gap
process is an SRBMN−1(R,µ,A), where

R =



1 −q−2 0 0 . . . 0 0

−q+2 1 −q−3 0 . . . 0 0

0 −q+3 1 −q−4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 −q−N−1
0 0 0 0 . . . −q+N−1 1


, (2.1)

A =



σ2
1 + σ2

2 −σ2
2 0 0 . . . 0 0

−σ2
2 σ2

2 + σ2
3 −σ2

3 0 . . . 0 0

0 −σ2
3 σ2

3 + σ2
4 −σ2

4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . σ2
N−2 + σ2

N−1 −σ2
N−1

0 0 0 0 . . . −σ2
N−1 σ2

N−1 + σ2
N


, (2.2)

µ = (g2 − g1, g3 − g4, . . . , gN − gN−1)
′
. (2.3)

The matrix R in (2.1) is a nonsingularM-matrix.
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Corollary 2.10. For a classical system of competing Brownian particles from Defini-
tion 1.1, the gap process is an SRBMN−1(R,µ,A), where

R =


1 −1/2 0 0 . . .

−1/2 1 −1/2 0 . . .

0 −1/2 1 0 . . .
...

...
...

...
. . .

 , (2.4)

while A and µ are given by (2.2) and (2.3), respectively.

The proof can be found in [2] for classical systems or in [37] for systems with
asymmetric collisions. However, for the sake of completeness we give the full proof here.

Proof. Using the equation (1.6), we get the following equation for Zk = Yk+1 − Yk:

Zk(t) =Zk(0) + (gk+1 − gk) t+ σk+1Bk+1(t)− σkBk(t)

+
(
q+k+1 + q−k

)
L(k,k+1)(t)− q+k L(k−1,k)(t)− q−k+1L(k+1,k+2)(t).

Let

W k(t) = Zk(0) + (gk+1 − gk) t+ σk+1Bk+1(t)− σkBk(t), k = 1, . . . , N − 1, t ≥ 0.

Recall that q+k+1 + q−k = 1 for k = 1, . . . , N − 1. Therefore,

Zk(t) = W k(t) + L(k,k+1)(t)− q+k L(k−1,k)(t)− q−k+1L(k+1,k+2)(t).

The RN−1-valued process W = (W 1, . . . ,WN−1)′ is an (Ft)t≥0-Brownian motion in N − 1

dimensions, with drift vector µ = (g2− g1, . . . , gN − gN−1)′ and covariance matrix A given
by (2.2). Indeed, B1, . . . , BN are i.i.d. standard Brownian motions. Therefore,

〈W k〉t = 〈σk+1Bk+1(t)− σkBk(t)〉t =
(
σ2
k + σ2

k+1

)
t,

〈W k,W k+1〉t = 〈σk+1Bk+1(t)− σkBk(t), σk+2Bk+2(t)− σk+1Bk+1(t)〉t = −σ2
k+1t,

and 〈W k,W l〉t = 0 for |k − l| ≥ 2. The process L(k,k+1) for each k = 1, . . . , N − 1 satisfies
the following conditions: it starts from zero, that is, L(k,k+1)(0) = 0; it is nondecreasing,
and can increase only when Yk = Yk+1, or, equivalently, when Zk = 0. The rest is
trivial.

Remark 2.11. A system of competing Brownian particles has a simultaneous collision
at time t if and only if the gap process hits non-smooth parts S0 of the boundary ∂S at
time t. This is our method of proof: we state and prove results for an SRBM, and then
we translate them into the language of systems of competing Brownian particles.

2.3 Main Results for an SRBM

In this subsection, we state a necessary and sufficient condition for an SRBM a.s.
to avoid non-smooth parts of the boundary. For the rest of this subsection, fix d ≥ 2.
Suppose R is a d× d reflection nonsingularM-matrix. Fix a vector µ ∈ Rd and a d× d
positive definite symmetric matrix A. Recall the notation S = Rd

+ and consider the
process Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A), starting from some point x ∈ S.

Let us give a necessary and sufficient condition for an SRBM a.s. not hitting non-
smooth parts of the boundary ∂S of the orthant S.
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Theorem 2.12. (i) Suppose the following condition holds:

rijajj + rjiaii ≥ 2aij , 1 ≤ i, j ≤ d. (2.5)

Then with probability one, there does not exist t > 0 such that Z hits non-smooth parts
of the boundary at time t.

(ii) If the condition (2.5) is violated for some 1 ≤ i < j ≤ d, then with positive
probability there exists t > 0 such that Zi(t) = Zj(t) = 0.

Remark 2.13. The condition (2.5) can be written in the matrix form as RD+DRT ≥ 2A,
where D = diag(A) = diag(a11, . . . , add) is the diagonal d × d-matrix with the same
diagonal entries as A. The case when we have equality in (2.5) instead of inequality, is
very important: the condition

RD +DRT = 2A ⇔ rijajj + rjiaii = 2aij , 1 ≤ i, j ≤ d, (2.6)

is called the skew-symmetry condition. This is a very important and well-studied case:
see [29], [28], [61], [62, Theorem 3.5]. For example, under this condition, the SRBM has
the product-of-exponentials stationary distribution.

Remark 2.14. Whether an SRBMd(R,µ,A) a.s. avoids non-smooth parts of the boundary
depends only on the matrices R and A, not on the initial condition Z(0) or the drift vector
µ. Some general results of this type are shown in subsection 3.2, Lemma 3.3. But the
actual probability of hitting non-smooth parts of the boundary, if it is positive, does
depend on µ and the initial condition, see Remark 3.4.

3 Proof of Theorem 2.12

3.1 Outline of the proof

We can define a reflected Brownian motion not only in the orthant, but in more general
domains: namely, in convex polyhedra, see [14]. Similarly to an SRBM in the orthant,
this is a process which behaves as a Brownian motion in the interior of the domain and
is reflected according to a certain vector at each face of the boundary. We can reduce an
SRBM in the orthant with an arbitrary covariance matrix to a reflected Brownian motion
in a convex polyhedron with identity covariance matrix. This construction is carried out
in detail in subsection 3.5, Lemma 3.18.

Let us give a brief preview here. Consider an SRBM Z = (Z(t), t ≥ 0) in the orthant
Rd

+ with covariance matrix A. Consider the process

Z = (Z(t), t ≥ 0), Z(t) = A−1/2Z(t), (3.1)

which is a reflected Brownian motion in the domain A−1/2Rd
+ := {A−1/2z | z ∈ Rd

+} with
identity covariance matrix.

For a reflected Brownian motion in a polyhedral domain with identity covariance
matrix, a sufficient condition (the skew-symmetry condition) for a.s. not hitting non-
smooth parts of the boundary is known, see [61, Theorem 1.1]. Note that there are two
forms of the skew-symmetry condition. One is for an SRBM in the orthant with arbitrary
covariance matrix, which is (2.6). The other is for a reflected Brownian motion in a
convex polyhedron with identity covariance matrix, which was introduced in [61]; in
our paper, it is going to be given in (3.11). In Lemma 3.21 we prove that under this
linear transformation (3.1), these two conditions match. This justifies why they bear the
same name. This allows us (in Lemma 3.24) to prove part (i) of Theorem 2.12 under the
skew-symmetry condition (2.6).

Now, we need to show this for a more general condition (2.5). We reduce this
general case to the case of the skew-symmetry condition (2.6) by stochastic comparison
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(Lemma 3.9). We introduce an SRBM with new reflection matrix R̃ which satisfies the
skew-symmetry condition and such that R̃ ≥ R.

To prove part (ii), we first consider the case d = 2. The domain A−1/2R2
+ is in this

case a two-dimensional wedge, which can be written in polar coordinates

x1 = r cos θ, x2 = r sin θ,

as

0 ≤ r <∞, ξ2 ≤ θ ≤ ξ1,

where ξ1, ξ2 are angles such that ξ2 ≤ ξ1 ≤ ξ2 + π. We mentioned that a reflected
Brownian motion in this domain with zero drift vector and identity covariance matrix
was studied in [57], [58], [59], [60]. For this process, hitting non-smooth parts of the
boundary means hitting the corner of the wedge (the origin). The result [57, Theorem
2.2] gives a necessary and sufficient condition for a.s. avoiding the corner. Using the
linear transformation (3.1), we can then translate these results for an SRBM in the
positive quadrant with general covariance matrix. This proves (ii) for d = 2.

To prove Theorem 2.12 for the general d, we again use comparison techniques. We
consider any two components Zi, Zj of the process Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A),
and compare them with a two-dimensional SRBM using Corollary 3.10.

Some parts of the calculations in this proof below have been done in certain previous
articles. For example, the linear transformation z 7→ A−1/2z and the way it transforms
an SRBM in the orthant have been studied in the following articles: [28, Section 9,
Theorem 23] (general dimension, under the skew-symmetry condition); [37, proposition
2] (dimension d = 2). However, to make the exposition as lucid and self-contained as
possible, we decided to do all calculations from scratch.

Remark 3.1. In this artlce, we define a reflected Brownian motion in Definition 2.3 as a
semimartingale. Similarly, in the article [14] a reflected Brownian motion in a convex
polyhedron is defined in a semimartingale form; we present this in Definition 3.11.
However, in the papers [57] and [61], a reflected Brownian motion is not given in a
semimartingale form. Instead, it is defined as a solution to a certain submartingale
problem: see Definition 3.16. We use the semimartingale definition, and in Lemma 3.17
we prove that the semimartingale form of a reflected Brownian motion also satisfies the
submartingale definition. This shows that we can indeed use the results from [57] and
[61].

3.2 Girsanov removal of drift and independence of the initial conditions

In this subsection, fix d ≥ 1. Let R be a d× d reflection nonsingularM-matrix. Let A
be a d× d symmetric positive definite matrix, and let µ ∈ Rd. For every x ∈ S, denote by
Px the probability measure corresponding to the SRBMd(R,µ,A) starting from x.

Definition 3.2. For a nonempty subset I ⊆ {1, . . . , d}, let SI = {x ∈ S | xi = 0, i ∈ I}.
This is called an edge of the orthant S.

For example, S{i,j} = Si ∩ Sj for i 6= j is a piece of the non-smooth parts of the

boundary ∂S. In this article, we are interested in an SRBMd(R,µ,A) hitting or avoiding
these edges. But for this subsection, we shall work with a general edge SI of S.

The main result of this subsection is that the propositionerty of an SRBM to a.s. avoid
SI is independent of the starting point x ∈ S and of the drift vector µ. The proof is
postponed until the end of this subsection.

Proposition 3.3. Let Z = (Z(t) ≥ 0) be an SRBMd(R,µ,A). Let

p(x,R, µ,A) = Px (∃ t > 0 : Z(t) ∈ SI) .
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Fix a d× d reflection nonsingularM-matrix R and a positive definite symmetric d× d
matrix A. Then one of these two statements is true:

• For all µ ∈ Rd and x ∈ S, we have: p(x,R, µ,A) = 0: (the edge SI is avoided).

• For all µ ∈ Rd and x ∈ S, we have: p(x,R, µ,A) > 0: (the edge SI is hit).

Remark 3.4. We can reformulate Lemma 3.3 as follows: whether an SRBMd(R,µ,A)

hits the edge SI does not depend on the initial conditions and the drift vector µ; it
depends only on the reflection matrix R and the covariance matrix A.

However, suppose SRBMd(R,µ,A) hits the edge SI , so the probability p(x,R, µ,A) is
positive. What is its exact value? This probability does depend on the drift vector µ and
the initial condition x ∈ S. Let us give a one-dimensional example: a reflected Brownian
motion on the positive half-line R+ with no drift. With probability one, it hits the origin
(which is the same as hitting the edge S{1}). But a reflected Brownian motion on R+ with
positive drift b, starting from x > 0, hits the origin with probability e−2bx, see [5, Part 2,
Section 2, formula 2.0.2]. This does depend on the drift b and the initial condition x.

Definition 3.5. We say that an SRBMd(R,µ,A) avoids non-smooth parts of the boundary
∂S of the orthant S if it avoids every edge SI with |I| = 2. Otherwise, we say that an
SRBMd(R,µ,A) hits non-smooth parts of the boundary ∂S.

From the discussion just above, we see: the propositionerty of hitting non-smooth
parts of the boundary is independent of the initial condition x and of the drift vector µ.
It depends only on R and A. We can also see it from Theorem 2.12: the condition (2.5)
involves only elements of R and A.

3.3 Proof of proposition 3.3

We split the proof of Lemma 3.3 in two steps. First, we show independence of a
starting point x ∈ S in Lemma 3.6, then of a drift vector µ ∈ Rd in Lemma 3.7, using the
Girsanov transformation.

Lemma 3.6. For fixed parameters R,µ,A of an SRBM, we have: either p(x,R, µ,A) = 0

for all x ∈ S, or p(x,R, µ,A) > 0 for all x ∈ S. In other words, either an SRBMd(R,µ,A)

hits the edge SI , or it avoids the edge SI .

Proof. Since the family of the processes Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A), starting
from different points x ∈ S, is Feller continuous, the function

f(z) := Pz (∃t > 0 : Z(t) ∈ SI)

is continuous on S. Let P t(x,C) = Px(Z(t) ∈ C) be the transition function for the
SRBMd(R,µ,A). By the Markov propositionerty,

Pz (∃t > 1 : Z(t) ∈ SI) =

∫
S

P 1(z, dy)f(y). (3.2)

But
Pz (∃t > 1 : Z(t) ∈ SI) ≤ Pz (∃t > 0 : Z(t) ∈ SI) = f(z). (3.3)

Combining (3.2) and (3.3), we have:∫
S

f(y)P 1(z, dy) ≤ f(z).

Suppose for some z0 ∈ S we have: f(z0) > 0. Since f is continuous, there exists an open
neighborhood U of z0 in S such that f(z) ≥ f(z0)/2 > 0 for z ∈ U . But U has positive
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Lebesgue measure, and so P 1(z, U) > 0 for z ∈ S. Therefore, f(z) ≥ P 1(z, U)f(z0)/2 > 0

for all z ∈ S.
We have proved that if f(z0) > 0 for at least one z0 ∈ S, then f(z) > 0 for all z ∈ S.

This completes the proof of the lemma.

Lemma 3.7. Fix a nonempty subset I ⊆ {1, . . . , d}. Then an SRBMd(R,µ,A) avoids SI if
and only if an SRBMd(R, 0, A) avoids SI .

Proof. Using Lemma 3.6, without loss of generality, fix a starting point z ∈ S, the same for
both processes. Let Z = SRBMd(R,µ,A), starting from z, and let Z = SRBMd(R, 0, A),
starting from z. Let P, P be the distributions of the processes Z,Z on the space C(R+,R

d)

of continuous functions R+ → Rd. For every T > 0, let GT be the σ-subalgebra of the
Borel σ-algebra of C(R+,R

d), generated by the values of x(s), 0 ≤ s ≤ T for all functions
x ∈ C(R+,R

d). By the Girsanov theorem, for every T > 0, the restrictions P |GT and

P
∣∣
GT

are mutually absolutely continuous: they have common events of probability one.
Therefore, the following statements are equivalent:

• With probability 1, there is no t ∈ (0, T ] such that Z(t) ∈ SI ;

• With probability 1, there is no t ∈ (0, T ] such that Z(t) ∈ SI .

Suppose that with probability 1, there is no t > 0 such that Zi(t) = 0 for each i ∈ I; then
for every T > 0, with probability 1, there is no t ∈ (0, T ] such that Zi(t) = 0. Since T > 0

is arbitrary, we have: with probability 1, there is no t > 0 such that Zi(t) = 0 for each
i ∈ I. The converse statement is proved similarly.

3.4 Stochastic comparison for an SRBM

Let us introduce the concept of stochastic domination, or domination in law.

Definition 3.8. Fix d ≥ 1 and take two Rd-valued processes Z = (Z(t), t ≥ 0), Z =

(Z(t), t ≥ 0). We say that Z is stochastically dominated by Z if for every t ≥ 0 and y ∈ Rd

we have:
P(Z(t) ≥ y) ≤ P(Z(t) ≥ y).

We say that Z is pathwise dominated by Z if a.s. for all t ≥ 0 we have: Z(t) ≤ Z(t).

If the processes Z and Z are Markov, then by changing the probability space we
can move from stochastic domination to pathwise domination, see [35, Theorem 5].
There is a well-developed theory of stochastic domination and pathwise domination for
processes with oblique reflection in the orthant. The most general result in this area is
[49, Theorem 4.1], see also [41, Theorem 1.1(i)], [23, Theorem 3.1], [43, Theorem 6(i)].
The following proposition is an immediate corollaries of [49, Theorem 4.1].

Proposition 3.9. Take two d × d reflection nonsingular M-matrices R,R such that
R ≤ R. Fix a vector µ ∈ Rd and a positive definite symmetric d× d-matrix A. Let

Z = SRBMd(R,µ,A), Z = SRBMd(R,µ,A), such that Z(0) � Z(0).

Then Z � Z.

Here is another useful statement, proved in [53, Corollary 3.6], which is applied later
in this article.

Corollary 3.10. Let d ≥ 1 and take a d × d reflection nonsingular M-matrix. Take a
vector µ ∈ Rd and a positive definite symmetric d× d-matrix A. Fix a nonempty subset
I ⊆ {1, . . . , d} with |I| = p, 1 ≤ p < d. Let

Z = SRBMd(R,µ,A), Z = SRBMp([R]I , [µ]I , [A]I)

such that [Z(0)]I = Z(0) in law. Then [Z]I � Z.
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3.5 An SRBM in a convex polyhedron

Let us give a definition of an SRBM in convex polyhedra from [14]. Fix the dimension
d ≥ 1. First, let us define the state space, a polyhedral domain P ⊆ Rd. Fix m ≥ 1,
the number of edges. Let n1, . . . , nm ∈ Rd be unit vectors, and let b1, . . . , bm ∈ R. The
domain P is defined by

P := {x ∈ Rd | ni · x ≥ bi, i = 1, . . . ,m}. (3.4)

We assume that the interior of P is nonempty and for each j = 1, . . . ,m we have:

{x ∈ Rd | ni · x ≥ bi, i = 1, . . . ,m, i 6= j} 6= P. (3.5)

In this case, the edges of P:

Pi = {x ∈ P | ni · x = bi}, i = 1, . . . ,m,

are (d− 1)-dimensional. Note that the vectors ni, i = 1, . . . ,m, are inward unit normal
vectors to each of the faces P1, . . . ,Pm. Now, let us define an SRBM in the domain P.
Fix the parameters of this SRBM: a vector µ ∈ Rd, a d× d positive definite symmetric
matrix A and a d×m-matrix R.

Definition 3.11. Fix a starting point x ∈ P. Take B = (B(t), t ≥ 0) to be a d-dimensional
Brownian motion with drift vector µ and covariance matrix A, starting from x. Take
an adapted continuous P-valued process Z = (Z(t), t ≥ 0) and an adapted continuous
Rm-valued process

L = (L(t), t ≥ 0), L(t) = (L1(t), . . . , Lm(t))′,

such that:

(i) Z(t) = B(t) +RL(t), t ≥ 0;

(ii) for every i = 1, . . . ,m, Li(0) = 0, Li is nondecreasing and can increase only when
Z(t) ∈ Pi.

The process Z is called a semimartingale reflected Brownian motion (SRBM) in the
domain P with reflection matrix R, drift vector µ and covariance matrix A. This process
is denoted by SRBMd(P, R, µ,A).

Remark 3.12. A particular case is an SRBM in the orthant S, which was introduced in
Section 2: SRBMd(R,µ,A) is the same as SRBMd(S,R, µ,A).

Let vi be the ith column of R. An SRBMd(P, R, µ,A) behaves as a d-dimensional
Brownian motion with drift vector µ and covariance matrix A inside P. On each face Pi,
it is reflected in the direction of the vector vi.

The paper [14] contains an existence and uniqueness result for an SRBM in P. We
present this result in a slightly weaker version, which is still sufficient for this article.
For any nonempty subset I ⊆ {1, . . . ,m}, let PI := ∩i∈IPi. A positive linear combination
of vectors u1, . . . , uq is any vector α1u1 + . . .+ αquq with α1, . . . , αq > 0.

Assumption 3.13. For every nonempty subset I ⊆ {1, . . . ,m}, we have:

(i) PI 6= ∅ and PJ ( PI for I ( J ⊆ {1, . . . ,m};
(ii) there is a positive linear combination v of vectors vi, i ∈ I, such that v ·ni > 0, i ∈

I;

(iii) there is a positve linear combination n of vectors ni, i ∈ I, such that n · vi >
0, i ∈ I.

The following result in an immediate corollary of [14, Theorem 1.3].
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Proposition 3.14. Under Assumption 3.13, for every x ∈ P there exists in the weak
sense the process

Z(x) = (Z(x)(t), t ≥ 0) = SRBMd(P, R, µ,A),

starting from Z(x)(0) = x, and it is unique in law. This family of processes (Z(x), x ∈ P)

is Feller continuous strong Markov.

Remark 3.15. By Assumption 3.13(ii) applied to a subset I = {i}, we have: vi · ni > 0.
So we can normalize vi to make vi · ni = 1. This is done by replacing vi by kivi for
ki := (vi · ni)−1 and replacing Li by k−1i Li. Doing this for each i = 1, . . . ,m is called
standard normalization. The new reflection matrix is R = RD, where D = diag((v1 ·
n1)−1, . . . , (vm · nm)−1). If vi = kivi is the ith column of R, we can decompose it into the
sum

vi = ni + qi, (3.6)

where
qi · ni = (vi − ni) · ni = vi · ni − ni · ni = 1− 1 = 0, i = 1, . . . ,m.

These vectors ni and qi are called the normal and tangential components of the reflection
vector vi, respectively. Similar normalization was done for an SRBM in the orthant in [6,
Appendix B].

As mentioned above, in the papers [57], [58], [59], [61], [60], reflected Brownian
motion was defined as a solution to a certain submartingale problem. We are going to
show that if an SRBM is defined in a semimartingale form, as in Definition 3.11, then it
is also a solution to this submartingale problem, so we can use the results of the papers
mentioned above.

Definition 3.16. Take a convex polyhedron P from (3.4) and the parameters R,µ,A
from Definition 3.11. The symbol C2

c (P) stands for the family of twice continuously
differentiable functions f : P → R with compact support. Define the following operator
for functions f ∈ C2

c (P):

Lf :=
1

2

d∑
i=1

d∑
j=1

aij
∂2f

∂xi∂xj
+

d∑
i=1

µi
∂f

∂xi
.

A P-valued continuous adapted process Z = (Z(t), t ≥ 0) is called a solution to the
submartingale problem associated with (P, R, µ,A), starting from x ∈ P, if:

(i) Z(0) = x a.s.;
(ii) for every function f ∈ C2

c (P) which satisfies

vi · ∇f(x) ≥ 0 for x ∈ Pi, for each i = 1, . . . ,m,

the following process is an (Ft)t≥0-submartingale:

Mf = (Mf (t), t ≥ 0), Mf (t) = f(Z(t))−
∫ t

0

Lf(Z(s))ds.

Lemma 3.17. The process SRBMd(P, R, µ,A), starting from x ∈ P, is a solution to the
submartingale problem associated with (P, R, µ,A), starting from x.

The proof is postponed until the Appendix.

3.6 Connection between an SRBM in the orthant and an SRBM in a polyhedron

Using the linear transformation (3.7), we can switch from an SRBMd(R,µ,A) in the
orthant with covariance matrix A to an SRBMd in a convex polyhedron with identity
covariance matrix.
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Lemma 3.18. Consider the process Z = (Z(t), t ≥ 0), which is an SRBMd(R,µ,A).
Define a new process Z = (Z(t), t ≥ 0) as follows:

Z(t) = A−1/2Z(t). (3.7)

(i) The process Z is an SRBMd(P, R, µ, Id) in the convex polyhedron

P := {A−1/2z | z ∈ S} = {z ∈ Rd | A1/2z ≥ 0}, (3.8)

with reflection matrix R := A−1/2R, drift vector µ := A−1/2µ and covariance matrix
A = Id. The domain P is a convex polyhedron as in (3.4) with m = d edges: Pi :=

{A−1/2x | x ∈ Si}, i = 1, . . . , d. This domain satisfies the condition (3.5) and the
Assumption 3.13 (i).

(ii) The standard normalization from Remark 3.15 gives us a new reflection matrix:
R̃ := RD1/2 = A−1/2RD1/2. The ith column of R̃ is equal to

vi := a
1/2
ii A−1/2Rei, i = 1, . . . , d. (3.9)

The inward unit normal vector to the face Pi is given by

ni = a
−1/2
ii A1/2ei, i = 1, . . . , d. (3.10)

Furthermore, Assumption 3.13(ii) and (iii) is satisfied.

Proof. (i) We have: Z(t) = B(t) +RL(t), where B = (B(t), t ≥ 0) is the driving Brownian
motion for the process Z, and L = (L(t), t ≥ 0) is the vector of regulating processes.
Here, B is a d-dimensional Brownian motion with drift vector µ and covariance matrix A.
Define W = (W (t), t ≥ 0) as W (t) = A−1/2B(t): this is a d-dimensional Brownian motion
with drift vector µ = A−1/2µ and identity covariance matrix. Then Z(t) := A−1/2Z(t) =

W (t) + A−1/2RL(t). The state space of Z is the domain P, given in (3.8). This is a
convex polyhedron of the type (3.4). Let us show it satisfies the condition (3.5) and the
Assumption 3.13 (i). The linear transformation (3.7) is a bijection Rd → Rd, hence it
suffices to show that the orthant S satisfies the condition (3.5) and the Assumption 3.13
(i), which is straightforward.

(ii) The face Pi is spanned by vectors A−1/2ej , j ∈ {1, . . . , d} \ {i}. The vector ni is
normal to Pi, so we must have: ni · A−1/2ej = 0. Since the matrix A−1/2 is symmetric,
A−1/2ni · ej = 0 for j ∈ {1, . . . , d} \ {i}. Therefore, A−1/2ni = kiei for some ki ∈ R; so
ni = kiA

1/2ei. Let us find ki such that ni is inward oriented and has unit length.
The inward orientation means that for any point w in the relative interior of the face

Pi, that is, in Pi \ (∪j 6=iPj), there exists ε > 0 such that w + εni ∈ P. But the domain
P is obtained from the orthant S = Rd

+ by the linear transformation (3.7). So we have:
w = A−1/2z for some z in the relative interior Si \ (∪j 6=iSj) of the face Si of ∂S. We must
have w + εni ∈ P. But

w + εni = A−1/2 (z + εkiAei) , and P = {A−1/2x | x ∈ S}.

Therefore, w + εni ∈ P ⇔ z + εkiAei ∈ S. Since z ∈ Si, we have: zi = 0, and
(Aei)i = aii > 0. But zi + εki(Aei)i = (z + εkiAei)i ≥ 0, so we must have: ki ≥ 0. Now, let
us find |ki| using the fact that ‖ni‖ = 1. Since the matrix A1/2 is symmetric, we have:

‖A1/2ei‖ =
[
A1/2ei ·A1/2ei

]1/2
=
[
A1/2(A1/2ei) · ei

]1/2
= [Aei · ei]1/2 = a

1/2
ii .

But ‖ni‖ = 1, and ni = kiA
1/2ei. So |ki|a1/2ii = 1, and |ki| = a

−1/2
ii . Earlier, we proved

that ki ≥ 0. Therefore, ki = a
−1/2
ii , which proves (3.10). Now, let us show (3.9). The ith
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column of A−1/2R is equal to A−1/2Rei. Using the fact that the matrix A1/2 is symmetric,
we have:

A−1/2Rei · ni = A−1/2Rei · a−1/2ii A1/2ei = a
−1/2
ii A1/2A−1/2Rei · ei

= a
−1/2
ii Rei · ei = a

−1/2
ii rii = a

−1/2
ii .

Therefore, the standard normalization defined in Remark 3.15 leads to

vi := a
1/2
ii A−1/2Rei, i = 1, . . . , d,

which proves (3.9). Now, let us show that the Assumption 3.13(ii) and (iii) is satisfied.
Note that the matrix A1/2 is symmetric, so for every i, j = 1, . . . , d we have:

vi · nj =a
1/2
ii a

−1/2
jj A−1/2Rei ·A1/2ej = a

1/2
ii a

−1/2
jj A1/2A−1/2Rei · ej

= a
1/2
ii a

−1/2
jj Rei · ej = a

1/2
ii a

−1/2
jj rij .

Fix a nonempty subset I ⊆ {1, . . . , d} with |I| = p. Since the matrix R is completely-S,
the submatrix [R]I is an S-matrix. There exist positive numbers αi, i ∈ I, such that∑

j∈I rijαj > 0 for i ∈ I. Take n =
∑

j∈I a
1/2
jj αjnj . This is a positive linear combination

of nj , j ∈ I, and vi · n =
∑

j∈I a
1/2
ii rijαj > 0 for i ∈ I. This proves Assumption 3.13(iii).

Similarly, the transposed matrix R′ is also completely-S (this follows from Lemma 2.5(ii)),
so repeating this argument with R′ in place of R, we can prove Assumption 3.13(ii).

3.7 Skew-symmetry condition

Consider a reflected Brownian motion in a general convex polyhedron in general
dimension d ≥ 2. Then a sufficient condition for a.s. not hitting non-smooth parts of the
boundary is given by [61, Theorem 1.1]. It is called the skew-symmetry condition. In the
subsequent exposition, we define this condition in (3.11), and show that it is equivalent
(under the linear transformation (3.7)) to the skew-symmetry condition (2.6). This is the
reason why these two conditions have the same name.

Definition 3.19. Consider an SRBMd(P, R, µ,A) with µ = 0 and A = Id. Suppose the
matrix R is normalized, as described in Remark 3.15. We say that the skew-symmetry
condition holds if

ni · qj + nj · qi = 0, 1 ≤ i, j ≤ m. (3.11)

This justifies the name of this condition: the matrix (ni · qj)1≤i,j≤m must be skew-
symmetric.

We say that an SRBM Z = (Z(t), t ≥ 0) hits non-smooth parts of the boundary ∂P at
time t > 0 if there exist 1 ≤ i < j ≤ m such that Z(t) ∈ Pi ∩Pj . This is a generalization of
the concept of an SRBM in the orthant hitting non-smooth parts of the boundary. For an
SRBM in a two-dimensional wedge, this is equivalent to hitting the corner of the wedge
(the origin): a process Z = (Z(t), t ≥ 0) with values in this wedge hits the corner at time
t > 0 if Z(t) = 0.

Proposition 3.20. Under Assumption 3.13 and the skew-symmetry condition (3.11), an
SRBMd(P, R, µ,A) starting from some point x ∈ P \ ∂P in the interior of the polyhedral
domain P a.s. does not hit non-smooth parts of the boundary at any time t > 0.

Proof. Follows from Lemma 3.17, proposition 3.14 and [61, Theorem 1.1].

The following lemma shows the equivalence of the two forms (2.6) and (3.11) of the
skew-symmetry condition under the linear transformation (3.7).
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Lemma 3.21. Consider the process Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A). Let Z be the
process defined by (3.7). Then the skew-symmetry condition in the form (2.6) holds for
Z if and only if the skew-symmetry condition in the form (3.11) holds for Z.

Proof. Suppose (2.6) is true. Using (3.9), (3.10) and the fact that vi = ni+qi, i = 1, . . . ,m

(in this case m = d), we have:

ni · qj + nj · qi = ni · (vj − nj) + nj · (vi − ni) = ni · vj − nj · vi − 2ni · nj
= a
−1/2
ii A1/2ei · a1/2jj A

−1/2Rej + a
−1/2
jj A1/2ej · a1/2ii A−1/2Rei − 2a

−1/2
ii a

−1/2
jj A1/2ei ·A1/2ej .

Since the matrix A1/2 is symmetric, we have:

a
−1/2
ii A1/2ei · a1/2jj A

−1/2Rej = a
−1/2
ii a

1/2
jj

(
ei ·A1/2A−1/2Rej

)
= a
−1/2
ii a

1/2
jj (ei ·Rej) = a

−1/2
ii a

1/2
jj rij ,

similarly
a
−1/2
jj A1/2ej · a1/2ii A−1/2Rei = a

−1/2
jj a

1/2
ii rji,

and finally

a
−1/2
ii a

−1/2
jj A1/2ei ·A1/2ej = a

−1/2
ii a

−1/2
jj

(
ei ·A1/2A1/2ej

)
= a
−1/2
ii a

−1/2
jj (ei ·Aej) = a

−1/2
ii a

−1/2
jj aij .

Therefore,

ni · qj + nj · qi = a
−1/2
ii a

1/2
jj rij + a

−1/2
jj a

1/2
ii rji − 2a

−1/2
ii a

−1/2
jj aij

= a
−1/2
ii a

−1/2
jj [rijajj + rjiaii − 2aij ] = 0.

The converse statement is proved similarly.

3.8 An SRBM in a two-dimensional wedge

A particular case of a polyhedral domain is a two-dimensional wedge (see Fig. 1),
considered in [57], [58], [59], [60]:

V := {(r cos θ, r sin θ) | 0 ≤ r <∞, ξ2 ≤ θ ≤ ξ1}.

Here, ξ2 < ξ1 < ξ2 + π. Its angle is defined as ξ := ξ1 − ξ2. Its boundary ∂V consists of
two edges

Vi := {(r cos ξi, r sin ξi) | 0 ≤ r <∞}, i = 1, 2.

The edge V1 is called the upper edge, and the edge V2 is called the lower edge. The
difference between them is as follows: the shorter way to rotate V1 to get V2 is clockwise
rather than counterclockwise. On each edge Vi, there is a reflection vector vi, which
forms the angle θi ∈ (−π/2, π/2) with the inward unit normal vector ni.

These angles are signed: positive angles θ1, θ2 are measured toward the vertex of
V (the origin). In other words, θ1 is the angle between n1 and v1, measured clockwise
in the direction from n1 to v1. This means the following: if the shorter way to rotate
the direction of n1 to get the direction of v1 is clockwise, then θ1 > 0; and if it is
counterclockwise, then θ1 < 0. If v1 and n1 have the same direction, then θ1 = 0.
Simlarly, θ2 is the angle between n2 and v2, measured counterclockwise from n2 to v2.

We are interested in whether a reflected Brownian motion with zero drift vector and
identity covariance matrix in this wedge hits the corner. A necessary and sufficient
condition is established in [57, Theorem 2.2].
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v2

v1
n2

n1

ξ θ2

θ1

Figure 1. A two-dimensional wedge.

Angles θ1 and θ2 are counted toward the vertex of the wedge

Here, n1 and n2 are normal vectors, v1 and v2 are reflection vectors

V2

V1

Proposition 3.22. Consider an SRBM Z = (Z(t), t ≥ 0) in the wedge V with µ = 0 and
A = I2, starting from a point x ∈ V \ ∂V.

(i) If θ1 + θ2 > 0, then a.s. there exists t > 0 such that Z(t) = 0.
(ii) If θ1 + θ2 ≤ 0, then a.s. there does not exist t > 0 such that Z(t) = 0.

Proof. Follows from Lemma 3.17, proposition 3.14, and Theorem 2.2 from [57].

In the case of two dimensions, d = 2, the linear transformation (3.7) leads to an
SRBM in a two-dimensional wedge with identity covariance matrix. In the following
lemma, we explicitly calculate the parameters of this SRBM: the angle ξ of this wedge
and the two angles θ1, θ2 of reflection.

Lemma 3.23. Suppose Z = SRBM2(R, 0, A) and Z is the process defined by (3.7). Then
the polyhedral domain P is in fact a wedge V with the angle

ξ = arccos

[
− a12√

a11a22

]
. (3.12)

The process Z is an SRBM in V with zero drift vector, identity covariance matrix and the
angles of reflection

θ1 = arcsin
a12 − a11r21√

a11 (a11r221 − 2a12r21 + a22)
, (3.13)

θ2 = arcsin
a12 − a22r12√

a22 (a22r212 − 2a12r12 + a11)
. (3.14)

Proof. First, note that A−1/2 is a positive definite matrix, so it has a positive determinant.
Therefore, the linear transformation (3.7) preserves the orientation of the plane R2

+. The
edges of this wedge are

Vi := A−1/2Si ≡ {A−1/2z | z ∈ Si}, i = 1, 2.

In fact, V1 is the upper edge, and V2 is the lower edge. Indeed, for the original quadrant
S = R2

+, the edge S1 = {x ∈ S | x1 = 0} is the upper edge, and the edge S2 = {x ∈
S | x2 = 0} is the lower edge: in other words, the shorter way to rotate S1 to get
S2 is clockwise rather than counterclockwise. But under the transformation 3.1, S1

is mapped to V1, and S2 is mapped to V2. This linear transformation preserves the
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orientation. Therefore, the shorter way to rotate V1 to get V2 is also clockwise rather
than counterclockwise. The edge V1 has a directional vector c2 = A−1/2e2, while the edge
V2 has a directional vector c1 = A−1/2e1. An important remark: consider the notation
Pi, i = 1, . . . , d, for edges of the polyhedron from Lemma 3.18. Then our current notation
V1 and V2 is consistent with this notation in the sense that

V1 = P1 and V2 = P2. (3.15)

The angle ξ of the wedge is the angle between the edges V1 and V2. So ξ is the angle
between two vectors c1 = A−1/2e1 and c2 = A−1/2e2. Since the matrix A−1/2 is symmetric,
we have:

cos ξ =
A−1/2e1 ·A−1/2e2
‖A−1/2e1‖‖A−1/2e2‖

=
(A−1/2)2e1 · e2[

(A−1/2)2e1 · e1
]1/2 [

(A−1/2)2e2 · e2
]1/2

=
A−1e1 · e2

[A−1e1 · e1]
1/2

[A−1e2 · e2]
1/2

=
(A−1)12

(A−1)
1/2
11 (A−1)

1/2
22

.

But

A−1 =
1

a11a22 − a212

[
a22 −a12
−a12 a11

]
(3.16)

Therefore,
cos ξ = − a12√

a11a22
,

and we get (3.12). Let us find the reflection angles θ1 and θ2. For the quadrant S = R2
+,

if we rotate the directional vector e2 of the upper face S1 clockwise by π/2, we get an
inward normal vector to this face. But the linear transformation (3.7) preserves the
orientation, so a similar statement is true for the wedge V: if we rotate the directional
vector c2 = A−1/2e2 of the upper face V1 of the wedge clockwise by π/2, then we get an
inward normal vector

n1 ≡
[
(n1)1
(n1)2

]
:=

[
(c2)2
−(c2)1

]
Similarly, if we rotate the vector c1 = A−1/2e1 by π/2 counterclockwise, we get an inward
normal vector

n2 ≡
[
(n2)1
(n2)2

]
:=

[
−(c1)2
(c1)1

]
to V1. These are not unit vectors: ni 6= ni. In fact, ‖n1‖ = ‖c2‖ and ‖n2‖ = ‖c1‖. But
n1 has the same direction as n1, and n2 has the same direction as n2. In other words,
n1 = ‖n1‖n1 and n2 = ‖n2‖n2.

From Lemma 3.18 and (3.15), it follows that v1 = A−1/2r1 and v2 = A−1/2r2. These
vectors are not normalized in the sense of Remark 3.15. The angle θ1 between n1 and v1
has a sign: it is calculated toward the origin, or, in other words, counterclockwise from
n1 to v1. But n1 and n1 have the same direction. Therefore, θ1 can be calculated as the
signed angle from n1 to v1 in the counterclockwise direction:

sin θ1 =
(n1)1(v1)2 − (n1)2(v1)1

‖n1‖‖v1‖
=
−(c2)2(v1)2 − (c2)1(v1)1

‖c2‖‖v1‖
= − c2 · v1
‖c2‖‖v1‖

= − A−1/2e2 ·A−1/2r1
‖A−1/2e2‖‖A−1/2r1‖

= − A−1/2e2 ·A−1/2r1[
A−1/2e2 ·A−1/2r1

]1/2 [
A−1/2e2 ·A−1/2r1

]1/2
Since the matrix A−1/2 is symmetric, the last expression is equal to

− A−1e2 · r1
[A−1e2 · e2]

1/2
[A−1r1 · r1]

1/2
.
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Using the formula (3.16) for A−1 and the fact that r1 = (1, r21)′, we have:

sin θ1 =
a12 − a11r21√

a11 (a11r221 − 2a12r21 + a22)
.

Similarly, we can calculate the angle θ2:

sin θ2 =
a12 − a22r12√

a22 (a22r212 − 2a12r12 + a11)
.

Since θ1, θ2 ∈ (−π/2, π/2), we get (3.13) and (3.14).

3.9 Completion of the proof of Theorem 2.12

By Lemma 3.6, without loss of generality we can assume an SRBM starts from some
point x ∈ S \ ∂S, and µ = 0. First, we prove (i) in the case of the skew-symmetry
condition (2.6), then move to the general case (2.5). Then we prove (ii) in the case d = 2,
and proceed to the case of the general dimension.

Lemma 3.24. Take an SRBM in the orthant S, starting from x ∈ S \ ∂S. Suppose it
satisfies the skew-symmetry condition (2.6). Then the statement of Theorem 2.12(i) is
true.

Proof. Apply the linear transformation (3.7) to Z = (Z(t), t ≥ 0) = SRBMd(R, 0, A). By
Lemma 3.18, we get an SRBM Z = (Z(t), t ≥ 0) in the polyhedron S = A−1/2S, given
by (3.8) with zero drift and identity covariance matrix. It was shown in Lemma 3.21 that
the skew-symmetry condition (3.11) is true. Therefore, by proposition 3.20 the process
Z a.s. does not hit non-smooth parts of the boundary ∂S at any moment t > 0. Thus,
the process Z a.s. does not hit non-smooth parts of the boundary ∂S at any moment
t > 0.

Lemma 3.25. Take an SRBM in the orthant S, starting from x ∈ S \ ∂S. Suppose it
satisfies the condition (2.5). Then the statement of Theorem 2.12(i) is true.

Proof. Let us find another reflection nonsingularM-matrix R̃ = (r̃ij)1≤i,j≤d such that
R ≥ R̃, and the skew-symmetry condition (2.6) is true for an SRBMd(R̃, 0, A). We need:

r̃ijajj + r̃jiaii = 2aij , i, j = 1, . . . , d. (3.17)

Let r̃ij = 1 for i = j. Then (3.17) is true for i = j. Let

r̃ij =
1

ajj
[2aij − rjiaii] , r̃ji = rji, 1 ≤ i < j ≤ d.

This is well defined, since ajj > 0 (because the matrix A is positive definite). Also,
r̃ij ≤ rij , because rijajj + rjiaii ≥ 2aij . Since r̃ij ≤ rij ≤ 0 for i 6= j, R̃ is a Z-matrix,
so condition (3.17) holds. Therefore, by [30, Theorem 2.5] (compare conditions 12 and
16), R̃ is a nonsingular M-matrix. Consider two processes Z = SRBMd(R,µ,A), Z̃ =

SRBMd(R̃, µ,A), starting from the same initial condition x ∈ S \ ∂S. Then we have: R
and R̃ are d× d reflection nonsingularM-matrices, and R ≥ R̃. By proposition 3.9, we
have: Z̃ is stochastically smaller than Z. By [35, Theorem 5], we can claim that a.s.
for all t > 0 we have: Z̃(t) ≤ Z(t) (possibly after changing the probability space). By
Lemma 3.24, the process Z̃ a.s. does not hit non-smooth parts of the boundary at any
time t > 0. In other words, for every 1 ≤ i < j ≤ d, we have: a.s. Z̃i(t) + Z̃j(t) > 0 for
all t > 0. Therefore, a.s. Zi(t) + Zj(t) > 0 for all t > 0. Thus, with probability one the
process Z does not hit non-smooth parts of the boundary at any time t > 0.
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Now, let us prove part (ii) of Theorem 2.12. We start with the case d = 2, then move
to the general case.

Lemma 3.26. Suppose we start an SRBM in two dimensions from a point x ∈ S \ ∂S in
the interior of S. Then the statement of Theorem 2.12 (ii) is valid.

Proof. Let Z = (Z(t), t ≥ 0) = SRBM2(R, 0, A). After the linear transformation (3.7),
we get the process Z = (Z(t), t ≥ 0) from (3.7), which is an SRBM in a wedge. If we
show that θ1 + θ2 > 0, then by Lemma 3.22 we have: a.s. there exists t > 0 such that
Z(t) ≡ A−1/2Z(t) = 0; therefore, a.s. there exists t > 0 such that Z(t) = 0. But the
angles θ1, θ2 are given in the equations (3.13) and (3.14). Since θ1, θ2 ∈ (−π/2, π/2), we
have:

θ1 + θ2 > 0 ⇔ sin θ1 + sin θ2 > 0,

which can be written as

a11r21 − a12√
a11 (a11r221 − 2a12r21 + a22)

+
a22r12 − a12√

a22 (a22r212 − 2a12r12 + a11)
< 0. (3.18)

Then we have:

r′12 := a
−1/2
11 a

1/2
22 r12, r′21 = a

1/2
11 a

−1/2
22 r21, ρ := a

−1/2
11 a

−1/2
22 a12.

We can rewrite the condition (3.18) as

r′12 − ρ√
(r′12)2 − 2ρr′12 + 1

+
r′21 − ρ√

(r′21)2 − 2ρr′21 + 1
< 0.

Or, equivalently, f(r′12 − ρ) + f(r′21 − ρ) < 0, where

f(x) :=
x√

x2 + 1− ρ2
.

Note that the matrix A is positive definite, so detA = a11a22 − a212 > 0. Therefore, ρ2 < 1.
It is easy to show that the function f is strictly increasing on R. In addition, this function
is odd: f(x) + f(−x) ≡ 0. Therefore, f(r′12 − ρ) + f(r′21 − ρ) < 0 is equivalent to

(r′12 − ρ) + (r′21 − ρ) < 0 ⇔ r12a22 + r21a11 < 2a12.

Lemma 3.27. The statement (ii) of Theorem 2.12 is valid in the case of general dimen-
sion, if we start an SRBM from a point x ∈ S \ ∂S in the interior of S.

Proof. Let Z = SRBMd(R, 0, A). Assume now that the condition (2.5) is not true, and for
some 1 ≤ i < j ≤ d we have:

rijajj + rjiaii < 2aij . (3.19)

Consider the following two-dimensional SRBM: Z̃ = SRBM2([R]I , 0, [A]I), where I =

{i, j}. Applying Corollary 3.10 to I := {i, j}, we get: [Z]I � Z̃. By [35, Theorem 5],
we can switch from stochastic comparison to pathwise comparison: after changing
the probability space, we can claim that a.s. for all t > 0 we have: [Z(t)]I ≤ Z̃(t). By
Lemma 3.26, with positive probability, there exists t > 0 such that Z̃i(t) = Z̃j(t) = 0.
Therefore, with positive probability there exists t > 0 such that Zi(t) = Zj(t) = 0.
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4 Proof of Theorems 1.4 and 1.9

Theorem 1.9 can be easily deduced from Theorem 2.12. First, let us prove part (i) of
Theorem 1.9. We need to rewrite the condition (2.5) for concrete matricesR andA arising
from competing Brownian particles, given by (2.1) and (2.2). Take i, j = 1, . . . , N − 1 and
consider the condition

rijajj + rjiaii ≥ 2aij . (4.1)

If i = j, then (4.1) is always true, because for such i, j we have: rij = rji = 1,
and aii = aij = ajj = σ2

i + σ2
i+1. If |i − j| ≥ 2, then (4.1) is also always true, since

rij = rji = aij = 0. Since the left-hand side and the right-hand side of (4.1) remain the
same if we swap i and j, we need only to check this condition for j = k, i = k − 1, where
k = 2, . . . , N − 1. We get:

rij = −q−k , rji = −q+k , ajj = σ2
k + σ2

k+1, aii = σ2
k−1 + σ2

k, aij = −σ2
k.

Therefore, the condition (4.1) takes the form

−q−k
(
σ2
k + σ2

k+1

)
− q+k

(
σ2
k−1 + σ2

k

)
≥ −2σ2

k.

This is equivalent to (
2− q−k − q

+
k

)
σ2
k ≥ q−k σ

2
k+1 + q+k σ

2
k−1. (4.2)

Note that q−k + q+k+1 = 1 and q+k + q−k−1 = 1. Therefore, we can rewrite (4.2) as in (1.7).
This proves part (i) of Theorem 1.9. Now, let us prove part (ii) of this theorem. Since the
condition (2.5) is automatically valid for i = j and for |i− j| ≥ 2, it can be violated only
for i = j − 1. Suppose it does not hold for j = k and i = k − 1, where k = 2, . . . , N − 1 is
some index. Then with positive probability, there exists t > 0 such that

Zk−1(t) = Zk(t) = 0,

which can be written as
Yk−1(t) = Yk(t) = Yk+1(t).

This means that with positive probability, there is a triple collision between particles
with ranks k − 1, k and k + 1. This completes the proof of Theorem 1.9.

Theorem 1.4 is simply a corollary of Theorem 1.9: just plug parameters of collision
q±k = 1/2, k = 1, . . . , N into the inequality (1.7).

Remark 4.1. Let us explain the meaning of Corollary 1.5 informally. Consider the gap
process of a system of competing Brownian particles from Definition 1.6. This is an
SRBM Z = (Z(t), t ≥ 0) in the orthant with reflection matrix R and covariance matrix A,
given by (2.1) and (2.2). In this case, the condition (2.5) can be violated only for i = j−1,
because for i = j and |i− j| ≥ 2 it is automatically true.

When Zi(t) = Zj(t) = 0 for 1 ≤ i < j ≤ d, this corresponds to a simultaneous
collision at time t in this system of competing Brownian particles: Yi(t) = Yi+1(t) and
Yj(t) = Yj+1(t). But if, in addition, we know that i = j − 1, then this is a particular case
of a simultaneous collision: namely, a triple collision between particles with ranks j − 1,
j and j + 1. This implies that if the condition (2.5) does not hold, then with positive
probability there occurs a simultaneous collision of a special kind: a triple collision. This
is the reason why Corollary 1.5 is true.

5 Appendix

5.1 Proof of Lemma 2.5

(i) ⇒ (iii). Use [30, Theorem 2.5.3]. Since R is completely-S, it satisfies condition
12 from this theorem. Therefore, it satisfies condition 2 from this theorem. We get the

EJP 20 (2015), paper 29.
Page 24/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3279
http://ejp.ejpecp.org/


Triple and simultaneous collisions of competing Brownian particles

following representation: R = γId −Q, where γ := max1≤i≤d rii = 1, and a d× d-matrix
Q is nonnegative with spectral radius less than one. (See the beginning of [30, Section
2.5.4].)

(iii)⇒ (ii). By [44, Section 7.10], we can represent R−1 as Neumann series:

R−1 = Id +Q+Q2 + . . .

Since Q is nonnegative, R−1 is also nonnegative, and the diagonal elements of R−1 are
strictly positive (and even greater than or equal to 1).

(ii) ⇒ (i). Apply [30, Theorem 2.5.3] again: condition 17 implies condition 12.
Therefore, there exists x ∈ Rd, x > 0 such that Rx > 0, so R is an S-matrix. Take
a principal submatrix R̃ of R and show that it is also an S-matrix. Let R̃ := [R]I ,
where I ( {1, . . . , d} is a nonempty set. Let x̃ := [x]I . Then rij ≤ 0 for i ∈ I and
j ∈ Ic := {1, . . . , d} \ I, and

(
R̃x̃
)
i

=
∑
j∈I

rijxj ≥
d∑

i=1

rijxj = (Rx)i > 0, i ∈ I.

Therefore, x̃ > 0 and R̃x̃ > 0. So every principal submatrix of R is an S-matrix, which
proves that the matrix R is completely-S.

5.2 Proof of Lemma 3.17

Recall that the process Z = (Z(t), t ≥ 0) which is an SRBMd(P, R, µ,A) can be
represented as Z(s) = B(t) +RL(t). Here, B = (B(t), t ≥ 0) is a d-dimensional Brownian
motion with drift vector µ and covariance matrix A = (aij)1≤i,j≤d; R = (rij) is an
m × d-matrix, and L = (L1, . . . , Lm)′, where each Li is nondecreasing. Therefore, the
mutual variation of the components of Z is calculated as follows: 〈Zi, Zj〉t = aijt, for
i, j = 1, . . . , d. The process (Bi(s) − µis, s ≥ 0) is a one-dimensional driftless Brownian
motion. Since f ∈ C2

c (P), the following process is a martingale:

M(t) =

d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))d(Bi(s)− µis).

Apply the Itô-Tanaka formula to f(Z(t)):

f(Z(t))− f(Z(0)) =

d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))dZ(s) +

1

2

d∑
i=1

d∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Z(s))d〈Zi, Zj〉s

=

d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))d (Bi(s)− µis) +

d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))µids

+
1

2

d∑
i=1

d∑
j=1

aij

∫ t

0

∂2f

∂xi∂xj
(Z(s))ds+

d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))d

 m∑
j=1

rijLj(s)


= M(t) +

∫ t

0

Lf(Z(s))ds+

d∑
i=1

m∑
j=1

∫ t

0

rij
∂f

∂xi
(Z(s))dLj(s)

= M(t) +

∫ t

0

Lf(Z(s))ds+

m∑
j=1

∫ t

0

vj · ∇f(Z(s))dLj(s).

The third term in the last sum is nondecreasing. Indeed, for each j = 1, . . . ,m, the
process Lj is nondecreasing, and it can increase only when Z(s) ∈ Pj . But in this case,
vj · ∇f(Z(s)) ≥ 0. The rest is trivial.
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