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Abstract

We obtain necessary and sufficient conditions for the regular variation of the variance
of partial sums of functionals of discrete and continuous-time stationary Markov
processes with normal transition operators. We also construct a class of Metropolis-
Hastings algorithms which satisfy a central limit theorem and invariance principle
when the variance is not linear in n.
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1 Introduction

Let (ξn)n∈Z be a stationary Markov chain defined on a probability space (Ω,F ,P)

with values in a general state space (S,A) and let the marginal distribution be denoted
by π(A) = P(ξ0 ∈ A). We assume that there is a regular conditional distribution denoted
by Q(x,A) = P(ξ1 ∈ A| ξ0 = x). Let Q also denote the Markov transition operator acting
via (Qg)(x) =

∫
S
g(s)Q(x,ds), on L2

0(π), the set of measurable functions on S such that∫
S
g2(s)π(ds) <∞ and

∫
S
g(s)π(ds) = 0. If g, h ∈ L2

0(π), the integral
∫
S
g(s)h(s)π(ds) will

sometimes be denoted by 〈g, h〉.
For some function g ∈ L2

0(π), let

Xi = g(ξi), Sn(X) =

n∑
i=1

Xi, σn(g) = (ES2
n(X))1/2. (1.1)

Denote by Fk the σ–field generated by ξi with i ≤ k.
For any integrable random variable X we denote by EkX = E(X|Fk). With this

notation, E0X1 = Qg(ξ0) = E(X1|ξ0). We denote by ‖X‖p the norm in Lp(Ω,F ,P).
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Asymptotic variance of Markov processes

The Markov chain is called normal when the transition operator Q is normal, that is
it commutes with its adjoint Q∗, namely QQ∗ = Q∗Q.

From the spectral theory of normal operators on Hilbert spaces (see for instance
[34]), it is well known that for every g ∈ L2

0(π) there is a unique transition spectral
measure ν supported on the spectrum of the operator D := {z ∈ C : |z| ≤ 1}, such that

cov(X0, Xn) = cov((g(ξ0), Qng(ξ0)) = 〈g,Qng〉 =

∫
D

znν(dz). (1.2)

and

cov(E0(Xi),E0(Xj)) = 〈Qig,Qjg〉 = 〈g,Qi(Q∗)jg〉 =

∫
D

ziz̄jν(dz).

In particular, the Markov chain is reversible if Q = Q∗. The condition of reversibility is
equivalent to requiring that (ξ0,ξ1) and (ξ1, ξ0) have the same distribution. Furthermore,
in the reversible case ν is concentrated on [−1, 1].

Limit theorems for additive functionals of reversible Markov chains have received
considerable attention in the literature not only for their intrinsic interest, but also for
their great array of applications which range from interacting particle systems (see the
seminal paper by Kipnis and Varadhan [22]) and random walks in random environments
(see for example [37]), to the relatively recent applications in computational statistics
with the advent of Markov Chain Monte Carlo algorithms (e.g. [18, 33]). Limit theorems
have appeared under a great array of conditions, notably geometric ergodicity (for an
overview see [24]), conditions on the growth of the conditional expectations E(Sn|X1)

(see e.g. [27], [30]), under spectral conditions (see [22, 15, 10]) or under conditions on
the resolvent of the transition operator (see [37]), a method which is also applicable in
the non-normal case where spectral calculus may not apply.

The variance of the partial sums plays a major role in limit theorems where it acts
as a normalizer, and also in computational statistics where the asymptotic variance is
used as a measure of the efficiency of an algorithm (see e.g. [36]). It is not surprising
then, that in certain cases, conditions for the central limit theorem have been imposed
directly on the growth of the variance. In fact in 1986 Kipnis and Varadhan [22] proved
the functional form of the central limit theorem for functionals of stationary reversible
ergodic Markov chains under the assumption that

lim
n→∞

var(Sn)

n
= σ2

g , (1.3)

and further established necessary and sufficient conditions for the variance of the partial
sums to behave linearly in n in terms of the transition spectral measure ν. In particular
they showed that for any reversible ergodic Markov chain the convergence in (1.3) is
sufficient for the functional central limit theorem S[nt]/

√
n ⇒ |σg|W (t) (where W (t) is

the standard Brownian motion,⇒ denotes weak convergence and [x] denotes the integer
part of x). Moreover, (1.3) is equivalent to the fact that the finite limiting variance is
then given by

σ2
g =

∫ 1

−1

1 + t

1− t
ν(dt) <∞. (1.4)

Furthermore, according to Remark 4 on page 514 in [10] if in addition to (1.4) we assume
ρ(−1) = 0 then, we also have

lim
n→∞

n∑
i=0

cov(X0, Xi) =

∫ 1

−1

1

1− t
ν(dt).

See also [18] for a discussion of when (1.3) and (1.4) are equivalent.
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Asymptotic variance of Markov processes

It is remarkable that in the reversible case, conditions (1.3) and (1.4) are equivalent,
both sufficient for the central limit theorem and invariance principle, and conjectured to
be sufficient for the almost sure conditional central limit theorem. It is an open problem
whether (1.4) is also necessary for the central limit theorem with normalisation

√
n, even

in the reversible case.
On the other hand, notice that any invertible transformation T generates a unitary,

and thus normal, transition operator Qf(x) = f(T (x)), since Q∗f(x) = f(T−1(x)) whence
QQ∗ = Q∗Q = I is the identity operator. In particular, any stationary sequence ξi, can be
treated as a functional of a normal Markov chain. Therefore for normal, non-reversible
Markov chains, (1.3) and the central limit theorem and invariance principle are no longer
equivalent without further assumptions (see e.g. Bradley [5] and Giraudo and Volný [14]
for counterexamples).

For the non-reversible case, Gordin and Lifšic [15] applied martingale methods and
stated, among other results, the central limit theorem for functionals of stationary
ergodic Markov chains with normal transition operator, under the spectral condition∫

D

1

|1− z|
ν(dz) <∞. (1.5)

If condition (1.5) holds then (1.3) also holds with

σ2 :=

∫
D

1− |z|2

|1− z|2
ν(dz) <∞. (1.6)

One of our main results, Theorem 2.6, gives necessary and sufficient conditions for the
existence of the limit var(Sn)/n→ K <∞. We shall see that var(Sn)/n→ K if and only
if σ2 <∞ and ν(Ux)/x→ C as x→ 0+, where

Ux = {z = (1− r)eiu : |z| ≤ 1, 0 ≤ r ≤ |u| ≤ x}.

In this case K = σ2 + πC. Furthermore if (1.5) holds then C = 0.

Recently Zhao et al. [39] and Longla et al. [26], in the context of reversible Markov
chains, studied the asymptotic behavior of Sn for the more general case when the
variance of partial sums behaves as a regularly varying function σ2

n = var(Sn) = nh(n)

where h(x) is slowly varying, i.e. h : (0,∞) → (0,∞), continuous, and h(st)/h(t) → 1

for all s > 0. For this case the situation is different and in [39, 26] examples are
given of stationary, reversible, and ergodic Markov chains that satisfy the CLT under a
normalization different of σn, namely Sn/σn ⇒ N(0, c2) for a c ∈ (0, 1). Of course by a
version of Fatou’s lemma (see Theorem 3.4 [2]), the limiting variance is dominated by
lim inf ES2

n/σ
2
n = 1.

On the other hand, in a recent paper, Deligiannidis and Utev [8] have studied the
relationship between the variance of the partial sums of weakly stationary processes
and the spectral measure induced by the unitary shift operator. To be more precise,
by the Birghoff-Herglotz Theorem (see e.g. Brockwell and Davis [6]), there exists a
unique measure on the unit circle, or equivalently a non-decreasing function F, called
the spectral distribution function on [0, 2π], such that

cov(X0, Xn) =

∫ 2π

0

einθF (dθ), for all n ∈ Z . (1.7)

If F is absolutely continuous with respect to the normalized Lebesgue measure λ on
[0, 2π], then the Radon-Nikodym derivative f of F with respect to the Lebesgue measure
is called the spectral density; in other words F (dθ) = f(θ)dθ. The main result of [8] is
given below. In the sequel, the notation an ∼ bn as n→∞ means that limn→∞ an/bn = 1.
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Asymptotic variance of Markov processes

Theorem A. [Deligiannidis and Utev [8]] Let Sn := X1 + · · ·+Xn where (Xi)i∈Z is a real
weakly stationary sequence. For α ∈ (0, 2), define C(α) := Γ(1 + α) sin(απ2 )/[π(2 − α)],
and let h be slowly varying at infinity. Then var(Sn) ∼ nαh(n) as n → ∞ if and only if
F (x) ∼ 1

2C(α)x2−αh(1/x) as x→ 0.

In this paper we obtain necessary and sufficient conditions for the regular variation
of the variance of partial sums of functionals of stationary Markov chains with normal
operators. The necessary and sufficient conditions are based on several different
representations in terms of:

1. the spectral distribution function in the sense of the Birghoff-Herglotz theorem,

2. the transition spectral measure of the associated transition operator,

3. the harmonic measure of Brownian motion in the disk,

4. a martingale decomposition.

In the case of stationary reversible Markov Chains we also construct a class of
Metropolis-Hastings algorithms with non-linear growth of variance, for which we estab-
lish the invariance principle and conditional central limit theorem with normalization√
nh(n).

Continuous-time processes. In the continuous time setting, let {ξt}t≥0 be a stationary
Markov process with values in the general state space (S,A), defined on a probability
space (Ω,F ,P), with stationary measure π. We assume that the contraction semigroup

Ttg(x) := E[g(ξt)|ξ0 = x], g ∈ L2(π), t ≥ 0,

is strongly continuous on L2(π), and we let {Ft}t≥0 be a filtration on (Ω,F ,P) with
respect to which {ξt}t is progressively measurable and satisfies the Markov property
E(g(ξt)|Fu) = Tt−ug(ξu), for any g ∈ L2(π) and 0 ≤ u < t. Furthermore we can write
Tt = eLt, where L is the infinitesimal generator of the process {ξt}t, and D(L) its domain
in L2(π). We assume Tt to be normal, that is T ∗t T = TtT

∗
t , which then implies that L is

a normal, possibly unbounded operator, with spectrum supported in the left half-plane
{z ∈ C : <(z) ≤ 0} (see [34, Theorem 13.38]). In the reversible case the spectrum of L is
supported on the left real half-axis(see [22, Remark 1.7]).

Similarly to the discrete case, with any f ∈ L2(µ) we can associate a unique spectral
measure ν(dz) = νf (dz) supported on the spectrum of L such that

〈f, Ttf〉 = cov(f(ξ0), f(ξt)) =

∫
<(z)≤0

eztν(dz).

In the reversible case Kipnis and Varadhan [22] proved an invariance principle under
the condition that f ∈ D

(
(−L)−1/2

)
, which in spectral form is equivalent to∫ 0

α=−∞

−1

α
ν(dα) <∞. (1.8)

Building on the techniques in [15, 22], Holzmann [19, 20] established the central limit
theorem for processes with normal transition semi-groups (see also [29]), under the
condition ∫

<(z)≤0

|z|−1ν(dz) <∞. (1.9)

In this case

lim
T→∞

var(ST )

T
= −2

∫
H−
<(1/z)ν(dz) =: ς2.
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Asymptotic variance of Markov processes

On the other hand, using resolvent calculus, Toth [38, 37] treated general discrete and
continuous-time Markov processes and obtained a martingale approximation, central
limit theorem and convergence of finite-dimensional distributions to those of Brownian
motion, under conditions on the resolvent operator which may hold even in the non-
normal case. Similar conditions, albeit in the normal case, also appeared later in
[19, 20].

Under any of the above conditions, it is clear that the variance of ST is asymptotically
linear in T . Similarly to the discrete case, we show in Theorem 3.2, that var(Sn)/n →
K = ς2 + πC if and only if ς2 <∞ and ν(Ux)/x→ C, where

Ux = {a+ ib : 0 ≤ −a ≤ |b| ≤ x}.

The rest of the paper is structured as follows. We provide our results for discrete
time processes in Section 2 and for continuous time in Section 3. Section 4 contains the
proofs, while the Appendix contains two standard Tauberian theorems to make the paper
self-contained, and technical lemmas used in Section 3.

2 Results for Markov chains

2.1 Relation between the transition spectral measure and spectral distribution
function

Our first result gives a representation of the spectral distribution function in terms of
the transition spectral measure. This link makes it possible to use the results in [8] to
analyze the variance of partial sums. Quite remarkably, if the transition spectral measure
is supported on the open unit disk, the spectral distribution function is absolutely
continuous with spectral density given by (2.1), and in this case the sequence cov(X0, Xn)

converges to 0.

Lemma 2.1 (Representation Lemma). Let (ξn)n∈Z be a stationary Markov chain, with
normal transition operator Q. Let g ∈ L2

0(π), Xi := g(ξi) and write ν = νg for the operator
spectral measure with respect to g. Also denote the unit circle Γ := {z : |z| = 1} and by
D0 := {z : |z| < 1}. Denote by νΓ the restriction of the measure ν to Γ and by ν0 denote
the restriction of the measure ν to D0. Then

cov(X0, Xn) =

∫ 2π

0

eitn[νΓ(dt) + f(t)dt],

where

f(t) =
1

2π

∫
D0

1− |z|2

|1− zeit|2
ν0(dz). (2.1)

Furthermore the spectral distribution function has the representation

F (dt) = νΓ(dt) + f(t)dt. (2.2)

Remark 2.2. By integrating relation (2.2) we obtain

F (x) = x

∫
D0

Tx(z)ν0(dz) + νΓ([0, x]) (2.3)

where

Tx(z) :=
1

2π
(1− |z|2)

∫ 1

0

dt

|1− zeitx|2
.

By combining Representation Lemma 2.1 with Theorem A we obtain the following
corollary.
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Asymptotic variance of Markov processes

Corollary 2.3. Let (ξn)n∈Z be as in Lemma 2.1 and let α ∈ (0, 2). Then var(Sn) = nαh(n)

as n→∞ if and only if F (x) = 1
2C(α)x2−αh(1/x) as x→ 0+.

It should be obvious from the statement of Representation Lemma 2.1 that Theorem A
is directly applicable to the measure dF . The conditions on F, mentioned in Corollary 2.3,
when expressed in terms of the operator spectral measure, become technical conditions
on the growth of integrals of the Poisson kernel over the unit disk. To get further insight
into this lemma we shall apply it to reversible Markov chains.

Our next result, a corollary of Representation Lemma 2.1 combined with Theorem
A, provides this link and points out a set of equivalent conditions for regular variation
of the variance for reversible Markov chains. In fact, as it turns out, if the spectral
measure has no atoms at ±1, it follows that the spectral distribution function is absolutely
continuous and we obtain an expression for the spectral density. Related ideas, under
more restrictive assumptions have appeared in [12], while in [10] a spectral density
representation was obtained for positive self-adjoint transition operators, in other words
ν supported on [0, 1).

Corollary 2.4. Assume that Q is self-adjoint and that the transition spectral measure ν
does not have atoms at ±1. Then, the spectral distribution function F defined by (1.7) is
absolutely continuous with spectral density given by

f(t) =
1

2π

∫ 1

−1

1− λ2

1 + λ2 − 2λ cos t
dν(λ), (2.4)

and for α ∈ [1, 2), the following are equivalent:

(i) var(Sn) = nαh(n) as n→∞,

(ii) F (x) = 1
2C(α)x2−αh(1/x) as x→ 0+.

Moreover, if h(x)→∞ as x→ 0+, then (i), (ii) are equivalent to∫ 1

0

r(dy)

x2 + y2
=
π

2
C(α)x1−αh(1/x) +O(1) as x→ 0+; where r(0, y] = ν(1− y, 1).

2.2 Relation between spectral measure and planar Brownian motion

Our next result makes essential use of the Poisson kernel which appears in (2.1) to
provide a fascinating interpretation of the spectral distribution function F in terms of
the harmonic measure of planar Brownian motion started at a random point in the open
unit disk.

Theorem 2.5. Let ν be the transition spectral measure, and let (Bzt )t≥0 be standard
planar Brownian motion in C, started at the point z ∈ D. Also let Z be a random point
in D distributed according to ν and let τZD := inf{t≥0 : BZt /∈ D}. Let Γx := {z : z =

eity, |y| < x} and α ∈ (0, 2). Then, the following statements are equivalent:

(i) var(Sn) ∼ nαh(n) as n→∞;

(ii) P
{
BZ
τZ
D
∈ Γx

}
∼ C(α)x2−αh(1/x)/ν(D) as x→ 0.

2.3 Linear growth of variance for partial sums for normal Markov Chains

By applying martingale techniques we establish necessary and sufficient conditions
for the asymptotic linear variance behavior for general normal Markov chains.

Theorem 2.6. With the notation of Lemma 2.1
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Asymptotic variance of Markov processes

(a) The limit, var(Sn)/n→ K <∞ exists if and only if

σ2 :=

∫
D

1− |z|2

|1− z|2
ν(dz) <∞, and (2.5)

In :=
1

n

∫
D

|1− zn|2

|1− z|2
ν(dz)→ L, (2.6)

where K = σ2 + L .

(b) Moreover, under (2.5) the following are equivalent:

(i) (2.6) holds with L = πC.

(ii) ν(Ux)/x→ C as x→ 0+, where

Ux = {z = (1− r)eiu ∈ D : 0 ≤ r ≤ |u| ≤ x}.

(iii) nν(Dn)→ C as n→∞, where

Dn = {z = re2iπθ; 1− 1

n
≤ r ≤ 1, − 1

n
≤ θ ≤ 1

n
}.

It should be noted that there are many sufficient conditions for the convergence

var(Sn)/n→ σ2 <∞. (2.7)

(1) It is immediate from the proof of Theorem 2.6, that (2.7) is equivalent to σ2 <∞ and

1

n

∫
D

|1− zn|2

|1− z|2
ν(dz)→ 0. (2.8)

(2) In Corollary 7.1 in [4] it was shown that if we assume∫
D

1

|1− z|
ν(dz) <∞,

then both (2.5) and (2.8) are satisfied and so convergence (2.7) holds, the result attributed
to Gordin and Lifšic [15] (see Theorem 7.1 in [4]; see also [10]).
(3) From Representation Lemma 2.1 and Ibragimov’s version(see [21]) of the Hardy-
Littlewood theorem

var(Sn)/n→ 2πf(0) = σ2.

(4) On the other hand, from the Representation Lemma 2.1 and Theorem A, convergence
(2.7) is equivalent to the uniform integrability of Tx(z) with respect to ν0 as x→ 0+.
(5) Motivated by the complex Darboux-Wiener-Tauberian approach (e.g. as in [9]), by
analyzing

V (λ) =

∞∑
n=1

var(Sn)λn =
λ

(1− λ)2

∫
D

1 + λz

1− λz
ν(dz),

a sufficient condition for (2.7) is∫
D

1 + λz

1− λz
ν(dz)→ σ2 =

∫
D

1 + z

1− z
ν(dz) as λ→ 1 with |λ| < 1.

Here, since ν(dz) = ν(dz̄), the integral is understood in the Cauchy sense i.e.∫
D

f(z)ν(dz) =
1

2

∫
D

[f(z) + f(z̄)]ν(dz).
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Asymptotic variance of Markov processes

(6) From Theorem 2.6, it follows that (2.7) is equivalent to σ2 <∞ and ν(Ux)/x→ 0 as
x→ 0+.
(7) Finally, again from Theorem 2.6, it follows that (2.7) is equivalent to σ2 < ∞ and
nν(Dn)→ 0 as n→∞. This result is also a corollary of the following inequality motivated
by Cuny and Lin [7]

nν(Dn)

36
≤ 1

n
E(E1(Sn))2 ≤ 4

n

n−1∑
j=1

jν(Dj).

Remark 2.7. Notice that when the transition spectral measure ν is concentrated on Γ

(dynamical system), then σ2 = 0 and so σ2 cannot be the limiting variance, in general.

By inspecting the proof of the Theorem 2.6, under (2.5) we are able to characterize
regular variation of var(Sn) when lim infn→∞ var(Sn)/n > 0. More exactly, we have the
following proposition.

Proposition 2.8. Assume lim infn→∞ var(Sn)/n > 0 and that (2.5) holds. Then, for
α ∈ [1, 2), and a positive function h, slowly varying at infinity, var(Sn) ∼ nαh(n) as n→∞
if and only if ν(Ux) ∼ C(α)x2−αh(1/x) as x→ 0+, with C(α) as defined in Theorem A. In
particular, var(Sn)/n is slowly varying at n→∞ if and only if ν(Ux)/x is slowly varying
as x→ 0+.

2.4 Relation between the variance of partial sums and transition spectral mea-
sure of reversible Markov chains

We continue the study of stationary reversible Markov chains and provide further
necessary and sufficient conditions for its variance to be regularly varying, in terms of
the operator spectral measure by a direct approach, without the link with the spectral
distribution function.

Theorem 2.9. Assume Q is self-adjoint, α ≥ 1, var(Sn)/n → ∞, and let cα := α(2 −
α)/2Γ(3− α). Then

V (x) =

∫ 1−x

−1

1

1− t
ν(dt) ∼ cαx1−αh(

1

x
) as x→ 0+

if and only if
var(Sn) = nαh(n) as n→∞.

Furthermore if α > 1 then var(Sn) = nαh(n) as n→∞ iff

ν(1− x, 1] ∼ dαx2−αh(
1

x
) as x→ 0+,

where dα := α(α− 1)/2Γ(3− α).

Remark 2.10. It should be obvious from the statement in the above theorem, that
regular variation of the variance is equivalent to regular variation of the transition
spectral measure only in the case α > 1. As the following example demonstrates, in the
case α = 1, there are reversible Markov chains whose variance of partial sums varies
regularly with exponent 1 even though ν(1− x, 1] is not a regularly varying function.

Example 2.11. Take a probability measure υ on [−1, 1] defined for 0 < a < 1/2 by

dυ =
1

c
(1− |x|)

(
1 + a sin[ln(1− |x|)] + a cos[ln(1− |x|)]

)
dx. (2.9)

where c is the normalizing constant. Then, the unique invariant measure is

dπ =
dυ

θ(1− |x|)
=

1

2

(
1 + a sin[ln(1− |x|)] + a cos[ln(1− |x|)]

)
dx.
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Asymptotic variance of Markov processes

We first compute the following integral∫ 1−x

0

dπ

1− y
=

1

2

∫ 1

x

1

t

(
1 + a sin[ln(t)] + a cos[ln(t)]

)
dt

= −1

2
lnx+O(1) as x→ 0,

whence, by Theorem 2.9

lim
n→∞

var(Sn)

n log n
= c.

However, the covariances are not regularly varying because the spectral measure is not.
To see why it is enough to show that r(x) is not regularly varying at 0. Indeed, if we take
yk = e−2πk → 0+, and yk = eπ/2−2πk → 0+, then r(yk) = yk and r(yk)/yk → 1. However,
for the choice r(zk) = zk(1 + 2α), we have r(zk)/zk → 1 + 2α, and hence the spectral
measure is not regularly varying.

Remark 2.12. Often in the literature, conditions for the linear growth of the variance
are given in terms of the covariances (see for example [18]). As it turns out, one can
construct positive covariance sequences such that

∑n
k=0 cov(X0, Xk) = h(n) is slowly

varying, and hence the variance is regularly varying, but an = cov(X0, Xn) > 0, is not
slowly varying. To construct such a chain, suppose that εn is an oscillating positive
sequence such that εn → 0 and

∑
k ak = ∞ where ak := εk/k. Then gn =

∑n
k=1 ak is

slowly varying since

g[bn] = gn +

[bn]∑
i=n+1

εi
i

= gn +O
(
εn+1 log b

)
.

So, a priori we have many situations when var(Sn) = nh(n) even though the covariances
(and hence the operator spectral measure) are not regularly varying.

The above proof was direct in the sense, that it relied only on the use of classical
Tauberian theory without linking the transition spectral measure with the spectral
distribution function, and thus without invoking the results of [8].

2.5 Examples of limit theorems with non-linear normalizer

As an application we construct a class of stationary irreducible and aperiodic Markov
Chains, based on the Metropolis-Hastings algorithm, with var(Sn) ∼ nh(n). Markov
chains of this type are often studied in the literature from different points of view, in
Doukhan et al. [11], Rio ([31] and [32]), Merlevède and Peligrad [28], Zhao et al. [39])
and Longla et al. [26].

Let E = {|x| ≤ 1} and define the transition kernel of a Markov chain by

Q(x,A) = |x|δx(A) + (1− |x|)υ(A),

where δx denotes the Dirac measure and υ is a symmetric probability measure on [−1, 1]

in the sense that for any A ⊂ [0, 1] we have υ(A) = υ(−A). We shall assume that

θ =

∫ 1

−1

1

(1− |x|)
υ(dx) <∞. (2.10)

We mention that Q is a stationary transition function with the invariant distribution

µ(dx) =
1

θ(1− |x|)
υ(dx).

EJP 20 (2015), paper 20.
Page 9/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3183
http://ejp.ejpecp.org/
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Then, the stationary Markov chain (ξi)i with values in E and transition probability Q(x,A)

and with marginal distribution µ is reversible and positively recurrent. Moreover, for
any odd function g we have Qk(g)(x) = |x|kg(x) and therefore

Qk(g)(ξ0) = E(g(ξk)|ξ0) = |ξ0|kg(ξ0) a.s. (2.11)

For the odd function g(x) = sgn(x), define Xi := sgn(ξi). Then for any positive integer k

〈g,Qk(g)〉 =

∫ 1

−1

|x|kµ(dx) = 2

∫ 1

0

xkµ(dx),

and so on [0, 1], 2µ coincides with the transition spectral measure ν, associated to Q and
g. Furthermore, the operator Q is of positive type ν[−1, 0) = 0. In other words

ν =

{
2µ on [0, 1]

0 on [−1, 0)
.

Therefore, by Theorem 2.9 applied with α = 1, var(Sn) = nh(n) with h(n) → ∞ slowly
varying at n→∞ if and only if

V (x) =

∫ 1−x

0

ν(dy)

1− y
=

∫ 1−x

0

2µ(dy)

1− y
∼ 1

2
h
( 1

x

)
,

is slowly varying as x→ 0+.
Our next result presents a large class of transition spectral measures for the model

above which leads to functional central limit theorem.

Theorem 2.13. Let V (x) be slowly varying as x→ 0+. Then, the central limit theorem,
the functional central limit theorem and the conditional central limit theorem hold for
partial sums of Xi defined above.

Next, we give a particular example of a Metropolis-Hastings algorithm in which a
non-degenerate central limit theorem holds under a certain normalization. However,
when normalized by the standard deviation we have degenerate limiting distribution.

Example 2.14. For x ∈ (0, 1) consider the slowly varying function V (x) = exp(
√

ln(1/x)).
By Theorem 2.9, as n→∞

var(Sn) = 2nV (1/n)(1 + o(1)).

On the other hand, let us choose bn such that nE[τ2
1 I(τ1 ≤ bn)]/b2n ∼ 1 as n → ∞. By

Lemma A.3 it follows that 2θnV (1/bn) ∼ b2n, with θ as defined in Eq. (2.10). Note now
that

2θnV (1/bn) = 2θn exp(
√

ln(bn)) = 2θn exp(
√

(1/2) ln(4nV (1/bn))

= 2θn exp(o(1) +
√

(1/2) lnn+ (1/2)3/2),

which implies that b2n ∼ 2nθ exp(
√

(1/2) lnn), giving the following CLT:

Sn/[2θn exp(
√

(1/2) lnn)1/2 ⇒ N(0, 1).

However
b2n

nV (1/n)
→ 0 and therefore

Sn√
var(Sn)

→P 0.
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3 Continuous-time Markov processes

Suppose we have a stationary Markov process {ξt}t≥0, with values in the general
state space (S,A), and for g ∈ L2

0(π) let Ttg(x) := E[g(ξt)|ξ0 = x]. Further Tt = eLt,
where L is the infinitesimal generator which we assume to be normal, which then implies
that its spectrum is supported on {z ∈ C : <(z) ≤ 0}, such that

cov(f(ξt), f(ξ0)) =

∫
<(z)≤0

eztν(dz).

Finally define ST (g) :=
∫ T
s=0

g(ξs)ds.
The following result is a continuous time analogue of Theorem 2.5, linking the spectral

distribution function with the harmonic measure of planar Brownian motion.

Theorem 3.1. Let {ξt}t be a stationary Markov process with normal generator L, in-
variant measure π, and let g ∈ L2(π) and ν = νf be the transition spectral measure
associated with L and g. Write (Bzt )t≥0 for a standard planar Brownian motion in C,
started at the point z ∈ H− := {z ∈ C : <(z) ≤ 0}. Also let Z be a random point in
H− distributed according to ν and let τZ

H− := inf{t≥0 : BZt /∈ H−}. For α ∈ (0, 2), the
following statements are equivalent:

(i) var(ST (g)) ∼ Tαh(T ) as T →∞;

(ii) P
{
BZ(τZ

H−) ∈ (−ix, ix)
}
∼ C(α)x2−αh(1/x)/ν(H−) as x→ 0+.

The following theorem gives a necessary and sufficient condition in terms of the
transition spectral measure ν. Define for x > 0,

Ux := {a+ ib : 0 ≤ −a ≤ |b| ≤ x}.

and let

ς2 := −2

∫
H−
<(1/z)ν(dz).

Theorem 3.2. With the notation of Theorem 3.1 the following are equivalent:

(i) var(ST (g))/T → L = ς2 +K, where K > 0;

(ii) ς2 <∞ and ν(Ux)/x→ K/π as x→ 0+.

In addition, if ς2 < ∞ and lim infT→∞ var(ST )/T = ∞, then var(ST ) ∼ Tαh(T ), for
α ≥ 1 and h slowly varying at infinity, if and only if ν(Ux) ∼ C(α)x2−αh(1/x).

4 Proofs

Proof of Representation Lemma 2.1. For t ∈ [−π, π] and z ∈ D0 define the function

f(t, z) :=
1

2π

[
1 +

∞∑
k=1

(
zkeitk + z̄ke−itk

)]
=

1

2π

1− |z|2

|1− zeit|2
,

the Poisson kernel for the unit disk. Our approach is to integrate on D0 with respect to
ν0(dz), obtaining in this way a function defined on [0, 2π] as follows

f(t) =
1

2π

∫
D0

(
1 +

∞∑
k=1

(
zkeitk + z̄ke−itk

))
ν0(dz) =

1

2π

∫
D0

1− |z|2

|1− zeit|2
ν0(dz).
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The function is well defined since we are integrating the positive Poisson kernel over the
open disk, and in fact, by using polar coordinates, we also have∫ 2π

0

f(t)dt =
1

2π

∫ 2π

s=0

∫ 1−

r=0

∫ 2π

t=0

1− r2

1− 2r cos(s+ t) + r2
dt ν0(dr, ds)

≤ 1

2π

∫ 2π

s=0

∫ 1−

r=0

2π(1− r2)

1− r2
ν0(dr, ds) = 2π <∞.

Therefore, it is obvious that f ∈ L1(0, 2π), and it makes sense to calculate∫ 2π

0

eitnf(t)dt =
1

2π

∫ 2π

0

eitn

∫
D0

[
1 +

∞∑
k=1

(
zkeitk + z̄ke−itk

)]
ν0(dz)dt (4.1)

=

∫
D0

znν0(dz).

Because of the decomposition

cov(X0, Xn) =

∫
D

zndν(z) =

∫
D0

zndν0(z) +

∫ 2π

0

eitn νΓ(dt),

by (4.1) we obtain that

cov(X0, Xn) =

∫ 2π

0

eitnf(t)dt+

∫ 2π

0

eitnνΓ(dt).

Now, by (1.7) the spectral distribution function F associated with the stationary sequence
(Xi)i, is then given by (2.2).

Proof of Corollary 2.4. The result follows from Representation Lemma 2.1 and Theorem
A. To obtain the last point in the theorem, by standard analysis, the spectral measure
has the following useful asymptotic representation

F (x) =

∫ x

0

f(t)dt =
1

2π

∫ x

0

∫ 1

−1

1− λ2

1 + λ2 − 2λ cos t
ν(dλ)dt

= O(x) +
x

π

∫ 1

0

r(y)
dy

x2 + y2
as x→ 0+.

So, we derive F (x) ∼ 1
2C(α)x2−αh(1/x) if and only if∫ 1

0

r(y)
dy

x2 + y2
∼ π

2
C(α)x1−αh(1/x) +O(1) as x→ 0+.

Proof of Theorem 2.5. As usual, let D be the closed unit disk, and D0 its interior. From
Representation Lemma 2.1 the spectral density f ∈ L1([−π, π]) is given by the formula

f(t) =
1

2π

∫
D0

1− |z|2

|1− zeit|2
ν(dz).

Notice that D is regular for Brownian motion, in the sense that all points in Γ = ∂D are
regular, i.e. for all z ∈ ∂D and for τ̃zD := inf{t > 0 : Bzt /∈ D} we have Pz{τ̃zD = 0} = 1.
The harmonic measure in D from z is the probability measure on ∂D, hm(z,D; ·) given
by

hm(z,D;V ) = Pz{B(τzD) ∈ V },
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where Pz denotes the probability measure of Brownian motion started at the point z,
and V is any Borel subset of ∂D.

Since ∂D is piecewise analytic, hm(z,D; ·) is absolutely continuous with respect to
Lebesgue measure (length) on ∂D and the density is the Poisson kernel (see for example
[25]). In the case of the unit disk D the density for hm(z,D; ·) for z ∈ D, w ∈ ∂D or
t ∈ [0, 2π], is given by

HD(z, w) =
1

2π

1− |z|2

|w − z|2
=

1

2π

1− |z|2

|1− eitz|2
.

Let Z be a D-valued random variable with probability measure ν properly normalized,
independent of the Brownian motion. Then∫ x

−x
f(t)dt =

1

2π

∫
D0

∫ x

−x

1− |z|2

|1− zeit|2
dt ν0(dz)

=

∫
D0

Pz{B(τzD) ∈ (−x, x)}ν0(dz).

On the other hand, since Γ = ∂D is regular for Brownian motion, we have for all z ∈ Γ,
Pz(B(τzD) ∈ Γx) = 1 if z ∈ Γx and 0 otherwise. Thus

ν(Γx) =

∫
Γx

νΓ(dz) =

∫
Γ

Pz(B(τzD) ∈ Γx)νΓ(dz).

Therefore from Representation Lemma 2.1 we have

G(x) :=

∫ x

−x
F (dx) =

∫
D0

Pz{B(τzD) ∈ Γx}ν0(dz) +

∫
Γ

Pz(B(τzD) ∈ Γx)νΓ(dz)

= ν(D)P
(
BZ(τZD) ∈ Γx

)
=: ν(D)Hν,D(Γx).

The measure Hν,D(·), is essentially the harmonic measure when Brownian motion starts
at a random point and stops when it hits ∂D. Finally, from Theorem A we conclude that
var(Sn) is regularly varying if and only if the measure Hν,D is regularly varying at the
origin.

Proof of Theorem 2.6. The first part is motivated by Gordin and Lifšic [15] (see Theorem
7.1 in [4]; see also [10]). We write the martingale type orthogonal decomposition:

Sn = E0(Sn) +

n∑
i=1

Ei(Sn − Si−1)− Ei−1(Sn − Si−1).

So

var(Sn) = E(E0(Sn))2 +

n∑
i=1

E(Ei(Sn − Si−1)− Ei−1(Sn − Si−1))2

= E(E0(Sn))2 +

n∑
i=1

E(E1(Si)− E0(Si))
2.

By applying spectral calculus,

= E(E0(Sn))2 +

n∑
j=1

∫
D

|1 + z + ...+ zj−1|2(1− |z|2)ν(dz)

= E(E0(Sn))2 +

n∑
j=1

∫
D0

|1− zj |2(1− |z|2)

|1− z|2
ν(dz)

= E(E0(Sn))2 + n

∫
D0

δn(z)
(1− |z|2)

|1− z|2
ν(dz).
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Note that δn(z) ≤ 4 and for all z ∈ D0

δn(z) =
1

n

n∑
j=1

|1− zj |2 → 1 as n→∞.

Thus, by the Lebesgue dominated theorem and our conditions

lim
n→∞

∫
D0

δn(z)
(1− |z|2)

|1− z|2
ν(dz) =

∫
D0

1− |z|2

|1− z|2
ν(dz) = σ2.

This, along with Fatou’s lemma, proves that var(Sn)/n→ K exists if and only if σ2 <∞
and

1

n
E(E0(Sn))2 → L = K − σ2.

Now, let us introduce a new measure on D0

µ(z) =
1− |z|
|1− z|2

ν(dz),

which is finite when σ2 <∞.
To complete the proof of the first part of the theorem, we notice that by the spectral

calculus

E(E0(Sn))2 =

∫
D

|z + ...+ zn|2ν(dz) =

∫
D

|z|2 |1− z
n|2

|1− z|2
ν(dz)

=

∫
D

|1− zn|2

|1− z|2
ν(dz)−

∫
D

|1− zn|2(1 + |z|)µ(dz)

=

∫
D

|1− zn|2

|1− z|2
ν(dz) +O(1),

since µ is a finite measure.
To prove the second part of this theorem, we show equivalence of (i) and (ii) and then

of (ii) and (iii). In addition, throughout we use notation:

z = |z|eiArg(z), |z| = 1− y, θ = Arg(z).

We note first that

|1− zn|2 = (1− |z|n)2 + |z|n sin2(nθ/2).

The proof strategy consists in showing, several successive approximation steps, that

1

n
E(E0(Sn))2 =

∫ π

0

sin2(nθ/2)

sin2(θ/2)
G(dθ) + o(1),

for some appropriate measure G, and then to apply Theorem A. With this in mind we
write

In =
1

n

∫
D

|1− zn|2

|1− z|2
ν(dz)

=
1

n

∫
D

|z|n sin2(nArg(z)/2)

|1− z|2
ν(dz) +

1

n

∫
D

(1− |z|n)2

|1− z|2
ν(dz) =: I ′n + ∆′n.

Note that

∆′n =

∫
D0

( (1− |z|n)

n(1− |z|)

)
(1− |z|n)

(1− |z|)
|1− z|2

ν(dz)

=

∫
D

1

n

( n−1∑
j=0

|z|j
)

(1− |z|n)µ(dz).
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By Lebesgue dominated convergence theorem, since the bounded integral argument
goes to 0 for each |z| ≤ 1, we have ∆′n → 0 as n→∞.

Then, write

I ′n =
1

n

∫
D

sin2(nArg(z)/2)

|1− z|2
ν(dz) − 1

n

∫
D

(1− |z|n)
sin2(nArg(z)/2)

|1− z|2
ν(dz)

=: I ′′n + ∆′′n,

and again

∆′′n =

∫
D0

( (1− |z|n)

n(1− |z|)

)
sin2(nArg(z)/2)

(1− |z|)
|1− z|2

ν(dz)

=

∫
D0

( (1− |z|n)

n(1− |z|)

)
sin2(nArg(z)/2)µ(dz).

Note that by Lebesgue dominated theorem ∆′′n → 0 as n→∞, since the bounded integral
argument goes to 0 for each |z| < 1.

Fix now a small positive a > 0, recall that z = (1− y)eiθ and define an auxiliary subset
of D

Da = {z = (1− y)eiθ : 0 < |θ| ≤ a , 0 ≤ y ≤ a }.

Further, notice that by the dominated convergence theorem

εn =

∫
Da

∣∣∣ sin(nArg(z)/2)

nArg(z)

∣∣∣µ(dz)→ 0 as n→∞,

since the bounded integral argument goes to 0 for each |z| < 1.
Let N be large enough, so that |εn| < 1 for all n ≥ N , and take δn = max(e−n,

√
εn) so

that δn > 0 for all n. In this way εn/δn = 0 is well-defined if εn = 0, and εn/δn ≤
√
εn → 0

as n→∞. Further define two auxiliary sequences of subsets of Da

Da,n = {z = (1− y)eiθ : 0 < δn|θ| ≤ y ≤ a, |θ| ≤ a } ,
Ua,n = Ua \Da,n = {z = (1− y)eiθ : 0 ≤ y < δn|θ|, |θ| ≤ a }.

Next, let

gn(z) =
sin2(nArg(z)/2)

n|1− z|2

and write

I ′′n =
1

n

∫
D

gn(z)ν(dz) =
O(1)

n
+

∫
Da

gn(z)ν(dz)

and ∫
Da

gn(z)ν(dz) =

∫
Da,n

gn(z)ν(dz) +

∫
Ua,n

gn(z)ν(dz) =: ∆′′′n + I ′′′n .

Notice that by construction (θ = Arg(z))

∆′′′n ≤
∫
Da,n

∣∣∣ sin(nθ/2)

nθ

∣∣∣| sin(nθ/2)| |θ|
|1− z|2

ν(dz)

≤ 1

δn

∫
Da,n

∣∣∣ sin(nθ/2)

nθ

∣∣∣ 1− |z|
|1− z|2

ν(dz)

=
1

δn

∫
Da,n

∣∣∣ sin(nθ/2)

nθ

∣∣∣µ(dz) ≤ 1

δn

∫
Da

∣∣∣ sin(nθ/2)

nθ

∣∣∣µ(dz) =
εn
δn
→ 0.
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In addition, on Ua,n

|1− z|2 = y2 + (1− y) sin2(θ/2) = sin2(θ/2)(1 + δz,n),

where |δz,n| ≤ cδn for some positive c and hence

I ′′′n =
1

n

∫
Ua,n

sin2(nθ/2)

|1− z|2
ν(dz)

=
1

n

∫
Ua,n

sin2(nθ/2)

sin2(θ/2)
ν(dz) +

1

n

∫
Ua,n

sin2(nθ/2)

sin2(θ/2)

(
1− 1

1 + δz,n

)
ν(dz)

=: I(4)
n + ∆(4)

n .

By construction ∆
(4)
n = o(1)Iivn and then I ′′′n = I

(4)
n (1 + o(1)). Write

I(4)
n =

1

n

∫
Ua

sin2(nθ/2)

sin2(θ/2)
ν(dz) − 1

n

∫
Ua∩Da,n

sin2(nθ/2)

sin2(θ/2)
ν(dz).

= I(5)
n −∆(5)

n .

In a similar way as ∆′′′n has been estimated in Step 3, by construction (θ = Arg(z)) we
obtain

∆(5)
n ≤

∫
Ua∩Da,n

∣∣∣ sin(nθ/2)

nθ

∣∣∣| sin(nθ/2)||(1 + δz,n)| |θ|
|1− z|2

ν(dz)

≤ 1 + cδn
δn

∫
Da,n

∣∣∣ sin(nθ/2)

nθ

∣∣∣ 1− |z|
|1− z|2

ν(dz)

≤ 1 + cδn
δn

∫
Da

∣∣∣ sin(nθ/2)

nθ

∣∣∣µ(dz) =
(1 + cδn)εn

δn
→ 0 as n→∞.

Finally, let us define the set

D+ = {z = (1− y)eiθ : 0 ≤ y ≤ |θ| < π} .

Then, it follows that In/n→ L if and only if

Jn =

∫
D+

In(Arg(z))ν(dz)→ 0,

where In is the Fejer kernel,

In(x) :=
sin2(nx/2)

n sin2(x/2)
.

Define G(x) = ν(Ux) and notice that it is a non-negative, non-decreasing bounded
function. In addition, for any step function g(θ) = I(u < |θ| ≤ v) = I(|θ| ≤ v)− I(|θ| ≤ w)

with u,w being continuity points of G(x) we have∫
D+

g(Arg(z))ν(dz) =

∫
D+

I(g(θ))ν(dz) =

∫
D+

I(|θ| ≤ v)ν(dz)−
∫
D+

I(|θ| ≤ w)ν(dz)

= ν(Uv)− ν(Uw) =

∫
g(x)dG(x)

and then, by Caratheodory and Lebesgue theorem we have

Jn =

∫ π

0

In(x)dG(x).
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By Theorem A, Jn/n→ L if and only if L = πC where G(x)/x = ν(Ux)/x→ C as x→ 0+,
completing the proof of equivalence of (i) and (ii) in Part (b).

To prove the equivalence of (ii) and (iii) in Part (b) under the finiteness of integral
(2.5), let us define

Wx = {z = (1− r)eiu ∈ D : 0 ≤ |u| ≤ r ≤ x} ,
D1/x = {z = (1− r)eiu ∈ D : 0 ≤ |u|, r ≤ x} .

Since ν(1) = 0, it follows that ν(Wx)→ 0 as x→ 0+.
On the other hand, on Wx

1− |z|
|1− z|2

≥ 1

2x

and hence by (2.5),

0←
∫
Wx

1− |z|
|1− z|2

ν(dz) ≥ 1

2x
ν(Wx),

which implies that ν(D1/x)/x→ C if and only if (ii) holds as x→ 0+ and this completes
the proof.

Remark 4.1. The sufficient part in Theorem 2.6 can be derived directly by performing
coordinate transformation mapping the open unit disk to the upper half-plane and further
careful analysis. Briefly, we change coordinates to the upper half-plane H := {(a, b) : a ∈
R, b > 0}, via the inverse Cayley transform φ(w) : H→ D0, where φ(w) := (1+iw)/(1−iw).
The finite measure ν is transformed to a finite measure ρ on H, which for simplicity we
can assume to be a probability measure. Then, for w := a+ ib we have

σ2 =

∫
H

1− |φ(a+ ib)|2

|1− φ(a+ ib)|2
dv(φ−1(z)) =

∫ ∞
a=−∞

∫ ∞
b=0

b

a2 + b2
dρ(a, b).

and a further change of variables z = tan(t/2) gives∫ x

t=0

f(t)dt =
1

2π

∫ x

t=0

∫∫
H

b

(a+ t/2)2 + b2
ρ(da,db)dt+ o(x).

Proof of Theorem 2.9. Let 1 ≤ α ≤ 2 and denote C(n) :=
∑n−1
i=0 cov(X0, Xi). We start by

the well known representation

var(Sn) = n[
2

n

n∑
k=1

C(k)− E(X2
0 )].

It is clear then, since var(Sn)/n→∞, that var(Sn) has the same asymptotic behavior as
2
∑n
k=1 C(k). Implementing the notations

aj =

∫ 1

0

xjν1(dx) and bj =

∫ 0

−1

xjν(dx),

where ν1 coincides with ν on (0, 1], and ν1({0}) = 0, we have the representation

C(k) =

k−1∑
j=0

aj +

k−1∑
j=0

bj = C1(k) + C2(k).

We shall show that the terms C1(k) have a dominant contribution to the variance of
partial sum. To analyze C2(k) it is convenient to make blocks of size 2, a trick that has
also appeared in [18] where it is attributed to [16]. We notice that

cl = b2l + b2l+1 =

∫ 0

−1

(x2l + x2l+1)dν > 0.
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Furthermore, for all m

m−1∑
l=0

cl =

m−1∑
l=0

∫ 0

−1

x2l(1 + x)ν(dx) =

∫ 0

−1

1− x2m

1− x
ν(dx) ≤ E(X2

0 ).

Therefore |C2(k)| ≤ 2E(X2
0 ) and so,

∑n
k=1 C2(k) ≤ 2nE(X2

0 ). Because var(Sn)/n → ∞
we note that var(Sn) has the same asymptotic behavior as 2

∑n
k=1 C1(k). Now, each

C1(k) =
∑k−1
j=0 ak with ak > 0. So, because the sequence (C1(k))k is increasing, by the

monotone Tauberian theorem (see Theorem A.2 in [3, Cor 1.7.3]) for all α ≥ 1 we have

var(Sn) ∼ 2

n∑
k=1

C1(k) ∼ nαh(n) if and only if C1(n) ∼ αnα−1h(n)/2. (4.2)

Note now that

C1(n) =

∫ 1

0

1− xn

1− x
ν1(dx).

It is convenient to consider the transformation T : [0, 1]→ [0, 1] defined by T (x) = 1− x.
For a Borelian A of [0, 1] define the measure

r(A) = ν1(T (A)). (4.3)

Then

C1(n) =

∫ 1

0

1− (1− y)n

y
r(dy).

We shall integrate by parts. Denote

R(u) =

∫ 1

u

1

y
r(dy) and Un(u) = [1− (1− u)n].

Let 0 < b < 1. By the definition of ν1 we have r({1}) = 0. Since Un is continuous, by [1,
Theorem 18.4],∫ 1

b

1− (1− y)n

y
r(dy) = [1− (1− b)n]R(b) + n

∫ 1

b

(1− u)n−1R(u)du.

Note that
lim sup

b→0+

[1− (1− b)n]R(b) ≤ nbR(b) ≤ nE(X2
0 ) = o(σ2

n).

Therefore

C1(n) = o(σ2
n) + n

∫ 1

0

(1− u)n−1R(u)du.

By the change of variables 1− u = e−y we have∫ 1

0

(1− u)n−1R(u)du =

∫ ∞
0

R(1− e−y)e−yndy.

It follows that

C1(n) ∼ αnα−1h(n)/2 if and only if n

∫ ∞
0

R(1− e−y)e−yndx ∼ αnα−1h(n)/2 (4.4)

if and only if

∫ ∞
0

R(1− e−y)e−yndx ∼ αnα−2h(n)/2.
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From here we shall apply Karamata’s Tauberian Theorem A.1. Since α ≤ 2,∫ ∞
0

R(1− e−y)e−yndx ∼ αnα−2h(n)/2 as n→∞ (4.5)

if and only if

∫ x

0

R(1− e−y)dy ∼ c′αx2−αh(1/x) as x→ 0+,

where c′α = α/[2Γ(3− α)]. Again by the monotone Karamata Theorem A.2 this happens if
and only if

R(1− e−y) ∼ (2− α)c′αx
1−αh(1/x) as x→ 0+. (4.6)

Changing variables x = 1− e−y and taking into account Karamata’s representation for
slowly varying functions we get

R(x) ∼ cα
[
ln(1/(1− x))

]1−α
h(−1/ ln(1− x)) (4.7)

∼ cαx1−αh(1/x) as x→ 0+,

where cα = (2− α)c′α. By combining the results in relations (4.2)-(4.7) we have that

var(Sn) ∼ nαh(n) if and only if R(x) ∼ cαx1−αh(1/x) as x→ 0+.

It remains to note that

R(x) =

∫ 1

x

1

y
r(dy) =

∫ 1−x

0

1

1− y
υ1(dy) ∼ V (x) as x→ 0+.

When 1 < α < 2, one can say more: the distribution function induced by the spectral
measure is regularly varying.

Note that again by Theorem A.2, since the sequence ak is a monotone sequence of
positive numbers and α− 1 > 0 we have

C1(n) =

n−1∑
k=0

ak = αnα−1h(n)/2 if and only if an ∼ α(α− 1)nα−2h(n)/2.

Now, by considering the mapping T ′ : [0, 1]→ [0,∞), given by T ′−x, we obtain

an =

∫ 1

0

tn ν1(dt) =

∫ ∞
0

e−nxψ(dx),

where ψ(A) = r(T ′(A)), for A Borelian in [0,∞). Letting dα := α(α − 1)/2Γ(3 − α), it
follows by Theorem A.1 ([3, Thm 1.7.1’]), that

an ∼ α(α− 1)nα−2h(n)/2 as n→∞ iff ψ[0, x] ∼ dαx2−αh(1/x) as x→ 0+.

Then, we obtain as before, by the properties of slowly varying functions

ψ[0, x] ∼ dαx2−αh(1/x) as x→ 0+ iff ν1(1− x, 1] ∼ dαx2−αh(1/x) as x→ 0+.

This last relation combined with (4.4) gives the last part of the theorem.

Proof of Theorem 2.13. We only prove the central limit theorem, with the other results
following in a similar manner. Our approach is based on the regeneration process. Define

T0 = inf{i > 0 : ξi 6= ξ0}
Tk+1 = inf{i > Tk : ξi 6= ξi−1},
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and let τk := Tk+1 − Tk. It is well known that (ξτk , τk)k≥1 are i.i.d. random variables with
ξτk having the distribution υ. Furthermore,

P(τ1 > n|ξτ1 = x) = |x|n.

Then, it follows that

E(τ1|ξτ1 = x) =
1

1− |x|
and E(τ1) =

∫ 1

−1

1

1− |x|
υ(dx) = θ.

So, by the law of large numbers Tn/n → θ a.s. Let us study the tail distribution of τ1.
Since

P(τ1|Xτ1 | > u|ξτ1 = x) = P(τ1 > u|ξτ1 = x) = |x|u,

by integration we obtain

P(τ1 > u) =

∫ 1

−1

|x|uυ(dx) = 2

∫ 1

0

xuυ(dx). (4.8)

Using now the relation between υ(dx) and µ(dx) and symmetry we get

P(τ1 > u) = 2θ

∫ 1

0

xu(1− x)µ(dx) = θ

∫ 1

0

xu(1− x)ν(dx),

where ν is spectral measure. By the fact that V (x) is slowly varying and Lemma A.3 in
Section A it follows that

H(u) := E[τ2
1 I(τ1 ≤ u)] is slowly varying as u→∞. (4.9)

For each n, let mn be such that Tmn ≤ n < Tmn+1. Note that we have the representation

n∑
k=1

Xk −
[n/θ]∑
k=1

Yk = (T0 − 1)X0 + (

mn∑
k=1

τkXτk −
[n/θ]∑
k=1

τkXτk) +

n∑
k=Tmn+1

Xk, (4.10)

where Yk = τkXτk is a centered i.i.d. sequence, and by (4.9) is in the domain of attraction
of a normal law (see Feller [13]). Therefore,∑[n/θ]

k=1 Yk
b[n/θ]

⇒ N(0, 1). (4.11)

where b2n ∼ nH(bn). The rest of the proof is completed on the same lines as in the proof
of Example 12 in [26], the final result being that∑n

k=1Xk

b[n/θ]
⇒ N(0, 1).

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.5 once one observes
that for z = a+ ib, with a ≤ 0 and b ∈ R, t > 0 and x ∈ R we have

ezt = − 1

π

∫ ∞
−∞

eitx<
[ 1

z − ix

]
dx =

1

π

∫ ∞
−∞

eitx −a
a2 + (b− x)2

dx.

Therefore, by Fubini’s theorem

cov(f(ξ0), f(ξt)) =

∫
<(z)≤0

eztν(dz) =

∫ ∞
x=−∞

eitx
[−1

π

∫
<(z)≤0

<
( 1

z − ix

)
ν(dz)

]
dx.
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By letting z = wi, where w ∈ H, and the conformal invariance of Brownian motion, one
can immediately deduce that

− 1

π
<
( 1

z − ix

)
dx,

is the harmonic measure of Brownian motion in the left half-plane started at the point
z.

Proof of Theorem 3.2. First observe that

var(ST ) = 2

∫ T

s=0

(T − s)
∫
<(z)≤0

ezxν(dz)ds = 2

∫
<(z)≤0

<
[ezT − zT − 1

z2

]
ν(dz).

By splitting ST = E0(ST ) + ST − E0(ST ) we obtain

var(ST ) = E
[
(ST − E0(ST ))2

]
+ E

[
E0(ST )2

]
=

∫
<(z)≤0

<
[
2

ezT − zT − 1

z2
− |1− ezT |2

|z|2
]
ν(dz) +

∫
<(z)≤0

|1− ezT |2

|z|2
ν(dz)

=: I1 + I2.

Assume −<(1/z) ∈ L1(dν). Careful calculation shows that

−<
(1

z

)
← <

[
2

ezT − zT − 1

z2
− |1− ezT |2

|z|2
]
≤ C|x|
x2 + y2

∈ L1(dν),

and thus I1/T → −
∫
<(z)≤0

<(1/z)ν(dz). Fatou’s lemma also shows that if var(ST )/T

converges then <(1/z) ∈ L1(dν).
Next we analyze I2/T . Notice that

|1− ezT |2 = (1− eTx)2 + 4eTx sin2(Ty/2),

and since (1− eTx)2 ≤ T |x| for x < 0, we have that

1

T

∫
<(z)≤0

|1− ezT |2

|z|2
ν(dz) =

1

T

∫
<(z)≤0

4eTx sin2(Ty/2)

x2 + y2
ν(dx, dy) + o(1)

=
1

T

∫
<(z)≤0

4 sin2(Ty/2)

x2 + y2
ν(dx, dy) + o(1).

For a > 0 write
Da := {x+ iy : 0 ≤ −x ≤ a, 0 ≤ |y| ≤ a}.

Notice that on D(c)
a the integrand is less than 1/2a2 and therefore∫

<(z)≤0

4 sin2(Ty/2)

x2 + y2
ν(dx, dy) =

∫
Da

4 sin2(Ty/2)

x2 + y2
ν(dx, dy) + o(1).

Let

εT :=

∫
Da

∣∣∣ sin(Ty/2)

Ty

∣∣∣× |x|ν(dx, dy)

x2 + y2
→ 0,

since the bounded integrand vanishes and µ(dz) := |x|ν(dz)/(x2 + y2) is a finite measure.
Let δT := max(e−T ,

√
εT ), so that δT > 0 and εT /δT → 0, and define

Ua := {x+ iy : 0 ≤ −x ≤ |y| ≤ a}, Da,T := {x+ iy : 0 ≤ δT |y| ≤ −x, |y| ≤ a}
Ua,T := {x+ iy : 0 ≤ −x ≤ δT |y|, |y| ≤ a}
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Since on Da,T we have |y| ≤ |x|/δT

1

T

∫
Da,T

sin2(Ty/2)

x2 + y2
dν ≤ 1

δT

∫
Da,T

| sin(Ty/2)|
Ty

|x|
x2 + y2

dν ≤ εT
δT
→ 0,

and thus since Ua,T = Da −Da,T it follows that y2 + x2 = y2(1 +O(δ2
T )) and

1

T

∫
Da

4 sin2(Ty/2)

x2 + y2
ν(dx, dy) =

1

T

∫
Ua,T

sin2(Ty/2)

(y/2)2
ν(dx,dy)× (1 + o(1)) + o(1).

Notice that on Ua ∩Da,T we have 0 ≤ δT |y| ≤ |x| ≤ |y| ≤ a and thus

|x|
x2 + y2

≥ |x|
x2 + y2

≥ δT |y|
2y2

=
δT
2|y|

=⇒ 1

|y|
≤ 1

δT

2|x|
x2 + y2

.

Since Ua,T = Ua − Ua ∩Da,T , from the above

1

T

∫
Ua,T

sin2(Ty/2)

(y/2)2
ν(dx,dy) =

1

T

∫
Ua

sin2(Ty/2)

(y/2)2
ν(dx, dy) + o(1).

Therefore

1

T

∫
Ua∩Da,T

sin2(Ty/2)

(y/2)2
ν(dx,dy) ≤ C

∫
Ua∩Da,T

| sin(Ty/2)|
T |y|

× 1

|y|
ν(dx, dy)

≤ C

δT

∫
Ua∩Da,T

| sin(Ty/2)|
T |y|

× |x|
x2 + y2

ν(dx, dy) ≤ C εT
δT
→ 0.

Finally let
U := {x+ iy : 0 ≤ −x ≤ |y|}.

From the above computation, since a > 0 was arbitrary and all error terms depending
on a vanish as a→∞ we have

lim
T→∞

1

T

∫
<(z)≤0

|1− ezT |2

|z|2
ν(dz) = lim

T→∞

1

T

∫
Ua

sin2(Ty/2)

(y/2)2
ν(dx, dy)

= lim
T→∞

1

T

∫
U

sin2(Ty/2)

(y/2)2
ν(dx, dy) = lim

T→∞

1

T

∫ ∞
x=0

sin2(Tx/2)

(x/2)2
G(dx),

where G(x) = ν(Ux), using similar arguments to the proof of Theorem 2.6. Now we have

1

T

∫ ∞
x=0

sin2(Tx/2)

(x/2)2
G(dx) =

1

T

∫ π

x=0

sin2(Tx/2)

sin2(x/2)
G(dx) +O(1/T ),

since

1

T

∫ π

x=0

sin2(Tx/2)
∣∣∣ 1

(x2 )2
− 1

sin2(x2 )

∣∣∣G(dx) ≤ 1

T

∫ π

x=0

(x/2)4

sin2(x/2)(x/2)2
G(dx) = O(1/T ).

The result then follows from Theorem A.

A Technical lemmas

A.1 Standard Tauberian Theorems

In order to make this paper more self-contained we state the following classical
Tauberian theorems (Theorem 2.3 In [35] or Theorem 1.7. in [3], due to Feller).
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Theorem A.1. Let U(x) be a monotone non-decreasing function on [0,∞) such that

w(x) =

∫ ∞
0−

e−xudU(u) is finite for all x > 0.

Then if ρ ≥ 0 and L is a slowly varying function, then

w(x) = x−ρL(x) as x→∞ iff U(x) = xρL(1/x)/Γ(ρ+ 1) as x→ 0+.

We give the monotone Tauberian theorem (Theorem 2.4 in [35] or Theorem 2.4 in [3])

Theorem A.2. Let U(x) defined and positive on [A,∞) for some A > 0 given by

U(x) =

∫ x

A

u(y)dy,

where u(y) is ultimately monotone. Then if ρ ≥ 0 and L is a slowly varying function, then

U(x) = xρL(x) as x→∞ implies u(x) ∼ ρxρ−1L(x) as x→∞.

If ρ > 0 then u(x) is regularly varying.

A.2 Auxiliary Lemma for Theorem 2.13

Lemma A.3. For V and H as defined in Theorem 2.13, we have

H(1/x)

2θV (x)
→ 1 as x→ 0+.

In particular if V (x) is slowly varying at 0, H(1/x) is slowly varying at∞.

Proof. Let r be the measure defined in (4.3). By Definition (4.8)

P(τ1 > u)=2θ

∫ 1

0

xu(1− x)µ(dx) = θ

∫ 1

0

(1− y)uyr(dy).

We show first for any δ ∈ (0, 1)∫ 1

0

(1− y)ur(dy) = O(uδ−3) +

∫ 1

0

e−uyyr(dy). (A.1)

To prove this, notice that for u ≥ 0, 0 ≤ y ≤ 1, for positive t,m and some Cm

|(1− y)u − e−uy| ≤ |1− y − e−y|ue−(u−1)y and et ≥ 1 + tm/Cm.

Then for any δ ∈ (0, 1)∫ 1

0

e−uyuy3r(dy) ≤ C
∫ 1

0

r(dy)

u3−δy1−δ ≤ Cu
δ−3

∫ 1

0

r(dy)

y1−δ ,

and after some rearrangement∫ 1

0

r(dy)

y1−δ = C

∫ ∞
y=1

V (1/y)

y1+δ
dy <∞,

since V (u) :=
∫ 1

u
r(dy)/y, is slowly varying as u→ 0+. Since for u ≥ 0

H(u) = Eτ2
1 I(τ1 < u) = 2

∫ u

0

xP(τ1 > x)dx− u2P(τ1 > u),
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by Fubini’s theorem and (A.1) we derive

H(u) = O(uδ−1)− θu2

∫ 1

0

e−uyyr(dy) + 2θ

∫ 1

0

1− e−yu

y
r(dy)− 2θu

∫ 1

0

e−yur(dy)

=: O(uδ−1)− θI1(u) + 2θI2(u)− 4I3(u).

Also note that by integration by parts,

r(z) =

∫ z

0

r(ds) = −
∫ z

0

yV (dy) =

∫ z

0

[V (y)− V (z)]dy.

Then R can also be written as

r(z) =

∫ ∞
1/z

dV (1/y)

y
,

and since V (1/y) is slowly varying as y →∞ we have by Theorem 1.6.5 in [3] that

r(z)

zV (z)
→ 0, as z → 0+.

Now let K be an arbitrary positive number. Since we will first take limits as x→ 0+,
we can assume that x is small enough so that Kx < 1. Therefore splitting the integral∫ 1

0
=
∫Kx

0
+
∫ 1

Kx
and applying standard analysis, we derive

I2(u) =

∫ Kx

y=0

1− e−yu

y
r(dy) +

∫ 1

y=Kx

1− e−yu

y
r(dy)

= K
r(Kx)

Kx
+ V (Kx)(1 +O(e−Kux)).

Then for u = 1/x, arbitrary K > 0, since for each fixed K

K
r(Kx)

KxV (x)
→ 0 and

V (Kx)

V (x)
→ 1, as x→ 0+

we have

lim sup
x→0+

∣∣∣I2(1/x)

V (x)
− 1
∣∣∣ ≤ Ce−K ,

and since K > 0 is arbitrary I2(1/x)/V (x)→ 1, as x→ 0+ and u = 1/x.
Finally let again K > 0 be arbitrary. Then

sup
t>K

e−t[1 + t+ t2] = WK , W = sup
K>0

WK

and notice that WK → 0 as K →∞. Then we have for fixed arbitrary K > 0, and x small
enough so that Kx < 1,

I1 + I3 =

∫ 1

y=0

e−yu(uy + (uy)2)
r(dy)

y
≤ (1 +W )u

∫ Kx

y=0

dr(y) +WK

∫ 1

y=Kx

r(dy)

y

= (1 +W )
r(Kx)

x
+WKV (Kx).

Therefore for u = 1/x, as above we have

lim sup
x→0+

∣∣∣I1(x−1) + I3(x−1)

V (x)

∣∣∣ ≤WK ,

and since K is arbitrary the claim follows from the fact that

I1(x−1) + I3(x−1)

V (x)
→ 0, as x→ 0+.
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